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A B S T R A C T

Reinforcement Learning (RL) requires many interactions with the environment to converge to an optimal
strategy, which makes it unfeasible to apply to wheel loaders and the bucket filling problem without using
simulators. However, it is difficult to model the pile dynamics in the simulator because of unknown parameters,
which results in poor transferability from the simulation to the real environment. Instead, this paper uses world
models, serving as a fast surrogate simulator, creating a dream environment where a reinforcement learning
(RL) agent explores and optimizes its bucket-filling behavior. The trained agent is then deployed on a full-size
wheel loader without modifications, demonstrating its ability to outperform the previous benchmark controller,
which was synthesized using imitation learning. Additionally, the same performance was observed as that of
a controller pre-trained with imitation learning and optimized on the test pile using RL.
1. Introduction

Heavy-duty Mobile Machines (HDDMs) such as wheel loaders are
getting increasingly more assistance and autonomous functions, en-
abled by technical advancements in computer power and Artificial
Intelligence (AI) and motivated by the upcoming labor shortage in the
construction industry [1]. Assistance systems can reduce the barrier of
entry for new operators in this area and thus reduce the need for expert
operators, who need several years of experience to become effective
workers. They also have the potential to increase the productivity and
save costs by reducing fuel consumption. Another potential cost-saving
area is reduced maintenance costs because an automatic system could
reduce the overall wear and tear on the machine [2–4]. Automating
the bucket filling problem can also improve efficiency on a worksite in
combination with teleoperation, where one operator can control many
machines at the same time and switch between them when necessary
for intervention or giving new commands [5].

Finding a high-performing and robust automatic bucket filling sys-
tem for wheel loaders is a challenging task because of unknown interac-
tion forces between the bucket and the pile material, which depends on
the properties of the material: kernel size, moisture, shape, and density.
These properties make it difficult to create general and effective con-
trollers [5]. Data-driven methods, on the other hand, do not require any
modeling of the pile or the interaction forces, which is why most recent
research for the bucket filling problem is based on these approaches.
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Imitation Learning (IL), also known as learning from demonstra-
tions, is a data-driven method, and it has been applied to the bucket
filling problem in Dadhich et al. [6], Halbach et al. [7], Yang et al.
[8], Yang et al. [9], Eriksson and Ghabcheloo [10]. All of them syn-
thesize a Neural Network (NN) bucket filling controller by collecting
expert demonstrations of the bucket filling task, and then evaluating
the performance on the same pile used for data collection.

Another approach is to use Reinforcement Learning (RL) instead,
and learn the optimal bucket filling behavior through trial and error by
digging the pile repeatedly. This approach has previously been explored
in Dadhich et al. [11], Backman et al. [12], Strokina et al. [13], Eriks-
son et al. [14], to train bucket filling controllers for wheel loaders, and
in Egli and Hutter [15], Egli et al. [16], to train a digging strategy
for excavators. RL has the potential to surpass human operators and
discover unknown bucket filling strategies. The downside of RL is that
it requires a significant amount of interactions with the environment to
learn a good bucket filling strategy. Interacting with the environment is
costly and unsafe for wheel loaders and other HDMMs, since it requires
a lot of time and fuel, and has the potential risk of damaging the
machine.

Simulators are powerful tools for testing and developing control
strategies and algorithms without the limitations of the real world,
and provide a safe alternative environment for training RL algorithms
and general testing of different control strategies. Highly accurate
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Fig. 1. Overview of the method used for creating the bucket filling controller.

Discrete Element Method (DEM) simulations have been used in Filla
[17], Filla and Frank [18], to find optimal bucket filling trajectories.
DEM has the downside of being computationally intensive, and one
scooping trajectory usually takes several hours to compute on consumer
hardware.

Multibody simulation (MBS) is an alternative type of simulation that
is able to run in real time on consumer hardware, thus making RL
algorithms feasible to run and train. These simulators have been used
in Backman et al. [12], Kurinov et al. [19], to find digging strategies
for both wheel loaders and excavators. However, all simulators have
the same fundamental problem: they are typically not accurate enough
for a learned RL policy to be effectively transferred directly to the real
world. Techniques such as domain randomization [20] and transfer
learning from sim-to-real [21] can reduce this issue. These approaches
are not researched or explored in this paper.

We explore alternative methods in this paper by creating a world
model—a surrogate simulator. The world model is created with deep
learning, trained on recorded bucket fillings from expert operators, and
simulates the dynamics of the bucket-pile environment. It is then used
to train an RL agent that is transferred to the real world, as shown in
Fig. 1. The main advantage of world models compared to physics-based
simulators is that a world model simulator [22] is faster and can run
faster than real-time. Another advantage of world models is that they
do not require domain adaptation or sim-to-real transfer methods; they
2 
can instead be directly deployed to the real system. The downside is
that world models instead require a lot of training data to be varied
enough for different scenarios.

In this paper, we also demonstrated the performance and robustness
of the RL agent trained in the surrogate simulator and compared it to
two other NN controllers. The first NN controller is synthesized with
IL, and the second controller is pre-trained with IL and fine-tuned with
RL on the target material used for evaluation. Finally, we make the
following contributions in this paper:

• A bucket filling dream environment created using world models
trained from data consisting of normal work cycles recorded in
various and unknown worksites, and from different operators.

• A high-performing controller was synthesized using RL in the
dream environment and transferred to the real world directly.
This is the first work to create a bucket filling controller using
world models in combination with RL.

• We demonstrated the performance and robustness of the con-
troller on a full-scale wheel loader in a field test and compared it
to benchmark methods.

2. Related work

The methods used in this paper are mostly inspired by the world
models paper in Ha and Schmidhuber [22], where they trained a world
model on a car racing and Doom game environment. They combined
a Long Short-Term Memory (LSTM) [23], which is a type of Recurrent
Neural Network (RNN), with a Mixture Density Network (MDN) [24]
to predict the next vector in latent space. They used RGB images as
inputs to the system that was first compressed to latent space with a
Variational AutoEncoder (VAE). The training data for the world model
was collected by a random agent for 10 000 episodes. They showed that
it was possible to successfully train a policy completely inside the world
model environment—a dream environment where the agent imagines
the episode in the latent space without needing access to the real one.
The trained agent was then redeployed to the original environment
with high performance. Our environment only uses low-dimensional
sensory inputs instead of high-dimensional images, and therefore it is
not necessary for us to encode the observations into latent space using
a VAE, and we can thus predict the next observations directly.

The LSTM in combination with an MDN network was also used in
Graves [25], for generating handwriting sequences. The network was
trained on a dataset of handwriting collected from different college
professors, and they showed that it was possible to predict the next
letter stroke and synthesize words in a specific handwriting style.

A related approach to the world models described earlier was used
in Hafner et al. [26,27], Wu et al. [28], where the authors created an
algorithm called Dreamer and applied it firstly to different Atari games.
They also applied it to real-world robots, such as a quadruped robot and
a pick-and-place robotic arm. The dreamer algorithm learns a world
model using Recurrent State-Space Model (RSSM) [29], modeled using
Gate Recurrent Units (GRU) (an RNN similar to LSTM), and leverages
it to imagine future outcomes based on the given actions.

The dynamics model consists of three modules: a transition model
that predicts the state of the Markov Decision Process (MDP), an
observation model that predicts the observed state, and a reward model
that predicts the rewards of the current state. It is then used to learn
a policy and value function, which are also parametrised using neural
networks. The learning algorithm is iteratively updating the dynamics
and behavior models, and collecting new data from the environment
by interacting with it using the latest policy combined with explo-
ration noise, until the process has converged. It learns in the latent
imagination for a certain prediction horizon and not the entire episode.

The authors showed that it is feasible to learn a policy directly in the
real world without simulators for selected robots. However, the training

time varies significantly depending on the robot and the problem to
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solve. They could learn a quadruped robot to walk within one hour,
but learning the pick-and-place robots to grasp different objects took
between 8–10 h [28]. These robots and environments are relatively
easy to reset after an episode, either manually or automatically. But
it is more challenging with wheel loaders since the material in the
bucket has to be weighed, resetting the pile, and driving the machine
into the correct starting position. There are also safety concerns when
starting with a random bucket filling policy, where the wrong action
might damage the machine.

World models can be considered as a type of non-linear Kalman
filters. Kalman filters [30] also predicts the next state given a prior
observation and the command signals. Traditional Kalman filters com-
bined with deep neural networks are an alternative to LSTM and
other RNN architectures. A few alternatives are the Recurrent Kalman
Network (RKN) [31] which learns a latent space representation and
linearization, and Backprop KF (BKF) [32] which combines a feedfor-
ward network with a Kalman filter. A similar idea to BKF was used
for model adaptation and few shot sim-to-real transfer in Arndt et al.
[33]. The authors in these papers demonstrated that their variant of
the Kalman filter performed slightly better than LSTMs on the selected
tasks. However, they have so far only been used on a limited number
of problems, while LSTMs are more popular, tested on various tasks,
and easier to implement using existing libraries.

3. Background

In this section, we provide background information about world
models, and their underlying architectures, such as LSTMs and MDNs,
as well as the preliminaries for Reinforcement Learning (RL).

3.1. World models

A world model is a representation of how an agent views the world
and is created with data-driven methods, more specifically, with data
consisting of interactions with the world. After training, the world
models are a compact representation of the environment, which is, in
our case, the dynamics between the bucket and the pile during the
loading phase. This model of the world is, by design, limited to a
specific part of the environment and not the entirety of it. Just like
humans have a mental model of the surrounding world that is limited
and constrained to what is useful for us [22].

The world model outputs the probability distribution of the next
observation and the approximate material weight as a mixture of
Gaussian given the previous observation and actions taken. In other
words, it will model Pr(𝒚𝒕+𝟏|𝒙𝒕,𝒂𝒕,𝒉𝒕), where 𝒚𝒕+𝟏 = (𝒙𝒕+𝟏, 𝑚𝑇 ) is the
next observation and final material weight, 𝒙𝒕 and 𝒂𝒕 are the input
observations and actions at time 𝑡, and 𝒉𝒕 is the hidden state of the
LSTM layer.

The LSTM is a type of RNN but with additional logic to reduce
problems, such as the vanishing gradient problem. This issue appears
during backpropagation through time when the gradient becomes too
small or too big for long sequences of data, resulting in underflow or
overflows computational errors. The LSTM has two additional internal
state variables: the hidden state ℎ𝑡, and the cell state 𝑐𝑡. The hidden
state, ℎ𝑡 is the working memory, i.e., the short-term memory, and the
cell state, 𝑐𝑡, represents the long-term memory. The cell state distin-
guishes the LSTM from the standard RNN and gives it the capability
to choose which points in the past data to remember and which to
forget [23].

The neural network architecture for the world model is shown in
Fig. 2 and consists of one layer of LSTM units, where the hidden state
is connected to an MDN as the second layer. The network predicts
the probability 𝜋𝑖, mean 𝝁𝑖, and standard deviation 𝝈𝑖, for a mixture
of Gaussians distribution, where the predicted next observation and
material weight are sampled from. The distribution consists of 𝑀
mixtures, and the mean, 𝝁𝑖, and standard deviation, 𝝈𝑖, vectors are the
3 
Fig. 2. Architecture of the world model with an LSTM and MDN layer.

same length as 𝑦̂—the number of features to predict. Furthermore, the
MDN network also takes the temperature 𝜅 as an input, which adjusts
the overall variance of the sampled prediction: 𝜅 = 0 results in the most
probable mean output, 𝜅 = 1 has no effect, and 𝜅 > 1 results in a higher
variance of predictions [22].

The three output variables from the world model: 𝜋𝑖, 𝝁𝑖, 𝝈𝑖 are
activated with Eqs. (1), (2), and (3) respectively, to force the values
into correctly defined ranges, where 𝜋̂𝑖

𝑡 , 𝝁̂
𝑖
𝑡, and 𝝈𝑖

𝑡, are the outputs from
the last neurons.

𝜋𝑖
𝑡 =

exp(𝜋̂𝑖
𝑡 )

∑𝑀
𝑖=1 exp(𝜋̂

𝑖
𝑡 )
, 𝜋𝑖

𝑡 ∈ (0, 1),
𝑀
∑

𝑖=1
𝜋𝑖
𝑡 = 1 (1)

𝝁𝑖
𝑡 = 𝝁̂𝑖

𝑡, 𝝁𝑖
𝑡 ∈ R (2)

𝝈𝒊
𝒕 = exp(𝝈̂𝒊

𝒕), 𝝈𝒊
𝒕 > 0. (3)

We use an MDN layer because the output from conventional NN
results in the mean value of the target data. This leads to poor perfor-
mance in multimodal situations [24], such as the bucket filling task,
where different materials results in different modalities.

The output from the network is then interpreted as a probability
density function in the form of a linear combination of Gaussian kernel
functions:

Pr(𝒚𝒕+𝟏|𝒙𝒕,𝒂𝒕,𝒉𝒕) =
𝑀
∑

𝑖=1
𝜋𝑖
𝑡 (𝒚𝒕+𝟏|𝝁𝒊

𝒕,𝝈
𝑖
𝑡) (4)

where 𝜋𝑡 are the mixing weights, and  (𝒚𝒕+𝟏|𝝁𝒊
𝒕,𝝈

𝑖
𝑡) is the multivariate

Gaussian of the form:

 (𝒚|𝝁,𝝈) = 1
√

(2𝜋)𝑘|𝜮|

exp
[−1
2
(𝒚 − 𝝁)𝑇𝜮−1(𝒚 − 𝝁)

]

(5)

𝜮 is the covariance matrix, |𝜮| is the determinant, and 𝑘 is the rank of
the covariance matrix.

We assume that the features are statistically independent to simplify
the calculations and to reduce the number of output neurons in the
network. The Gaussian mixture model is capable of approximating
any density function given enough mixture components, and when the
means and standard deviations are correctly chosen [24]. This results in
a simplified covariance matrix 𝜮, on a diagonal form with the variances
on the diagonal and with the rank equal to the number of features in
𝒚𝒕. The covariance matrix 𝜮 and its inverse 𝜮−1 becomes:

𝜮 =

⎛

⎜

⎜

⎜

⎜

𝜎21 0 ⋯ 0
0 𝜎22 ⋯ 0
⋮ ⋮ ⋱ 0

2

⎞

⎟

⎟

⎟

⎟

(6)
⎝

0 0 ⋯ 𝜎𝑘 ⎠
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𝜮−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
𝜎21

0 ⋯ 0

0 1
𝜎22

⋯ 0

⋮ ⋮ ⋱ 0
0 0 ⋯ 1

𝜎2𝑘

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(7)

Eq. (5) is simplified with the diagonal covariance matrix to:

 (𝒚|𝝁,𝝈) = 1
√

(2𝜋)𝑘
∏𝑘

𝑗=1 𝝈
2
𝑗

exp

[

−1
2

𝑘
∑

𝑗=1

(𝑦𝑗 − 𝜇𝑗 )2

𝜎2𝑗

]

(8)

3.2. Reinforcement learning

We formalize the learning problem using the Reinforcement Learn-
ing (RL) context. The base component of any RL problem is the Markov
Decision Process (MDP), which consists of four main components:
observed state space 𝒙𝒕 ∈ , action space 𝒂𝒕 ∈ , transition dynamics
probability function 𝑝(𝒙𝒕+𝟏|𝒙𝒕,𝒂𝒕), and reward 𝑟𝑡(𝒙𝒕+𝟏,𝒙𝒕,𝒂𝒕) ∈ . At
each time step, the agent receives the observed state, 𝒙𝒕, and reward
𝑟𝑡, then acts according to a stochastic policy 𝜋(𝒙𝒕|𝒂𝒕) with the goal of
maximizing the accumulated reward during the entire episode 𝑅𝑇 =
∑𝑇

𝑘=𝑡 𝛾
𝑘−𝑡𝑟𝑡(𝒙𝒕+𝟏,𝒙𝒕,𝒂𝒕). 𝛾 is the discount factor, and 𝑇 is the terminal

state [34].
A common and popular deep RL algorithm is Proximal Policy Op-

timization (PPO) [35], which is an actor–critic algorithm where the
actor is the policy function 𝜋(𝒙𝒕|𝒂𝒕), and the critic evaluates the ac-
tions taken by the actor. Both of them are parametrised as separate
neural networks. The PPO algorithm is model-free and requires little
hyperparameter tuning compared to other deep RL algorithms.

The reward function, 𝑟𝑡(𝒙𝒕+𝟏,𝒙𝒕,𝒂𝒕), is defined as a scalar input to
the agent at each time step, and the definition of it defines how fast
the agent learns and how well it achieves our goals. A badly designed
reward function can result in the agent not acting as intended by
finding ways to exploit it and earn high rewards without achieving the
desired behavior. An example of this was explained in Ng et al. [36],
where a football agent learned to ‘‘vibrate’’ the football by touching
the ball with a very high frequency. The reward function was, in this
case, possession—the amount of time a player has control of the ball.
While this is a useful in the overall game, it is not sufficient to describe
the true goal of football. A good reward function should communicate
what you want to achieve and not how to do it [34].

Remark. Training an RL agent on a real wheel loader requires a well-
engineered reward, as in our previous work [14], to keep the required
experiment manageable, which is typically a hard job. In the dream
world model, we only provide a sparse reward, consisting of the final
material weight. Although this requires more episodes, it is not a
problem in the dream environment because of the fast execution time.

4. Method

Here, we describe the input and output signals for the system,
as well as the bucket filling algorithm. The method of creating a
bucket filling controller using world models and RL is also described
in Section 4.3.

4.1. Signals and commands

The input signals used for the automatic bucket filling are visualized
in Fig. 3, and are the following: 𝜃𝑡𝑖𝑙𝑡, 𝜃𝑙𝑖𝑓 𝑡, 𝐹𝑡𝑖𝑙𝑡, 𝐹𝑙𝑖𝑓 𝑡, 𝑣, 𝜏𝑝𝑢𝑙𝑙. The angles:
𝜃𝑡𝑖𝑙𝑡 and 𝜃𝑙𝑖𝑓 𝑡 are both 0 when the bucket lies flat on the ground and
increasing in the direction of the arrows. The forces, 𝐹𝑡𝑖𝑙𝑡 and 𝐹𝑙𝑖𝑓 𝑡,
are calculated by measuring the pressure at the rod and bottom side
of the respective cylinders as well as the area. The velocity of the
wheel loader, 𝑣, is measured from the rotational speed of the tires, and
therefore the true velocity over ground is not measured. The last signal,
4 
Fig. 3. Definition of the joint angles and forces.

Fig. 4. Three phases of the bucket filling algorithm. The first phase brings the wheel
loader into the digging position in the pile. The bucket filling controller is active in
the second phase and diggs through the pile.

𝜏𝑝𝑢𝑙𝑙 is the rimpull torque, which relates to the traction force between
the wheels and the ground.

The command signals used by the operator and the bucket filling
controller are: 𝑢𝑡𝑖𝑙𝑡, 𝑢𝑙𝑖𝑓 𝑡, 𝑢𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒. The two command signals, 𝑢𝑡𝑖𝑙𝑡 and
𝑢𝑙𝑖𝑓 𝑡, control the bucket, the end effector of the wheel loader, by
increasing or decreasing the angles 𝜃𝑡𝑖𝑙𝑡, and 𝜃𝑙𝑖𝑓 𝑡, respectively. The
commands are in the range [−1, 1], where a positive signal indicates
a command to increase the angles and a negative signal indicates the
opposite. The last command signal, 𝑢𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒, controls the throttle of the
engine and is on the interval [0, 1].

The sensors for measuring these signals are already equipped on the
base machine. Therefore, no modifications were needed on the wheel
loaders used in data collection and the field test.

4.2. Bucket filling algorithm

The bucket filling algorithm used in this paper is the same as in our
previous work [10,14,37], which is similar to the approach in Dadhich
et al. [6,11]. The steps are summarized in Fig. 4, and consists of 3
phases: approach, loading, and exit.

1. Approach: The bucket is placed flat on the ground, and then the
wheel loader is accelerated with 50% throttle command towards
the pile.

2. Loading The loading phase starts when the force in the lift
cylinder exceeds a pre-defined threshold. The force in the lift
cylinder increases as the bucket starts to penetrate the pile. The
neural network controller is outputting the control commands
𝑢𝑡𝑖𝑙𝑡, 𝑢𝑙𝑖𝑓 𝑡, 𝑢𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒.

3. Exit The exit phase, tilts the bucket completely in to prevent
material from spilling out, marks the end of the bucket filling
process.
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Fig. 5. Overview of the gym environment and the training of the RL agent.
Fig. 6. Overview of the wm_controller used in the field test.

The bucket filling process is divided into phases to simplify the
problem, and the algorithm assumes that the wheel loader is already
positioned in front of the digging spot since no sensors for detecting
the pile are used. Furthermore, the neural network controller is only
controlling the 𝑢𝑡𝑖𝑙𝑡, 𝑢𝑙𝑖𝑓 𝑡, 𝑢𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 in phase 2 when the bucket is in the
digging position.

4.3. Synthesizing a controller

We synthesize the bucket filling controller in three steps, as shown
in Fig. 1, and described in the following sections.

4.3.1. Creating a world model
We create a world model simulator by collecting a large amount of

bucket filling data from expert operators. The training data consists of
the input signals and operator commands described in Section 4.1.

We use the probability density from Eq. (4) where 𝒚 =
(

𝒙, 𝑚𝑇
)

,
𝒙 = (𝜃𝑡𝑖𝑙𝑡, 𝜃𝑙𝑖𝑓 𝑡, 𝐹𝑡𝑖𝑙𝑡, 𝐹𝑙𝑖𝑓 𝑡, 𝑣, 𝜏𝑝𝑢𝑙𝑙), 𝑚𝑇 is the final material weight, and
𝒂 = (𝑢𝑡𝑖𝑙𝑡, 𝑢𝑙𝑖𝑓 𝑡, 𝑢𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒).

The probability given by the world model for predicting the obser-
vation sequence 𝒚 is given by:

Pr(𝒚) =
𝑇
∏

𝑡=1
Pr(𝒚𝒕+𝟏|𝒙𝒕,𝒂𝒕,𝒉𝒕) (9)

The loss function, (𝒙𝒕,𝒂𝒕,𝒉𝒕), for the observation sequence used in
training the world model is then the negative logarithm of Pr(𝒚). The
loss is calculated for all the predicted observations in the bucket filling
sequence, and the material weight is predicted only once at the last
time step 𝑇 using the entire data trajectories: 𝒙, 𝒂, and 𝒉. This gives
the following loss function:

(𝒙) = − log
[

Pr(𝑚 |𝒙,𝒂,𝒉)
]

𝑇

5 
−
𝑇−1
∑

𝑡=1
log

[

Pr(𝒙𝒕+𝟏|𝒙𝒕,𝒂𝒕,𝒉𝒕)
]

(10)

The log of the probability density function in Eq. (4) can be written
as:

log
[

Pr(𝒚𝒕+𝟏|𝒙𝒕,𝒂𝒕,𝒉𝒕)
]

=

log

[ 𝑀
∑

𝑖=1
exp

(

log
[

𝜋𝑖
𝑡
]

+ log
[

 (𝒚𝒕+𝟏|𝝁𝒊
𝒕,𝝈

𝑖
𝑡)
])

]

(11)

Similarly, Eq. (8) can be rewritten as:

log
[

 (𝒙|𝝁,𝝈)
]

=

−1
2

𝑘
∑

𝑗=1

(𝑥𝑗 − 𝜇𝑗 )2

𝜎2𝑗
− 𝑘

2
log(2𝜋) − 2

𝑘
∑

𝑗=1
log(𝝈𝑗 ) (12)

4.3.2. Training a bucket filling policy with RL
The world model simulator is used in this step as a fast surrogate

simulator (replacing the role of a traditional physics-based simulator)
to create a dream environment where an RL agent can explore and op-
timize its bucket filling behavior. The implemented dream environment
follows the gym API [38]. At each time step, the environment receives
the action from the agent as input and returns the next observation,
reward, and state of the episode termination. An overview image is
shown in Fig. 5.

The input to the agent is defined as 𝒛𝒕 = (𝒙𝑡,𝒉𝒕, 𝒄𝒕), where 𝒙𝑡 is the
predicted observation from the world model, 𝒉𝒕 is the hidden state of
the LSTM, and 𝒄𝒕 is the cell state of the LSTM. Including the hidden
and cell states from the LSTM results in the agent receiving temporal
information about the bucket filling process instead of only the instant
observation.

The gym environment takes the temperature 𝜅, and a dataset with
bucket fillings as parameters before starting the training. The temper-
ature, 𝜅, controls the variance in the world model. 𝜅 = 0 results in
the outputs being deterministic, and only the most likely output is
always chosen, while 𝜅 > 1.0, makes the world model increasingly
more unpredictable. This results in a more difficult environment and
makes it more challenging for the RL agent, since it must consider the
randomness of the world model while optimizing its policy. The dataset
with bucket fillings is used to prime the world model to generate
observations in the style of a particular pile. Priming was used for a
similar NN model in Graves [25], where they used it for generating
handwriting in the style of a certain person. The target handwriting
had to be in the dataset during training for priming to work; therefore,
we can only simulate piles that are already in the dataset.

The world model was primed by feeding it observations and actions
from a random episode with sample lengths of 10% of the total length
and starting at the beginning of the bucket filling.

The RL agent was initialized with a completely random policy and
critic, and the maximum episode length was set to 22.5 s. If an episode
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Fig. 7. Selected sample of the materials collected in the training data. (a) sand 0–4 mm (b) gravel 3–10 mm (c) gravel 8–16 mm (d) gravel 16–32 mm (e) gravel 32–63 mm (f)
blasted rock 0–400 mm.
Fig. 8. Example of the operator commands during a bucket filling and the correspond-
ing joint angles. The three phases described in Section 4.2 are also marked out on the
plot.

took longer than that, it would be marked as truncated, and the agent
would not receive any terminal reward.

Our previous work in Eriksson et al. [14] showed that the RL train-
ing was improved if the time between each step in the RL algorithm
was matched to the delays of the hydraulic system, which is in our
case 225 ms. The same modifications were used in this paper, but the
world model updated its state at the default sampling time of 15 ms.
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The main goal of the bucket filling is to achieve a high fill grade,
which can be calculated approximately using the material weight as a
proxy. Therefore, we chose the following reward function:

𝑟𝑡(𝒚𝒕,𝒂𝒕) = 0 (13)

𝑟𝑇 (𝒚𝑻 ,𝒂𝑻 ) = min
(

𝑚
𝑤1

, 1.0
)

(14)

Eq. (13) is the step reward, and Eq. (14) is the terminal reward
at the end of the episode at time-step 𝑇 , 𝑚 is the weight of the
material in the bucket in kg at the end of the episode. 𝑤1 is the target
loaded material weight that the agent should achieve. This number is
determined according to the specific wheel loader, bucket, and pile
combination. It should be selected so that the bucket is full when
𝑚
𝑤1

= 1.
We chose sparse rewards calculated only with the material weight

because it is the most important goal for the bucket filling controller
to achieve. A fast bucket filling time is also important, and by setting
the 𝛾 < 1.0, we can incentivize the agent to load the bucket as fast as
possible when our step reward is 0.

A dense and more complicated reward function could speed up the
training at the risk of the agent finding behaviors to abuse the reward
function, which are most likely not beneficial for us. The trade-off for
a simpler reward function against training time is not an issue with the
surrogate simulator, since it runs faster than real time. It is thus capable
of completing a large amount of episodes in a feasible amount of wall
clock time.

4.3.3. Deployment on the real machine
The trained bucket filling controller, denoted in this paper as

wm_controller, is deployed on the real machine without any modifica-
tions or optimization of the weights. The controller assumes 𝒛𝒕 as input,
and therefore the world model is running in the background to produce
the necessary inputs ℎ𝑡, and 𝑐𝑡, for the controller, as shown in Fig. 6.
In this stage, the outputs from the MDN: 𝜋, 𝝁, and 𝝈, are ignored and
discarded.
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Fig. 9. Architecture of the baseline and baseline_rl controller from [14].
Fig. 10. Wheel loader and pile used for testing the neural network controller.
5. Experiment setup

5.1. Training data

The training data used to create the world model explained in
Section 3.1 was collected from two different worksites and from two
different types of wheel loaders: a 24-tonnes Liebherr L576, and a 33-
tonnes Liebherr L586. The two worksites were quarries, which blast
rock from the mountain and crush it into different sizes. At worksite 1
the wheel loader handles both the blasted material for loading into a
crusher and the crushed material for loading trucks. The wheel loader
at worksite 2, only handles the blasted rock. Therefore, the two wheel
loaders handle a wide range of materials with different kernel sizes,
shapes and densities. It loads, for example, different fine-grained sand,
gravel, and blasted rock. A selected sample of the materials that were
collected is shown in Fig. 7.

The data was recorded in the background during normal operation,
where the operators carried out their normal tasks without any specific
instructions on how to load the different materials. This results in a
natural and varied dataset with different pile shapes, and driving and
weather conditions, as well as different operator loading strategies.

The recordings resulted in long time series sampled at 15 ms, which
contained bucket fillings as well as other tasks irrelevant to us. We used
the same automatic labeling technique developed in our previous work
in Eriksson and Ghabcheloo [10], to extract the useful bucket fillings
from the training data. The data was also filtered to exclude bucket
fillings that took longer than 15 s and with less material than 6 000 kg.
The detected bucket fillings outside this range have a higher risk of
being false positives, or the operator might have a reason for slow
7 
loading times or loading less than half-full buckets. This is impossible
to know by looking at the data, so it is better to discard them. Fig. 8
shows an example of the operator commands during a digging and the
corresponding joint angles 𝜃𝑡𝑖𝑙𝑡, and 𝜃𝑙𝑖𝑓 𝑡.

We collected data during 5 months of operation and used the
automatic labeling technique from [10] to extract the bucket fillings
from the time-series data. This resulted in approximately 20 000 bucket
fillings from the different materials.

Another dataset was also recorded using a third machine and a
different operator. This dataset was used for validating the world model
and was not part of the training data. Furthermore, it was collected
from the same material and pile that was used for the real-world tests.

5.2. Training details

The world model was trained with the training data from the
previous Section, and 95% of the data was used for training and the
remaining 5% as test data. The world model network was implemented
using PyTorch [40], consisting of 1 LSTM layer with 512 hidden units,
and 𝑀 = 3 mixtures for the MDN layer. In total, the world model has
1 096 237 trainable parameters and was optimized using the ADAM
algorithm [41].

We used the PPO algorithm included in the Stable-Baselines3 pack-
age [42] using the hyperparameters from Table 1. The actor and critic
were modeled as separate networks with the same architecture; a fully
connected feedforward network with one hidden layer of 64 neurons
activated by the hyperbolic tangent function. The policy network was
chosen as a simple NN because all the complexity is incorporated in the
world model that produces the inputs for the policy network.
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Fig. 11. Predicted observations from the world model using different prediction horizons.
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Fig. 12. True and predicted weights from the world model.
Table 1
Hyperparameters for the PPO algorithm and the gym environment.

Hyperparameter Value Description

𝛾 0.99 Discount factor
𝛼 1e−05 Learning rate for the optimizer
𝜆𝑔𝑎𝑒 0.95 Factor for trade-off of bias vs variance for GAE [39]
clip_range 0.2 Clipping parameter
ent_coef 0.01 Entropy coefficient for the loss calculation
n_epochs 10 Number of epochs when optimizing the surrogate loss
batch_size 64 Minibatch size
n_steps 512 Size of the rollout buffer
vf_coef 0.5 Value function coefficient for the loss calculation
max_grad 0.5 The maximum value for the gradient clipping
𝜏 1.1 Temperature of the world model
𝑤1 10 000 Target value for the loaded material weight
The RL agent was trained for 30 000 episodes, and we used a
separate environment for testing and reporting the rewards and episode
lengths. The test environment was set up in the same way as the
training environment, but the agent does not use any exploration noise.

The world model and RL agent were both trained on a consumer PC
with an Intel i7 12 cores CPU, 16 GB of RAM, and an Nvidia GeForce
RTX 2070 Mobile GPU with 8 GB of VRAM.

The training time for the world model was approximately 10 h, and
the training time for the RL agent was approximately 3 h.

5.3. Baseline controllers

The wm_controller is compared against two baseline controllers as
well as a human expert operator. The first baseline controller was de-
veloped in our previous work in Eriksson and Ghabcheloo [10],Eriksson
et al. [37], where it showed the overall best performance and robust-
ness. It was synthesized with IL from a dataset consisting of about 100
bucket fillings collected from an expert operator at a worksite loading
blasted rock (0–200 mm). The baseline controllers have five inputs:
𝜃𝑡𝑖𝑙𝑡, 𝜃𝑙𝑖𝑓 𝑡, 𝐹𝑡𝑖𝑙𝑡, 𝐹𝑙𝑖𝑓 𝑡, 𝑣, and it takes a time window of 16 samples of
each input. The inputs are passed through a 1-D Convolutional Neural
Network (CNN) with three output channels, which are then flattened
and sent to a fully connected layer, which outputs the command signals:
𝑢𝑡𝑖𝑙𝑡, 𝑢𝑙𝑖𝑓 𝑡, 𝑢𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒. The full architecture is shown in Fig. 9.

The second baseline controller, baseline_rl, uses the same architec-
ture and imitation learning technique as the baseline controller, but it
was optimized on the testing pile using RL. This is the same model and
method that were used in our previous work in Eriksson et al. [14].
The controller was fine-tuned for 20 episodes on the target pile.
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5.4. Evaluation

We evaluate and test the controllers in a field test using a Liebherr
L576 24-tonnes wheel loader and a gravel-like material (0–64 mm),
as shown in Fig. 10. The performance and robustness are compared
between the three controllers by measuring the loaded material weight
in the bucket, the loading time, and the number of successful bucket
fillings. The loaded material weight in the bucket is weighed after each
bucket filling using the internal weighing system, and the loading time
is defined as the time from pile penetration to a certain tilt angle, 𝜃𝑡𝑖𝑙𝑡,
is reached. A bucket filling is considered successful if the controller
manages to load the bucket without getting stuck in the pile.

The bucket filling controller runs as a node using the Robotic
Operating System 2 (ROS 2) [43], on a consumer PC connected via
the CAN-bus to the machine’s internal controller for receiving input
signals from the sensors and transmitting commands. Each of the three
controllers was evaluated 10 times on the same pile.

6. Results and discussion

This section reports the results from the training of the world model,
training the RL agent, and the final performance of the controller
deployed on the real machine during the field test.

6.1. World model

The world model was trained using the training data from Sec-
tion 5.1, and the prediction capability was evaluated on a second
validation dataset that was not used during training or testing. As men-
tioned in Section 5.1 this dataset was collected from a third machine
and from the same pile used in the field test.
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Fig. 13. Rewards and loading time for the RL-agent during training (a) Accumulated rewards from each episode (b) Average loading time for each episode.
The prediction capabilities of the world model were evaluated using
three different prediction horizons: ℎ = 1, ℎ = 10, and ℎ = 𝑇 ,
which are shown in Fig. 11. For the first horizon, ℎ = 1, the world
model predicts the observation for the next time step, which is 15 ms,
given the last true observation and the commands from the operator.
Similarly, ℎ = 10, predicts the next 10 time steps, which is 150 ms
into the future, given one true observation and the commands from the
operator during the prediction horizon. After 10 time steps, the next
true observation is fed to the model, and the prediction cycle repeats.
For the last prediction horizon, ℎ = 𝑇 , the world model predicts the
entire bucket filling starting with a true observation and then only
using the commands from the operator and the previously predicted
observation.

For the two longer prediction horizons, ℎ = 10, and ℎ = 𝑇 , the world
model is first warmed up using the first four true observations to get
more reliable results because of the high uncertainties in the state of
the model. This is illustrated in Fig. 11, where the orange curve has a
high deviation from the true observation for the first few time steps.

We can see from Fig. 11, that with a next-step prediction horizon,
ℎ = 1, the world model is very capable of predicting the observed state.
This capability decreases the longer prediction horizon we test with.
Using a prediction horizon of ℎ = 10, the world model is still very
close to the true values, except for some oscillations in the tilt cylinder
force 𝐹𝑡𝑖𝑙𝑡. The performance degrades when predicting the entire bucket
filling sequence, but they are still close to the true values, and the
predicted values follow the general shape of the true observations but
with an offset.

The world model was also designed to be able to predict the weight
of the material at the end of a bucket filling, which is used in calculating
the reward function in step 2. The predicted weights from the world
model are shown in Fig. 12, with a Mean Absolute Percentage Error
(MAPE) of 10.5% for the validation dataset.

The results in Fig. 12 shows that the world model is capable of
predicting reasonable weights close to the true value but overestimates
it more often than underestimates it. The figure also indicates that the
spread of the predicted loaded material weights is higher than the true
one. One reason for this is that predicting the material weight using
only the data during the loading phase is challenging because the forces
observed during digging are also affected by the pile properties. These
properties are different depending on the material, and the shape and
size of the pile. The true weight can only be estimated after the bucket
filling has been completed and is free from the pile, which we do not
have in the training data.

6.2. RL agent

The result from the second step, training an RL-agent using the
world model as a fast surrogate simulator, is shown in Fig. 13, as the
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accumulated reward per episode as well as the loading time of each
bucket filling episode.

Early tests indicated that it was necessary to prime the world model
before each episode during training to have satisfactory bucket filling
performance in the field test. Without priming, the RL agent can cheat
the world model by forcing it to predict easy-to-load piles, such as
a sand pile, to earn high rewards without being able to load more
challenging materials, such as blasted rock. With priming, we set the
state of the world model to output a certain pile from the training
data and its properties. Another strategy to avoid this issue is to divide
the training data into different piles, train one world model for each
material, and then train the RL agent on all the different world models.
But the problem with this strategy is that then you also have to select
the correct world model for the material that is being loaded when
using it in the field.

The RL training converges after about 10 000 episodes, as shown
in Fig. 13, starting from a random policy. This would not be feasible
to do in the real world, but using the world model as a fast surrogate
simulator, we can do it in approximately 3 h.

We can see in Fig. 13 (b), that the RL-agent is capable of optimizing
the loading time even though the loading time was not explicitly part
of the reward function in Eq. (14). As mentioned earlier, this is due to
the discount factor 𝛾 = 0.99, and thus future rewards are valued less
than immediate rewards. Furthermore, since we only have a non-zero
reward at 𝑡 = 𝑇 , the agent is optimizing to reach that goal as quickly
as possible. Another thing to consider, is the properties of the bucket
filling problem. A slow bucket filling strategy does not necessarily mean
a high material weight, and a quick loading time can also yield a high
material weight.

There is a risk that the RL agent learns behaviors that are not
possible in the real world but only in the world model simulator
because it will be incomplete—the range of possible predictions is
limited by the training data. Therefore, it is possible for the agent
to cheat the world model and find a behavior that accumulates high
rewards in the simulator but is nonsense in the real world. The authors
from [22] found that tuning 𝜅 > 1.0 makes it harder for the agent to
exploit the world model. This will limit this risk, but not completely
remove it. It is necessary to inspect the agent’s behavior manually to
see if it is reasonable.

6.3. Field test

Lastly, the wm_controller was deployed to the real machine and
compared in a field test against the two baseline controllers, and a
human expert operator. Each of the three controllers was tested 10

times on the same pile on the same day.
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Fig. 14. Performance and robustness of the bucket filling controllers averaged over 10 trials. The horizontal bar represents the performance of the human operator.
Fig. 15. 𝑢𝑡𝑖𝑙𝑡, and 𝑢𝑙𝑖𝑓 𝑡 commands from (a) the baseline controller and (b) the wm_controller.
The performance of the three controllers is shown in Fig. 14. All
f them could successfully load the bucket and could beat the human
xpert operator.

The wm_controller and baseline_rl have about the same performance
and could get higher material weight and faster loading times than
the baseline controller. They also have a more consistent performance
compared to the operator and the baseline controller.

The output commands of the wm_controller and the baseline are
shown in Fig. 15, where the two behaviors are very different from each
other and the wm_controller commands are smoother and less noisy than
the baseline controller.

The baseline controller commands are noisier because the controller
tries to mimic the operator behavior, which usually has a variance in
the commands during the bucket filling, as shown in Fig. 8. The RL-
agent, on the other hand, is free to optimize its behavior without any
prior human bias and is capable of finding an optimal digging behavior
different from the optimal human digging behavior. The experiments
show that smooth command signals outperform high-variance ones.

Interestingly, the wm_controller learns to tilt down at the beginning
of the episode while lifting at the same time. It only does it for less
than half a second, so the tilt angle, 𝜃𝑡𝑖𝑙𝑡, does not change considerably

uring this time.
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7. Conclusions

We have collected training data from different worksites, created a
surrogate simulator using world models, and then trained an RL agent
from scratch to solve the bucket filling problem. The RL-agent was
transferred to and tested on a full-size wheel loader in a field test. It also
had higher performance than our previous best bucket filling controller
and was on the same level as a controller optimized for the target pile.
The experiments also demonstrated that the RL agent was able to learn
a very different digging behavior than human expert operators.

We have demonstrated the feasibility of our approach applied to the
bucket filling problem for wheel loaders with a gravel-type material.
But it was only possible to test the controller on this material, so
the next step will be to test the controller on different materials and
compare it to the previous best controllers. Furthermore, implementing
a similar approach as the Dreamer algorithm in Wu et al. [28], which
continuously adapts to the pile environment and updates the world
model with new interactions, is also interesting to research in the
future.

The world model simulator developed in this paper can also be
used for testing the performance of other bucket filling controllers,
such as those created by IL, and evaluating their performance. As we
showed in Eriksson and Ghabcheloo [10], it is difficult to evaluate

the performance of the controller by only comparing the predicting
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performance of the operator commands because this does not translate
directly to closed-loop performance in a field test. With the world
model, it is possible to test the closed-loop performance of a synthesized
NN controller with different pile environments using priming, instead
of testing it on the real machine.

Another interesting direction for future research is to investigate
how the same approach can translate to other earth-moving HDMMs,
such as excavators.
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