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Abstract: Standard ML relies on ample data, but limited availability poses challenges. Transfer
learning offers a solution by leveraging pre-existing knowledge. Yet many methods require access
to the model’s internal aspects, limiting applicability to white box models. To address this, Tsai,
Chen and Ho introduced Black Box Adversarial Reprogramming for transfer learning with black
box models. While tested primarily in image classification, this paper explores its potential in time
series classification, particularly predictive maintenance. We develop an adversarial reprogramming
concept tailored to black box time series classifiers. Our study focuses on predicting the Remaining
Useful Life of rolling bearings. We construct a comprehensive ML pipeline, encompassing feature
engineering and model fine-tuning, and compare results with traditional transfer learning. We inves-
tigate the impact of hyperparameters and training parameters on model performance, demonstrating
the successful application of Black Box Adversarial Reprogramming to time series data. The method
achieved a weighted F1-score of 0.77, although it exhibited significant stochastic fluctuations, with
scores ranging from 0.3 to 0.77 due to randomness in gradient estimation.

Keywords: transfer learning; RUL prediction; ball bearings; black box model; time series classification;
predictive paintenance

1. Introduction

Machine Learning (ML) has come a long way from the first perceptron to today’s
transformer networks. While predictions suggest that the ML market will surpass USD 500
billion by the end of the second decade of the 21st century [1], current ML models share
one problem: their dependence on sufficiently large, high-quality datasets.

The subfield of transfer learning (TL) offers a remedy for this problem. TL involves
using knowledge from established tasks to improve learning for new but related tasks [2].
Typically, these approaches are concerned with fine-tuning models obtained from the source
domain, especially in the highly successful field of deep learning.

However, fine-tuning requires complete understanding and access to the pre-trained
model. Models that are not accessible, so-called black box models, can, therefore, often not
be incorporated into TL, regardless of their performance potential.
In light of this challenge, this paper investigates a novel TL approach called Black Box
Adversarial Reprogramming, which permits using black box models.

In 2018, Elsayed et al. presented a new type of adversarial attack in their paper
“Adversarial Reprogramming of Neural Networks” [3]. With their so-called adversarial
reprogramming algorithm, the authors showed that the function of neural networks can be
misappropriated. Adversarial reprogramming can, therefore, be used to hijack third-party
resources. However, it turns out that the novel concept also has positive potential.
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Two years after the publication of Elsayed et al., the authors Tsai et al. presented
their work “TL without Knowing: Reprogramming Black-box ML Models with Scarce Data
and Limited Resources” [4]. In this paper, the authors propose applying the adversarial
reprogramming algorithm to solve problems that usually fall within the scope of TL. They
show that adversarial reprogramming can solve tasks in domains where only a few labeled
data are available by reusing a model trained on another domain. The fact that their method
can be used with black box algorithms makes their work particularly innovative. They,
therefore, refer to their method as Black Box Adversarial Reprogramming (BAR). Tsai et al.
demonstrate the effectiveness of the BAR algorithm in image classification but believe that
their approach can be successfully applied to other types of problems as well.

This paper builds on the knowledge previously obtained by [3,4]. The paper aims
to investigate the potential of the BAR algorithm when applied to time series data. This
investigation is conducted in the context of predictive maintenance. In this context, data
scarcity is especially limiting. The lifetime data of machine components need either long-
term observations in productive machines or relatively costly investigations on specified
test benches. This is why singular and task-specific ML models are not a realistic option for
various components.

The data used in the paper are sensor data from rolling bearings used in production
plants [5]. The data are run-to-failure data, on the basis of which the RULs of the respective
bearings are to be determined.

Notably, this work is limited to traditional ML; deep learning approaches are not
considered. Traditional ML approaches have several advantages, such as a higher level of
explainability and better uncertainty estimation capabilities.

In order to evaluate the novel BAR approach, a conventional TL model is developed
to serve as a benchmark and allow for a performance classification of the new approach.
The work includes an evaluation of the two approaches on a common test dataset. The
analysis is qualitative in nature.

2. Transfer Learning

The application areas of ML are diverse, ranging from topics such as pattern recogni-
tion to those like machine vision [1]. However, ML architectures share a common problem.
In order to fully unleash their potential, they need sufficiently large datasets [6]. In certain
domains of application, it may not be feasible, or hardly so, to generate datasets of adequate
quality. Consequently, conventional ML methods are deemed non-feasible. However, the
concept of TL can provide a solution. TL, a sub-field of Machine Learning (ML), entails
leveraging knowledge from established tasks to enhance the learning process for new but
related tasks [2].

2.1. Definitions

In order to incorporate the definition of TL as outlined in the current literature, it is
necessary to first understand two underlying definitions. The concept of domain is one of
the definitions that must be comprehended, along with the definition of task.

• Domain

A domain D consists of two components, a feature space X and a marginal probability
distribution P(X), where X = x1, x2, . . . , xn ∈ X [7].

• Task

Given a specific domain, D = {X , P(X)}, a task consists of two components, a label
space Y and an objective function f (·), which cannot be observed but can be learned from
training data. These training data consist of pairs {xi, yi} with xi ∈ X and yi ∈ Y. A task is
denoted as T = {Y, f (·)} [7].

Understanding the two terms, task and domain, allows one to address the definition
of TL commonly used in the literature.
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• Transfer Learning

Given a source domain DS , a learning task TS , a target domain DT m and a learning
task TT , transfer learning (TL) aims to help improve the learning of the target predictive
function fT(·) in DT using knowledge in DS and TS , where DS ̸= DT or TS ̸= TT [7].

Thus, TL describes a process in which knowledge from a previously learned task TS
in a domain DS is leveraged to then improve learning and increase learning efficiency in
another domain DT and/or task TT . Further, the definition of TL indicates that the term is
not particularly restricted. Unsurprisingly, TL can, therefore, be employed in a variety of
application scenarios. The field of application of TL can thus quickly become confusing,
which is why a compact taxonomy of the field follows below. There are a number of ways
to categorize the different TL approaches. In this paper, we follow the taxonomic structure
used by Zhuang et al., which groups approaches according to problem categorization and
solution categorization [8].

2.2. Problem Categorization

The definition of TL states that either the domains themselves or the tasks on the
domains must differ to be considered TL (DS ̸= DT , or TS ̸= TT). Subcategories of TL
can be identified based on the (in)consistency between domains and/or tasks. Such a
categorization approach is also referred to as Label-Setting-Based Categorization [7].

It should be noted, however, that domains and tasks may differ, and a certain degree
of relationship must be maintained to use TL effectively.

2.3. Solution Categorization

Focusing on solutions, also called implementation approaches, provides an alternative
method to problem-based categorization. In this context, the emphasis lies in distinguishing
the various approaches based on their technical concepts. Once again, it was the authors Pan
and Yang who identified four different key categories, which are briefly presented below [7].

2.3.1. Instance-Based

The instance-based approach involves assigning individual weights to instances de-
rived from the source domain. By applying these weights, it becomes possible to perform
importance sampling or, alternatively, to directly incorporate the weighted instances into
the learning function of the model [9]. Numerous studies deal with the instance-based
approach [10–16].

2.3.2. Feature-Based

One goal of the feature-based approach and the instance-based approach is to reduce
the disparity between the marginal and conditional distributions of the source and target
domains. Where the feature-based concept differs is that it revolves around discovering a
meaningful feature representation tailored to the target domain. The pre-existing knowl-
edge is consequently embedded within this new feature representation [7–9]. There are
also a large number of papers that examine the feature-based approach [4,17–24].

2.3.3. Parameter-Based

The parameter-based approach deviates from the previously introduced methods
regarding its fundamental concept. It operates on the assumption that there exist shared
model parameters or parameter distributions between the source and target tasks. In
this context, knowledge transfer is encapsulated within these parameters or parameter
distributions [7–9]. Papers examining this approach include the following [25–35].

2.3.4. Relational-Based

The relational-based approach is particularly well suited for facilitating TL across
relational domains. The underlying premise is that specific relationships within the data
remain consistent across diverse domains. Consequently, relational-based approaches aim
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to efficiently transfer the relationships inherent in the data [7–9]. This approach has been
less studied in the literature to date [36–38].

Certainly, not all approaches can be clearly categorized into a single group. Algorithms
frequently blend concepts from various categories, resulting in them being referred to as
hybrid approaches [9].

3. Predictive Maintenance

Maintenance strategies have been extensively studied in research, presumably not
least due to their high economic impact [9,39]. These strategies are typically classified into
three subcategories, Reactive Maintenance, Preventive Maintenance, and Predictive Mainte-
nance (PdM), as documented in the literature [9,40]. PdM stands out through the use of
advanced analytics and ML. Combined with continuous monitoring, PdM leverages these
technologies to assess an asset’s health and predict when maintenance will be required.
The primary benefits associated with using PdM comprise a reduction in unplanned down-
time, increased system reliability, and reduced operating costs by optimizing the allocation
of maintenance resources. A comparison of the cost patterns of predictive maintenance
with different maintenance strategies can be found in [41]. For a graphical illustration
of the strategic differences between predictive, reactive and preventive maintenance, see
Figure 1 [9,40].

Figure 1. Conceptual differences between different maintenance strategies. (After: [41])

Various approaches to implementing PdM concepts exist. Data-driven methods stand
out, particularly when combined with ML. In recent years, these models have gained
importance due to the increased availability of computing power and the abundance of
data. The models extract information from data to contextualize the degradation state of
components, the health of the system, or its Remaining Useful Life (RUL).

Transfer Learning in Predictive Maintenance

As this paper focuses on the intersection of transfer learning and predictive mainte-
nance, this section will specifically look at relevant work from this subdiscipline. The topic
has gained considerable attention, as evidenced by the existence of several meta-studies.
Ran et al. have dedicated a separate section to transfer learning in predictive mainte-
nance [40]. Azari and colleagues conducted a systematic literature review on transfer
learning for predictive maintenance in Industry 4.0 [9]. Another review, by Zheng and
colleagues, focuses on cross-domain fault diagnosis [42].

A substantial number of scientific studies depend on deep learning, including the
study by [43]. The authors tackle the problem of data typically not being independent
and identically distributed. They suggest the application of a Contractive Denoising Au-
toencoder to synthesize more stable features. Subsequently, these features function as
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input to a support vector machine (SVM) for RUL prediction. Wu and colleagues address
the problem of varying feature distributions in source and target domains as well but
specifically focus on machine operational data and the impact of prior working condi-
tion distributions on them. The authors propose the utilization of convolutional neural
networks (CNNs) and Long Short-Term Memory Networks (LSTMs) to address the issue.
Wen and colleagues examine feature distribution between domains, focusing on feature
extraction [44]. They note that deep learning can extract features automatically, simplifying
the typically challenging feature engineering process. Additionally, the team presents a
method using a sparse autoencoder to extract features automatically, with the peculiar-
ity that the auto-encoder can be utilized for prediction when enhanced with a softmax
layer as well. Zhu and colleagues further address the issue of feature distribution [45].
Specifically, they tackle the issue by employing a hidden Markov model to automatically
identify the fault occurrence time. To tackle the actual distribution problem, they utilize a
multilayer perceptron to identify domain invariant features. Da Costa et al. address feature
distribution in the context of parameter-based transfer learning and suggest a technique
that involves freezing parameters to minimize the number of parameters that require
adjustment [46]. The proposed approach utilizes LSTM and a Domain Adversarial Neural
Network. Xia et al. focus on transferring information from fault datasets to predict RUL
via transfer learning [47]. Looking at the input features, Ma et al. find that relying solely
on the first principal component of a PCA on the characteristic features leads to better
performance than using high-dimensional features [48]. The research presented by [49]
focuses on the demands of online fault detection and diagnosis. Numerous CNNs are
employed by the authors to tackle the issue. Similarly, Cheng et al. utilize CNNs to address
instance selection from the source domain [50]. Additionally, Ong et al. concentrate on the
ideal allocation of resources, including human capital, for predictive maintenance in an
industrial IoT environment. DRL is utilized for this purpose [51]. A Transfer from Virtual to
Real Machine (TVRM) scenario is discussed in [52]. A Serial Stacked Autoencoder and deep
neural network are deployed in their work. In addition, research is focused on achieving
optimal training of DL techniques in terms of accuracy and training speed [53,54].

What all of these publications share is a reliance on deep learning methods. While
such methods offer benefits such as automated feature engineering, they also carry inherent
shortcomings. To work well, deep learning methods require extensive amounts of data [6].
However, in the context of PdM, data are a rare commodity, particularly run-to-failure
data [9,42].

Moreover, deep learning models are inherently opaque. Due to their complex non-linear
structure, these models are commonly deployed with limited transparency, revealing little
information on the process of how they arrive at their predictions [55]. In particular, these
models provide no meaningful insight into the uncertainties underlying their predictions.

However, in a production setting, decisions made by models have a high economic rel-
evance, making both the traceability of the decision process and the associated uncertainty
a valuable asset that is gaining attention in academic research [45,56].

Approaches based on traditional Machine Learning can offer a solution in this regard.
Because of their less complex structure, they offer a higher level of transparency. In addition,
they can be built with much fewer data [6,57].

Mahyari and Locher discuss a traditional ML-based PdM approach for industrial
robots. They observe that a separate model is usually required for each task the robot per-
forms. Thus, they recommend identifying a joint feature space for these tasks by employing
the manifold alignment algorithm [58]. However, their proposed approach only involves
the generation of the joint feature space, without incorporating actual PdM methods.

Another traditional Machine Learning approach is the one of Mao and colleagues [59].
They tackle the problem of varying feature distributions with classical ML models. There-
fore, in the initial step, they employ hierarchical clustering to identify similar degradation
patterns and obtain the pivot feature set of the respective instances. The obtained set is
subsequently used as input to an SVM.
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Shen and Yan recommend utilizing so-called intermediate domain data when dealing
with low-quality features in order to improve RUL prediction [60]. Intermediate domain
data refer to time series data that does not reach the point of failure. The authors propose
utilizing an SVM for the RUL prediction as well.

Although the methods of Mao et al. and Shen and Yan largely avoid the aforemen-
tioned weaknesses of deep learning-based approaches, they have their own drawbacks.
Part of this is the authors’ decision to rely on SVMs. SVMs belong to the traditional TL
approaches. As such, they require fewer data and are more transparent than their DL
counterparts. However, SVMs are not among the most transparent approaches, especially
for high-dimensional input features. At the same time, SVMs tend to encounter problems
when the size of the input data exceeds a certain threshold. This threshold is about 100,000
data points [61]. However, in production environments with a lot of relevant sensor data,
this limit may be exceeded. Lastly, when it comes to the increasingly important issue of un-
certainty estimation [45,56], SVMs are not the ideal approach either. While they can provide
such an estimate [62], their estimate is not as statistically sound as, say, ensemble-based
random forests [63].

Furthermore, all of the approaches presented in Table 1 fail to address black box
models. All presented approaches require the presence of white box models that can be
accessed or retrained to enable transfer learning on them. Thus, circumstances where only
black box models are available are excluded from transfer learning. As a result, for such
scenarios where black box models are present, only complex, costly, and possibly infeasible
new implementations of ML models are possible [64,65].

Table 1. Literature at the intersection of TL and predictive maintenance. ■ Deep learning, □
Traditional ML.

Use Case Focus ML Method Deep
Learning Year Source

M
et

a
St

ud
ie

s Generalistic ■ 2019 [40]
Cross-Domain Fault Diagnosis ■ 2019 [42]
Industry 4.0 ■ 2023 [9]

Pr
ed

ic
ti

on

Fault Datasets CNN,
LSTM ■ 2021 [47]

Feature Distribution LSTM,
DANN ■ 2020 [46]

Feature Distribution CDAE,
SVM ■ 2019 [43]

Feature Distribution LSTM,
CNN ■ 2019 [66]

Feature Distribution and FOT HMM, MLP ■ 2020 [45]
Multi Feature Fusion ConvNeXt ■ 2022 [48]
Sample Selection CNN ■ 2023 [50]
Feature Distribution HCA, SVM □ 2021 [59]
Low-Quality Features SVM □ 2021 [60]

D
ia

gn
os

is Feature Distribution and Extraction SAE, DNN ■ 2019 [44]
Simulation to Real World SSAE, DNN ■ 2019 [52]
Training NN ■ 2019 [53]
Training CNN ■ 2019 [54]

D
et

ec
ti

on Resource Allocation NN ■ 2022 [51]

Robot Tasks - □ 2021 [58]

D
et

ec
ti

on
an

d
D

ia
gn

os
is

Real Time Requirements CNN ■ 2020 [49]
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4. Experimental Design

This paper includes the development of two TL approaches based on time series data
to study the novel Black Box Adversarial Reprogramming approach. One approach is based
on the BAR concept, and the second is based on a conventional TL method. Therefore, the
conventional approach serves as a basis for comparison and is referred to as the baseline
model. The methodology is shown in Figure 2.

Figure 2. Methodology of this paper.
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4.1. Datasets

The time series data used in this thesis are sensor data obtained from existing datasets.
This section examines what datasets are being used, why they were selected, and how they
are being further processed.

The dataset at the center of this work is the PRONOSTIA dataset [5]. It contains
accelerometer data of rolling bearings. These data are run-to-failure data. Accordingly,
the dataset is well suited for RUL prediction and classification. The dataset was chosen
because it is rather extensive compared to alternatives; i.e., it includes multiple different
test runs. In addition, three different experimental settings are examined in the dataset,
which is essential in the context of transfer learning.

Based on these three different settings, the dataset is divided into a source domain
DS and a target domain DT . The first two experimental settings are considered the source
domain DS. The third setting is considered the target domain DT .

The baseline model is later fitted to the source domain DS of the dataset. The target
domain DT of the dataset is the domain to which the knowledge is to be transferred for
both transfer learning approaches. Data of both the source and data target domains are
divided into training and test sets (see Figure 3). To achieve a balanced ratio of training
and test instances, the split is based on the author’s judgment.

The NASA Turbofan Degradation dataset, also known as the C-MAPSS dataset, is
the second dataset used in this thesis [65]. It contains sensor data from turbofan engines.
The dataset was selected because it addresses the issue of predicting the Remaining Useful
Lifetime of a device as well. At the same time, the domain gap between the PRONOSTIA
and the C-MAPSS dataset is sufficiently large.

C-MAPSS is divided into four parts, each containing a different combination of aircraft
engine settings. Only the first subset is used in this thesis. The subset contains data from
only one engine setting. Wanting to limit complexity is driving this choice. The C-MAPSS
dataset is used to train the black box model. The adversarial reprogramming algorithm is
then based on this black box model.

Unlike with the PRONOSTIA dataset, the train–test split of the C-MAPSS dataset
happens at random. Twenty-five percent of the dataset is reserved for testing, and the other
seventy-five percent is part of the training dataset.

The structure of the two datasets used in this thesis is shown graphically in Figure 3.

Figure 3. Structuring of the datasets used in this paper.

4.2. Models and Transfer Learning Approaches

This work’s traditional ML algorithms require manual feature engineering. The library
tsfresh is used because it specializes in time series feature engineering and implements
various features from different domains. Whether features are relevant and subsequently
selected is decided based on the training data (source domain) through a supervised feature
selection via hypothesis testing. The resulting features X are input to the ML models.
Random forests are chosen for the different source domain predictions as ML models
because of their efficiency and suitability for uncertainty estimation in future investigations.
The different models are used for the baseline approach and transfer scenarios.

The baseline TL model adopts the adapt framework for feature-based TL by [18]. This
method was chosen to exploit the easy integration of expert knowledge through features
that are beneficial in environments with limited data. This approach was implemented
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to provide a performance baseline against which the results of the novel BAR approach
can be related. The BAR algorithm, distinct yet based on a similar random forest model,
innovates by learning translation functions. These functions adapt input features from the
target domain and output probabilities from the source model, enabling meaningful data
processing across different contexts.

In the transfer scenario of the BAR, a significant domain gap necessitates using the C-
MAPSS dataset to train the Black Box Model. This model is then applied to predict the RUL-
Classes of the third condition in the PRONOSTIA dataset, similar to the baseline approach.

4.3. Analysis

The analysis of the BAR approach is based on evaluating the two developed TL
approaches and the different transfer scenarios. The same target dataset is used for this
evaluation, namely the subset of the PRONOSTIA dataset XPRONOSTIA

DT
, i.e., its target

domain data. The approaches are all trained and evaluated on these data.
Based on the evaluation, a qualitative analysis of the performance of the BAR algorithm

is conducted. Specifically, the performance of both TL approaches in the target domain DT
is investigated. As the algorithm contains a stochastic element, the extent to which this
element affects the final performance of the BAR approach is also examined. To this end,
the distribution of performance under identical conditions is studied.

In addition to pure performance, the influence of the algorithm’s hyperparameters is
investigated, too. Both their impact on performance and performance variance are assessed.

Finally, the parameters obtained by training the algorithm are examined. The parame-
ters are hierarchically clustered to investigate whether the BAR training concept can lead
to similar parameter patterns, i.e., to the same minima of the optimization problem.

5. Baseline Approach

the following subsection describes the baseline approach against which the BAR
approach is compared.

5.1. Preprocessing

The data are scaled using scikit-learn’s RobustScaler, which employs a median-based
method using the interquartile range to minimize the influence of outliers. This is crucial
as the PRONOSTIA dataset contains outlier data that may be critical for Remaining Useful
Life (RUL) prediction.

Following scaling, a rolling window approach is applied to generate subwindows
from the time series, artificially increasing the number of instances for training the ML
model. Each window w starts with the beginning of data collection at t0 = 0 and covers a
minimum period of 20 min. Each window wi is 15 min longer than the previous window
wi−1. Thus, the first window w1 covers exactly 20 min, the second window w2 covers
35 min, the third window w3 covers 50 min, and so on. The last window wn, therefore,
covers the entire time series.

To determine the RUL, two terms must first be explained.

• Total Useful Lifetime

The Total Useful Lifetime describes the entire service life of a bearing up to the point
where a failure occurs and a maintenance case arises.

• Pro Rata Useful Lifetime

The Pro Rata Useful Lifetime describes the remaining service life of a bearing up to the
point where a failure occurs and a maintenance case arises. In particular, this value differs
from the total useful lifetime in that it is determined from any point in the time series. For
a time window, the pro rata useful lifetime is determined by the end of the time window.
Both total useful lifetime and pro rata useful lifetime are provided in units of time.
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Given those two terms, the RUL and subsequently the RUL classes can then be
determined. The RUL is calculated by taking the quotient of pro rata useful lifetime and
total useful lifetime.

RUL =
Pro Rata Useful Lifetime

Total Useful Lifetime
(1)

RUL = 1 − RUL (2)

Classification can then be performed based on the obtained RULs. The classification
approach used in this thesis is based on the work of Xia and colleagues [67]. They present
an RUL classification approach that revolves around (3).

((1 − 2−(i−1)) · 100%, (1 − 2−(i)) · 100%] (3)

All in all, this formula can be used to classify the windows into n different classes,
n ∈ N+. i denotes the respective class, 0 < i ≤ n.

For this thesis, the value n = 3 was chosen, motivated by the fact that a limited amount
of data are available and to keep the complexity low. This results in three classes, which
can be found in Table 2. Note that (3), which is used for classification, refers to the intervals
of RUL and not to those of RUL.

Table 2. RUL classes of the PRONOSTIA dataset according to (3).

1 2 3

RUL interval of class i (0, 50] (50, 75] (75, 100]

RUL interval of class i [100, 50) [50, 25) [25, 0)

The PRONOSTIA dataset is segmented into sub-datasets by operational condition,
split into training and testing sets, where scenarios 1 and 2 form the source domain DS and
scenario 3 is the target domain DT .

5.2. Feature Engineering

This study explores the feature extraction process for Remaining Useful Life (RUL)
prediction using the Python-based ML library, tsfresh.They identify computationally effi-
cient and relevant features. Due to the size, an auxiliary dataset, DtrainDS, aux, comprising
every tenth data point, was utilized to manage the computational load. Feature relevance
was determined through a statistical analysis where the 20 features with the lowest p-values
were selected for each RUL class, indicating high statistical significance. This selection
process aimed to optimize the balance between computational efficiency and the inclusion
of statistically significant features.

5.3. ML Model

The ML model of the baseline approach is based on a random forest classifier from
scikit-learn [68]. Random forests belong to the traditional ML models. They are composed
of an ensemble of decision trees. The prediction of a random forest is generated from
the individual predictions of the decision trees. The ML concept is interpretable, robust,
efficient, and well suited for uncertainty estimation [69–71]. The model is trained on the
source features of the PRONOSTIA dataset.

As with other ML models, the choice of hyperparameters has a fundamental impact
on the predictive performance of a random forest model. In this paper, a combination
of Bayesian search and grid search was used. Thus, in this paper, the parameter space
was first restricted using a Bayesian search. Six Bayesian searches of 150 iterations each
were performed on a large parameter space determined by expert judgment. Based on
those results, the parameter space was reduced and a grid search was performed on the
reduced space.
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The metric used in all searches is the macro f1 score. The use of the f1 score is motivated
by the fact that the harmonic mean of precision and recall provides a more balanced represen-
tation of the model performance. In particular, the macro f1 score was implemented because
it is well suited for unbalanced data. A natural consequence of the RUL classification
scheme used in this paper is that such unbalanced data will occur.

The calculation steps for the determination of the macro f1 score are as follows.

Precision =
TP

TP + FP
(4)

Precision =
TP

TP + FN
(5)

f1i = 2 · Precision · Recall
Precision + Recall

=
TP

TP + 1
2 (FP + FN)

(6)

f1macro =
1
N

·
N

∑
i=1

f1i (7)

This implementation incorporates class weights to address the issue of imbalanced
data further. When appropriate hyperparameters are identified, minority classes are
weighted more. Thus, choosing hyperparameters will ensure that minority classes are
well classified.

5.4. Transfer Learning

The TL approach used in the baseline model belongs to the area of feature-based TL
approaches. More precisely, the concept applied is a feature augmentation approach based
on [18]. In order to implement this concept, the open-source library ADAPT [72] was used.

The feature augmentation method presented by Daumé III decomposes input features
into three parts. The transformation is handled differently depending on whether the input
features are part of the source or target domain.

ΦS(x) = ⟨x, x, 0⟩ (8)

ΦT(x) = ⟨x, 0, x⟩ (9)

ΦS/T(x) describes mapping functions with 0 as the zero vector. This method trans-
forms the domain adaptation problem into a standard supervised learning problem by
augmenting the feature space of both the source and the target data.

Imagine you have a model trained to detect road signs from photos taken in clear,
daytime conditions (source domain). Now, you want this model to recognize the same
road signs from photos taken in various challenging conditions, such as at night or during
adverse weather (target domain), where thereare fewer labeled data available.

In this approach, each feature in the original data (e.g., shape, color, size) is expanded
into three versions: a general version, a source-specific version, and a target-specific version.
For instance, the color feature might have three versions: a general color feature applicable
to all conditions, a daytime-specific color feature, and a night-specific or adverse weather-
specific color feature.

The augmented data are then used to train the model. The training data from the
clear daytime conditions (source domain) include both the general and daytime-specific
color features, while the limited data from the night or adverse weather conditions (target
domain) include both the general and night-specific or adverse weather-specific color
features. This helps the model learn which color characteristics are universally relevant
(e.g., stop signs are red) and which characteristics are specific to the lighting or weather
conditions (e.g., how red appears at night versus during the day).
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Feature augmentation is a supervised TL approach suitable for regression and classifi-
cation tasks.

Initially, the target data Xtrain
DT

are provided to the feature augmentation method of
ADAPT along with the already trained baseline model. The method then computes the
augmented features according to the methodology presented above. The final step is to
refit the model to the augmented features.

6. Black Box Adversarial Reprogramming

This section discusses the Black Box Adversarial Reprogramming approach. First, the
black box model on which the reprogramming approach is based is presented. Then, the
novel adversarial reprogramming TL approach takes center stage.

6.1. Preprocessing

The feature engineering process for the C-MAPSS dataset is similar to that of the
PRONOSTIA dataset. However, of the four different subsets, only subset 1 is incorporated
in this paper. The subset contains only one operational setting. By using only this subset,
the complexity of the black box model is kept to a minimum. The calculation of the RULs
of the window instances is identical to the calculation of the RULs of the instances of
the PRONOSTIA dataset. However, there is one difference. Instead of three RUL classes,
four different classes defined by expert judgment are considered for RUL classification
in the case of the C-MAPSS dataset. Table 3 shows the exact breakdown of the resulting
RUL classes.

Table 3. RUL classes for the C-MAPSS dataset.

1 2 3 4

RUL interval of class i (0, 50] (50, 70] (70, 90] (90, 100]
RUL interval of class i [100, 50) [50, 30] [30, 10] [10, 0]

6.2. ML Model

Like the baseline approach, the black box ML model undergoes feature extraction,
yielding 110 features. Employing a random forest framework selected for its interpretability
and computational efficiency, implementation is facilitated through scikit-learn. Bayesian
optimization is utilized for hyperparameter tuning due to its conceptual superiority and
computational efficiency over grid search. The parameter space for optimization is expertly
defined, and after 250 iterations, the optimal hyperparameter configuration is determined.
Model evaluation relies on accuracy, considering a slightly expanded set of feature classes
compared to the baseline, ensuring balance. A weighted class representation is integrated
into the training process to address residual class imbalances.

6.3. Adversarial Reprogramming Algorithm
6.3.1. Functional Structure

BAR describes an algorithm that can hijack the functionality of an existing ML model
and repurpose it for another, unrelated task. It does not matter whether the hijacked model
is a black box or a white box model. The task for which the model is being hijacked is
different from the task of the underlying black box model, in the domain in which it runs
(DS ̸= DT) and/or in the task itself (TS ̸= TT). Therefore, the application scenario described
falls within the research area of TL.

The BAR algorithm’s mechanism can be divided into three parts. A graphical repre-
sentation of the operating principle is also shown in Figure 4.
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Figure 4. Principle of operation of the BAR algorithm.

• Translation Input

Initially, the algorithm receives the input features of the target domain XT . These
features need to be processed so that they can be used as input to the black box model. This
processing is referred to as translation. As it is the translation of target features, the process
is also called input translation. The translation is achieved in three steps.

First of all, the input features XT are scaled. This is conducted using scikit-learn’s
MinMaxScaler. By compressing all features to the interval [0,1], the dimensions in which
each feature exists can be aligned, and a finer-grained response to the subsequent translation
step is possible.

In this paper’s implementation, the target domain’s input features are the target
domain features of the PRONOSTIA dataset.

In this subsequent step, the input features XT are multiplied by a weight vector W;
see (10). Thus, the input features of the target domain XT are adapted so that they can be
processed in the source domain DS in a meaningful way. The procedure for obtaining the
weight vector will be explained in Section 6.3.2.

X̂T = XT ∗ W (10)

For the third step, note that the features may differ between XT and XS. Thus, for the
black box model to handle the target feature vector XT , the dimensions of the target feature
vector XT must be aligned with XS. In this implementation, dim(XT) << dim(XS) holds.
Accordingly, columns must be added to the target feature vector to allow the black box
model to process XT . For this purpose, columns containing only the value 0 are added.
There is also another technicality to consider. The column names of XT must be aligned for
the black box model to process the feature vector.

In this work, XT contains 43 features while XS contains 110, so 67 columns had to be
added.

• Prediction of the Black Box Model

The translated features can then be passed to the black box model. The model processes
the input ordinarily and returns a prediction corresponding to the RUL class probabilities.
The output of the model is denoted by ŷ.

• Translation Output

Output ŷ then has to be translated back into the target domain DT . To accomplish
this, ref. [4] use a method called multi-label mapping in their paper. Multi-label mapping
describes a procedure in which the output probabilities of multiple source classes are
aggregated to form the probability of a single target class. This function is also referred to
as k-to-1 mapping function h(ŷ). The formula for calculating the probability hj(·) of a single
target class j can be taken from (11). S describes a subset of k source labels on which the
mapping is performed.

hj(ŷ) =
1
|S| ∑

s∈S
ŷs (11)



Mach. Learn. Knowl. Extr. 2024, 6 1982

The prerequisite for applying this method is that the number of classes in the source
task TS is significantly greater than the number of classes in the target task TT .

In this implementation, however, there are four source classes (ŷ ∈ R4×1), and three
target classes (y ∈ R3×1). As a result, the version of the multi-label mapping method
described above is not a good fit.

Thus, the version of multi-label mapping implemented in this paper is as follows.

y1 = ŷ1, y2 = ŷ2, y3 = ŷ3 + ŷ4 (12)

As (12) shows, translation does not affect the first two classes. However, the third class
is formed by aggregating the third and fourth classes of the source domain DS.

The BAR algorithm shown in Listing 1 can be successfully executed after obtaining
the output vector y for the original input XT through the following functional structure.

Listing 1. Three functions comprise the functional structure of the BAR algorithm.

1 def translate_X(X, W):
2 # Apply MinMaxScaler to Columns
3 X = X.scale_columns()
4 # Align number of columns and rename them
5 X = X.align_and_rename_columns()
6 # Translate X to X_hat using W
7 X_hat = X * W
8 return X_hat
9

10 def predict_y(X_hat, model)
11 # Obtain model predictions on X_hat
12 y_hat = model.predict_probabilities(X_hat)
13 return y_hat
14

15 def translate_y(y_hat):
16 # Aggregate the last two columns
17 y_hat[:, 2] += y_hat[:, 3]
18 # Delete the redundant last column
19 y_hat = np.delete(y_hat, 3, axis=1)
20 # return translated output
21 return y

6.3.2. Training Process

As with most ML methods, the BAR approach must undergo training before it can
be used meaningfully. The fact that the algorithm works with black box models poses
a challenge. Unlike most BAR approaches, the algorithm does not have access to the
underlying BAR model during the training process and, in particular, does not have access
to internal model gradients.

To this end, zeroth-order optimization is applied, analogous to the work of [4]. This
optimization technique is unique because it estimates the model’s gradient without access
to the underlying model.

The learning procedure of the BAR algorithm presented here is based on the principle
of minimizing a loss function using a gradient estimate based on zeroth-order optimization.
In a figurative sense, the algorithm learns how to translate features of the target domain DT
to the source domain DS in a way that leads to meaningful results. Training can be divided
into several sub-steps, some repeated in loops. All training steps are presented below. For
a graphical overview of the steps in the learning process, see Figure 5.
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Figure 5. Structure of the training process of the BAR algorithm.

• Initialization

Training begins with an initialization step. This step involves the target features XT
and the weight vector W. Since the target feature vector XT may contain a different number
of features than the source feature vector XS, the first step is to align XT to XS dimensionally.
Second, the feature columns are scaled. Scaling is performed with the help of scikit-learn’s
MinMaxScaler. Third, the column names of the target vector XT must be matched to those
of the source vector XS. This is necessary for the black box model to process the features
without error.

Further, initializing the weight vector W is part of initialization as well. The vector is
initialized as one vector in the format W = [1, 1, . . . , 1] ∈ R1×n.

• Sample Dataset

The sampling of the dataset follows the initialization step. The dataset is sampled to
compensate for its imbalance. Since a good performance is desired for both the majority and
minority classes, a rebalancing of the classes is sought. Oversampling and undersampling
are applied in alternating order. The number of loops this process goes through is specified
by the parameter n_split. In the implementation, sampling is performed with the help of
the library imbalanced-learn [73].

• One-Sided Averaged Gradient Estimator

Sampling is then followed by the step of gradient estimation. The concept of the
one-sided averaged gradient estimator is used for this purpose. The estimator averages several
estimated gradients at a given point W(i). The gradient estimates are a function of the loss
function L.

• Loss Function

As in most BAR optimization methods, the loss function is at the core of zeroth order
optimization. In this paper, the loss function consists of two components.

The first component is the regular cross-entropy loss LCE. In the context of BAR, the
loss function LCE penalizes any deviations between the probability prediction pi and the
truth label yi.

LCE = − 1
N

N

∑
i=1

M

∑
j=1

yij log(pij) (13)

The second part of the loss function is referred to as the penalty term LPEN . The term
computes the sum of the differences between the probability the model assigns to the true
class pij|yij = 1 and the highest probability that the model assigns to any class maxj∈J pij
for each instance i. Thus, the term partially counteracts the cross-entropy loss by only
penalizing incorrect predictions. There is no penalty for correct predictions, even if the
corresponding prediction probability may be rather low.

LPEN =
N

∑
i=1

M

∑
j=1

yij · (max
j∈J

pij − pij) (14)
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Ergo, the loss function L consists of the cross-entropy loss LCE and the penalty
loss LPEN . The penalty loss is provided with a weighting factor δ. δ balances the two
loss functions.

L = LCE + δ · LPEN = − 1
N

N

∑
i=1

M

∑
j=1

yij log(pij) + δ ·
N

∑
i=1

M

∑
j=1

yij · (max
j∈J

pij − pij) (15)

The gradient is then calculated using the loss function L as follows.
The computation starts at a point W(i), wherein i denotes the current training iteration,
i ∈ N. At that point, W(i), q random vectors Uj are generated. A simple gradient gj is then
calculated along each of these q vectors Uj according to (16).

gj = (L(W + Uj)−L(W)) · Uj (16)

Then the arithmetic mean of the q different gradients Uj is calculated and the estimated
gradient g is determined.

g =
1
q

q

∑
i=1

gj (17)

• Update W

Using the estimated gradient g obtained at point W(i), the weights of the weight vector
W(i) can then be updated. Two update functions were examined for this purpose: a linear
(18) and an exponential one (19).

W(i+1) = W(i) + α · g (18)

W(i+1) = W(i) + e−decay·iteration · α · g (19)

The linear update function works rather straightforwardly. The weight vector W(i) is
adjusted in the direction of the gradient g. This adjustment takes place at learning rate α.
The larger the learning rate, the larger the adjustment step.

The exponential update function undergoes an exponential adaptation of the learning
rate during training. Its evolution is determined by the decay rate and the learning rate α.

Ultimately, the linear update function (18) provided a more stable behavior for the
BAR algorithm. For this reason, the linear update function is used in this implementation.
The exponential alternative remains a subject of future research.

The steps of gradient estimation and subsequent weight updating are performed
together iteratively. The goal is to find an optimal weight vector W on the sampled dataset.
The epochs parameter is the hyperparameter that describes the number of repetitions.

• Select best W

Training ends after n = n_splits · epochs iterations. The weight vector W(i), 0 < i < n,
with the smallest loss L is selected as the final weight vector W.

6.3.3. Hyperparameters

At this point, the hyperparameters adjusted as part of the training process are listed
and introduced separately. There are six different hyperparameters. For an overview of the
hyperparameters, see Table 4.

Table 4. Overview of hyperparameters that can be adjusted during the training process.

Learning Rate Number
Resamplings

Weighting Penalty
Term

Number Random
Vectors

Iterations per
Sampling Size of Vectors q

α n_splits δ q epochs vector_size
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The hyperparameter α represents the so-called learning rate. The parameter describes
the step size by which the weight vector W(i) is adjusted in the direction of the gradient g.

n_splits specifies the number of times the underlying feature set XT is sampled during
training.

The two terms of the loss function L are balanced by the parameter δ. The higher the
value of this parameter, the greater the influence of the penalty term LPEN . This, in turn,
means that the cross entropy loss LCE becomes less important. As a result, more emphasis
is placed on making the correct class prediction and less on ensuring this is completed with
high confidence.

q specifies the number of random vectors Uj to be formed for the estimation of the gra-
dient estimate g. The vector_size parameter describes how large the q randomly generated
vectors Uj are. The larger the parameter, the larger the vectors generated.

epochs, in turn, describes how many iterations the weight adjustments go through for
each sampled dataset.

Three hyperparameters directly affect the computational complexity of the training
process. Those parameters are n_splits, q, and epochs.

7. Results
7.1. Baseline

This section examines the performance of the baseline approach. First, the performance
of the underlying ML model is analyzed in its source domain DS. Then, the performance of
the baseline approach in the target domain DT is examined. Both approaches are evaluated
predominantly on the basis of the macro f1 score. The macro f1 score averages the f1 scores of
all individual classes, thus emphasizing the minority classes.

7.1.1. Performance Source Domain

The random forest model that the baseline approach is based on was fitted to the
source domain features XS of the PRONOSTIA dataset.

The model performs particularly well on the training data. Out of the 159 training
instances, the model correctly classifies 152 instances. Notably, the model performs very
well in the minority classes.

Based on the test data, the performance of the model is decent but significantly worse.
Out of 69 instances, the model correctly classifies 54 instances. However, the model has
major problems with minority classes 2 and 3, with less than 50% of them being correctly
classified in each case. The resulting macro f1 score of 0.61 also captures this observation. In
comparison, the model achieves a macro f1 score of 0.95 on the training data (see Table 5 and
Figure 6).

Table 5. Various baseline model performance metrics in the source domain

Train Data Test Data

Precision Recall f1 score Support Precision Recall f1 score Support

Class 1 1.00 0.95 0.97 113 0.85 1.00 0.92 45
Class 2 0.84 0.97 0.90 32 0.46 0.43 0.44 14
Class 3 0.93 1.00 0.97 14 1.00 0.30 0.46 10
accuracy 0.96 159 0.78 69
macro avg 0.92 0.97 0.95 159 0.77 0.58 0.61 69
weighted avg 0.96 0.96 0.96 159 0.79 0.78 0.76 69

Thus, based on the resulting numbers alone, it is reasonable to assume that the baseline
model is overfitting. However, its hyperparameter selection should not allow excessive
overfitting, as shown by the parameters used in Section 5.3. The hyperparameters were
chosen rather restrictively to avoid overfitting, with a minimum of eight samples for a leaf
node and a minimum offive samples to split an internal node. To ensure that the model
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would work on the target domain, merely the maximum tree depth was chosen to be on
the high side with 5.

In summary, the model performs very well on the training data and solidly on the test
data as seen in Table 5.

(a) Confusion matrix on train data. (b) Confusion matrix on test data.

Figure 6. Confusion matrices of the baseline model in the source domain.

7.1.2. Performance Target Domain

It must be adapted to the latter to enable the previously developed random forest
to also work on the target domain. The random forest is fitted to the features obtained
through feature augmentation to achieve this.

In general, the performance pattern in the target domain is very similar to the pattern
in the source domain as seen in Table 6. The model performs quite well on the training
data. However, even with the training data, the model does not perform well with the
minority classes, in contrast to the source domain. More specifically, the model predicts
class 2 fundamentally incorrectly. Classes 1 and 3, however, are classified reliably as seen
in Figure 7.

(a) Confusion matrix on train data. (b) Confusion matrix on test data.

Figure 7. Confusion matrices of the baseline model in the target domain.
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Table 6. Various baseline model performance metrics in the target domain.

Train Data Test Data

Precision Recall f1 score Support Precision Recall f1 score Support

Class 1 0.80 1.00 0.89 4 0.33 1.00 0.50 1
Class 2 0.00 0.00 0.00 3 0.00 0.00 0.00 1
Class 3 0.88 1.00 0.93 14 1.00 0.50 0.67 2
accuracy 0.86 21 0.50 4
macro avg 0.56 0.67 0.61 21 0.44 0.50 0.39 4
weighted avg 0.74 0.86 0.79 21 0.58 0.50 0.46 4

On the test data, however, the performance of the model is poor. Only half of the
instances are classified correctly. In particular, the model tends to be biased towards
incorrectly predicting Class 1. The poor performance is also reflected in a low macro f1
score of 0.39 (see Table 7). The baseline model still achieves a macro f1 score of 0.61 on the
training data.

Table 7. Final hyperparameter configuration.

Hyperparameter Search Space Hyperparameter Search Space

α 0.6 q 50
n splits 5 epochs 120
δ 7 vector size 135

Overall, the performance of the baseline approach shows that while the model works
well in the source domain, it has difficulty in the target domain. Based on the training data,
the model encounters difficulties with one of the minority classes. This observation also
holds for the test data. Note, however, that the test data consist of only four instances. For
our investigation, the performance of the training data is especially relevant because it
enables an assessment of the capability to find a suitable mapping to the target domain. Our
future research will investigate the ability to generalize and evaluate through the test set.

7.2. Black Box Adversarial Reprogramming

This section presents and evaluates the performance of the BAR approach. First, the
underlying black box model and its performance are discussed. Then, the performance of
the BAR algorithm on the target domain is analyzed.

7.2.1. Performance Black Box Model

The black box model is fitted to the features extracted from the C-MAPSS dataset (see
Section 4.1). Thus, unlike the baseline model, the black box model must be attributed to
four different RUL classes. The black box model shows stable performance across train and
test data. However, the model has some difficulty distinguishing between classes that are
directly adjacent to each other. Regardless, no gross misclassifications are found in the train
or the test data. The stable performance is also reflected in the model’s macro f1 scores,
which differ slightly at 0.85 on the train data and 0.79 on the test data (see Table 8).
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Table 8. Various black box model performance metrics for training and test data in the source domain.

Train Data Test Data

Precision Recall f1 score Support Precision Recall f1 score Support

Class 1 0.93 0.94 0.93 82 0.81 0.94 0.87 18
Class 2 0.76 0.90 0.83 63 0.86 0.75 0.80 24
Class 3 0.77 0.84 0.80 97 0.53 0.85 0.65 20
Class 4 0.96 0.76 0.85 101 0.98 0.75 0.85 53
accuracy 0.86 343 0.79 115
macro avg 0.86 0.86 0.85 343 0.79 0.82 0.79 115
weighted avg 0.86 0.85 0.85 343 0.85 0.80 0.81 115

7.2.2. Hyperparameters

The BAR algorithm’s hyperparameter selection and retrieval process are discussed
before its performance is analyzed. Given the stochastic nature of the BAR training process
involving randomly generated vectors Uj, this stochastic element necessitates consideration
during hyperparameter determination. Consequently, a three-stage grid search is employed
to finalize the parameter configuration. Each hyperparameter configuration undergoes
repeated training sessions to accommodate the stochastic training process. The grid search
unfolds as follows:

1. Initial coarse grid search: Each configuration is computed three times.
2. Subsequent finer grid search: Each configuration is computed seven times.
3. Final fine grid search: Each configuration undergoes eleven training sessions.

The metric employed for hyperparameter selection is the average macro macro f1
score across all training sessions. In cases where scores exhibit similarity, consideration is
given to the variance of performance, with preference accorded to scores demonstrating
lower variance. The hyperparameters n_splits and epochs are determined independently
of the grid search based on expert estimation. Given their combined influence on training
iterations and the constraints of this study, these parameters are generously estimated to
expedite the grid search process.

7.2.3. Performance Black Box Adversarial Reprogramming

It shall be recalled that the approach’s training process is stochastic since the vectors
used for gradient estimation are randomly generated. Correspondingly, the resulting
weight vector W is also subject to this stochastic element, affecting the approach’s perfor-
mance.

Therefore, the first step is to examine the extent to which this affects the final perfor-
mance of the approach. The training process was run 360 times for the final hyperparameter
configuration, as seen in Table 7. Figure 8 shows a histogram of the obtained macro f1 scores.
It can be seen that the resulting performance varies greatly. Results below 0.3 as well as
above 0.7 can be found.

The results should be evaluated in relation to the baseline model in particular. As a
reminder, the baseline model achieved a macro f1 score of 0.61 on the target domain train
data. It can be seen in Figure 8 that of the 360 training runs that were performed using the
BAR approach, only 13 were able to perform as well as or better than the baseline model.

The best macro f1 score achieved with the BAR algorithm on the target train data
is 0.77, as shown in Table 9. In this case, the BAR approach outperforms the baseline
model. Compared to the baseline model’s matrix, we can see that the BAR approach is a
bit more consistent. For example, it can sometimes correctly predict class 2 but sometimes
mispredicts class 3. On the test data, however, the BAR approach performs slightly worse
on the macro f1 metric with a score of 0.27 as seen in Table 9. Again, the small size of the
test dataset should be noted.
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Table 9. Various performance metrics of the best BAR approach in the target domain

Train Data Test Data

Precision Recall f1 score Support Precision Recall f1 score Support

1 0.40 0.50 0.44 4 0.00 0.00 0.00 1
2 1.00 0.67 0.80 3 0.00 0.00 0.00 1
3 0.86 0.86 0.86 14 0.67 1.00 0.80 2
accuracy 0.76 21 0.50 4
macro avg 0.75 0.67 0.70 21 0.22 0.33 0.27 4
weighted avg 0.79 0.76 0.77 21 0.33 0.50 0.40 4

Figure 8. Histogram of macro f1 scores obtained on target training data when training 360 times with
the same hyperparameters.

8. Discussion

This section discusses the results obtained in the previous sections. In particular, it
discusses the individual hyperparameters of the BAR approach and their influence on perfor-
mance. The second section addresses this paper’s limitations and future research directions.

8.1. Interpretation

Evaluating the results of the baseline and BAR approaches shows that both approaches
have inherent difficulties in the target domain. In their respective source domains, both
methods perform significantly better. The types of difficulties encountered by the ap-
proaches differ, however.

The baseline model struggles most with predicting class 2 in the target domain. The
other two classes, however, pose relatively few problems for the model.

The BAR approach, on the other hand, handles all classes similarly well. It is better at
handling class 2 but tends to perform slightly worse than the baseline approach on classes
1 and 3. However, the BAR approach does not always perform equally well. The training
results are subject to strong stochastic fluctuations, so depending on the training, the BAR
approach may outperform the baseline approach, or the baseline approach may outperform
the BAR approach. Notably, this is true in absolutely identical conditions.

When considering these results, the BAR algorithm’s capability to achieve such results
without examining the gradient in the learning phase must be considered. This makes the
transfer task much harder because the zeroth-order optimization uses only an approximated
gradient. This gradient estimation is a significant factor because it enables transfer tasks for
complete Black box models with only existing knowledge of in- and outputs. This is an
essential benefit of using the BAR approach.
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8.2. Hyperparameter Influence

The different hyperparameters influence the performance of an algorithm significantly
in different ways. In our case, the (Loss-function) forms the “terrain” on which the zero-
order optimization tries to find the parameter setting for the weighting matrix W. Here the
weihting factor q of the penalty term influences the structure of this “terrain”. The explo-
ration of this “terrain” through the optimization is influenced by the number of randomly
generated vectors q and their size vector_size. The number can influence the robustness
as in all averaging tasks, whereas the size influences the step width in the exploration.
Additionally, the learning rate α also influences the exploration pace. To quantitatively
investigate the behavior of these hyperparameters and also their interaction, we look at
different steps of the gris search and investigate different interactions. These trends are now
presented for specific points in the hyperparameter optimization. The following shows
each hyperparameter separately and the interaction between the different parameters.

• Learning Rate α

The learning rate is a significant hyperparameter, as in most ML approaches. Because
of this, we investigate the effect of different learning rates in combination with the number
of random vectors and their size, which can influence the gradient estimation and, therefore,
the potential, if or how fast, the solution can converge against a minimum. For this
investigation, we look in Figures 9 and 10 at results from the first and third stages of the
grid search. In both figures, the x-axis shows different learning rates, while the y-axis is
the macro f1 score. Figure 9 visualizes with the different bars the influence of the length of
a vector (vector size) on the performance. However, besides the vector size, the number
of sampled vectors is also performance-critical, especially regarding stochastic behavior,
because a larger number of vectors acts through the averaging as a filter. This is visualized
in Figure 10 with the different bars for various numbers of vectors in combination with
different penalty coefficients and the influence on the variance of the macro f1 score.

It comes as no surprise that the learning rate has an impact on the average performance
of the algorithm. In the case of this paper, a learning rate between 0.5 and 1 seems to be
particularly suitable with respect to the average macro f1 score (see Figure 9). For fine-tuning,
however, the learning rate seems to play a subordinate role.

In addition, the choice of α affects the variance of the training results. It can be
observed that higher learning rates lead to higher variance; see Figure 10. In particular, the
interval [0.5, 1] is very sensitive to the variance caused by α.

(a) First stage of grid search. (b) Third stage of grid search.

Figure 9. Visual representation of the average macro f1 scores over learning rate α (x-axis) and vector
size (legend).
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(a) Second stage of the grid search. (b) Third stage of the grid search.

Figure 10. Visual representation of the performance variance broken down by learning rate α (x-axis)
and q and δ (legend).

The role of the learning rate can explain these observations. Increasing the learning
rate increases the size of the steps in the update function. This allows local minima to be
skipped more easily, resulting in better performance. At the same time, the larger steps,
combined with the stochastic element in the training, mean that the results can differ
more, resulting in a larger variance in performance. A learning rate in the interval [0.5, 1]
provides the best performance. However, a comparison of the learning rates 0.4, 0.5, and
0.6 shows that the influence on fine-tuning is marginal. The graphs also show how vector
size correlates with performance.

• Weighting Penalty Term δ

The Weighting Penalty Term δ is a significant hyperparameter described above because
it influences the solution space and gives the approach the possibility to also consider the
number of wrong classifications and not only the goal to make predictions with a high
probability. Because of this, we investigate the effect of different weighting factors in com-
bination with the number of random vectors and the learning rate. For this investigation,
we look in Figure 11 at results from the second and third stages of the grid search. In both
figures, the x-axis shows different weighting factors, while the y-axis is the macro f1 score.
The bars visualize different combinations of the number of generated vectors q with the
learning rates α and their influence on the performance.

(a) Second stage of the grid search. (b) Third stage of the grid search.

Figure 11. Visual representation of the effect of δ (x-axis) on the average macro f1 score of the algorithm,
broken down by q and α (legend).

When considering δ, the first thing to note is that δ > 0 must hold for the algorithm to
learn the weight vector W. Thus, the penalty term LPEN is needed in the loss function (15).
In addition, it can be seen that the average macro f1 score also increases as δ increases; see
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Figure 11. However, this is only true to a limited extent. A δ that is too large has a negative
effect on the average performance. In this paper, the sweet spot is around δ = 7.

A consistent pattern with respect to the effect of δ on the variance could not be
observed.

• Number Random Vectors q

The number of random vectors is also of interest, as described above. Because of this,
we investigate the effect of a different number of random vectors in combination with the
weighting factor and the learning rate. For this investigation, we look in Figure 12 at results
from the second stage of the grid search. In the figure, the x-axis shows a different amount
of generated vectors, while the y-axis is the macro f1 score. The left side visualizes with
the different bars the influence of the weighting factor δ and the learning rate α on the
performance. As described above, the number of sampled vectors is especially interesting
regarding the influence on the stochastic behavior. This is visualized in Figure 12 with the
different bars for various penalty coefficients in combination with different learning rates
and their influence on the variance in the macro f1 score.

(a) Second stage of grid search (b) Second stage of grid search

Figure 12. Visual representation of the effect of q (x-axis) on the average macro f1 score (a) and its
variance (b), broken down by δ and α (legend).

The number of randomly generated vectors in the training process has a slight in-
fluence on the model’s performance and variance. A larger number of vectors tends to
increase the average performance while decreasing its variance see Figure 12. The extent
of the influence on the variance depends, in particular, on the step size of the weight
vector updates. Accordingly, the influence of q on the variance increases with increasing
vector size or learning rate α. It is reasonable to assume that an increasing number of
generated vectors leads to a more accurate estimation of the gradient estimate. As a result,
the algorithm will perform better and more consistently.

• Size of Vectors

Finally, the size of the vectors must be considered. For this purpose, we investigate the
effect of different vector sizes in combination with different amounts of random vectors. For
this investigation, we look in Figure 13 at results from the second stage of the grid search.
In the figure, the x-axis shows a different number of generated vectors, while the y-axis is
the macro f1 score either absolute (left) or its variance (right). The left side visualizes with the
different bars the influence of different numbers of random vectors q on the performance.
As described above, the number of sampled vectors is relevant regarding the stochastic
behavior. This is visualized on the right side of Figure 13, with different bars for a different
amount of generated vectors (as in the left plot) and the corresponding influence on the
variance in the macro f1 score.

It can be observed that a larger vector size has a positive effect on the average perfor-
mance of the algorithm (see Figure 13). At the same time, however, a larger vector size is
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also associated with an increased variance. This finding can also be explained by the fact
that a larger vector size is less susceptible to small local minima and thus leads to a better
average performance. At the same time, however, the algorithm is less sensitive, which can
explain the increased variance.

(a) Second stage of grid search (b) Second stage of grid search

Figure 13. Visual representation of the effect of the size of vectors (x-axis) on the average macro f1
score (a) and its variance (b), broken down by q (legend).

9. Limitations and Future Research Directions

A capable black box transfer learning algorithm would offer significant practical
benefits. It would enable an end user of various existing models to allow the repurposing
of existing models, thereby enhancing versatility and applicability across various domains.
This approach would reduce computational costs and training time by leveraging existing
models, enabling efficient adaptation to new tasks, particularly in data-limited scenarios.
However, there are still limitations to using the BAR algorithm. This section outlines the
limitations and future research directions for the Black Box Adversarial Reprogramming
(BAR) algorithm, which was developed in this paper. Despite demonstrating potential,
the BAR algorithm experiences considerable performance fluctuations due to several
constraints, including computational limits and time constraints.

Key limitations include the small size of the target dataset, which comprises only
25 instances, suggesting that a larger dataset might improve algorithm performance. Addi-
tionally, the disparity in feature counts between source and target domains raises questions
about optimal feature ratios for model training. Explorations into feature engineering and
possibly using principal component analysis (PCA) to adjust feature counts in different
domains are recommended.

The research also notes that the current hyperparameter tuning process, a grid search,
is limited by time and could benefit from a more extensive exploration to possibly reduce
performance variance. Addressing the domain gap between data types (e.g., turbofan
engine and rolling bearing data) used in baseline and BAR approaches may also provide
insights into enhancing model adaptability and performance.

Future directions include testing different optimization strategies beyond the zeroth-
order, the greedy approach currently employed, which may lead to suboptimal solutions.
Investigating alternative loss functions and methods for initializing weight vectors could
refine the training process and achieve more consistent results. Moreover, exploring
different methods for output translation in the adversarial reprogramming context, such as
varying aggregation strategies, may offer further improvements in model performance.
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