Scalability of Consistency Preservation with VITRUVIUS

Benedikt Jutz
benedikt.jutz@kit.edu

Thomas Weber
thomas.weber@kit.edu

Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

The VITRUVIUS tool allows users to develop software-
intensive systems by interacting with the underlying
models through views suitable to users’ tasks. When
users change the system by applying model deltas,
VITRUVIUS automatically preserves model consistency.
However, it is currently unknown how well this consis-
tency preservation scales in practice. Therefore, our
goal is a first estimation of the scalability of consis-
tency preservation in VITRUVIUS with regard to the
number of model deltas. To that end, we conduct
a performance evaluation by transforming existing
UML models into a series of deltas and measure the
time consistency preservation required for processing
them. While applying model deltas to reconstruct the
UML model, consistency preservation constructs a cou-
pled Java code model consistent with the UML model.
Through a linear regression analysis, we show that
for the use case described above, consistency preserva-
tion scales nearly linearly with the number of deltas
(p = 0.97). However, our evaluation is limited by the
choice of VITRUVIUS metamodels, existing UML mod-
els, and only one scenario for consistency preservation.
Therefore, we aim to conduct an extended performance
evaluation in the future.

Index terms— VITRUVIUS, scalability, perfor-
mance, consistency preservation

1 Introduction

Systems of reasonable complexity, e.g. cyber-physical
systems, are developed by a heterogeneous team of
experts from different domains. Orthographic Software
Modeling (OSM) [4] is a development approach for such
systems where experts interact with it through suitable
views. These provide access to the Single Underlying
Model (SUM) describing the entire system.

In the base OSM approach, the SUM is constructed
from scratch. However, this is far less efficient and
feasible than integrating existing parts of the sys-
tem that experts already work with. To reflect this,
VITRUVIUS [8], a practical implementation of the OSM
approach for the Eclipse platform', allows the reuse
of existing models by combining them into a Virtual
SUM (V-SUM). To preserve consistency between those
models, Consistency Preservation Rules (CPRs) are

Thttps://eclipseide.org

defined. CPRs are transformations to specify how
to transform one model in response to a change in
another model. VITRUVIUS applies the CPRs automat-
ically whenever a change occurs.

However, it is currently unknown how the consis-
tency preservation mechanism in VITRUVIUS scales with
the number of model deltas. Scalability matters espe-
cially for the industry use of VITRUVIUS, where models
get huge. The problem is that consistency preservation
may require exponential time in terms of the number
of CPRs [8]. Previous work on VITRUVIUS did not in-
vestigate the performance in practice. In [9], Klare
et al. assert that performance depends on the num-
ber of deltas and, therefore, would not be a problem.
In [10], Klare and Gleitze assert that the upper run-
time bound for restoring consistency will probably not
be reached in practice.

In our work, we conduct a performance evaluation
to gain early insights into how consistency preservation
scales in VITRUVIUS regarding the number of model
deltas. For that, we transform existing UML models
into a sequence of model deltas and apply them against
an empty V-SUM that combines UML and Java models.
We measure the number of deltas and the overall time
to restore consistency, i.e., restore the UML model.

The remainder of this paper is structured as follows.
Section 2 explains how VITRUVIUS restores consistency
in response to user changes. Section 3 describes how
we planned our performance evaluation, and Section 4
presents the evaluation results. We discuss these re-
sults and the shortcomings of our evaluation in Sec-
tion 5 and conclude with Section 6.

2 Background

Here we explain how VITRUVIUS preserves consistency
in response to model deltas applied by users. We
take the UML-Java case study of VITRUVIUS as our
example 2.

Example Consider a software project where software
architects define the system structure with UML class
diagrams, and programmers implement that system
in Java. Both types of developers want the structure
and implementation to be consistent. For example, an
architect defines a new interface in the class diagram,

2https://github.com/vitruv-tools/Vitruv-CaseStudies/
tree/main/bundles/tools.vitruv.applications.umljava


https://orcid.org/0009-0006-2110-7159
https://orcid.org/0009-0001-5775-2225
https://eclipseide.org
https://github.com/vitruv-tools/Vitruv-CaseStudies/tree/main/bundles/tools.vitruv.applications.umljava
https://github.com/vitruv-tools/Vitruv-CaseStudies/tree/main/bundles/tools.vitruv.applications.umljava

extracts multiple occurrences of the same method def-
inition across different classes, and has those classes
implement the new interface. Then, the program code
should contain this new interface, and programmers
should be able to work with it.

To support such scenarios with VITRUVIUS, we first
define a V-SUM metamodel (V-SUMM) from two meta-
models, one for UML diagrams, and one for Java code,
e.g. from JaMoPP [3]. Then, we add so-called view
types [9] to project views from UML and Java model
elements. For example, these views are class diagram
editors and code editors enhanced to link to their
counterparts. VITRUVIUS also applies changes occur-
ring on views on the underlying models. These changes
or model deltas can be either atomic or composed of
other model deltas [8]. Atomic deltas include adding
or removing model elements, changing the values of
their attributes, and setting references to other model
elements [6].

Finally, to preserve consistency, we define preser-
vation rules in the Reactions language, consisting of
Reactions and Routines [9]. A Reaction calls one or
more Routines whenever a model delta with a given
delta type and model element type occurs. For ex-
ample, one Reaction handles the creation of a new
interface in the class diagram. The called Routine
first checks that a given condition holds on the target
model and then transforms the target model with ad-
ditional model deltas, and optionally, by calling other
Routines in turn. For example, our sample routine
first checks that no Java interface corresponding to the
newly added UML interface exists in the code base. It
then creates a new addition delta for that interface in
the Java code base and calls other Routines to set its
visibility, name, and other properties.

Multiple Transformations Keeping more than two
models consistent, through multiple CPRs between
them, is a non-trivial task. Because Routines create
other model deltas, they may trigger other Reactions,
leading to potentially complicated interactions. In the
worst case, consistency preservation may fail or take
exponential time [8]. This is because firstly, the CPRs
in a V-SUM must be compatible, i.e., the consistency
relations they preserve can be fulfilled simultaneously
and do not contradict each other. Secondly, CPRs
must be applied in a suitable order to preserve con-
sistency. Finding such an order is a non-decidable
problem, however. Even when it exists, finding it may
require exponential time (O(2%]), where t is the set of
CPRs) [8].

3 Evaluation Planning

In this section, we describe how we conducted the
performance evaluation. We followed the guidelines of
Jain [1]. A replication package is available [11].

System Under Test We ran measurements with the
nightly development version of VITRUVIUS. Our setup

300~

(o]
200 -
é (o]
(O]
E o
F 100-
[©
0 -
0 250 500 750 1000 125(
Edits

Figure 1: Distribution of the number of deltas in our
UML models, and time for consistency preservation.
Models are represented by dots.

was a laptop with an AMD Ryzen 7 Pro 4750U CPU
and 32 GB of RAM, running Ubuntu 24.04 LTS, Open-
JDK 21.0.4, and the Eclipse Modeling Tools 2024-06.
Our V-SUM metamodel was the UML-Java example
in Section 2.

Workload We used 12 UML models. Eight are from
the MediaStore case study system [5], two of them are
synthetic, one represents an example UML model?, and
the last one a Java logging application*. To exercise
consistency preservation, we decided to recreate the
UML models in the UML-Java V-SUM. In doing so,
VITRUVIUS transforms the model state into a series of
model deltas to reconstruct said state. It then applies
those deltas on the initially empty UML model and
recreates the corresponding Java model by applying
CPRs.

Metrics For each UML model, we measured D as
the number of model deltas required for reconstruct-
ing it and T as the time in milliseconds required for
consistency preservation. We did not consider other
properties of the V-SUM itself, like its existing CPRs,
or our workload, like single model deltas and their
type, or the elements they change.

Measurement We repeated our measurements to
reduce measurement errors caused by other programs
running concurrently. Following [7, Formula 4.25], we
computed the required number of repetitions for all
models as n = 210, for a relative error bound of e =
0.02 and significance value of o = 0.05. We estimated
the required standard deviation o7, and mean p7, of
each model 7 in 30 test runs. For later analysis, we
used the arithmetic mean of all measurements of T;.

Shttps://repository.genmymodel .com/suresh519/
MyProject
“https://gi
ps://github.com/orhanobut/logger


https://repository.genmymodel.com/suresh519/MyProject
https://repository.genmymodel.com/suresh519/MyProject
https://github.com/orhanobut/logger

4 Evaluation Results

Data Description Values for D range between
minp = 54 and maxp = 1207 deltas, with a mean
of up = 440.2 and standard deviation of op = 402.13.
Values for T range between miny = 11.87ms and
maxy = 286.68ms, with upr = 105.0d4ms and o =
91.60ms. Figure 1 shows the distribution of D and T

Statistical Tests To test for a positive correlation
of the number of model deltas D with the runtime
T for consistency preservation, we computed Spear-
man’s correlation coefficient. We identified a signifi-
cant, large effect of D on T (p = 0.97,p < 2.2%10716).
D and T do not follow a multivariate normal distri-
bution, as reported by the Henze-Zirkler test (HZ =
0.98,p < 0.005), so we did not use Pearson’s cor-
relation coefficient. To predict T from D, we used
linear regression. This resulted in the linear model
T = (6.2884 + 0.2244D)ms. This model fits well with
R? = 0.967,F = 323, and p < 6.1 * 1077, Figure 1
shows this approximation as a blue line.

5 Discussion

For the given V-SUM metamodel and UML models,
consistency preservation runtime scaled linearly to the
number of edits. However, we note that our evalua-

tion has multiple threats to validity, as classified by
Jedlitschka, Ciolkowski, and Pfahl [2]:

External Validity We did not have the time to
construct We chose a simple V-SUM metamodel with
only two underlying metamodels (UML and Java) and
small UML models. Both parts were already part of
the Vitruvius case studies. However, realistic V-SUMs
are built from tens of thousands of model elements
and deltas and include more metamodels. Keeping all
these models consistent requires more CPRs, leading
to more complex interactions and more time for con-
sistency preservation. To ensure external validity, we
must repeat our evaluation with larger V-SUMs and
underlying V-SUM metamodels.

Construct Validity We chose to evaluate scalabil-
ity for one application scenario only: reconstructing
another model in a V-SUM through consistency preser-
vation when loading an existing base model. This
choice was because we did not have access to any delta
sequences for V-SUMs in VITRUVIUS. However, con-
sistency preservation mainly occurs when editing the
V-SUM. In that scenario, the applied composite deltas,
e.g. adding a single model element, have fewer atomic
model deltas. Additionally, V-SUM users may delete
model elements or change their attributes repeatedly.
Our model reconstruction scenario does not include
such edits. In both cases, these types of edits might
have different runtimes. To ensure construct validity,
we could try to obtain existing delta sequences from
VITRUVIUS users or synthetically construct them, like
Kegel et al. [12].

6 Conclusion

We started to investigate how consistency preservation
scales in VITRUVIUS. We conducted a performance
evaluation in which we derived UML-Java V-SUMs
by transforming existing UML models into a sequence
of model deltas and applying these to an empty V-
SUM. We recorded the number of deltas and the time
consistency preservation required to reconstruct the
Java side. Our statistical analyses identified a linear
correlation between these two variables. As future
work, we will extend this evaluation with larger, more
realistic V-SUMs and more realistic delta sequences.
We will further consider other metrics, like CPU and
RAM consumption.

Acknowledgements

Author B. Jutz is funded and T. Weber is supported by the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) - SFB 1608 - 501798263.

References

[1] R. Jain. The art of computer systems performance anal-
ysis. Wiley professional computing. New York: Wiley,
1991.

[2] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. “Reporting
Experiments in Software Engineering”. In: Guide to Ad-
vanced Empirical Software Engineering. Ed. by F. Shull,
J. Singer, and D. I. K. Sjgberg. London: Springer London,
2008, pp. 201-228.

[3] F. Heidenreich et al. JaMoPP: The Java Model Parser
and Printer. Tech. rep. Technical University Dresden,
Sept. 2009.

[4] C. Atkinson, D. Stoll, and P. Bostan. “Orthographic Soft-
ware Modeling: A Practical Approach to View-Based De-
velopment”. In: Evaluation of Novel Approaches to Soft-
ware Engineering. Ed. by L. A. Maciaszek, C. Gonzélez-
Pérez, and S. Jablonski. Berlin, Heidelberg: Springer,
2010, pp. 206-219.

[6] M. Strittmatter and A. Kechaou. The Media Store 3
Case Study System. Karlsruhe Institute of Technology,
2016.

[6] M. E. Kramer. “Specification Languages for Preserving
Consistency between Models of Different Languages”.
PhD thesis. Karlsruhe Institute of Technology, 2017.

[7] S. Kounev, K.-D. Lange, and J. von Kistowski. Systems
Benchmarking. 1st ed. Cham: Springer, 2020, pp. XXVII,
426.

[8] H. Klare. “Building Transformation Networks for Con-
sistent Evolution of Interrelated Models”. PhD thesis.
Karlsruhe Institute of Technology, 2021.

[9] H. Klare et al. “Enabling consistency in view-based sys-
tem development — The Vitruvius approach”. In: Jour-
nal of Systems and Software 171 (Jan. 2021), p. 35.

[10] H.Klare and J. Gleitze. “Termination and Expressiveness
of Execution Strategies for Networks of Bidirectional
Model Transformations”. In: Form. Asp. Comput. 35.3
(Sept. 2023).

[11] B. Jutz and T. Weber. Scalability of Consistency Preser-
vation in Vitruvius. Version 1.0.0. URL: https://doi.
org/10.5281/zenodo. 13629227. Sept. 2024.

[12] K. Kegel et al. “A Variance-Based Drift Metric for Incon-
sistency Estimation in Model Variant Sets”. In: Journal
of Object Technology 23.3 (July 2024). The 20th Euro-
pean Conference on Modelling Foundations and Applica-
tions (ECMFA 2024), pp. 1-14.


https://doi.org/10.5281/zenodo.13629227
https://doi.org/10.5281/zenodo.13629227

	Introduction
	Background
	Evaluation Planning
	Evaluation Results
	Discussion
	Conclusion

