KIT | KIT-Bibliothek | Impressum | Datenschutz

Spatial-SpinDrop: Spatial Dropout-Based Binary Bayesian Neural Network With Spintronics Implementation

Ahmed, Soyed Tuhin ORCID iD icon 1; Danouchi, Kamal; Hefenbrock, Michael; Prenat, Guillaume; Anghel, Lorena; Tahoori, Mehdi B. 1
1 Institut für Technische Informatik (ITEC), Karlsruher Institut für Technologie (KIT)

Abstract:

Recently, machine learning systems have gained prominence in real-time, critical decision-making domains, such as autonomous driving and industrial automation. Their implementations should avoid overconfident predictions through uncertainty estimation. Bayesian Neural Networks (BayNNs) are principled methods for estimating predictive uncertainty. However, their computational costs and power consumption hinder their widespread deployment in edge AI. Utilizing Dropout as an approximation of the posterior distribution, binarizing the parameters of BayNNs, and further to that implementing them in spintronics-based computation-in-memory (CiM) hardware arrays provide can be a viable solution. However, designing hardware Dropout modules for convolutional neural network (CNN) topologies is challenging and expensive, as they may require numerous Dropout modules and need to use spatial information to drop certain elements. In this paper, we introduce MC-SpatialDropout, a spatial dropout-based approximate BayNNs with spintronics emerging devices. Our method utilizes the inherent stochasticity of spintronic devices for efficient implementation of the spatial dropout module compared to existing implementations. ... mehr


Volltext §
DOI: 10.5445/IR/1000175088
Veröffentlicht am 11.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Informatik (ITEC)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 16.06.2023
Sprache Englisch
Identifikator KITopen-ID: 1000175088
Umfang 7 S.
Schlagwörter MC-Dropout, Spatial Dropout, Bayesian neural network, Uncertainty estimation, Spintronic
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page