
The Influence of Granularity of Transactions on Performance in

Vitruvius

Thomas Weber
thomas.weber@kit.edu
Karlsruhe Institute of

Technology
Karlsruhe, Germany

Benedikt Jutz
benedikt.jutz@kit.edu
Karlsruhe Institute of

Technology
Karlsruhe, Germany

Zenon Zacouris
zenon.zacouris@tum.de
Technische Universität

München
München, Germany

Abstract

The development of cyber-physical systems involves
managing interconnected models, where changes in
one model may require updates in others to maintain
consistency. Our research evaluates the performance
of a tool for multi-model consistency management,
Vitruvius, focusing on how transaction size and meta-
model topology influence runtime in managing these
models. Our results indicate that the number of model
deltas within a transaction can lead to a degradation
in system performance by a factor of over 300 in the
worst-case scenario. Additionally, consistency preser-
vation rules significantly slow down performance, with
scenarios involving a higher fan-out degree (number
of directly connected models) leading to greater per-
formance reductions than those involving a chain of
metamodels.

Index terms— Transaction, Vitruvius, Granular-
ity, Performance

1 Introduction

The development of cyber-physical systems (CPS),
such as electric cars, requires collaboration among
multidisciplinary teams to create functional products.
Hence, a change in one model typically requires ad-
justments in related models. For example, changing
the tire size may require adjustments to the chassis to
maintain compatibility. Failure to update the chassis
can lead to inconsistencies, resulting in a non-buildable
vehicle [5].

To address these challenges of multi-model con-
sistency management, Vitruvius [3] was developed.
Vitruvius implements a (virtual) Single Underlying
Model (V-SUM) that combines the information for the
development of CPS. This V-SUM encapsulates all sys-
tem aspects through interconnected models, offering
three key advantages of the models over a monolithic
approach: 1) they are easier to build, 2) they are easier
to evolve, and 3) they often already exist. Each user
interacts with a specific view, a subset of the entire
system. Interconnected models are linked by Consis-
tency Preservation Rules (CPRs), which automatically
update related models in response to changes. For

MM1 MM3MM2 MM4 MM5

MM1

MM3MM2 MM4 MM5

 Metamodel

Consistency

Specification

Figure 1: The fan-out and the chain topology

instance, if a user alters tire size, CPRs will adjust
the chassis size and other related components. We
define models using the Eclipse Modeling Framework
(EMF) [1], and the CPRs are specified using the Reac-
tions [3] language.

To apply changes to a V-SUM, Vitruvius uses
deltas. A delta is a modification to a model, such
as adding, updating or removing model elements, their
attributes, or their references. Currently, Vitruvius
does not allow for concurrent execution of updates.
We borrow the concept of database transactions to
work towards concurrent updates in Vitruvius, while
ensuring consistency across all models. Transactions
are a unit of database processing, which consist of one
or more database access operations. We will therefore
refer to a model transaction as a unit of V-SUM pro-
cessing, consisting of one or more deltas. To define
model transactions, we use the delta metamodel im-
plemented in Vitruvius. The delta metamodel defines
all possible deltas, i.e., changes, we can perform on an
EMF model, such as replacing a reference.

Especially in the context of the development of
cyber-physical systems, e.g., as researched in the
Convide project [7], the performance of a tool like
Vitruvius becomes crucial. Our research investigates
the performance of Vitruvius with respect to granular-
ity of model transactions. For this purpose, we focus
on two aspects of granularity: transaction size and
metamodel topology. Figure 1 shows the two topolo-
gies used. In a fan-out topology, one metamodel is
connected to several other metamodels, which are not
connected further. In a chain topology, metamodels

https://orcid.org/0009-0001-5775-2225
https://orcid.org/0009-0006-2110-7159
https://orcid.org/0009-0008-7806-2507

IdentifiedElement

id : EString

Graph

NodeEdge

[0..*] nodes[0..*] edges

[0..1] left

[0..1] right

Figure 2: Metamodel of the graph models used for the
experiments.

are connected pairwise by consistency specifications,
forming a chain. We answer three research questions:

RQ1 How does the size of a transaction affect the run-
time of delta application?

RQ2 How does the fan-out degree (the number of meta-
models connected to the modified metamodel)
affect runtime?

RQ3 How does the length of a chain of metamodels
impact runtime?

The remainder of this paper is organized as follows:
Section 2 discusses the experiment design, Section 3
presents the results, Section 4 analyzes the findings,
Section 5 addresses threats to validity, Section 6 dis-
cusses related work,and Section 7 concludes the paper.

2 Experiment Design

To conduct the experiments, we used the simple graph
metamodel illustrated in Figure 2. The metamodels
for the fan-out and chain scenarios are identical, but
with different namespaces in order to implement Reac-
tions for them. In this metamodel, a Graph consists
of Nodes and Edges, and an Edge references a left

and a right Node. All three metaclasses are of type
IdentifiedElement and therefore have an id. To
execute the tests, we used a development version of
Vitruvius, which is available in our replication pack-
age1 for installation. The experiments were run on a
laptop with an Intel Core i7-1260P and 32GB of RAM
with Windows 11, OpenJDK 17.0.12 and Eclipse Mod-
eling Tools 2024-06.

Delta Acquisition We employed two different ap-
proaches to calculate the necessary deltas. For the
experiments, we constructed an empty Graph, which
results in three deltas (one for creating, one for insert-
ing and one for setting its id). Then, depending on the
number of deltas required, we add a Node, and derive
the deltas necessary to add this node. The derivation
is neccessary because we add the node in a view of
the system, which is a state and not a delta-based
representation. This also results in three additional
deltas.

We derive the deltas per Node to ensure they are
applicable with the minimum granularity of three to

1https://zenodo.org/doi/10.5281/zenodo.13643245

repe-
titions

10000 1000 100 10 10

deltas
transaction size

3 30 300 3000 30000

3 0.64
(0.59)

- - - -

30 3.53
(1.31)

0.76
(0.55)

- - -

300 42.67
(6.43)

5.09
(2.24)

1.86
(0.74)

- -

3000 1493.70
(48.04)

166.60
(6.99)

25.20
(1.99)

11.20
(1.83)

-

30000 204820.4
(3107.53)

18417.20
(102.93)

1993.00
(35.57)

335.00
(14.21)

130.30
(11.60)

Table 1: Granularity: Runtime {mean(deviation)} in
ms for the granularity of a transaction as the number
of deltas it contains.

repe-
titions

10000 1000 100 10 1

meta-
models

deltas

3 30 300 3000 30000

1 0.46
(0.54)

0.58
(0.52)

1.44
(0.59)

11.00
(3.41)

121
(0.00)

2 0.78
(0.51)

1.33
(0.56)

6.63
(1.29)

104.70
(4.71)

8926
(0.00)

3 1.59
(0.70)

2.72
(0.98)

12.11
(1.44)

310.70
(14.03)

31989
(0.00)

4 2.34
(0.92)

5.09
(1.47)

30.38
(5.76)

852.30
(102.04)

57171
(0.00)

5 2.48
(1.01)

5.79
(1.61)

37.79
(8.16)

1232.90
(114.85)

103044
(0.00)

Table 2: Fan-Out: Runtime {mean(deviation)} in ms
for different transaction sizes and changing numbers
of fan-out connected metamodels.

be able to define transactions with a minimum size
of three deltas. Computing the deltas for multiple
added nodes at once results in a delta sequence that
contains transactions of size 3 that are not applica-
ble, because they reference model elements not locally
to the transaction, but globally for the whole delta
sequence. Because we set the minimum granularity
to three, we are not using Edges in this experiment,
because an Edge creates 5 deltas. Thus, we could not
split, e.g., the delta sequence with 30 deltas into 10
transactions with 3 deltas each. For the fan-out and
chain scenario, we create a graph that results in the
required amount of deltas and add it to a view, which
triggers the consistency preservation, also creating
Edges in the models.

3 Results

This section answers the three proposed research ques-
tions proposed using the data in Table 1, Table 2, and
Table 3. The comparison of transaction sizes and the
overall number of deltas is presented in Table 1. For
both the fan-out scenario, as illustrated in Figure 1, as
well as the chain scenario, shown in Figure 1, we used
the graph metamodel and isomorphic identical graph

https://zenodo.org/doi/10.5281/zenodo.13643245

repe-
titions

10000 1000 100 10 1

meta-
models

deltas

3 30 300 3000 30000

3 1.03
(0.42)

3.33
(0.99)

18.05
(4.38)

388.30
(37.84)

17115
(0.00)

4 1.96
(0.87)

4.30
(1.66)

24.22
(5.81)

691.80
(56.12)

34821
(0.00)

5 1.53
(0.57)

3.45
(0.80)

25.33
(1.56)

793.00
(26.03)

58995
(0.00)

Table 3: Chain: Runtime {mean(deviation)} in ms for
different transaction sizes and changing numbers of
chain-like connected metamodels. The first two rows
are identical to the fan-out scenario and thus omitted.

metamodels. The only exception is the namespace
URI to tell them apart. This means that the CPRs
connecting the metamodels simply map an element
to an identical element in another metamodel, e.g.,
a Node from the graph metamodel into a Node from
the graph1 metamodel. The results for the fan-out
scenario are presented in Table 2, and the results for
the chain scenario are presented in Table 3, which are
discussed in the next section.

4 Discussion

As the size of individual transactions increases, result-
ing in a reduced number of transactions for a given
total number of deltas, system performance improves,
illustrated, e.g., in the last row in Table 1. Using 10000
transactions with three deltas each requires over 300
times the execution time of a single transaction with
30000 deltas. We presume this is caused by the over-
head required to process each transaction. Using fewer
but bigger transactions as opposed to many smaller
ones can improve performance, which answers RQ1.
Table 2 and Table 3 present the answers to RQ2 and
RQ3, respectively. In both cases, the performance
deteriorates as the number of metamodels connected
through consistency preservation rules increases. Our
experiments showed that a fan-out scenario with four
metamodels performs worse than the chain scenario
with five metamodels.

5 Threats to Validity

The data collected from the experiments has sev-
eral weaknesses, which we discuss here in accordance
with [2]. We conducted these experiments to gain
preliminary knowledge about factors that may influ-
ence the performance of model transactions. A threat
to the external validity of the discussion of RQs 2
and 3, is the focus on only two extremes: the fan-out
and the chain scenario. In realistic scenarios, we will
likely encounter a mixture of both. Further threats
to external validity are 1) the small number of experi-
ments, 2) using only a single metamodel with a single
CPR configuration (although duplicated for more than
one metamodel), which produces isomorphic models,

which is also unlikely to happen in practice, and 3) a
limited number of experiments. We plan to address
these threats by extending our evaluation in future
work.

6 Related Work

There are other related approaches to manage con-
sistency, e.g., ComprehensiveSystems [4] or De-
signSpaces [6], where the latter also provides some
performance evaluations. The works do not reason
about the influence of transaction sizes on the perfor-
mance of consistency preservation in general but for
specific use cases, or do not consider it at all.

7 Conclusion

We presented our investigation into the influence of
transaction size and the metamodel topology on the
performance of model transactions in Vitruvius. Our
data indicates, that the transaction size influences the
performance of Vitruvius, resulting in a reduction of
throughput by a factor of over 300 in one of the experi-
ments conducted. While consistency preservation rules
are essential for working with multiple related models,
they have a negative effect on performance. Regard-
ing the connections between metamodels, connecting
metamodels in a chain has shown to be more efficient
than in a fan-out topology. Since we are working on
an initial version of a model transaction definition, for
future work, we will research additional properties of
model transactions, to refine our definition. Moreover,
we will develop guidelines for users of Vitruvius to
enhance performance.

Acknowledgements

Authors B. Jutz and Z. Zacouris are funded and T. Weber is
supported by the DFG - SFB 1608 - 501798263.

References
[1] D. Steinberg et al. EMF: eclipse modeling framework. Pear-

son Education, 2008.

[2] P. Runeson and M. Höst. “Guidelines for conducting and
reporting case study research in software engineering”. In:
Empirical software engineering 14 (2009), pp. 131–164.

[3] H. Klare et al. “Enabling consistency in view-based sys-
tem development—the vitruvius approach”. In: Journal
of Systems and Software 171 (2021), p. 110815.

[4] P. Stünkel et al. “Comprehensive systems: a formal founda-
tion for multi-model consistency management”. In: Formal
Aspects of Computing 33.6 (2021), pp. 1067–1114.

[5] I. David, H. Vangheluwe, and E. Syriani. “Model consis-
tency as a heuristic for eventual correctness”. In: Journal
of Computer Languages 76 (2023), p. 101223.

[6] L. Marchezan et al. “Fulfilling industrial needs for consis-
tency among engineering artifacts”. In: 2023 IEEE/ACM
45th International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE.
2023, pp. 246–257.

[7] R. Reussner et al. “Consistency in the View-Based De-
velopment of Cyber-Physical Systems (Convide)”. In:
2023 ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion
(MODELS-C). 2023, pp. 83–84.

	Introduction
	Experiment Design
	Results
	Discussion
	Threats to Validity
	Related Work
	Conclusion

