KIT | KIT-Bibliothek | Impressum | Datenschutz

A microlocal and visual comparison of 2D Kirchhoff migration formulas in seismic imaging

Ganster, Kevin 1,2; Todd Quinto, Eric; Rieder, Andreas ORCID iD icon 1,2
1 Fakultät für Mathematik (MATH), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)

Abstract:

The term Kirchhoff migration refers to a collection of approximate linearized inversion formulas for solving the inverse problem of seismic tomography which entails reconstructing the Earth's subsurface from reflected wave fields. A number of such formulas exists, the first dating from the 1950 s. As far as we know, these formulas have not yet been mathematically compared with respect to their imaging properties. This shortcoming is to be alleviated by the present work: we systematically discuss the advantages and disadvantages of the formulas in 2D from a microlocal point of view. To this end we consider the corresponding imaging operators in an unified framework as pseudodifferential or Fourier integral operators. Numerical examples illustrate the theoretical insights and allow a visual comparison of the different formulas.


Verlagsausgabe §
DOI: 10.5445/IR/1000175073
Veröffentlicht am 18.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 01.11.2024
Sprache Englisch
Identifikator ISSN: 0266-5611, 1361-6420
KITopen-ID: 1000175073
Erschienen in Inverse Problems
Verlag Institute of Physics Publishing Ltd (IOP Publishing Ltd)
Band 40
Heft 11
Seiten 115001
Vorab online veröffentlicht am 19.09.2024
Schlagwörter Kirchhoff migration, seismic imaging, generalized Radon transform, approximate inverse
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page