
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

Performance Modeling of Distributed
Computing

Master’s Thesis of

Valerii Zhyla

At the KIT Department of Informatics
KASTEL – Institute of Information Security and Dependability

First examiner: Prof. Dr.-Ing. Anne Koziolek
Second examiner: Prof. Dr. Ralf H. Reussner

First advisor: M.Sc. Larissa Schmid
Second advisor: Dr.-Ing. Tobias Hey

10. November 2023 – 10. Mai 2024

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

Abstract

Optimizing resource allocation in distributed computing systems is crucial for enhancing
system efficiency and reliability. Predicting job execution metadata, based on resource
demands and platform characteristics, plays a key role in this optimization process. Dis-
tributed computing simulators are utilized for this purpose to model and predict system
behaviors. Among the various simulators developed in recent decades, this thesis specifi-
cally focuses on the state-of-the-art simulator DCSim.

DCSim simulates the nodes and links of the configured platform, generates the workloads
according to configured parameter distributions, and performs the simulations. The
simulated job execution metadata is accurate, yet the simulations demand computational
resources and time that increase superlinearly with the number of nodes simulated.

In this thesis, we explore the application of Recurrent Neural Networks and Transformer
models for predicting job execution metadata within distributed computing environments.
We focus on data preparation, model training, and evaluation for handling numerical
sequences of varying lengths. This approach enhances the scalability of predictive systems
by leveraging deep neural networks to interpret and forecast job execution metadata based
on simulated data or historical data.

We assess the models across four scenarios of increasing complexity, evaluating their
ability to generalize for unseen jobs and platforms. We examine the training duration and
the amount of data necessary to achieve accurate predictions and discuss the applicability
of such models to overcome the scalability challenges of DCSim. The key findings of this
work demonstrate that the models are capable of generalizing across sequences of lengths
encountered during training but fall short in generalizing across different platforms.

i

Zusammenfassung

Die Optimierung der Ressourcenzuweisung in verteilten Computersystemen ist entschei-
dend für die Verbesserung von Systemeffizienz und Zuverlässigkeit. Die Vorhersage der
Metadaten von Jobausführungen, basierend auf Ressourcenanforderungen und Plattformei-
genschaften, spielt eine wichtige Rolle in diesem Optimierungsprozess. Die Simulatoren
werden eingesetzt, um Systemverhalten zu modellieren und vorherzusagen. Unter den
verschiedenen in den letzten Jahrzehnten entwickelten Simulatoren konzentriert sich diese
Arbeit speziell auf den Simulator DCSim.

DCSim simuliert die Knoten und Verbindungen der konfigurierten Plattform, generiert die
Jobsequenzen gemäß konfigurierter Parameterverteilungen und führt die Simulationen
durch. Die simulierten Metadaten von Jobausführungen sind akkurat, doch die Simulatio-
nen erfordern Rechenressourcen und Zeit, die überlinear mit der Anzahl der simulierten
Knoten steigen.

In dieser Arbeit untersuchen wir die Anwendung von Rekurrenten Neuronalen Netzwer-
ken und Transformer-Modellen zur Vorhersage von Jobausführungsmetadaten in verteilten
Computing-Umgebungen. Wir konzentrieren uns auf die Datenvorbereitung, das Modell-
training und die Evaluation zur Handhabung numerischer Sequenzen unterschiedlicher
Längen. Dieser Ansatz verbessert die Skalierbarkeit von Vorhersagesystemen, indem tiefe
neuronale Netzwerke genutzt werden, um Jobausführungsmetadaten auf der Grundlage
von simulierten Daten oder historischen Daten zu interpretieren und vorherzusagen.

Wir bewerten die Modelle in vier Szenarien mit zunehmender Komplexität und untersu-
chen ihre Fähigkeit, für unbekannte Jobs und Plattformen zu generalisieren.Wir betrachten
die Trainingsdauer und die Menge an Daten, die erforderlich ist, um genaue Vorhersagen
zu erzielen, und diskutieren die Anwendbarkeit solcher Modelle, um die Skalierbarkeits-
probleme von DCSim zu überwinden. Die wichtigsten Erkenntnisse dieser Arbeit zeigen,
dass die Modelle in der Lage sind, über Sequenzen von Längen zu generalisieren, die wäh-
rend des Trainings auftreten. Die Modelle haben aber Schwierigkeiten, über verschiedene
Plattformen hinweg zu generalisieren.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. DCSim Scalability . 2
1.2. Objective of this Thesis . 4

2. Background 5
2.1. WLCG Infrastructure . 5
2.2. DCSim . 6

2.2.1. Configurations . 6
2.2.2. Simulation Input and Output . 10
2.2.3. Job Input and Output Parameters 10
2.2.4. Representation of Simulation Results 11

2.3. Performance Modelling . 12
2.3.1. Analytical Performance Modelling 13
2.3.2. Empirical Performance Modelling 13

2.4. Machine Learning . 14
2.4.1. Interpolation vs Extrapolation . 14
2.4.2. Model Training . 14
2.4.3. Surrogate Models . 15
2.4.4. RNN . 15
2.4.5. LSTM . 15
2.4.6. GRU . 16
2.4.7. Transformer . 17

3. RelatedWork 19
3.1. Simulators used in Grid Computing . 19
3.2. Machine Learning in Performance Modeling 19
3.3. Relevant Machine Learning Architectures 20

3.3.1. BiLSTM . 20
3.3.2. BiGRU . 20
3.3.3. Transformer . 21

3.4. Similar Application Fields . 21

v

Contents

4. Concept 23
4.1. Data Preprocessing . 23

4.1.1. Data Split . 24
4.1.2. Data Standardization . 25
4.1.3. Data Windowing . 25
4.1.4. Shuffling . 27

4.2. Model Architecture . 28
4.3. Sequence-to-Sequence Prediction . 29
4.4. Model Evaluation . 30
4.5. Data Reconstruction . 34
4.6. Hyperparameters . 34

5. Experimental Design 39
5.1. Tasks Description . 39
5.2. First Scenario: Homogeneous Jobs . 40
5.3. Second Scenario: Heterogeneous Jobs . 42
5.4. Third Scenario: GridKA Platform . 43
5.5. Fourth Scenario: Platform Generalization 45

5.5.1. Platform Information . 45
5.5.2. New Job Features . 47
5.5.3. Incorporation of Platform Information 47
5.5.4. Training Data . 48
5.5.5. Training Process . 49
5.5.6. Task Description . 49

6. Infrastructure and Implementation 51
6.1. Data Generation . 51
6.2. Data Storage . 51

7. First Scenario: Homogeneous Jobs 53
7.1. GRU . 53

7.1.1. Interpolation . 53
7.1.2. Extrapolation . 53

7.2. LSTM . 54
7.2.1. Interpolation . 54
7.2.2. Extrapolation . 55

7.3. Transformer . 55
7.3.1. Interpolation . 55
7.3.2. Extrapolation . 56

7.4. Models with more Layers . 56
7.5. Discussion . 57

8. Second Scenario: Heterogeneous Jobs 71
8.1. GRU . 71

8.1.1. Interpolation . 71

vi

Contents

8.1.2. Extrapolation . 71
8.2. LSTM . 72

8.2.1. Interpolation . 72
8.2.2. Extrapolation . 73

8.3. Transformer . 73
8.3.1. Interpolation . 73
8.3.2. Extrapolation . 74

8.4. Discussion . 74

9. Third Scenario: GridKA Platform 89
9.1. GRU . 89

9.1.1. Interpolation . 89
9.1.2. Extrapolation . 90

9.2. LSTM . 90
9.2.1. Interpolation . 90
9.2.2. Extrapolation . 90

9.3. Transformer . 91
9.3.1. Interpolation . 91
9.3.2. Extrapolation . 91

9.4. Discussion . 92

10. Fourth Scenario: Platform Generalization 107
10.1. Categorical Data . 107
10.2. Scaling . 108
10.3. Discussion . 109

11. Evaluation and Discussion 113
11.1. GQM Plan . 113

11.1.1. Effectiveness in Predicting Job Metadata for Fixed Platforms . . . 113
11.1.2. Platform Generalization . 114

11.2. Optimal Dataset Size for Model Training 114
11.2.1. Results . 115
11.2.2. Discussion . 115

11.3. Training Epoch Duration . 115
11.3.1. Measurement Results . 115
11.3.2. Discussion . 116

11.4. Optimal Epoch Number for Model Training 117
11.4.1. Results . 117
11.4.2. Discussion . 118

11.5. Model Inference Time . 118
11.5.1. Measurement Results . 118
11.5.2. Discussion . 119

11.6. Job Parameters Influence . 120
11.7. Incorporation of One Longer Sequence into Dataset 120

11.7.1. Results . 121

vii

Contents

11.7.2. Discussion . 121
11.8. Training to Predict One Type of Sequences 121

11.8.1. Results . 121
11.8.2. Discussion . 122

11.9. Comparison with DCSim . 122
11.10.Limitations . 123
11.11.Threats to Validity . 123

12. Conclusion 141
12.1. Future Work . 142

A. Appendix 143
A.1. Platform Configurations . 143
A.2. Workload Configurations . 147
A.3. Dataset Configurations . 154

Bibliography 157

viii

1. Introduction

The Large Hadron Collider (LHC) is the world’s largest and most powerful particle accel-
erator, located at CERN. It consists of a 27-kilometer ring of superconducting magnets and
detectors, situated underground near Geneva, Switzerland. The LHC is designed to collide
protons or heavy ions at near-light speeds, allowing scientists to explore fundamental
questions about the universe, the nature of matter, and the fundamental forces that govern
the interactions of elementary particles.

The Large Hadron Collider (LHC) features a particle accelerator ring that is utilized by
four primary experimental projects: ATLAS, CMS, ALICE, and LHCb, each operating with
distinct detectors and managed by separate organizations Each of these detectors has a
specific scientific purpose and is designed to study particular aspects of particle collisions.
When the particles collide, they produce many secondary particles. The detectors at the
LHC record hits and electrical signals within specific subdetectors, capturing limited-
resolution data on certain types of particles based on their interactions with distinct
detector materials. From these observations, characteristics such as the energy of some
particles, their trajectories through the detector, and the origin of the collision can be
reconstructed, albeit with limited precision.

The scale of these experiments results in a massive amount of data. The detectors at the
LHC use trigger systems to selectively save data from collisions that are expected to be
scientifically significant, filtering out less relevant events to manage the vast amount of
data generated. LHC detectors employ a multi-tiered trigger system to decide which data
to save. Despite this selective process, the volume of remaining data presents a significant
challenge. In November 2022 alone, 26 petabytes of raw experimental data were stored
[18].

With the vast amount of data generated by the LHC experiments, there arose a need for a
robust computing infrastructure to store, process, and analyze this data. The Worldwide
LHC Computing Grid (WLCG) was established to meet this demand. TheWLCG integrates
thousands of computer centers worldwide into a single, cohesive computing entity to
ensure that data from the LHC is readily accessible and analyzable by scientists globally.

Within the WLCG, each particle detector utilizes its own distinct job distribution and
scheduling infrastructure, tailored to its specific data processing and analysis requirements.
For example, the ATLAS detector employs the PanDA (Production and Distributed Analysis
System) for its job scheduling and distributed computing needs [46]. These systemsmanage
the workloads, which consist of jobs related to the corresponding detector, identify suitable
data centers, and book resources. The job distribution systems take the data locality into

1

1. Introduction

account. When a job requires particular datasets, the job distribution system will try to
allocate the job to a grid site where the required data is either already available or can be
swiftly transferred. This approach reduces data transfer duration and ensures efficient
utilization of network resources.

However, this type of scheduling relies on assumptions about data locations. As the
infrastructure and data distribution patterns evolve, these assumptions may no longer
hold true in the future. The next generation of Tier-2 sites in several regions will be
responsible for computing tasks, but they will not retain any data storage capabilities.
To ensure the efficiency of these computations, it will be essential to integrate caching
mechanisms at sites with low network bandwidth to the grid storages. The challenging
aspect lies in the evaluation of the entire topology, which would require an experimental
setup. Implementing such a setup in the real world would be impractical. Hence, there’s
a need for precise simulators that can simulate job scheduling and execution on a given
topology specification.

Many of the current simulators utilized within the WLCG are built upon the GridSim [10,
69] and SimGrid [15] frameworks. GridSim was a popular choice for simulations in
distributed computing environments, particularly during the early development of grid
computing. Nowadays, SimGrid has taken the forefront, becoming the more widely used
tool for contemporary research and simulations in distributed systems.

SimGrid handles higher job loads better than GridSim [23], but both frameworks encounter
scalability challenges as the number of simulated entities increases, leading to limitations
in their capacity to efficiently process extensive workloads. GridSim exhibits accuracy
issues in network simulation, limiting its applicability to simulations of network transfers
to some specific scenarios.

SimGrid is a low-level framework designed for detailed simulation of distributed computing
environments, including networks, computing resources, and energy consumption. In
SimGrid, simulations typically involve the replication of network and system behavior,
including data transfer, computation processes, and resource allocation, to study and
predict the performance and efficiency of distributed systems [31, 30].

1.1. DCSim Scalability

Distributed Computing Simulator (DCSim) performs accurate simulations of job batches
on defined hardware topology, but the simulation time increases super-linear with the
number of concurrently executed jobs in the simulation. After the maximal number of
concurrently executed jobs is reached, simulation time behaves linearly.

Figure 1.1 presents the required simulation time for different batch sizes of a specific
platform. Execution time behaves exponentially from a certain number of jobs, and mem-
ory consumption is linear. This behavior of DCSim can be explained by the escalating

2

1.1. DCSim Scalability

complexity of the underlying SimGrid simulations. The time required for network simula-
tions in SimGrid grows exponentially with the increase in the number of communicating
nodes [23].

The scaling of the execution time below the threshold of full occupation of the CPU cores
in simulation is expected to be influenced by the increasing amount of concurrent activities,
which need to be handled during simulation [30]. Above this threshold, the behavior is
linear driven by the exponential factor.

The amount of concurrent activities is proportional to the number of concurrently active
jobs in simulation, creating loads on the simulated platform. With increasing amounts
of concurrent activities solving the max-min objective in SimGrid becomes more com-
putationally expensive. Increasing the number of simulated jobs above the threshold of
full occupation, the number of concurrent activities creating load on the platform does
not increase, since the total number of running jobs at any point in time in simulation
is capped and only these jobs create activities during their execution. In simulation, the
activities on the platform created by the queued jobs can be neglected compared to the
activities introduced by the executing jobs.

Simplifying the platform raises the threshold, yet the exponential behavior persists, which
can be seen in Figure 1.1. In this example, the simplification of the platform results in the
shift of the threshold from 1.500 jobs to 2.000 jobs. For the real use cases, the simulation
of batches with 10.000 to 100.000 jobs is required.

Figure 1.1.: Simulation time on a simplified platform. Figure taken from Horzela [30]

The performance issue with DCSim lies in platform scalability: as the number of simulta-
neously processed jobs (the active job slots) increases linearly, the simulation time grows

3

1. Introduction

exponentially. The memory consumption remains linear. This behavior is presented in
Figure 1.2.

Figure 1.2.: Exponential simulation time growth with a linear increase of job slots number.
Figure taken from Horzela [30]

1.2. Objective of this Thesis

Instead of performing time-consuming simulations, we aim to use machine learningmodels
to predict simulation outcomes for each job in the batch. At first, we develop models
capable of being trained on shorter job batches and accurately predicting outcomes for job
batches with previously unseen lengths. By utilizing a predictive model, the computational
costs associated with solving mathematical equations in simulations are eliminated, as the
model directly estimates outcomes from learned data. Therefore, our models target two
separate tasks: empirically model the DCSim based on training data (data interpolation) and
predict the simulation outcomes for longer job batches (data extrapolation). The concept
for data preparation and model training is described in Chapter 4, and the experimental
design is described in Chapter 5. We evaluate three machine learning architectures in this
work - BiGRU, BiLSTM, and Encoder-Only Transformer. Then we incorporate elements
of the platform configuration into the model inputs, to address the platform scalability
challenge presented in Section 1.1. Our models are trained using data from a diverse
array of platforms and subsequently evaluated on platforms they have not previously
encountered. The results of incorporation of platform information into the model are
described in Chapter 10.

4

2. Background

This chapter provides a foundational overview of the key concepts, previous research, and
theoretical frameworks that are relevant to the study. It contains detailed information
about the DCSim simulator, including practical usage examples, an overview of the WLCG
infrastructure, a review of various machine learning algorithms and approaches, and a
look at performance modeling methodologies.

2.1. WLCG Infrastructure

The Worldwide LHC Computing Grid (WLCG) is a distributed computing infrastructure,
developed to store and analyze the extensive data generated by the Large Hadron Collider
(LHC) experiments. The data analysis involves the reconstruction of events from the dataset
collected directly from the detectors surrounding the place of particle collision, performing
the statistical analysis, comparing the data with simulated events, and interpreting data in
the context of existing theoretical frameworks. From the abstract perspective, an analysis
task can be represented as a batch of computing jobs [20]. Each job has its own specific
computational needs, requires a specific data as input, and produces a new data. Most of
the jobs are single-core, but some jobs are optimized to run on multiple cores [25].

The WLCG evolved from the conceptual groundwork laid by the Models of Networked
Analysis at Regional Centers (MONARC) [43, 55], which provided a foundation for the
organization and optimization of data flow and computational tasks for LHC data process-
ing. The structure of WLCG has changed over time, to adapt to the increasing volumes
of data produced during the LHC’s Run 2 and Run 3, but kept its original design to most
parts [6]. The WLCG is structured into a tiered system with four tiers [64].

The Tier-0 center is located at CERN. This is the primary data center where raw data
from the LHC experiments is initially processed and then distributed to Tier-1 centers.
It also stores a permanent copy of all raw data. Tier-1 centers are major data centers
located around the world. They not only store a replicated portion of the raw data from
Tier-0 but also handle reprocessing tasks and large-scale analyses. They distribute data
to Tier-2 centers and manage data from them. While their primary role is data storage,
distribution, and reprocessing, they also facilitate analysis tasks, especially those that
require significant computational resources or access to large datasets. Tier-2 centers are
responsible for detailed data analysis tasks undertaken by scientists and generation of
simulated data. They access the processed data from Tier-1 centers and run analysis jobs
that do not require to access raw data. Tier-3 centers are typically smaller local centers or

5

2. Background

even resources provided by individual university departments. They allow researchers
to carry out more specific analyses and are often tailored to the needs of local research
groups.

The Grid Computing Centre Karlsruhe (GridKa), located at the Karlsruhe Institute of
Technology (KIT), is one of the major Tier-1 centers within the WLCG [37, 53]. It plays an
important role in data storage, processing, and distribution for the LHC experiments. As
of 2022, GridKa provided 15% of the computing power, 15% of the disk storage, and 13% of
the tape storage capacity of the whole WLCG [40].

2.2. DCSim

Distributed Computing Simulator [31] is a tool that generates a batch of jobs and simulates
them on arbitrary computing platforms. DCSim is based on the tools Wrench [81] and
SimGrid [15].

2.2.1. Configurations

The workload configuration, the dataset configuration, and the platform configuration are
the inputs of DCSim simulation. DCSim uses the workload and dataset configurations to
generate batches of detailed job characterizations. Listing 2.1 shows an example workload
configuration. A workload configuration contains the distributions of job resource con-
sumption values, such as the number of used CPU cores, required floating point operations,
volume of RAM, and storage for job output. A parameter can contain a specific numerical
value (e.g. "num_jobs" and "submission_time" in Listing 2.1), a histogram description (e.g
"cores", "flops", "memory"), a statistical distribution description (e.g "outfilesize"), or a string
(e.g "workload_type", "infile_datasets"). The strings are used to represent enum values or
filenames. The value of "infile_datasets" is a link to the used dataset configuration. The
value "submission_time" is the time at which the entire batch of jobs is submitted. The job
batch is considered the smallest unit, all jobs in the batch are submitted simultaneously.
The "workload_type" categorizes the jobs into streaming, calculation, and copy jobs. Cal-
culation jobs do not require reading of inputs and focus solely on processing. Copy jobs
involve copying input files before processing. Streaming jobs continuously read files as
streams while performing calculations.

The structure of the dataset configuration is similar to the workload configuration. Listing
2.2 shows an example dataset configuration. The dataset configuration contains the physi-
cal location of a dataset, the number of files contained in the dataset, and the distribution
of its respective file sizes. These files are used as job inputs. The value of location should
be a valid host, defined in platform configuration.

Listing 2.3 shows an example platform configuration. The listed configuration describes
the topology of a KIT network with two computation sites (ETP and GridKa) and the
communication gateway between them (KITcentral). Zones defined in configuration

6

2.2. DCSim

Listing 2.1: Workload Configuration in DCSim
1 "Analysis_T1": {

2 "num_jobs": 32,

3 "cores": {

4 "type": "histogram",

5 "counts": [0, 206746, 35, 0, 3709, 0, 0, 0, 406],

6 "bins": [-0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5]

7 },

8 "flops": {

9 "type": "histogram",

10 "counts": [210623, 263, 4, 6, 0, 0, 0, 0, 0, 0],

11 "bins": [0, 1.5e+14, 3e+14, 4.5e+14, 6e+14, 7.5e+14, 9e+14, 1.05e+15, 1.2e

+15, 1.35e+15, 1.5e+15]

12 },

13 "memory": {

14 "type": "histogram",

15 "counts": [650, 204277, 3161, 1560, 20, 0, 949, 0, 225, 0],

16 "bins": [100, 1290, 2480, 3670, 4860, 6050, 7240, 8430, 9620, 10810, 12000]

17 },

18 "outfilesize": {

19 "type": "gaussian",

20 "average": 1000,

21 "sigma": 0

22 },

23

24 "workload_type": "streaming",

25 "submission_time": 10,

26 "infile_datasets": "Analysis_Dataset_Cache"

27 }

Listing 2.2: Dataset Configuration in DCSim
1 "Analysis_Dataset_Cache": {

2 "location": "GridKA_dCache",

3 "num_files": 480,

4 "filesize": {

5 "type": "histogram",

6 "counts": [208159, 967, 701, 447, 270, 154, 72, 31, 38, 6],

7 "bins": [0, 5e+09, 1e+10, 1.5e+10, 2e+10, 2.5e+10, 3e+10, 3.5e+10, 4e+10,

4.5e+10, 5e+10]

8 }

9 }

7

2. Background

represent the network zones, that contain different hosts and routes between them. Zones
can be connected with other zones, which can be represented with zoneRoutes. Each host
contains an id, computation speed in mega floating point operations per second (MFLOPs),
number of CPU cores, RAM volume in GiB, and type. Some hosts can also contain different
disk volumes, which are characterized by the size in TB, write and read bandwidths in
Gigabits per second. In this example, zone ETP contains three hosts - ETPworker, ETPsg0X,
andWMSHost. ETPworker is the main worker node of ETP, it processes the scheduled jobs.
ETPsg0X is the main storage node of ETP, which is called a cache in this context. WMSHost
is the scheduler node of ETP, it processes the job requests and assigns jobs to the worker
node. These hosts are interconnected with links, that have specific bandwidth values in
and Gigabits per second latency values in microseconds. A link represents a physical link,
which can be used for data transfer between nodes. GridKA is the second zone in this
network. For simplicity, only the gateway of this zone is presented in Listing 2.3. Both
zones ETP and GridKA are interconnected via the third zone KITcentral. The gateway
router of KITcentral is connected to the gateway router of ETP and to the gateway router
of GridKa. We can use such platform configurations to describe platforms of arbitrary
scale, from small single-node workers to the whole WLCG network.

Listing 2.3: Part of KIT Platform Configuration in DCSim
1 <platform>

2 <zone id="KIT" routing="Floyd">

3 <!-- ETP -->

4 <zone id="ETP" routing="Floyd">

5 <!-- ETP hosts -->

6 <host id="ETPworker" speed="4476Mf" core="448">

7 <prop id="type" value="worker"/>

8 <prop id="ram" value="960GiB"/>

9 </host>

10

11 <host id="ETPsg0X" speed="2726Mf" core="60">

12 <prop id="type" value="worker,cache"/>

13 <prop id="ram" value="160GiB"/>

14 <disk id="ssd_cache1" read_bw="9.6Gbps" write_bw="9.6Gbps">

15 <prop id="size" value="7.5TB"/>

16 <prop id="mount" value="/"/>

17 </disk>

18 </host>

19

20 <host id="WMSHost" speed="10Gf" core="10">

21 <prop id="type" value="scheduler,executor"/>

22 <prop id="ram" value="16GB"/>

23 </host>

24

25 <!-- ETP routing -->

26 <router id="ETP_gateway"/>

27

28 <link id="etp_sched" bandwidth="10Gbps" latency="0us"/>

8

2.2. DCSim

29 <link id="etp_worker_FATPIPE" bandwidth="10Gbps" latency="0us"/>

30 <link id="etp_worker" bandwidth="80Gbps" latency="0us"/>

31 <link id="etp_sg0X_FATPIPE" bandwidth="10Gbps" latency="0us"/>

32 <link id="etp_sg0X" bandwidth="40Gbps" latency="0us"/>

33

34 <route src="ETP_gateway" dst="WMSHost">

35 <link_ctn id="etp_sched"/>

36 </route>

37

38 <route src="ETP_gateway" dst="ETPworker">

39 <link_ctn id="etp_worker_FATPIPE"/>

40 <link_ctn id="etp_worker"/>

41 </route>

42

43 <route src="ETP_gateway" dst="ETPsg0X">

44 <link_ctn id="etp_sg0X_FATPIPE"/>

45 <link_ctn id="etp_sg0X"/>

46 </route>

47 </zone>

48

49 <!-- GridKA site description (shortened) -->

50 <zone id="GridKA" routing="Floyd">

51 <!-- GridKa hosts... -->

52 <!-- GridKa routing...-->

53 <route src="GridKa_gateway" dst="TOPAS">

54 <link_ctn id="gridka_topas"/>

55 </route>

56 </zone>

57

58 <!-- KIT Gateway that connects ETP and GridKA -->

59 <zone id="KITcentral" routing="Floyd">

60 <router id="KIT_gateway"/>

61 <link id="etp_to_gridka" bandwidth="100Gbps" latency="0us"/>

62 </zone>

63

64 <zoneRoute src="ETP" dst="KITcentral" gw_src="ETP_gateway" gw_dst="

KIT_gateway">

65 <link_ctn id="etp_to_gridka"/>

66 </zoneRoute>

67

68 <zoneRoute src="GridKA" dst="KITcentral" gw_src="GridKa_gateway" gw_dst="

KIT_gateway">

69 <link_ctn id="etp_to_gridka"/>

70 </zoneRoute>

71 </zone>

72 </platform>

9

2. Background

2.2.2. Simulation Input and Output

Listing 2.4 contains an example command that starts a DCSim simulation with a specific
platform configuration, workload configuration, and dataset configuration, and saves the
simulation result in file example-output.csv.

Listing 2.4: DCSim simulation start command
dc-sim --platform data/platform-files/WLCG_disklessTier2.xml

--workload-configurations data/workload-configs/T2_DE_DESY_workloads.json

--dataset-configurations data/dataset-configs/prefetchScan.json

--output-file example-output.csv

Each simulation requires a seed for a random number generator. This seed can also be set
externally with –seed option. Listing 2.5 shows an example of the usage of DCSim with a
specific seed.

Listing 2.5: DCSim simulation start command with a specific seed
dc-sim --platform data/platform-files/WLCG_disklessTier2.xml

--workload-configurations data/workload-configs/T2_DE_DESY_workloads.json

--dataset-configurations data/dataset-configs/prefetchScan.json

--output-file example-output.csv

--seed 424242

Listing 2.6 contains a part of file "example-output.csv". Each simulated job is represented as
an entry in the CSV format. The entry contains both simulation input parameters (job.tag,
job.flops, infiles.size, outfiles.size) and simulated outputs (machine.name, hitrate, job.start,
job.end, job.computetime, infiles.transfertime, outfiles.transfertime)

Listing 2.6: DCSim simulation result
1 job.tag, machine.name, hitrate, job.start, job.end, job.computetime, job.flops,

infiles.transfertime, infiles.size, outfiles.transfertime, outfiles.size

2 job_Analysis_T2_31, Tier128, 0, 10.000325, 62.912420, 24.657514,

157512196845.572174, 36.559648, 41993201318.724899, 0.199152, 612605106.913359

3 job_Analysis_T2_37, Tier128, 0, 10.000303, 75.188354, 36.900974,

235723420983.291718, 37.486082, 44994464536.159149, 0.255969, 1241127247.730922

2.2.3. Job Input and Output Parameters

Table 2.1 describes the input parameters of each job in simulation. Additionally, we can
use the position of the job in batch. Table 2.2 describes the output parameters of each job
in simulation.

10

2.2. DCSim

Input Parameter Description

Floating Point Operations
Volume of floating-point operations the job undertakes
during its execution. Measure of the computational
workload of the job.

Input Files Size Volume of data that the job takes as input. Measured in
bytes.

Output Files Size Volume of data that the job produces as a result after
processing. Measured in bytes.

Table 2.1.: Simulation input parameters

2.2.4. Representation of Simulation Results

One DCSim execution with fixed seed, platform configuration, workload configuration and
dataset configuration generates a CSV file, wherein each line corresponds to a simulated
job. The DCSim configuration files and simulation outputs are described in Section 2.2.
The Listing 2.6 presents a small example of such CSV file, the Section 2.2.3 contains a
description of job input and output parameters.

We refer to such a CSV file as a single simulation result, and we call the sequentially
arranged list of jobs within it a job batch. Each simulation has a unique id. Within the
simulation, we sort the jobs in ascending order based on their ’job_start’ values and assign
an index for each job. The job with the smallest value of ’job_start’ is assigned an index of
1, and the job with the greatest value of ’job_start’ is assigned an index of the length of
the batch. If two or more jobs have the same value of ’job_start’, the jobs are sorted by job
name, which is always unique in DCSim.

We choose this representation because it allows our models to utilize the actual order of
job execution as provided, without attempting to emulate the behavior of the job scheduler.
The focus should be on analyzing the sequence of job executions as they are, rather than
on deciphering the scheduling strategy, especially at the outset when the system’s capacity
for new jobs is not yet fully occupied.

In the training and evaluation datasets, results from multiple simulations are concatenated.
This structural arrangement of an abstract dataset with two simulations is schematically
illustrated in Figure 2.1. The first simulation contains 1000 jobs, and the second simulation
contains 2500 jobs.

Opting for this approach reduces the number of files to handle, as it consolidates the
data from several simulations into a single file, rather than maintaining a one-to-one
correspondence between files and simulations. Should the file size become too large for
memory allocation, alternative strategies like streaming the data or splitting the large
dataset into several smaller files can be employed.

In the experiments conducted for this work, datasets comprising 10.000 or fewer sim-
ulations were utilized in each scenario. Such datasets typically result in files that are

11

2. Background

Output Parameter Description

Start Time The point at which a job is submitted into the system for
processing.

End Time The moment when a job has been fully processed and the
results are made available.

Computation Time The actual time the job was actively being computed by
the CPU, excluding any waiting or idle periods.

Machine name Identifier of host where the job was processed.

Hit Rate
Proportion of input files that are already available in the
storage of the computational environment, eliminating the
need for data transfer from remote storage.

Input Files Transfer Time
Duration taken to transmit and store the necessary input
files from their source location to the designated
computational environment.

Output Files Transfer Time
Duration taken to transmit and store the results of a job,
once processed, from the computational environment to
the desired storage location.

Table 2.2.: Simulation output parameters

approximately 1GB in size, offering a manageable balance between data volume and file
size.

2.3. Performance Modelling

Performance modeling is concerned with the description, analysis, and optimization of
the dynamic behavior of computer and communication systems [28]. This involves the
investigation of the flow of data, and control information, within and between components
of a system and subsequent processing. The aim is to understand the behavior of the
system and identify the aspects of the system which are sensitive from a performance
point of view [28].

Predictive performance modeling specifically refers to the use of performance models
to predict future performance based on historical data and trends [76]. It often relies on
machine learning or statistical methods to make predictions about future system states
or to forecast the impact of changes to the system. Predictive models are trained using a
set of input data that reflects the various factors affecting performance, such as workload
characteristics, system configurations, and operational parameters. Once trained, these
models can predict outcomes such as response times, system throughput, and resource
utilization [74].

12

2.3. Performance Modelling

Figure 2.1.: Representation of simulations in the dataset

2.3.1. Analytical Performance Modelling

Analytical Performance Modeling is a method used to create mathematical representations
of a system to predict its performance. The analytical performance model is a function
𝑓 (𝑥1, 𝑥2...𝑥𝑛) = 𝑦, where 𝑥𝑖 is one of 𝑛 parameters and 𝑦 is a predicted outcome [11]. The
outcome can be a single value or a vector of values. For example, a performance model
can be a function that takes the resource description and characterization of workload
and returns some metrics such as response time or resource utilization [74].

2.3.2. Empirical Performance Modelling

Empirical Performance Modeling is an approach to understanding system performance
by relying on observation and measurement of the system’s behavior under various con-
ditions. Unlike analytical models, which are grounded in theory and use mathematical
formulations to predict performance, empirical models are derived from actual data col-
lected from the system in operation. Empirical performance modeling can be useful in
scenarios where theoretical models are too complex or when insufficient knowledge about
the system’s inner workings is available [33]. Machine learning techniques, ranging
from regression analysis to advanced deep learning methods, are frequently employed in
empirical performance modeling [76, 48].

Empirical performance models can predict the performance of algorithms on previously
unseen input, including previously unseen problem instances or previously untested
parameter settings. Such models are useful for analyzing how an algorithm performs

13

2. Background

under different conditions, for selecting samples for a new problem instance, or for creating
the surrogate models [2].

2.4. Machine Learning

This section provides a overview of the machine learning concepts and model architectures
employed in this study.

2.4.1. Interpolation vs Extrapolation

Interpolation is the process of estimating unknown values within the range of a discrete
set of known data points [34]. Interpolation is often used when the data has missing values
or gaps, and you want to fill in those gaps with plausible data that fits the sequence’s
existing trend or pattern. In the use case described in this work, interpolation refers to
the prediction of simulation results for job batches of lengths that fall within the range of
those used during the model’s training and validation phases.

Extrapolation is the process of estimating values outside the range of known data points
[41]. Unlike interpolation, where the predictions are made within the bounds of the
existing data, extrapolation extends the sequence beyond the known data points, either
forward or backward. In the use case described in this work, extrapolation refers to the
prediction of simulation results for job batches of lengths that extend beyond the range of
those used during the model’s training and validation phases.

2.4.2. Model Training

Model training is the process of teaching a machine learning model to make predictions
or decisions based on input data by adjusting its parameters to minimize the difference
between the predicted values and the actual values. An epoch during training refers
to one complete pass through the entire training dataset, where the model has had the
opportunity to learn from every example provided. Many epochs are used during training
to ensure that the machine learning model has sufficient exposure to the entire training
dataset, allowing it to iteratively adjust its parameters and improve its prediction accuracy
over time.

A model hyperparameter is a configuration that is external to the model and whose
value is set before the training process begins. It influences the structure of the model
and how the model is trained, but it does not change during the training process itself.
Hyperparameters include settings such as the learning rate and the number of layers. The
learning rate, in particular, is a crucial hyperparameter that determines the size of the steps
the model takes during optimization to minimize the loss function, directly impacting the
convergence and performance of the model. Hyperparameter optimization is crucial in

14

2.4. Machine Learning

machine learning as it systematically identifies the optimal settings that enhance model
accuracy and generalization, directly impacting the model’s efficacy on unseen data.

2.4.3. Surrogate Models

A surrogate model is a simplified representation or approximation of a complex real-
world system or process. The idea is to use the surrogate model in place of the more
complex, detailed model, especially in scenarios where numerous simulations are required.
Such models are often derived from a set of data obtained from detailed simulations or
experiments. Surrogate models are commonly employed in general-purpose simulation
frameworks [27] and specialized tools designed for specific physics domains, such as fluid
simulations [8], where they enhance computational efficiency.

Surrogate modeling can be utilized to overcome the computational limitations of simulators
by providing faster approximations that significantly reduce the need for computationally
intensive simulations. By training on data from detailed simulations or experiments,
surrogate models can predict outcomes with reasonable accuracy, enabling more extensive
exploration and optimization of the system or process with a fraction of the computational
resources.

2.4.4. RNN

An RNN (Recurrent Neural Network) is a class of artificial neural networks designed to
recognize patterns in sequences of data, such as text, genomes, or numerical time series [50].
Its purpose is to process sequential information, where the output from previous steps is
used as input for the current step, making it capable of dynamic temporal behavior.

An RNN works by maintaining a hidden state that captures information from previous
inputs in the sequence. At each step in the sequence, it combines the current input with
its current hidden state to produce an output, which is then passed along with the next
input into the model for the subsequent step, enabling it to make decisions based on the
accumulated knowledge of the sequence so far.

RNNs are widely applied in fields such as natural language processing for tasks like
language translation and sentiment analysis and in time series analysis for forecasting
stock prices or weather patterns. However, RNNs face challenges with long sequences
due to vanishing and exploding gradient problems, which can hinder their ability to learn
dependencies over long distances [60].

2.4.5. LSTM

An LSTM (Long Short-TermMemory) network is a type of RNN that is specifically designed
to address and overcome the vanishing and exploding gradient problems inherent in

15

2. Background

traditional RNNs [57]. Its primary purpose is to capture long-term dependencies in
sequence data more effectively than standard RNNs, enabling it to remember information
for extended periods. LSTMs are extensively used in applications requiring the analysis of
sequences with long-range temporal dependencies, such as in natural language processing
for tasks like text generation and machine translation, and in time series prediction for
financial forecasting or weather prediction.

The key innovation of LSTMs is their use of gated units, including input, output, and forget
gates, which regulate the flow of information in and out of the cell, preventing gradients
from vanishing or exploding during backpropagation [29]. This architecture allows LSTMs
to learn from data where relationships span over long sequences, significantly enhancing
their applicability to a wide range of sequence learning tasks compared to traditional
RNNs. Although the concept of LSTM was first presented in 1997, various modifications
of them are actively utilized in both research and production environments today.

Standard LSTM processes data in a single direction, typically forward, from the beginning
of the sequence to the end. It can only utilize the information from previous elements in
the sequence when making predictions. BiLSTM (Bidirectional LSTM) model processes
data in both forward and backward directions. It has two sets of LSTM layers, one for each
direction. By processing the sequence in both directions, a BiLSTM can capture context
from both past and future elements in the sequence. This dual-direction processing makes
BiLSTMs effective for tasks where understanding the entire context of the input sequence
is crucial.

2.4.6. GRU

A Gated Recurrent Unit (GRU) is a type of recurrent neural network (RNN) architecture
designed to solve the vanishing gradient problem present in traditional RNNs by more
effectively capturing dependencies for sequences of data. Its purpose is to simplify the
LSTMmodel while retaining its ability to remember information over long periods, making
it more computationally efficient [78]. They incorporate a gating mechanism, consisting
of reset and update gates, which manages the flow of information without the need for a
separate memory cell, unlike LSTMs [21]. This streamlined architecture allows GRUs to
perform on par with LSTMs on various tasks with fewer parameters and computational
overhead, addressing both the vanishing and exploding gradient issues effectively [57].

The primary difference between BiGRU (Bidirectional GRU) and GRU is that BiGRU
processes data both forwards and backwards to capture context from both directions of the
sequence, while GRU processes data sequentially in a single direction. This bidirectional
processing in BiGRU is achieved by utilizing two GRU layers in parallel, one reading the
sequence from start to end and the other from end to start, and then combining their
outputs.

16

2.4. Machine Learning

2.4.7. Transformer

A Transformer is a deep learning model that relies on a self-attention mechanism to process
sequential data, allowing it to weigh the importance of different parts of the input data
irrespective of their positions [71]. Its primary purpose is to handle sequences without the
need for recurrent architecture, enabling parallel processing and significantly reducing
training times [54].

The Transformermodel features an encoder-decoder structure. The encoder maps the input
sequence to a high-dimensional representation, leveraging self-attention mechanisms to
capture global dependencies. The decoder generates the output sequence, using both its
self-attention and the encoder’s output to focus on relevant parts of the input.

Initially introduced for natural language processing (NLP) tasks, such as translation and
text summarizing, Transformers are now being adapted for numerical tasks such as time
series forecasting, where their ability to capture long-range dependencies in data can be
leveraged to predict future values based on past observations.

17

3. RelatedWork

This chapter presents an overview of the key research in the areas of grid computing
simulators and empirical performance modeling using machine learning techniques.

3.1. Simulators used in Grid Computing

GridSim [10, 69, 47] and SimGrid [12, 13, 15, 42] are the two most widely used frameworks
for WLCG simulations, but SimGrid has become the more prevalent choice in recent times.
The scalability of grid simulation frameworks was compared by W. Depoorter et al. [23].
This comparison included the GridSim, SimGrid, and many other simulators, including
older ones. This comparison shows, that SimGrid handles higher job loads better than
GridSim [23], but both frameworks encounter scalability challenges as the number of sim-
ulated entities increases. WRENCH (Workflow Research ENabling Cyberinfrastructure for
High-throughput) [14] is an open-source framework, built on top of SimGrid. WRENCH
provides directly usable high-level simulation abstractions, to make it possible to imple-
ment simulators of complex scenarios with minimal development effort. The simulator
DCSim [31], which we aim to improve with surrogate models, is based on WRENCH.

René Caspart et al. [16] made a first attempt to use the Palladio Simulator [5] to evaluate
different strategies for utilization of computing resources in WLCG.

3.2. Machine Learning in Performance Modeling

Jingwei Sun et al. [70] discuss the development of an automated method for modeling
and predicting the performance of HPC applications using machine learning techniques.
The authors address the complexity of accurately predicting the performance of parallel
programs due to the influence of various factors such as hardware, applications, algorithms,
and input parameters. They propose a method that involves automatically instrumenting
anMPI program to output a feature vector and corresponding execution time after each run.
Using a random forest machine learning approach, they build an empirical performance
model that can predict execution times for new inputs. They also introduce a transfer
learning method to improve prediction accuracy on new platforms without extensive
historical execution data.

19

3. Related Work

Preeti Malakar et al. [48] present a benchmark study evaluating eleven ML methods for
modeling the performance of four scientific applications on four HPC platforms. The
results indicate that bagging [9], boosting [9], and deep neural networks are promising
ML methods for this task, and that transfer learning with deep neural networks can
significantly improve cross-platform performance prediction. We are focusing on deep
neural networks for performance prediction, and this work provides insights about transfer
learning, which are important for the generalization of our model.

Carl Witt et al. [76] provide a review of performance prediction methods for batch pro-
cessing in distributed systems. The authors analyzed different predictive performance
modeling approaches that predict performance metrics like execution duration, required
memory, or wait times for future jobs and tasks based on past performance observations.
The paper classifies and compares sources of performance variation, predicted perfor-
mance metrics, limitations and challenges, required training data, use cases, and prediction
techniques.

3.3. Relevant Machine Learning Architectures

Hojjat Salehinejad et al. [61] provide a comprehensive survey on RNNs and discuss sev-
eral new advances in the field. The authors explain the architecture of RNNs and the
gradient-based learning methods, including backpropagation through time (BPTT), and the
importance of proper initialization of weights and biases for effective training. The paper
covers regularization methods for RNNs to prevent overfitting and compares different
gradient descent methods for optimizing RNNs. The major advances in RNNs from 1990 to
2017 are also presented in this paper, such as the introduction of LSTM and GRU networks,
and various optimization techniques.

3.3.1. BiLSTM

Khaled A. Althelaya et al. [39] compared the performance of LSTM and BiLSTM archi-
tectures for short-term and long-term predictions of stock prices. Sima Siami-Namini et
al. [65] conducted an analysis of various LSTM architectures for forecasting the time series
of stock prices. Both works indicated that BiLSTMs generally outperform standard LSTMs
in time series forecasting.

3.3.2. BiGRU

Kamal Basulaiman and Masoud Barati [38] used the BiGRU-based model for power system
state forecasting. They employed the BiGRU layers for capturing long-term dependencies
and the 1D convolution layers for feature extraction.

20

3.4. Similar Application Fields

3.3.3. Transformer

Ashish Vaswani et al. [71] introduced the Transformer model, which is based on a self-
attention mechanism that directly models relationships among all words in a sentence,
regardless of their positions. Transformers were initially designed for Natural Language
Processing tasks, but this architecture also found application in sequence-to-sequence
prediction. In our work, we will utilize the Transformer model for predictions. Neo Wu et
al. [77] present an approach that utilizes Transformer models for time series forecasting.

Jacob Devlin et al. [35] introduced BERT (Bidirectional Encoder Representations from
Transformers). BERT works by pre-training a deep bidirectional Transformer encoder
on a large corpus of text, using tasks like masked language modeling and next sentence
prediction to understand the context of words from both directions. Once pre-trained,
BERT can be fine-tuned with additional output layers.

Yann Dubois et al. [24] address the problems of neural networks in extrapolating patterns
beyond the data they have been trained on. Despite the proficiency of neural networks
in interpolation they often struggle with extrapolation, particularly when the required
abstractions are simple. The authors propose that Transformer models equipped with a
separate content- and location-based attention mechanism are more likely to successfully
extrapolate to longer sequences than models with standard attention mechanisms.

3.4. Similar Application Fields

Numerous studies employ various RNN architectures for modeling the dynamics of nu-
merical time series forecasting. Sreelekshmy Selvin et al. [62] applied a sliding window
approach for predicting future stock prices with LSTM. Amit Joshi et al. [63] compared
the LSTM, GRU, SVM (Support Vector Machine) and MLP (Multilayer Perceptron) models
with different metrics, including R-squared, for stock price prediction. The LSTM and
GRU models demonstrated the best results. Siddartha Mootha et al. [52] performed a
sequence-to-sequence modelling of stock prices with BiLSTM model. Yuanshuai Duan et
al. [80] applied different BiGRU modifications to model stock price dynamics.

21

4. Concept

The data relationships in distributed computing are complex, and data has too high
dimensionality for straightforward statistical models. The sequence length is potentially
unlimited, which requires either the segmentation of data into parts with fixed numbers or
elements or employing model architectures that can process arbitrary sequences. Both the
simulated jobs and the simulated platform are dynamic, and different parts of simulation
data can be generated by different processes.

In this work, we investigate the capabilities of deep neural networks in predicting the
job execution metadata in distributed computing systems and utilize these networks to
address the DCSim scalability challenges outlined in Section 1.1. A high-level overview
of the data generation and model training process is presented in Figure 4.1. Initially, we
conduct simulations and preprocess the resulting data. This preprocessed data is then
utilized for both training and evaluating the model. Once the model has been trained, it
is employed to predict outcomes for new job sequences, which are several times longer
than the sequences used during the training phase. The same models and concepts can be
applied to real-world data instead of simulated data since DCSim uses the same format for
job inputs and outputs as WLCG logs.

We developed a methodology for numerical sequence-to-sequence predictions across
sequences of varying lengths, which is adaptable for use in various contexts. This chapter
describes the concepts used for data preparation, model training, and evaluation of model
predictions. This methodology is applicable to any sequence of objects, enabling the
prediction of certain attributes based on other attributes within the object, all within the
context of a predefined fixed-length segment of the sequence.

4.1. Data Preprocessing

In DCSim output, each object is a simulated job, and a sequence is a batch of sequentially
simulated jobs. The representation of DCSim simulations is described in Section 2.2.4.
Once the simulations have been conducted and the dataset for some specific platform is
created, we preprocessed the data to split it into training and evaluation datasets, normalize,
and cut it into segments of the same length. During model training, the training dataset is
shuffled after each epoch.

23

4. Concept

Figure 4.1.: Model training and evaluation using DCSim simulations data

4.1.1. Data Split

We divide the dataset two distinct subsets: the training set and the evaluation set. Each set
should contain distinct simulations and represent simulations of various lengths to ensure
a comprehensive and diverse range of data for both training and evaluation purposes, with
no overlap between the training and evaluation datasets.

In this work, we adhere to a 70/30 split for dividing the dataset into training and evaluation
sets [72]. At first, we calculate the number of simulations of each length present in the
dataset. Subsequently, we allocate 70% of the simulations from each length category to the
training dataset. The remaining 30% of the simulations are then saved as the evaluation
dataset.

24

4.1. Data Preprocessing

4.1.2. Data Standardization

We standardize the data by subtracting the mean and dividing by standard deviation to
ensure that all features contribute equally to the regression model’s predictions, preventing
features with larger scales from dominating the learning process [58]. Standardization also
improves the numerical stability of optimization algorithms, leading to faster convergence
and more accurate regression models.

This process entails two steps: first, fitting the scaler to the data, and then applying the
fitted scaler to the data. There are two approaches to consider: employing an individual
scaler for each feature (for each input and output parameter) or using a single scaler for
all features. A single scaler can be applied to all features when they are already on similar
scales in the dataset, standardizing them without distorting their relationships. In our use
case, each feature can exhibit different ranges and distributions. Employing a separate
scaler for each feature allows for scaling that is tailored to the statistical properties of
each feature, adjusting the mean to zero and the standard deviation to one, without being
influenced by the scales of other features. Therefore, we have chosen to use this method
for our data standardization process.

Incorporating knowledge about the data’s distribution is crucial for selecting the appro-
priate scaler, as the effectiveness of different scaling methods varies with the underlying
characteristics of the dataset [1]. Since all parameter values generated by DCSim adhere
to a normal distribution, we employ a StandardScaler [67] for data standardization of each
feature.

Once applied, the scaler is retained in memory to facilitate the inverse scaling of the
predicted data. While standardized data is instrumental in calculating various metrics, the
ultimate objective is for the output of our model to mirror the range and distribution of the
actual DCSim simulation results. Therefore, it is essential to reverse the standardization
process on the model’s output to align the predicted values with the real-world scale and
distribution of the simulation results. This step ensures that our model’s predictions are
practically applicable and comparable to the original DCSim results.

4.1.3. Data Windowing

Some simulations in our dataset contain only a single job, while others can encompass up
to 100,000 jobs. Real application scenarios can go far beyond this range. To accommodate
the wide variation in simulation sizes, it is necessary to align the data to a common size
because LSTMs and GRUs require fixed-length input sequences to maintain consistent
internal state dimensions and ensure the proper functioning of their recurrent architecture.
This alignment enables a single model to predict the results of simulations regardless of
their differing sizes by breaking down variable-length simulations into uniformly sized
chunks that the model can process.

In our study, we considered two methods to align the data: the first is to pad all sequences
with zeros until theymatch the length of the longest sequence in the dataset, and the second

25

4. Concept

is to split each simulation into smaller, fixed-size segments, known as windows [45]. The
padding becomes impractical and inefficient when dealing with sequences of potentially
unlimited length, therefore we decided to use the data windowing.

If the sequence does not align perfectly with the window sizes, the final window is padded
with zeros. For instance, consider a scenario where we want to create a window sequence
for two simulations in the dataset, first with 5 jobs, and second with 4 jobs. The window
size is set to 3 and the window overlap is 0. A simulation with 5 jobs can be split into two
windows, the second window will be padded with one entry. A simulation with 4 jobs
can be split into two windows, the second window will be padded with two entries. This
example is depicted in Figure 4.2.

Figure 4.2.: Simulations as a sequence of windows without overlap

Models in this work have the ability to retain information across time steps within a
single window due to their internal memory cells. However, this memory is reset between
different sequences. Windows overlap for consecutive windowswithin the same simulation
can be used to address this issue. This design ensures that data from distinct simulations are
segregated, maintaining the integrity of each simulation’s dataset. Overlapping windows
could be potentially useful for capturing the continuity and dependencies between jobs
within the same simulation, enhancing the model’s ability to learn from sequential patterns.
It is important to ensure that an overlap only occurs within the data from the same
simulation. The data from different simulations should not be mixed in the same window,

26

4.1. Data Preprocessing

the model is designed to make a separate prediction for each simulation. Figure 4.3
illustrates this concept using the same sequences detailed in the previous example, with
the introduction of a one-job overlap between windows.

Figure 4.3.: Simulations as a sequence of windows with overlap

The edge case for overlap in this context occurs when the overlap is set to (𝑛 − 1) for
a window of size 𝑛. This scenario essentially mirrors the concept of a rolling window,
where each new window shifts by just one job from the preceding window. Although this
approach could provide a high-resolution view of the simulation data, enabling detailed
sequential analysis, but increases memory demands from 𝑂 (𝑛) to 𝑂 (𝑛2). Implementing
this method requires additional optimizations to efficiently manage memory usage and
ensure the scalability of the data processing pipeline. In this work, models that used large
overlaps did not demonstrate superior predictive capabilities, leading us to decide against
investing time in these optimizations.

4.1.4. Shuffling

Shuffling the windows in the training dataset after each epoch helps to prevent overfitting
by ensuring the model cannot memorize the order of data, thereby improving its ability
to generalize to unseen data [56]. It breaks correlations between consecutive samples,
encouraging the model to learn from the data’s intrinsic characteristics rather than its

27

4. Concept

sequence. This technique also promotes a more dynamic learning process, aiding in the
balanced exposure of the model to diverse data features and potentially reducing biases.

However, employing shuffling can complicate our windowing approach, which converts a
sequence of simulations into a plain sequence of windows. If the windows are shuffled and
lack an identifier of the original sequence, reconstructing the correct order after model
prediction will not be possible. To circumvent this issue, we have included ’simulation_id’
as part of the input data, which is a unique identifier for each sequence. We generate
the ’simulation_id’ during the dataset preparation. Incorporating ’simulation_id’ and
’job_index’ into the input windows enables us to reconstruct the original data sequence
and eliminate duplicates arising from overlapping windows, facilitating the cleansing
of data before evaluation. Only the ’job_index’ is used for model training as an input
parameter, the ’simulation_id’ serves as metadata and is not used by the model directly.

4.2. Model Architecture

The objective of our models is to predict the outcomes of each simulated job based on its
input parameters and the context provided by other jobs within the same sequence. In
our research, we are exploring the capabilities of three different model architectures. All
three models are designed to take a window as input, which contains a sequence of jobs
from a single simulation. They process this input to compute a new window, maintaining
the same number of entries, wherein each entry corresponds to the values of output
parameters for each job.

The ’GRU’ model comprises an input linear layer, multiple BiGRU layers, and a single
output linear layer [61, 80]. The number of BiGRU layers and the hidden size within
these layers are free parameters. The input layer maps the original input parameters
to the specified hidden size, ensuring compatibility with the BiGRU layers processing.
These BiGRU layers then operate in the hidden size domain, effectively processing and
transforming the data through each layer. Finally, the outputs from the last BiGRU layer are
mapped back to the dimensions of the output parameters, thereby producing the model’s
predictions. The GRU model is described in Section 2.4.6, and the BiGRU modification
is described in Section 2.4.6. The primary difference between GRU and BiGRU is their
approach to processing sequential data: GRU processes data in a forward direction, making
it suitable for tasks where future context is not essential, whereas BiGRU processes data
both forward and backward, making it more effective in scenarios where the context from
both directions is important for understanding the sequence. In simulations, future jobs
cannot influence the outcomes of already completed jobs. However, during the training
phase, the model could potentially benefit from having access to data on future jobs. This
forward-looking information might help the model identify patterns or dependencies
that would not be apparent if it only considered past and current jobs. In the intended
application of the model, it is expected to predict the results of simulations for all jobs in
the sequence, leveraging the full context of the simulation to make accurate predictions.
For simplicity, this model is referred to as GRU further in this work.

28

4.3. Sequence-to-Sequence Prediction

The ’LSTM’ model has a similar structure as the first model, but it uses the BiLSTM layers
instead of the BiGRU layers [61, 39]. The LSTM model is described in Section 2.4.5, and
the BiLSTM modification is described in Section 2.4.5. Capturing long-term dependencies
in simulation results prediction can be beneficial because it allows the model to consider
the influence of events over extended periods, leading to more accurate and informed
predictions based on the historical context of the simulation data. Jobs that were submitted
earlier and are still in execution can influence the jobs that are submitted subsequently.
The motivation for employing BiLSTM layers instead of standard LSTM layers is the same
as for choosing BiGRU over conventional GRU layers. This model is referred to as LSTM
further in this work.

As the third model, we aim to utilize the Transformer model, adapted for numerical
predictions [77]. The Transformer model is described in Section 2.4.7. We evaluated three
types of Transformers for our task: original Encoder-Decoder Transformer, Encoder-Only
Transformer and Decoder-Only Transformer. Encoder-Only Transformers have a simpler
architecture compared to Encoder-Decoder models because they consist solely of the
encoder part [35]. The main advantage of Encoder-Only Transformers in this context is
their compatibility with the same training and evaluation procedures used for the GRU
and LSTMmodels. In contrast to Encoder-Only Transformers, Decoder-Only, and Encoder-
Decoder Transformers require direct access to the target data during training and a more
complex autoregressive generation process during inference [7]. After experimenting
with all three types of models, we have decided to limit our research to Encoder-Only
Transformers. However, the applicability of Encoder-Decoder Transformers in this field
presents an interesting research question for future work.

4.3. Sequence-to-Sequence Prediction

In Section 4.1, we discussed the data preparation process, particularly focusing on the
transformation of simulations into a sequence of windows. Our models are designed to
process a sequence of fixed-size windows, where each window of size 𝑛 can be viewed as
a matrix with 𝑛 rows, each corresponding to a simulated job, and a column for each input
parameter. For each input window, the model predicts an output window that retains the
same number of rows, thereby maintaining a one-to-one relationship between input and
output jobs, and includes a column for each output parameter. This approach ensures that
for every row in the input window (representing one simulated job), exactly one output
row is predicted, directly mapping the input sequence to the output sequence. Figure 4.4
illustrates this approach. If a sequence is split into overlapping windows, a single entry
from the original sequence may appear in multiple input windows, resulting in potentially
different predictions for that entry each time it is encountered. We address this issue in
Section 4.5.

29

4. Concept

Figure 4.4.: Model generated an output window for each input window separately

4.4. Model Evaluation

During model evaluation, the predicted output parameters for each job are compared
to the actual output parameters for that job. The goal of the evaluation is to compare
the predictive capabilities of different models and select the best model architecture and
hyperparameters in each scenario. In each scenario, the models are evaluated in two
distinct tasks:

1. Interpolation: This task assesses the model’s ability to generalize within the range
of sequence lengths it was trained on. It tests the model’s capacity to make accurate
predictions for new sequences that are similar in length to those seen during training,
demonstrating its ability to understand and apply learned patterns to slightly different
but related scenarios.

2. Extrapolation: This task evaluates the model’s ability to extend its predictions beyond
the range of sequence lengths it encountered during training. It tests the model’s
capacity to infer and apply patterns to sequences that are longer or shorter than
those it was trained on, demonstrating its ability to adapt to new situations and
predict outcomes for sequences with lengths it has not previously seen.

In this research, we employ four metrics and two types of plots to evaluate our models.
For each parameter, we utilize the regression metrics Mean Squared Error (MSE) [49], Root
Mean Squared Error (RMSE) [19], Mean Absolute Error (MAE) [75], and Coefficient of
determination (R-squared) [22] to assess the accuracy and reliability of our predictions. For
the normalized data, MSE, RMSE, and MAE have a minimum value of 0, which indicates
that the predicted values perfectly match the actual values. MSE of 1 indicates that the
average squared deviation of the predictions from the actual values is equal to the variance
of the normalized data. This suggests that, on average, the model’s predictions are about
one standard deviation away from the actual values. RMSE is the square root of MSE
and provides a measure of the average magnitude of the prediction errors. An RMSE of 1
indicates that, on average, the model’s predictions are one standard deviation away from
the actual values, offering a more interpretable scale compared to MSE. MAE measures
the average absolute deviation of the predictions from the actual values. An MAE of 1

30

4.4. Model Evaluation

suggests that, on average, the model’s predictions deviate from the actual values by an
amount equal to the mean absolute deviation of the normalized data. Unlike MSE and
RMSE, MAE is not sensitive to the square of the errors, making it more robust to outliers.
R-squared indicates the proportion of the variance in the dependent variable (predicted
parameters) that is predictable from the independent variables (input parameters) in a
regression model.

The value range of R-squared is (−∞, 1). A value of 1 indicates a perfect fit, and a value of
0 indicates that the model explains none of the variability of the response data around its
mean. R-squared can be negative, indicating a model worse than a simple mean predictor.
Table 4.1 depicts an example for an abstract scenario, which contains the accuracy metrics
for five parameters. The model shows strong predictive capabilities for all parameters,
predicting the ’compute_time’ almost perfectly.

Table 4.1.: Accuracy metrics example
Parameter MSE RMSE MAE R2

job_start 0.09730 0.31193 0.23544 0.90269
job_end 0.10032 0.31674 0.23737 0.89968

compute_time 0.00557 0.07463 0.04633 0.99443
input_files_transfer_time 0.10934 0.33067 0.23781 0.89066
output_files_transfer_time 0.01488 0.12196 0.04489 0.98512

In our analysis, we employ a specific type of visualization known as an accuracy plot to
evaluate the predictive performance of our model [32]. This scatter plot positions the
model’s predictions on the y-axis against the actual values on the x-axis. Each point on the
plot represents a single observation, with its location determined by the model’s predicted
value for that observation (y-coordinate) and the true value (x-coordinate). An ideal model,
which predicts with perfect accuracy, would result in all points being positioned on the
diagonal line where the actual values equal the predicted values, indicating a perfect match
between predictions and reality. Deviations from this diagonal line illustrate discrepancies
between predicted and actual values, providing a visual representation of the model’s
accuracy.

Although metrics are valuable for comparing different models, they primarily provide a
high-level overview of performance. The accuracy plots, on the other hand, are instru-
mental in gaining deeper insights into model performance, revealing specific areas where
improvements might be necessary. To enhance the interpretability of the accuracy plots,
the predictions are scaled back to the scales of the original parameters. In Figure 4.5, the
accuracy plot for the parameter ’job_start’ is depicted for the same model whose metrics
were presented in Table 4.1. On the plot, it is observable that in the interval 0.0 − 0.6 × 107
the model generates very accurate predictions. However, it systematically overestimates
the predictions for the jobs with a ’job_start’ value higher than 0.6 × 107. This plot gives
us more information, than just the MSE value of 0.09730.

31

4. Concept

Figure 4.5.: Accuracy plot example

Additionally, we employ Kernel Density Estimation (KDE) plots in conjunction with ac-
curacy plots [66]. KDE plots can reveal the density and distribution patterns of both the
predicted and actual values, helping to identify biases, skewness, or outliers in the pre-
dictions. The x-axis contains normalized values of each parameter. The y-axis represents
the density values, which indicate the probability of observing data points at different
positions along the x-axis, effectively showing the distribution of the data. The area under
the KDE curve should integrate to 1, meaning that the total probability across all possible
values of the variable is 1.

By comparing the KDE plots of the predicted versus actual values, it is possible to identify
systematic errors in the model’s predictions. There are two typical signs of error in
KDE plots: underestimation and overestimation. Underestimation occurs when the KDE
plot consistently lies below the actual data distribution, suggesting that the model is
systematically predicting lower values than observed. Overestimation is observed when
the KDE plot consistently lies above the actual data distribution, indicating that the
model is systematically predicting higher values than observed. For instance, if the model
consistently overestimates or underestimates values within a specific range, this pattern
will be evident in the KDE plot. A KDE plot for ’job_start’ is presented in Figure 4.6,
created using the same data as the accuracy plot in Figure 4.5. While the accuracy plot
provides a good overview of the model’s performance, the KDE plot distinctly highlights
overestimations and underestimations within specific parts of the distribution, offering a
more nuanced understanding of the model’s predictive behavior.

32

4.4. Model Evaluation

Figure 4.6.: KDE plot with overestimation for greater parameter values jobs and underesti-
mation for smaller parameter values

However, KDE plots do not always offer more informative insights than accuracy plots. In
Figure 4.7, both accuracy and KDE plots are presented for the parameter ’compute_time’.
Despite the model’s near-perfect capture of the distribution as shown in the KDE plot, the
accuracy plot reveals a splitting of points into two distinct beams. This behavior can be
caused by differences in the computational capabilities of two node groups, which were
used as a platform in the simulation. This pattern suggests a systematic error, highlighting
an aspect of model performance that might not be as apparent from the KDE plot alone.

Figure 4.7.: Accuracy plot and KDE plot for the same parameter 33

4. Concept

4.5. Data Reconstruction

An essential aspect of our evaluation involves the reconstruction of data after prediction, to
ensure the integrity and usability of model outputs for further analysis and interpretation.
This process is especially crucial when employing varying window overlaps and padding,
as these techniques introduce duplicates into the data, potentially impacting the overall
data distribution and the accuracy metrics. To remove duplicates from the data, the
following steps can be followed:

1. Transform the input and output sequences of windows into a plain array.

2. Use the input array of jobs to identify all indexes of duplicates that have the same
’simulation_id’ and ’job_index’ combinations, except for the first occurrence.

3. Remove all jobs from the input and output arrays that correspond to these indexes.

This approach ensures that no duplicates remain in the data and only one padding entry
is retained, which should not significantly affect the metrics and distributions. Figure 4.8
illustrates this approach.

Figure 4.9 presents two KDE plots of the same model, trained with a window size of
200 and an overlap size of 100. The left plot displays the KDE plot of the data before
removing duplicates introduced by windowing, while the right plot shows the KDE plot
of the data after the removal of duplicates. The data used for model evaluation contains
a job batch which consists of job with identical resource demands, which were assigned
simultaneously on startup. The total batch size if five times greater the number of job slots
in the system. The distribution of job staring time in five stages groups is evident in the
right plot but cannot be discerned in the left plot.

4.6. Hyperparameters

The choice of optimal hyperparameters is an important part of machine learning, as it
significantly influences the performance and effectiveness of the models [79].

One of the most important hyperparameters is the learning rate [68]. After evaluating
various learning rates, we opted for a fixed learning rate of 0.001 for all models. Additionally,
we employ a learning rate scheduler that reduces the learning rate by a factor of 0.1 when
the change in the average loss over the last 5 epochs falls below the threshold of 0.0001.
These parameters provided the best balance between convergence speed and stability,
leading to optimal training performance across our range of models.

As for the loss function, the MSE Loss was chosen after evaluating several loss func-
tions [36]. The other evaluated loss functions were: MAE Loss (L1Loss) [59], Huber Loss
(SmoothL1Loss) [3]. Huber Loss is a hybrid loss function that behaves like MSE for small
errors and like MAE for large errors, making it less sensitive to outliers than mean squared
error. MAE loss may be less sensitive to reducing outliers in the model’s predictions, and

34

4.6. Hyperparameters

Figure 4.8.: Use simulation_id and job_index as primary key to identify duplicates

Huber loss performed similarly to MSE but required approximately twice as much time
for each epoch. This time difference can be explained by the use of a conditional decision
within the calculation of Huber loss.

The choice of MSE Loss aligns with our intention to penalize larger errors more heavily
than smaller errors, reflecting our preference for a model that emphasizes the importance
of minimizing significant discrepancies between predicted and actual values.

The free hyperparameters are:

• Hidden Size: Determines the dimensionality of each hidden layer.

• Window Size: Specifies the number of consecutive data points considered in each
input window.

• Window Overlap: Defines how much consecutive windows overlap.

• Batch Size: Indicates the number of samples processed before the model’s internal
parameters are updated.

35

4. Concept

Figure 4.9.: KDE plot with uncleared data (left) and with cleared data (right)

• Layers: Determines the number of hidden layers (BiGRU, BiLSTM and Encoder
layers) in the model.

• Heads: the number of attention heads (only for Transformer)

There are many strategies for optimizing hyperparameters in machine learning models.
Given the extensive search space, employing a grid search would be highly resource-
and time-consuming [44]. Alternatively, various hyperparameter tuning algorithms exist,
such as the Tree-structured Parzen Estimator [73]. These automated algorithms typically
aim to find a configuration that minimizes the training loss or optimizes metrics, such as
MSE. However, as discussed in Section 4.4, in this use case, metrics alone do not provide
a complete assessment, as the primary goal of the model is to match the actual data
distribution. Therefore, to determine which model performs better, the KDE plots and the
accuracy plots are empirically evaluated. In the context of our work, this process cannot
be feasibly automated due to the necessity of evaluating various types of visualizations.

We optimize the hyperparameters sequentially, iterate several times, and use random
start configurations to reduce the risk of sticking in the local optima. This approach for
hyperparameter optimization is presented in Figure 4.10. At first, we train 10 models with
random parameters with predefined ranges. After the initial training phase, we evaluate
the performance of each model using KDE plots, accuracy plots, and accuracy metrics.
We then select the best 3 models from this initial group. For each of these models, we
modify one free hyperparameter at a time, train, and evaluate the models with different
variations of this parameter. After determining the optimal value for a parameter, we fix it,
retain the best-performing model from the last iteration, discard the others, and proceed
to adjust the next parameter. This process involves training new models, evaluating them,
and comparing the outcomes. We repeat this cycle until we have iterated through all the
parameters once. In the final step, we compare the three resulting models and select the
best one. The parameters are adjusted in the following order: Hidden Size, Window Size,
Window Overlap, Layers, Heads, Batch Size. This order was established after training and

36

4.6. Hyperparameters

evaluating the models for the different scenarios, and it produced better results than other
orders that were tested.

To compare the models, we needed to determine the order of importance of different
plots and metrics for each output parameter. As a result, we establish the following list of
priorities:

1. If the model fails to match the distribution for sequences with lengths seen during
model training (interpolation), it is not subjected to further evaluation. Underestima-
tions and overestimations are not accepted.

2. Matching the distribution for sequences with lengths unseen during model training
(extrapolation) is the most important criterion. There is a high penalty for underesti-
mations and overestimations. Matching ’job_start’, ’job_end’, and ’compute_time’
parameters are considered more important than other output parameters, such as
file transfer time.

3. Achieving good metrics values in extrapolation tasks. The most crucial metrics are
R-squared and MSE, with metrics for ’job_start’, ’job_end’, and ’compute_time’ being
the most significant.

4. If there are no visible differences in KDE and accuracy plots, the metrics are used for
comparison. Only differences in metrics larger than 0.01 are considered significant
for analysis. If the difference in one metric is not significant, preference is given
to the simpler model, characterized by a smaller hidden size, fewer layers, smaller
window overlap, and larger batch size.

37

4. Concept

Figure 4.10.: Sequential hyperparameter optimization with random starting configurations

38

5. Experimental Design

Our experiment is structured into two distinct parts. In the first part, we focus on refining
and evaluating our sequence-to-sequence regression concept, utilizing exclusively the jobs
from the DCSim output. This first part encompasses three scenarios, each with increasing
complexity.

The first scenario detailed in Section 5.2 serves as a proof of concept and provides a
foundation for the validation of our design decisions. We focus on jobs originating from a
single job distribution, and operating on a fixed platform with minimal complexity. The
DCSim configurations are described in Section 2.2.1. The second scenario detailed in
Section 5.3 introduces complexity by predicting simulation results for jobs from varied
job distributions. The underlying platform is the same as in the first scenario. The third
scenario detailed in Section 5.4 focuses on predictions for heterogeneous jobs, similar to
the second phase, simulated on a more complex platform. This scenario results in models,
that can handle heterogeneous jobs, but should be trained for each platform. Table 5.1
summarizes these scenarios.

Scenario Jobs Platform Complexity
I homogeneous Sgbatch
II heterogeneous Sgbatch
III heterogeneous GridKa

Table 5.1.: Three scenarios with increasing data and platform complexity

The second part of our experiment is designed to incorporate auxiliary information about
platform topology and is described in Section 5.5. In this part, we assess the model’s
capacity to generalize across various platforms. To achieve this, we conduct simulations on
different platforms and input the platform data into the model alongside the jobs data.

5.1. Tasks Description

The simulations were performed and divided into two datasets, following a 70/30 split. The
training dataset, comprising 70% of the simulations, was utilized for training the models.
The evaluation dataset, consisting of the remaining 30%, included only unseen simulations
and was used for the interpolation task. The simulations in the evaluation dataset had
lengths represented in the training dataset.

39

5. Experimental Design

For the extrapolation task, we utilize the same models that were employed for the interpo-
lation task. The models are applied to a dataset comprising simulations, each containing
five times more jobs than the largest simulation in the training dataset. These jobs are
stored in a separate extrapolation dataset, which is not used during the model training.

5.2. First Scenario: Homogeneous Jobs

For the first scenario of our research, we execute a total of 10.000 simulations. These
were organized into 10 batches, each containing 1.000 simulations. The simulations were
structured to include varying numbers of jobs, with batches for 1, 10, 20, 50, 100, 250, 500,
1.000, 1.500, and 2.000 jobs respectively. This approach allowed us to analyze the system’s
behavior across a spectrum of workload sizes.

From the data generated in this scenario, we create two distinct datasets. The first dataset
incorporated all 10.000 simulations and was dedicated to the final training and evaluation
of the interpolation capabilities of our model. For the extrapolation task, we conduct extra
set of 10 simulations, each containing 10.000 jobs. Model training and evaluation results
are described in Chapter 7.

Listings 5.1 and 5.2 present an example workload and dataset configuration, used in
simulations. All job resource demands are constant, only the ’num_jobs’ parameter varies
between workload configurations.

The platform configuration used for these simulations contains three worker nodes with
60 CPU cores in total and one scheduler node. All nodes in the network are interconnected
following a star topology, with a central gateway serving as the primary hub. Each link
connecting the nodes to the gateway possesses uniform bandwidth and latency. The
datasets required for processing by the jobs are not stored directly on the worker nodes.
Instead, they are located on a separate storage server referred to as ’RemoteStorage’ in
dataset configuration, which is also connected to the central gateway. Full platform
configuration is presented in Listing A.1.

In Section 4.3 we described an approach for the sequence-to-sequence predictions, which
incorporates input and output windows. The parameters ’index’, ’flops’, ’input_files_size’,
and ’output_files_size’ are used in input windows and the parameters ’job_start’, ’job_end’,
’compute_time’, ’input_files_transfer_time’, ’output_files_transfer_time’ are used om the
output windows. The output parameters are the parts of the DCSim output file, which is
presented in Section 2.2.2. Input and output parameters are described in Section 2.2.3. All
parameters contain floating point numbers with 32-bit precision. The value of ’submis-
sion_time’ of all jobs in this scenario is identical and therefore is not used as the input
parameter.

40

5.2. First Scenario: Homogeneous Jobs

Listing 5.1: Workload configuration with uniform jobs, only the ’num_jobs’ is changed
1 {

2 "simple_uniform": {

3 "num_jobs": 50, <!-- 1, 10, 50, 100, 250, 1.000, 1.500, 2.000 -->

4 "infiles_per_job": 10,

5 "cores": {

6 "type": "histogram",

7 "counts": [0,1]

8 },

9 "flops": {

10 "type": "gaussian",

11 "average": 2886000000000,

12 "sigma": 0

13 },

14 "memory": {

15 "type": "gaussian",

16 "average": 2000000000,

17 "sigma": 0

18 },

19 "outfilesize": {

20 "type": "gaussian",

21 "average": 16000000,

22 "sigma": 0

23 },

24 "workload_type": "streaming",

25 "submission_time": 0,

26 "infile_datasets": "simple_uniform"

27 }

28 }

Listing 5.2: Dataset configuration with uniform files
1 {

2 "simple_uniform": {

3 "location": "RemoteStorage",

4 "num_files": 1000000,

5 "filesize": {

6 "type": "gaussian",

7 "average": 500000000,

8 "sigma": 0

9 }

10 }

11 }

41

5. Experimental Design

5.3. Second Scenario: Heterogeneous Jobs

For the second scenario, we perform 7.000 simulations organized into 7 batches, each
containing 1.000 simulations. The simulations are structured to include varying numbers
of jobs, with batches for 10, 20, 50, 100, 250, 500 and 1.000 jobs respectively. Additionally,
we perform 10 simulations each containing 5.000 jobs for the extrapolation task. Model
training and evaluation results are described in Chapter 8.

Listing 5.3 presents a part of workload configuration with two job classes: ’Analysis_T1’
and ’Digi_T1’. The full workload configuration is presented in Listing A.3 and contains five
different job classes, each job contains its own distributions for all resource demands. List-
ing 5.4 presents the corresponding part of dataset configuration. Full dataset configuration
is presented in Listing A.5. The platform remains the same as in the first scenario.

Listing 5.3: Part of the workload configuration with several workload classes
1 {

2 "Analysis_T1": {

3 "num_jobs": 15,

4 "cores": { <!-- distribution, instead of fixed value -->

5 "type": "histogram",

6 "counts": [0, 206746, 35, 0, 3709, 0, 0, 0, 406],

7 "bins": [-0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5]

8 },

9 "flops": {

10 "type": "histogram",

11 "counts": [210623, 263, 4, 6, 0, 0, 0, 0, 0, 0],

12 "bins": [0, 1.5e+14, 3e+14, 4.5e+14, 6e+14, 7.5e+14, 9e+14, 1.05e+15,

1.2e+15, 1.35e+15, 1.5e+15]

13 },

14 "memory": {

15 "type": "histogram",

16 "counts": [650, 204277, 3161, 1560, 20, 0, 949, 0, 225, 0],

17 "bins": [100, 1290, 2480, 3670, 4860, 6050, 7240, 8430, 9620, 10810,

12000]

18 },

19 "outfilesize": {

20 "type": "histogram",

21 "counts": [210319, 577, 0, 0, 0, 0, 0, 0, 0, 0],

22 "bins": [0, 2e+09, 4e+09, 6e+09, 8e+09, 1e+10, 1.2e+10, 1.4e+10, 1.6e

+10, 1.8e+10, 2e+10]

23 },

24 "workload_type": "streaming",

25 "submission_time": 10, <!-- set for each workload class -->

26 "infile_datasets": "Analysis_T1"

27 },

28 "Digi_T1": {

29 "num_jobs": 15,

42

5.4. Third Scenario: GridKA Platform

30 "cores": {

31 "type": "histogram",

32 "counts": [0, 30704, 101899, 0, 86729, 0, 0, 0, 626]

33 },

34 "flops": {

35 "type": "histogram",

36 "counts": [74119, 141559, 3664, 38, 213, 317, 40, 8, 0, 0],

37 "bins": [0, 1.5e+14, 3e+14, 4.5e+14, 6e+14, 7.5e+14, 9e+14, 1.05e+15,

1.2e+15, 1.35e+15, 1.5e+15]

38 },

39 "memory": {

40 "type": "histogram",

41 "counts": [131371, 8158, 54096, 20739, 192, 0, 5398, 0, 4, 0],

42 "bins": [100, 1290, 2480, 3670, 4860, 6050, 7240, 8430, 9620, 10810,

12000]

43 },

44 "outfilesize": {

45 "type": "histogram",

46 "counts": [155865, 59084, 1274, 593, 280, 211, 383, 131, 1528, 255],

47 "bins": [0, 2e+09, 4e+09, 6e+09, 8e+09, 1e+10, 1.2e+10, 1.4e+10, 1.6e

+10, 1.8e+10, 2e+10]

48 },

49 "workload_type": "streaming",

50 "submission_time": 20,

51 "infile_datasets": "Digi_T1"

52 }

53 }

In the second scenario, we use fiveworkload classes with different ’submission_time’ values.
In models for this scenario, the ’submission_time’ is an input parameter. Other input and
output parameters and dataset organization are the same as in the first scenario.

5.4. Third Scenario: GridKA Platform

For the third scenario, we perform 10.000 simulations organized into 10 batches, each
containing 1.000 simulations. The simulations are structured to include varying numbers
of jobs, with batches for 5, 10, 50, 100, 250, 500, 1.000, 1.500, and 2.000 jobs respectively.
Additionally, we perform 100 simulations containing 10.000 jobs for the extrapolation task.
Model training and evaluation results are described in Chapter 9.

Listing A.4 presents a workload configuration, Listing A.6 presents a dataset configuration,
and Listing A.2 presents a platform configuration. Dataset and workload configurations
are similar to configurations, used in the second scenario. The new platform configuration
describes an interconnected network of two data centers, GridKa andDESY. GridKa features
a cluster comprising 10 worker nodes, each with identical characteristics. In contrast,

43

5. Experimental Design

Listing 5.4: Part of the dataset configuration with several datasets
1 {

2 "Analysis_T1":{

3 "location": "RemoteStorage",

4 "num_files": 1000,

5 "filesize": {

6 "type": "histogram",

7 "counts": [208159, 967, 701, 447, 270, 154, 72, 31, 38, 6],

8 "bins": [0, 5e+09, 1e+10, 1.5e+10, 2e+10, 2.5e+10, 3e+10, 3.5e+10, 4e+10,

4.5e+10, 5e+10]

9 }

10 },

11 "Digi_T1":{

12 "location": "RemoteStorage",

13 "num_files": 1000,

14 "filesize": {

15 "type": "histogram",

16 "counts": [157564, 3767, 32275, 353, 25151, 89, 0, 0, 759, 0],

17 "bins": [0, 5e+09, 1e+10, 1.5e+10, 2e+10, 2.5e+10, 3e+10, 3.5e+10, 4e+10,

4.5e+10, 5e+10]

18 }

19 }

20 }

44

5.5. Fourth Scenario: Platform Generalization

DESY is equipped with a single worker node, which boasts greater power compared to a
single GridKa node. Both data centers have dedicated cache nodes. In this scenario, all
datasets are stored in the GridKa cache node. The GridKa cluster possesses a total of 420
CPU cores, while the DESY worker node is equipped with 200 CPU cores.

Model input and output parameters are the same as in the second scenario. Workload
classes used in this scenario are based on the real workload in Tier-1 and Tier-2 data
centers.

5.5. Fourth Scenario: Platform Generalization

In prior scenarios, models were trained and evaluated for specific platforms and demon-
strated generalizability across various workloads. In this scenario, we aim to add the
platform information to the model inputs and outputs. To achieve this, we construct a
representation of the topology graph of the simulated platform, which is then passed
into our models together with the simulation data. The outcomes of this experiment are
described in Chapter 10.

5.5.1. Platform Information

In earlier scenarios, our approach involved processing a sequence of individual jobs. For
each job, the models predicted several parameters: ’job_start’, ’job_end’, ’compute_time’,
’input_files_transfer_time’, and ’output_files_transfer_time’. These predictions were based
on a set of input parameters for each job, specifically ’index’, ’submission_time’, ’flops’,
’input_files_size’, and ’output_files_size’. In this scenario, we pass a platform topology in
the form of two auxiliary sequences: (i) a nodes sequence and (ii) a links sequence. These
auxiliary sequences provide contextual information or supplementary data that assists the
model in making more informed predictions for each job in the primary sequence.

The nodes sequence contains one object for each node in the platform configuration. Each
node represents a computing or infrastructure element in the platform, such as a cluster,
worker, scheduler, storage, cache or router. Each node by id, type, cores, number of flops
per second of each core, RAM, disc capacity, disk write and read bandwidths. Additionally,
for each node is explicitly described, which cluster is this node part of. Cluster id 0 means,
that this node is not a part of any cluster. The auxiliary nodes sequence for the platform
from Listing A.2 is presented in Listing 5.5.

The links sequence contains one object for each link in the platform configuration. Each
link is defined by id, source node id, destination node id, link latency, link bandwidth, and
whether a fatpipe link sharing policy is enabled for this link. Node id, used in the links
sequence, is a reference to the node in the nodes sequence. The auxiliary links sequence
for the platform from Listing A.2 is presented in Listing 5.6.

45

5. Experimental Design

Listing 5.5: Auxiliary nodes sequence with GridKa and DESY nodes
1 node_name;node_index;node_type;node_type_index;speed_mf;cores;ram_gib;disk_tib;

disk_read_bw_mbps;disk_write_bw_mbps;in_cluster

2 Tier1;1;cluster;0;0;0;0;0;0;0;0

3 Tier10;2;worker;1;2555;42;1187;0;0;0;1

4 Tier11;3;worker;1;2555;42;1187;0;0;0;1

5 Tier12;4;worker;1;2555;42;1187;0;0;0;1

6 Tier13;5;worker;1;2555;42;1187;0;0;0;1

7 Tier14;6;worker;1;2555;42;1187;0;0;0;1

8 Tier15;7;worker;1;2555;42;1187;0;0;0;1

9 Tier16;8;worker;1;2555;42;1187;0;0;0;1

10 Tier17;9;worker;1;2555;42;1187;0;0;0;1

11 Tier18;10;worker;1;2555;42;1187;0;0;0;1

12 Tier19;11;worker;1;2555;42;1187;0;0;0;1

13 Tier2;12;worker;1;2209;200;500;0;0;0;0

14 GridKA_dCache;13;storage;2;1000000;10;0;7000;920;920;0

15 WMSHost;14;scheduler;3;10000;10;16;0;0;0;0

16 GridKAgateway;15;router;4;0;0;0;0;0;0;0

17 KITgateway;16;router;4;0;0;0;0;0;0;0

18 DESY_dCache;17;cache;5;1000000;10;0;7000;920;920;0

19 DESYGridgateway;18;router;4;0;0;0;0;0;0;0

20 DESYgateway;19;router;4;0;0;0;0;0;0;0

Listing 5.6: Auxiliary links sequence with GridKa and DESY links
1 link_name;link_index;src_node_name;src_node_index;dst_name;dst_node_index;

bandwidth_mbps;latency_us;is_fatpipe

2 GridKA_sched;1;GridKAgateway;15;WMSHost;14;115;0;0

3 GridKA_Tier1_FATPIPE;2;GridKAgateway;15;Tier1;1;1150;0;1

4 GridKA_Tier1;3;GridKAgateway;15;Tier1;1;2300;0;0

5 GridKA_dcachepool_FATPIPE;4;GridKAgateway;15;GridKA_dCache;13;460;0;1

6 GridKA_dcachepool;5;GridKAgateway;15;GridKA_dCache;13;920;0;0

7 GridKA_to_KIT;6;GridKAgateway;15;KITgateway;16;1150;0;0

8 KIT_to_DESY;7;KITgateway;16;DESYgateway;19;115;0;0

9 DESY_Tier2;8;DESYGridgateway;18;Tier2;12;460;0;0

10 DESY_dCachepool;9;DESYGridgateway;18;DESY_dCache;17;460;0;0

11 DESYGrid_to_DESY;10;DESYGridgateway;18;DESYgateway;19;1150;0;0

46

5.5. Fourth Scenario: Platform Generalization

5.5.2. New Job Features

We are introducing modifications to the job parameters in the primary job sequence.
Along with the existing input and output parameters, each job entry includes two new
parameters.

The first parameter is ’dataset_node_index’. It contains the index of the node where the
dataset required by a specific job is located. In scenarios where the dataset is located
on the node ’GridKA_dCache’, the ’dataset_node_index’ would be set to 13, as per the
node sequence presented in Listing 5.5. This additional parameter aims to provide more
contextual information to the model, specifically regarding the location of the dataset
within the network topology. We make a simplifying assumption that the dataset required
for a specific job is stored on a single node, and the dataset required for a specific job
is not distributed or scattered across multiple nodes within the network topology. This
parameter is an input parameter and is used to enhance the predictions.

The second new parameter is ’machine_index’, which is an output parameter. This param-
eter contains the index of the worker node where the job is executed. For instance, if a
job is processed on the DESY worker node named ’Tier2’, the ’machine_index’ parameter
would be assigned the value 12. This corresponds to the order of nodes as detailed in
Listing 5.5. It enables our model to predict, on which node the job will be executed.

5.5.3. Incorporation of Platform Information

We need a way to incorporate the platform information into the prediction process. Com-
plete platform data is included in the model with each input window. New input columns
are created to encapsulate information about nodes and links. The window size must be
equal to or exceed the number of nodes and links. Otherwise, the platform information
can not be fitted in the window. The shortest subsequence is padded with zeros to match
the window size.

This concept is illustrated in Figure 5.1. This figure presents a sequence of 10 jobs, contained
in two windows without overlap. Node information (e.g. node index, number of CPUs,
computational speed of a single CPU, size of RAM and disk) and link information (e.g.
indexes of source and destination nodes, link bandwidth, and latency) are added to each
window. In this example, each window contains the parameters of three nodes and two
links, which are passed as input along with the job parameters.

An alternative approach could be the simultaneous processing of three separate sequences:
a sequence of jobs (as in all previous scenarios), a sequence of nodes information (as in
Listing 5.5), and a sequence with links information (as in Listing 5.6). The LSTM and GRU
models can process only one sequence in one model, but Transformer models do not have
this limitation. Investigating how Transformers handle multiple separate sequences was
not performed in this work due to time constraints; however, it remains an interesting
topic for future research.

47

5. Experimental Design

Figure 5.1.: Information about node and links in each window

5.5.4. Training Data

We create 15 different platform configurations and performed simulations using them.
An example of a platform configuration is presented in Listing 2.3. For each platform
configuration, we perform the simulations with 5, 10, 20, 50, 100, 250, 500, 1.000, 1.500, and
2.000 jobs, with 10 simulations for each sequence length. We perform 100 simulations for
each platform configuration, 1.500 simulations in total. Additionally, we reuse the 10.000
simulations from the third scenario.

These 15 configurations describe the modifications of Sgbatch and GridKa platforms, used
in previous scenarios. In each modification, we change the value of one parameter (e.g.
number of CPU cores in different worker nodes), the values of several parameters (e.g. link
bandwidth and latency), or the topology (e.g. new nodes, clusters, or links). The full list of
base platforms and their modifications is presented in Table 5.2. For each configuration,
we save the files with descriptions of nodes and links in the format presented in Listings
5.5 and 5.6 with the simulations data.

48

5.5. Fourth Scenario: Platform Generalization

Base
Platform Modification

Sgbatch Increased latency in all links
Sgbatch Decreased bandwidth and increased latency in all links
Sgbatch Increased number of CPU cores in all nodes
Sgbatch Decreased number of CPU cores, increased RAM volume in all nodes
Sgbatch Decreased disk bandwidth in all nodes
Sgbatch Removed one worker node and corresponding links
GridKa Increased bandwidth in all links
GridKa Decreased number of CPU cores in all nodes
GridKa Cache containing the dataset moved from GridKa to DESY
GridKa Cache in DESY, increased core speed in all nodes
GridKa Cache in DESY, decreased all resources in GridKa nodes
GridKa Cache in DESY, increased number of CPU cores in DESY nodes
GridKa Cache in DESY, more worker nodes in DESY
GridKa Cache in DESY, less worker nodes in GridKa
GridKa More worker nodes in DESY, less worker nodes in GridKa

Table 5.2.: Platform Modifications used for Model Training

5.5.5. Training Process

Training of models for this scenario occurs in two stages. At first, the model is trained
similarly to the model from the third scenario, described in Section 5.4, using the same
workload and platform configurations. Then, the initial learning rate is lowered from 0.001
to 0.0001 to prevent the weights learned from the base platform from being overwritten
by training on new platforms.

After this, we iterate through the 15 training datasets which contain the simulation data
from different platforms. We perform 10 iterations over all datasets, the model is trained
in each iteration on each dataset for 100 epochs.

5.5.6. Task Description

After training, each model is evaluated on three platforms with increasing complexity. The
first platform is one platform from 15 platforms, used during model training. The second
platform represents the modification of node parameters with more CPU cores, more
RAM, and more SSD storage. This modification is not present in the training dataset, the
platform topology is the same as in the previous platform. The third platform represents

49

5. Experimental Design

the modification of both nodes and links parameters and platform topology. New worker
nodes and corresponding links are added to GridKA and DESY zones.

The goals of these three tasks are: (i) to assess how well the model trained on multiple
platforms performs compared to a model trained specifically for one platform; (ii) to
evaluate the generalizability of themodels when the platform parameter values change; and
(iii) to assess the generalizability of the models when the platform’s topology changes.

50

6. Infrastructure and Implementation

This chapter outlines the infrastructure and methodologies employed to generate simula-
tion data, store it in a database, and create datasets for model training and evaluation.

6.1. Data Generation

The research presented in this thesis necessitated the generation of a substantial volume
of simulation data, specifically utilizing DCSim. To efficiently manage and expedite this
process, we employ the BWUniCluster. This facility improved our capability to run the
simulations in parallel, thereby enhancing the overall scalability of data generation.

Key to our methodological approach was the development of a suite of tools designed
to automate various aspects of the simulation process. At first, two tools for automated
simulation configuration and scheduling were implemented: start-simulations.py and
schedule-simulations.py1. With the implementation of these tools, we automated the
data generation process, which enabled us to initiate the desired number of simulations.

6.2. Data Storage

Upon completion of the simulations, the results are ready to be transferred to a database
for further usage. However, not all simulations proceed as expected. In certain extreme
cases, simulations may encounter issues such as running out of memory or being aborted
due to exceeding the allocated execution time limit. It is essential to identify and exclude
these problematic simulations from being saved into the database, as they do not provide
accurate or complete data and could potentially skew the results and analysis. For this
purpose, a third tool extract-simulations.py was implemented. The database is not
deployed on the BWUniCluster but is set up locally. The database backups are created
automatically and stored in the cloud, which significantly minimizes the risks associated
with data loss due to hardware failure2.

1All scripts and models used in this work are available at https://gitlab.kit.edu/kit/kastel/sdq/stud/
abschlussarbeiten/masterarbeiten/valerii-zhyla

2The replication dataset is available at https://zenodo.org/records/10977016

51

7. First Scenario: Homogeneous Jobs

This chapter describes the data preparation and model training processes specifically
tailored for predicting outcomes of DCSim simulations with the simplest workload and
dataset configuration, where all jobs have uniform resource demands. The data preparation
process for this scenario is described in Section 5.2.

7.1. GRU

We follow the hyperparameter optimization described in Section 4.6 to find the best model
parameters for this specific dataset. A total of 32 GRU models were trained. The best GRU
model used one BiGRU layer with a hidden size of 128, a window size of 50, no overlap,
and a batch size of 128.

7.1.1. Interpolation

Figures 7.1 and 7.2, and Table 7.1 present the results achieved by the GRU model in
the interpolation task. As evident from the table and plots, the GRU model predicts all
parameters except ’compute_time’ with very high accuracy in this task. The distributions
of actual values and predictions in Figure 7.2 are almost identical. The accuracy plot in
Figure 7.1 for ’compute_time’ reveals anomalies – the entire dataset comprises only two
distinct ’compute_time’ values. This could be attributed to the uniformity of the ’flops’
parameter values across all jobs in this task, coupled with the similarity in computational
resources of two out of the three nodes in the platform. All three models used in this work
cannot precisely predict a single number if it was present in the dataset; variations in
weights and biases will introduce some spread in the predictions. Due to the uniformity of
all jobs in the sequence, all sequences exhibit a high degree of similarity.

7.1.2. Extrapolation

Figures 7.3 and 7.4, and Table 7.2 present the results achieved by the GRU model in the
extrapolation task. In this new scenario, the GRU model encountered an unseen task and
demonstrated a notable success in predicting ’job_start’ and ’job_end’ with high precision,
even accurately capturing the distribution of these parameters to a large extent. However,
the model completely failed in predicting ’compute_time’, ’input_files_transfer_time’,

53

7. First Scenario: Homogeneous Jobs

Table 7.1.: GRU: Interpolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.00035 0.01879 0.01405 0.99965
job_end 0.00036 0.01889 0.01413 0.99964

compute_time 0.10867 0.32964 0.16123 0.89131
input_files_transfer_time 0.00179 0.04233 0.02867 0.99821
output_files_transfer_time 0.03396 0.18428 0.12269 0.96603

’output_files_transfer_time’. The failure in accurately predicting ’compute_time’ could be
attributed to the lack of variance in the training and evaluation data, which led the model
to essentially guess at random. Additionally, all values of ’output_files_transfer_time’
in the training and evaluation set were very small for given input data (where all files
have identical sizes), which might have contributed to the model’s poor performance in
predicting this parameter.

Table 7.2.: GRU: Extrapolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.00283 0.05319 0.0369 0.99717
job_end 0.00315 0.05611 0.03939 0.99685

compute_time 2.19886 1.48285 1.10719 -1.19886
input_files_transfer_time 0.94084 0.96997 0.56842 0.05916
output_files_transfer_time 7.12789 2.66981 1.54578 -6.12789

7.2. LSTM

A total of 32 LSTM models were trained. The best LSTM model used one BiLSTM layer
with a hidden size of 128, a window size of 50, no overlap, and a a batch size of 128. The
windowing without overlap yielded the best results.

7.2.1. Interpolation

Figures 7.5 and 7.6, and Table 7.3 present the results achieved by the LSTM model in
the interpolation task. The LSTM model exhibited performance similar to that of the
GRU model in the interpolation task, successfully predicting all parameters with very
high accuracy. It performed better than the GRU model in predicting the ’compute_time’
parameter, which is evident from Figures 7.5 and 7.1 for ’compute_time’ parameter. All
distributions in KDE plots in Figures 7.6 are better than GRU.

54

7.3. Transformer

Table 7.3.: LSTM: Interpolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.00014 0.01203 0.00918 0.99986
job_end 0.00015 0.01205 0.0092 0.99985

compute_time 0.00595 0.07717 0.03803 0.99404
input_files_transfer_time 0.00062 0.02481 0.01601 0.99938
output_files_transfer_time 0.0093 0.09646 0.0584 0.99069

7.2.2. Extrapolation

Figures 7.7 and 7.8, and Table 7.4 present the results achieved by the LSTM model in the
extrapolation task. The LSTMmodel performed similarly to the GRUmodel, effectively pre-
dicting ’job_start’ and ’job_end’ while failing to accurately forecast other parameters. The
parameters ’input_files_transfer_time’, ’compute_time’ and ’output_files_transfer_time’
are predicted with high error.

Table 7.4.: LSTM: Extrapolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.00452 0.06721 0.03989 0.99548
job_end 0.00488 0.06984 0.04229 0.99512

compute_time 2.07541 1.44063 1.0203 -1.07541
input_files_transfer_time 0.81828 0.90459 0.46304 0.18172
output_files_transfer_time 6.37867 2.5256 1.52316 -5.37867

7.3. Transformer

A total of 41 Transformer models were trained. The most effective Transformer model
utilized a window size of 100 without overlap, a batch size of 128, a single encoder layer
with a hidden size of 8, and one attention head.

7.3.1. Interpolation

Figures 7.9 and 7.10, and Table 7.5 present the results achieved by the Transformer model
in the interpolation task. The Transformer model exhibited a poorer performance in
matching the distribution compared to the GRU and LSTM models, particularly evident in
its handling of the ’compute_time’ parameter. Unlike its counterparts, the Transformer
consistently predicted the average value of ’compute_time’, which can be observed in

55

7. First Scenario: Homogeneous Jobs

Figure 7.10 for the ’compute_time’ parameter. The Transformermodel also delivered poorer
predictions for ’output_files_transfer_time’ compared to the LSTM and GRU models. This
is evident from the metrics for ’output_files_transfer_time’ parameter presented in Table
7.5. The R-squared value for ’output_files_transfer_time’ is 0.60185, while the LSTM
showed the R-squared value of 0.99069 in Table 7.3.

Table 7.5.: Transformer: Interpolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.0012 0.03461 0.02745 0.9988
job_end 0.00124 0.03518 0.02783 0.99876

compute_time 0.91219 0.95508 0.78139 0.08765
input_files_transfer_time 0.01156 0.10754 0.039 0.98843
output_files_transfer_time 0.39808 0.63093 0.32893 0.60185

7.3.2. Extrapolation

Figures 7.11 and 7.12, and Table 7.6 present the results achieved by the Transformermodel in
the extrapolation task. The systematical overestimation for ’job_start’ and ’job_end’ values
in for the first jobs and the underestimation for the last jobs in sequences can be observed
in both accuracy and KDE plots. As in the interpolation task, the Transformer model
predictedmostly themean values for ’compute_time’, and did not predicted the distribution,
which can be observed in corresponding KDE plot in Figure 7.12. The predictions for
’input_files_transfer_time’ and ’output_files_transfer_time’ are not meaningful.

Table 7.6.: Transformer: Extrapolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.0074 0.08602 0.0551 0.9926
job_end 0.00798 0.08934 0.05823 0.99202

compute_time 1.13928 1.06737 0.86759 -0.13928
input_files_transfer_time 0.92634 0.96247 0.47598 0.07366
output_files_transfer_time 1.83859 1.35595 0.97126 -0.83859

7.4. Models withmore Layers

Figures 7.13 present the change in extrapolation accuracy with an increase in the number
of model layers. In the plots, we observe that GRU and Transformer models with more
layers predict different distributions compared to those with fewer layers. In contrast,

56

7.5. Discussion

LSTM models with varying numbers of layers produced similar predictions. Each model
type with 2, 4, and 8 layers was trained and evaluated 10 times on the same dataset, and
this behavior was consistent across different configurations. The interpolation accuracy
of the models remained very high, showing no differences from the single-layer models
discussed in previous sections.

7.5. Discussion

In the interpolation task, both the GRU and LSTM models demonstrated good accuracy in
predictions of ’job_start’, ’job_end’, and ’compute_time’. For the extrapolation task, these
models effectively predicted ’job_start’ and ’job_end’, with the GRU and LSTM models
showing a slightly superior ability to match the actual distribution more accurately.

When a model is trained on a set of sequences with varying lengths, scaling features
independently within each sequence leads to better predictions than scaling all sequences
together. If the dataset contains sequences of varying lengths, such as one sequence with
10 jobs and another with 10.000 jobs, scaling these sequences together will result in dispro-
portionately small values for the shorter sequence if all jobs share similar characteristics.
This discrepancy arises because the scaling process normalizes the entire dataset based on
the collective range and variance, which can overshadow the variability within shorter
sequences.

In all three cases involving the GRU, LSTM, and Transformer models, a single-layer con-
figuration yielded good results. Increasing the number of layers did not lead to significant
improvement in extrapolation results. This suggests that, for this specific task, a sim-
pler model architecture might be more effective than a more complex, multi-layered
approach.

57

7. First Scenario: Homogeneous Jobs

Figure 7.1.: GRU Interpolation Accuracy58

7.5. Discussion

Figure 7.2.: GRU Interpolation KDE

59

7. First Scenario: Homogeneous Jobs

Figure 7.3.: GRU Extrapolation Accuracy
60

7.5. Discussion

Figure 7.4.: GRU Extrapolation KDE

61

7. First Scenario: Homogeneous Jobs

Figure 7.5.: LSTM Interpolation Accuracy62

7.5. Discussion

Figure 7.6.: LSTM Interpolation KDE

63

7. First Scenario: Homogeneous Jobs

Figure 7.7.: LSTM Extrapolation Accuracy
64

7.5. Discussion

Figure 7.8.: LSTM Extrapolation KDE

65

7. First Scenario: Homogeneous Jobs

Figure 7.9.: Transformer Interpolation Accuracy66

7.5. Discussion

Figure 7.10.: Transformer Interpolation KDE

67

7. First Scenario: Homogeneous Jobs

Figure 7.11.: Transformer Extrapolation Accuracy
68

7.5. Discussion

Figure 7.12.: Transformer Extrapolation KDE

69

7. First Scenario: Homogeneous Jobs

(a) GRU with 2 layers (b) GRU with 4 layers

(c) LSTM with 2 layers (d) LSTM with 4 layers

(e) Transformer with 2 layers (f) Transformer with 4 layers

Figure 7.13.: Predictions of the models with multiple layers

70

8. Second Scenario: Heterogeneous Jobs

In contrast to the first scenario in our research, where the models were trained using
jobs from a single uniform distribution, the second scenario introduces a more complex
scenario. In this scenario, the models are trained to predict job execution parameters using
jobs from five distinct job classes. Each class encompasses a unique statistical distribution
of parameters, representing the real workloads of the WLCG. This approach allows the
models to learn from a diverse range of job characteristics, mirroring the variability and
complexity encountered in actual WLCG operations. The data preparation process for this
scenario is described in Section 5.3.

8.1. GRU

A total of 38 GRU models were trained for this scenario. The best GRU model used one
BiGRU layer with a hidden size of 16, which is noticeably less than in the first scenario.
This model used a window size of 50, no overlap, and a batch size of 128.

8.1.1. Interpolation

Figures 8.1 and 8.2, and Table 8.1 present the results achieved by the GRU model in
the interpolation task. GRU model was able to predict all parameters and match their
distributions with very high accuracy, with R-squared near 0.99 for all parameters.

On the predictions plot for ’compute_time’ in Figure 8.1 we can see the clear splitting of
the data in two clusters. It appears that the model learned to make correct predictions
for two nodes in the Sgbatch system, and slightly overestimates the ’compute_time’ of
computationally intensive jobs that are processed on the third, slower node.

8.1.2. Extrapolation

Figures 8.3 and 8.4, and Table 8.2 present the results achieved by the GRU model in
the extrapolation task. The GRU model with a single layer demonstrated an ability to
make accurate predictions in the extrapolation task. However, a slight overestimation of
’job_start’ and ’job_end’ was observed for sequence parts that exceeded previously seen
sequence lengths. This tendency for overestimation is also evident in the KDE plots in
Figure 8.4 for these parameters.

71

8. Second Scenario: Heterogeneous Jobs

Table 8.1.: GRU: Interpolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.00887 0.09417 0.06522 0.99113
job_end 0.00862 0.09283 0.06439 0.99138

compute_time 0.00414 0.06435 0.03624 0.99586
input_files_transfer_time 0.01776 0.13326 0.03716 0.98224
output_files_transfer_time 0.00755 0.08687 0.02385 0.99245

As observed in the interpolation task, some predictions for ’compute_time’ were over-
estimated. However, this effect does not alter the overall distribution. This leads to the
conclusion that only a very small proportion of the predictions were subject to overesti-
mation.

The distribution for ’input_files_transfer_time’ was not matched perfectly - an overesti-
mation for smaller values of this parameter is evident in the KDE plot in Figure 8.4. The
distribution of ’output_files_transfer_time’ was matched perfectly.

Table 8.2.: GRU: Extrapolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.07758 0.27852 0.20161 0.92242
job_end 0.08212 0.28657 0.20663 0.91788

compute_time 0.00546 0.07387 0.04571 0.99454
input_files_transfer_time 0.07009 0.26475 0.16799 0.92991
output_files_transfer_time 0.00648 0.08049 0.04661 0.99352

8.2. LSTM

A total of 27 LSTM models were trained for this scenario. The best LSTM model used one
BiLSTM layer with a hidden size of 16, mirroring the behavior of GRU for the second time.
This model used a window size of 50, no overlap, and a batch size of 128.

8.2.1. Interpolation

Figures 8.5 and 8.6, and Table 8.3 present the results achieved by the LSTM model in the
interpolation task. The LSTM model demonstrated very good results in the interpolation
task, with an accuracy within one percent of error coinciding with the GRU results. Similar
to the GRU model, the LSTMmodel’s predictions for ’compute_time’ are also characterized
by a division into two distinct clusters, which can be observed in Figure 8.5.

72

8.3. Transformer

Table 8.3.: LSTM: Interpolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.00866 0.09306 0.06343 0.99134
job_end 0.00842 0.09174 0.06266 0.99158

compute_time 0.00395 0.06283 0.03498 0.99605
input_files_transfer_time 0.01679 0.12956 0.02710 0.98321
output_files_transfer_time 0.00690 0.08309 0.01879 0.99310

8.2.2. Extrapolation

Figures 8.7 and 8.8, and Table 8.4 present the results achieved by the LSTM model in the
extrapolation task. The LSTM model performed very similarly to GRU model.

Table 8.4.: LSTM: Extrapolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.09527 0.30865 0.22686 0.90473
job_end 0.09955 0.31552 0.2309 0.90045

compute_time 0.00587 0.07664 0.04363 0.99413
input_files_transfer_time 0.12347 0.35139 0.21361 0.87653
output_files_transfer_time 0.00792 0.08897 0.04704 0.99208

8.3. Transformer

A total of 27 Transformer models were trained. The most effective Transformer model
utilized a window size of 100 with an overlap of 30 elements. This is the first case when
the overlap between windows leads to an improvement in prediction accuracy. However,
the model with overlap 30 outperformed the second-best model which had no overlap only
marginally, improving all metrics by 1,5%. The best Transformer model used a batch size
of 128, a single encoder layer with a hidden size of 8, and four attention heads. An increase
in the number of attention heads led to a better distribution of the predicted values, which
was observed on KDE plots.

8.3.1. Interpolation

Figures 8.9 and 8.10, and Table 8.5 present the results achieved by the Transformer model
in the interpolation task. The Transformer model demonstrated a very good capability in
matching the actual values, mirroring the behavior of the GRU and LSTM models.

73

8. Second Scenario: Heterogeneous Jobs

Table 8.5.: Transformer: Interpolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.00910 0.09538 0.06542 0.99090
job_end 0.00881 0.09385 0.06444 0.99119

compute_time 0.00422 0.06493 0.03525 0.99578
input_files_transfer_time 0.03934 0.19836 0.02278 0.96066
output_files_transfer_time 0.00683 0.08267 0.01725 0.99317

8.3.2. Extrapolation

Figures 8.11 and 8.12, and Table 8.6 present the results achieved by the Transformer model
in the extrapolation task. Same as in the previous task, Transformer model performed
very similarly to GRU and LSTM models.

Table 8.6.: Transformer: Extrapolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.0861 0.29342 0.21106 0.9139
job_end 0.08316 0.28838 0.20875 0.91683

compute_time 0.00742 0.08613 0.05379 0.99258
input_files_transfer_time 0.11493 0.33901 0.23491 0.88507
output_files_transfer_time 0.00685 0.08276 0.0471 0.99315

8.4. Discussion

All three models exhibited high accuracy in both interpolation and extrapolation tasks.
Consistent with the first scenario, the best-performing models were the simple rather than
complex ones with a lot of layers. Different types of model architectures demonstrate
similar behavior, which could be caused by similar training strategies.

The optimal GRU and LSTM models have smaller hidden sizes than the models in the first
scenario. In contrast, the Transformer model benefited from the use of window overlaps.
The optimal GRU model had the same hyperparameters as the optimal LSTM in this
scenario.

All three models accomplished the interpolation task with very similar results. The GRU
model demonstrated the best results in the extrapolation task, according to accuracy
metrics in Table 8.2.

74

8.4. Discussion

The results of this scenario show, that the more complex parameter distributions could be
captured with models with smaller hidden size. It is likely, that the greater hidden size
used in the first scenario was necessitated by the limited variance present in the data,
compared to the second scenario.

75

8. Second Scenario: Heterogeneous Jobs

Figure 8.1.: GRU Interpolation Accuracy
76

8.4. Discussion

Figure 8.2.: GRU Interpolation KDE

77

8. Second Scenario: Heterogeneous Jobs

Figure 8.3.: GRU Extrapolation Accuracy
78

8.4. Discussion

Figure 8.4.: GRU Extrapolation KDE

79

8. Second Scenario: Heterogeneous Jobs

Figure 8.5.: LSTM Interpolation Accuracy
80

8.4. Discussion

Figure 8.6.: LSTM Interpolation KDE

81

8. Second Scenario: Heterogeneous Jobs

Figure 8.7.: LSTM Extrapolation Accuracy
82

8.4. Discussion

Figure 8.8.: LSTM Extrapolation KDE

83

8. Second Scenario: Heterogeneous Jobs

Figure 8.9.: Transformer Interpolation Accuracy
84

8.4. Discussion

Figure 8.10.: Transformer Interpolation KDE

85

8. Second Scenario: Heterogeneous Jobs

Figure 8.11.: Transformer Extrapolation Accuracy
86

8.4. Discussion

Figure 8.12.: Transformer Extrapolation KDE

87

9. Third Scenario: GridKA Platform

In this scenario, we generate jobs from five different job classes, similar to the second
scenario. However, instead of utilizing the simpler Sgbatch system, we conduct our simu-
lations on a more complex platform topology. Specifically, we focus on the interconnected
Tier1 data center GridKa and the Tier2 computing center at DESY. The objective of this
scenario is to examine the ability of our models to accurately predict simulation results for
complex platforms. The data preparation process for this scenario is described in Section
5.4.

9.1. GRU

The best GRU model used one BiGRU layer with a hidden size of 128, a window size of
150, no overlap, and a batch size of 64.

9.1.1. Interpolation

Figures 9.1 and 9.2, and Table 9.1 present the results achieved by the GRU model in the
interpolation task. GRU model predicted the ’job_start’, ’job_end’ and ’compute_time’
parameters with a very high accuracy, which is evident from high R-squared and low
errors in Table 9.1 and corresponding KDE plots. Metrics for ’input_files_transfer_time’
and output_files_transfer_time’ demonstrate higher error. KDE plots for these parameters
in Figure 9.2 show, that the distributions are very narrow, even narrower than in the first
scenario.

Table 9.1.: GRU: Interpolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.00562 0.075 0.05056 0.99438
job_end 0.01065 0.10318 0.06931 0.98935

compute_time 0.00615 0.07842 0.04198 0.99385
input_files_transfer_time 0.37285 0.61062 0.29772 0.62715
output_files_transfer_time 0.2736 0.52306 0.20744 0.7264

89

9. Third Scenario: GridKA Platform

9.1.2. Extrapolation

Figures 9.3 and 9.4, and Table 9.2 present the results achieved by the GRU model in the
extrapolation task. The predictions for ’job_start’, ’job_end’ and ’compute_time’ have high
accuracy according to metrics, but only the distribution for ’compute_time’ is matched on
average, which is evident from the plot in Figure 9.4. The accuracy plot for ’compute_time’
in Figure 9.3 shows the forming of clusters with different deviation trends from the actual
data. That could again be explained by the lack of information about the simulated
hardware platform.

The systematic overestimation for ’job_start’ and ’job_end’ can be observed in Figures 9.3.
TheGRUmodel failed to predict the ’input_files_transfer_time’ and ’output_files_transfer_time’
parameters - the R-squared values for these parameters are negative.

Table 9.2.: GRU: Extrapolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.02331 0.15269 0.11951 0.97669
job_end 0.13006 0.36063 0.25102 0.86994

compute_time 0.01259 0.1122 0.06183 0.98741
input_files_transfer_time 1.27119 1.12747 0.46941 -0.27119
output_files_transfer_time 1.1233 1.05986 0.42473 -0.1233

9.2. LSTM

The best LSTM model used one BiLSTM layer with a hidden size of 128, a window size of
150, no overlap, and a batch size of 64.

9.2.1. Interpolation

Figures 9.5 and 9.6, and Table 9.3 present the results achieved by the LSTM model in the
interpolation task. The LSTM model demonstrated the same behavior as the GRU model
in this task.

9.2.2. Extrapolation

Figures 9.7 and 9.8, and Table 9.4 present the results achieved by the LSTM model in the
extrapolation task. The LSTM model demonstrated a larger underestimation for lower
values and a larger overestimation for higher values for the ’job_start’ parameter compared
to the GRU model, which can be seen in the Figure 9.7 for this parameter. Distribution in

90

9.3. Transformer

Table 9.3.: LSTM: Interpolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.0045 0.06706 0.04573 0.9955
job_end 0.00941 0.09701 0.06375 0.99059

compute_time 0.00615 0.07841 0.0421 0.99385
input_files_transfer_time 0.36813 0.60674 0.28991 0.63187
output_files_transfer_time 0.2742 0.52364 0.19949 0.7258

Figure 9.8 has a higher peak at -1 and a longer tail between 2 and 3. Predictions for other
parameters mirror the GRU model predictions.

Table 9.4.: LSTM: Extrapolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.07245 0.26916 0.20505 0.92755
job_end 0.16842 0.41039 0.2798 0.83158

compute_time 0.01136 0.10658 0.06104 0.98864
input_files_transfer_time 1.14064 1.06801 0.39858 -0.14064
output_files_transfer_time 1.07033 1.03457 0.4086 -0.07033

9.3. Transformer

The best Transformer model used a batch size of 128, a single encoder layer with a hidden
size of 16, four attention heads, and a window size of 100 without overlap.

9.3.1. Interpolation

Figures 9.9 and 9.10, and Table 9.5 present the results achieved by the Transformer model
in the interpolation task. As the GRU and LSTM models, the Transformer model pre-
dicted the ’job_start’, ’job_end’, and ’compute_time’ parameters with very high accu-
racy, with an R-score near 0.99. The predictions for ’input_files_transfer_time’ and out-
put_files_transfer_time have some errors, which is evident from Figure 9.9.

9.3.2. Extrapolation

Figures 9.11 and 9.12, and Table 9.6 present the results achieved by the Transformer model
in the extrapolation task. In this task, the Transformer model performed well according

91

9. Third Scenario: GridKA Platform

Table 9.5.: Transformer: Interpolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.0048 0.06926 0.04693 0.9952
job_end 0.00996 0.09979 0.06764 0.99004

compute_time 0.00704 0.08392 0.04788 0.99296
input_files_transfer_time 0.37241 0.61026 0.2947 0.62759
output_files_transfer_time 0.3073 0.55435 0.21206 0.6927

to metrics and not much worse than the GRU and LSTM models according to KDE plots
in Figure 9.12. However, we can observe a systematic underestimation in a low range
and a systematic ’job_start’ and ’job_end’ predictions. The variance in ’compute_time’
predictions can be observed in Figures 9.11 and 9.12.

Table 9.6.: Transformer: Extrapolation accuracy metrics
Parameter MSE RMSE MAE R2

job_start 0.07316 0.27047 0.20818 0.92684
job_end 0.20759 0.45562 0.3276 0.79241

compute_time 0.0387 0.19672 0.10659 0.9613
input_files_transfer_time 1.46237 1.20928 0.47813 -0.46237
output_files_transfer_time 1.21525 1.10238 0.45306 -0.21525

9.4. Discussion

This scenario contains tasks, that are harder than the tasks in previous scenarios. The job
parameters have more complex distributions, and the platform configuration represents a
sophisticated infrastructure.

The GRU and LSTM models showed almost identical accuracy in both tasks, and the
Transformer model demonstrated worse performance in the extrapolation task. All models
failed to fit the exact distributions of all parameters in the extrapolation task, except the
’compute_time’ parameter.

The results of this scenario demonstrate, that all three model types can generate accurate
predictions for ’job_start’, ’job_end’, and ’compute_time’ parameters in interpolation tasks,
but the behavior of ’input_files_transfer_time’ and ’output_files_transfer_time’ can not
be accurately predicted because of very narrow value distributions with long tails. The
accuracy plots demonstrate the bias in model predictions for these parameters. This
behavior may be influenced by complex interactions within the platform, such as the
existence of various routes from the node storing the dataset to the worker node that

92

9.4. Discussion

processes the job. Since information about the platform’s configuration is not included in
the model inputs, it cannot be utilized for making predictions.

93

9. Third Scenario: GridKA Platform

Figure 9.1.: GRU Interpolation Accuracy
94

9.4. Discussion

Figure 9.2.: GRU Interpolation KDE

95

9. Third Scenario: GridKA Platform

Figure 9.3.: GRU Extrapolation Accuracy96

9.4. Discussion

Figure 9.4.: GRU Extrapolation KDE

97

9. Third Scenario: GridKA Platform

Figure 9.5.: LSTM Interpolation Accuracy
98

9.4. Discussion

Figure 9.6.: LSTM Interpolation KDE

99

9. Third Scenario: GridKA Platform

Figure 9.7.: LSTM Extrapolation Accuracy100

9.4. Discussion

Figure 9.8.: LSTM Extrapolation KDE

101

9. Third Scenario: GridKA Platform

Figure 9.9.: Transformer Interpolation Accuracy
102

9.4. Discussion

Figure 9.10.: Transformer Interpolation KDE

103

9. Third Scenario: GridKA Platform

Figure 9.11.: Transformer Extrapolation Accuracy104

9.4. Discussion

Figure 9.12.: Transformer Extrapolation KDE

105

10. Fourth Scenario: Platform
Generalization

In previous scenarios, we trained and evaluated models for specific platforms. These
models are generalizable across different workloads, but not generalizable across different
platforms. In this scenario, we aim to add information about platform topology to our
models, to enable the reuse of the pre-trained model for new platforms, eliminating the
need to train a new model for each specific platform topology. The data preparation
process for this scenario is described in Section 5.5.

10.1. Categorical Data

In previous scenarios, all input and output features were numerical. The numerical
representation is not suitable for several platform features, presented in Listing 5.5 and
Listing 5.6. Features ’node_index’, ’node_type_index’, ’link_index’, ’src_node_index’, and
’dst_node_index’ despite being represented as numbers, actually function as categorical
data because they are used as identifiers or to represent discrete entities. Categorical
features can not be used directly in RNN and Transformermodels, they need to be converted
into a numerical format.

In our research, we evaluated two methods for representing categorical data within
numerical models: one-hot encodings and embeddings [26]. One-hot encodings involve
converting each categorical value into a binary vector, where only one element is ’1’
(indicating the presence of the category), and the rest are ’0’s. This method creates a distinct
dimension for each category, making it straightforward but potentially leading to very
high-dimensional data for features with many categories. Embeddings map each category
of a single feature to a dense vector of continuous numbers, reducing the dimensionality
and capturing more complex relationships between categories. This approach allows the
model to learn an efficient numerical representation of the categorical data.

When the number of categories for each column can be very large, one-hot encodings can
lead to sparse matrices with many dimensions, which can be computationally inefficient
and difficult for the model to process [17]. Embeddings, by reducing dimensionality and
capturing similarity between categories, offer a more scalable and informative approach for
handling categorical data in such scenarios. Therefore, we employed the embeddings.

107

10. Fourth Scenario: Platform Generalization

When creating an embedding for a numerical variable, the number of unique categories
must be explicitly set to define the dimensions of the embedding matrix, ensuring each
unique value is consistently represented by a distinct vector within the model’s learned
feature space. This size of the vocabulary for the embedding layer should be set to the
number of unique categories in your categorical variable plus one for handling any unseen
categories or to provide a padding index if needed.

10.2. Scaling

In previous scenarios, we employed data standardization, described in Section 4.1.2. This
process is necessary for the correct prediction of numerical sequences. During the training
phase, the scaler for each parameter is fitted on the whole dataset, prediction is made in
the normalized space, and then the predictions are scaled back to the original scale.

When we employ no scaling for job parameters and platform parameters, then we get
unstable models that give no meaningful predictions. For example, if we take a system
with 10 nodes with 100 CPU cores in each node, the mean will be subtracted from each
value and it will be divided by the standard deviation. All values of this feature are identical
in this case, and therefore also the standard deviation is zero, which results in a division
by zero during scaling process. This scenario leads to computational errors during model
training and can render the model unable to learn or make any meaningful predictions
(e.g. predicting a NaN for each parameter).

For another example involving some variance in the number of CPU cores, consider a
system with 5 nodes having 1, 2, 3, 4, and 5 cores respectively. This platform, when scaled,
will have the same scaled values for CPU cores as a system with 5 nodes having 10, 20, 30,
40, and 50 cores respectively, when a Standard Scaler is applied. The scaler might suppress
the relative differences in computational capabilities between different nodes. For instance,
a node with 50 cores is significantly more powerful than a node with 5 cores, but scaling
may obscure this difference.

When we employ scaling for job parameters (as in the previous experiments) and no
scaling for platform parameters (e.g. the number of CPU cores), we get predictions with a
lot of noise. Figures 10.1 and 10.2 presents plots with predictions for ’job_start’, ’job_end’
and ’compute_time’ parameters, predicted by the GRU model. The left plots represent the
predictions made by the model from the third scenario, and the right plots represent the
predictions made by the model that utilize additional platform information. Predictions
for ’job_end’ and ’compute_time’ made by the model that uses the platform information
contain many errors. These errors are not present in predictions of models without the
platform information. The errors can be observed in the accuracy plots. However, the
distribution is predicted mostly correct, which is evident from the KDE plots. The LSTM
and Transformed models demonstrated identical behavior.

When we trained this model for a further 15 platforms, we got a poor prediction for the
original platform. Figure 10.3 presents the plots with predictions, generated by a GRU

108

10.3. Discussion

model from the third scenario without the platform information (left plots) and the plots
with predictions, generated by a GRUmodel trained on datasets from 15 different platforms
including the platform information (right plots). In this case, the distributions of predicted
parameters demonstrate large deviations from the actual distributions for all parameters.
The evaluation dataset contains the same simulations in all cases. This behavior was
observed in all GRU, LSTM, and Transformer models.

A possible workaround could be the scaling of platform parameters in the dataset which
will cover many combinations of all possible platforms. Instead of training the model on a
dataset with 15 platforms, we could perform simulations for thousands or even millions of
different platforms, which is out of the scope of this work. Such a model training process is
not feasible because of the data volume required for the training, compared to the training
of specialized models for each platform.

10.3. Discussion

The integration of numerical and categorical parameters in modeling is challenging,
particularly when translating categorical platform characteristics into forms that are usable
for numerical predictions. When the number of categories is unknown beforehand, the
approach of setting a fixed size of vocabulary for an embedding layer is not applicable.

Models that used unscaled platform information underperformed compared to models,
that did not use the platform information. The inclusion of unscaled parameters in the
models can lead to instability, affecting the accuracy of the predictions.

Training models on data frommultiple platforms can introduce complexities and variability
that degrade performance when predicting parameters for a previously known single
platform. This occurs because the model may overfit to the specific characteristics of the
new platforms, thus losing its generalization ability for the original platform.

Given these challenges, training dedicated models for specific platform configurations
remains the most effective approach. It necessitates using simulators to generate the
training data for each platform. Consequently, the need to employ a simulator remains
indispensable.

109

10. Fourth Scenario: Platform Generalization

(a) Without platform information (b) With platform information

Figure 10.1.: GRU Interpolation Accuracy Plots: usage of platform information

110

10.3. Discussion

(a) Without platform information (b) With platform information

Figure 10.2.: GRU Interpolation KDE Plots: usage of platform information

111

10. Fourth Scenario: Platform Generalization

(a) Without platform information (b) With platform information for 15 platforms

Figure 10.3.: GRU Interpolation KDE Plots: 15 additional platforms

112

11. Evaluation and Discussion

In previous chapters, we showed that our method is capable of accurately predicting
simulation results for specific platforms. In this chapter, we assess the amount of data
required to effectively train the model, determine the optimal number of training epochs
for best results, compare the influence of hidden size on model training, identify which
input parameters significantly impact specific output parameters, and evaluate the time
taken by the model for inference across varying sequence lengths.

11.1. GQM Plan

Following GQM Plan [4] is used for validation of this work.

11.1.1. Effectiveness in Predicting Job Metadata for Fixed Platforms

Goal 1: Assess the effectiveness of deep neural network models for predicting job execution
metadata in distributed computing simulations on fixed platforms.

Question 1.1: How accurately do the models predict job execution metadata across different
simulation scenarios?

• Metric 1.1.1: Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), and R-squared between predicted and actual simulation
results for each model type across various scenarios.

• Metric 1.1.2: Accuracy plots with point wise comparison of predicted values and
actual values.

• Metric 1.1.3: KDE plots with comparison of distributions of predicted values and
actual values.

Question 1.2: What is the optimal amount of training data required to achieve reliable
prediction accuracy?

• Metric 1.2.1: Analysis of model accuracy as a function of training dataset size.

• Metric 1.2.2: Identification of the point of diminishing returns for accuracy as training
data increases.

113

11. Evaluation and Discussion

Question 1.3: How do the models perform in terms of computational efficiency and training
dynamics?

• Metric 1.3.1: Training time per epoch for each model type.

• Metric 1.3.2: Total training duration and computational resources consumed by each
model type.

• Metric 1.3.3: Number of epochs required to reach convergence for each model type.

• Metric 1.3.4: Inference time for processing sequences of 10,000 jobs.

Question 1.4: Can the models extrapolate to predict job batches of sizes not encountered
during training?

• Metric 1.4.1: Accuracy of predictions for job batch sizes beyond those seen during
training.

• Metric 1.4.2: Comparative analysis of extrapolation errors across different model
types.

11.1.2. Platform Generalization

Goal 2: Investigate the adaptability of performance models to variable platform configura-
tions in distributed computing simulations.

Question 2.1: How does the inclusion of platform variability affect the generalization
ability of performance models?

• Metric 2.1.1: Comparison of model accuracy on known versus novel platform config-
urations.

• Metric 2.1.2: Effectiveness of models in adapting to changes in platform configura-
tions without retraining.

11.2. Optimal Dataset Size for Model Training

We aim to identify the smallest dataset, required for model training to predict the data from
the third scenario, described in Section 5.4. For evaluation, we use hyperparameters of the
best models from the third scenario, described in Chapter 9. Each training dataset contains
the sequences with 5, 10, 20, 50, 100, 250, 500, 1.000, 1.500, and 2.000 jobs. We created
training datasets with 1, 10, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, and 500 sequences of
each length. For model evaluation, we use a dataset with 100 sequences of each length,
which are not present in training datasets. All models are trained and evaluated on the
same datasets.

114

11.3. Training Epoch Duration

11.2.1. Results

We employ the KDE plots for model comparison. Parameters pair ’job_start’ and ’job_end’
and pair ’input_files_transfer_time’ and ’output_files_transfer_time’ exhibited similar
behavior.

We show the prediction for the parameter ’job_start’ in Figure 11.4 for the GRU model,
in Figure 11.6 for LSTM, and in Figure 11.8 for Transformer, and the prediction for the
’input_files_transfer_time’ parameter in Figure 11.5 for the GRU model, in Figure 11.7 for
LSTM, and in Figure 11.9 for Transformer. Comparison for prediction of the ’compute_time’
parameter for all three models is presented in Figure 11.10. Figure 11.11 presents the plot
for models trained on larger datasets.

Plots with models, trained on one sequence, show underestimation in predictions. With
the increase in dataset size, the predictions improve.

11.2.2. Discussion

All three models give an adequate prediction for small datasets, containing 20-40 sequences
of each length, and improve the prediction quality for larger datasets. The usage of 50
sequences of each length for model training is the optimal choice for all models in this use
case, further increase of the dataset leads to marginal improvements. Predictions for more
complex jobs or more complex platforms could require more training data.

In all evaluation scenarios, we use datasets, that are much larger than the optimal size.
The models trained with data from the third scenario using 500 sequences of each length
do not perform better than the models trained using 500 sequences of each length.

11.3. Training Epoch Duration

In this study, we aim to examine the relationship between the size of the dataset and
the average duration of training epochs for each model, specifically focusing on how the
increase in dataset size affects the time required to complete an epoch. The measurements
were conducted on the system with RTX 3080 and i7-13700K using PyTorch 2.1.1+cu121.

11.3.1. Measurement Results

We trained 10 dedicated models of each type for each dataset for 300 epochs and calculated
the median epoch time. All models have the same hyperparameters. The median training
epoch duration for each model is presented in Table 11.1. The dataset with one sequence
of each length contains results of simulations, containing 5, 10, 20, 50, 100, 250, 500, 1.000,
1.500, and 2.000 jobs (5.435 jobs in total). All time measurements presented in the table

115

11. Evaluation and Discussion

are expressed in seconds. The dataset with 100 sequences of each length contains 1.000
sequences. The data from this table is visualized in Figure 11.1.

Table 11.1.: Relationship between Dataset Size and Epoch Duration in seconds
Sequences

of each length GRU LSTM Transformer

1 0.0139 0.0142 0.0190
10 0.0162 0.0197 0.0262
20 0.0309 0.0332 0.0501
30 0.0442 0.0469 0.0666
40 0.0571 0.0633 0.0896
50 0.0690 0.0792 0.1109
75 0.1149 0.1209 0.1655
100 0.1813 0.1832 0.2510
150 0.2325 0.2751 0.4030
200 0.3228 0.3748 0.4952
300 0.4568 0.5131 0.7100
400 0.5994 0.6613 0.9303
500 0.7157 0.8556 1.1322

11.3.2. Discussion

We can observe a linear growth of mean epoch time with very small slope (near 1/400 for
Transformer) in Figure 11.1. The GRUmodel exhibits the shortest training times among the
evaluated models, which aligns with expectations given its simpler architecture compared
to the LSTM and Transformer models.

The duration of each training epoch is very small - nearly 1 second for the largest evaluated
dataset. That means, that even the model that requires hundreds or thousands of epochs
can be trained in less than one hour on a similar system.

Each job contains 9 floating-point parameters and one integer parameter, which require
38 bytes for each job. The largest dataset with 500 jobs of each length contains 5000
simulations and in total the data for 5000 ∗ 5435 = 27.175.000 jobs. Taking the job size into
account, we get the 27.175.000 ∗ 38 = 1.032.650.000 bytes, which is less than one gibibyte
of data. Such volume can be moved to the GPU in a fraction of a second.

116

11.4. Optimal Epoch Number for Model Training

Figure 11.1.: Relationship between Number of Sequences in Dataset and Epoch Duration

11.4. Optimal Epoch Number for Model Training

We aim to identify the optimal number of epochs for model training to predict the simula-
tion from the third scenario. To achieve this, we analyze the median training loss across
epochs for each model type.

To make the losses comparable, we use the models with the same window and batch
parameters and use the same training and evaluation datasets. All models utilize the same
loss function (MSE Loss), the same optimizer and same weights initialization.

11.4.1. Results

We trained 10 models of each type using the same dataset, which contains 50 simulations
of each length, and saved the training loss for each epoch. Plots of all loss sequences for
each model type are presented in Figure 11.2. The broad blue area represents all values
from 10 loss sequences of the GRU model, and blue circles represent the median value for
specific epochs across the values from all 10 models.

117

11. Evaluation and Discussion

Figure 11.2.: Comparison of Training Rate

11.4.2. Discussion

The LSTM and Transformer models converged to the same loss, the LSTM models con-
verged slightly faster than the Transformer, which is evident from Figure 11.2. Interestingly,
all GRU models converged to a smaller loss value. LSTM models reached the plateau after
70 epochs, Transformer models reached the plateau after 80 epochs, and GRU models
reached the plateau after only 50 epochs.

11.5. Model Inference Time

In our study, we quantify the duration required by each type of model to generate pre-
dictions for individual sequences. Furthermore, we measured the time dedicated to data
preparation for each sequence, which encompasses the processes of reading the dataset
from a file and performing data standardization.

11.5.1. Measurement Results

We trained the 10 models of each type with the same hyperparameters and with the
same training data and applied them to the same evaluation datasets. The median time
measurements for processing of single sequences by different model types are presented

118

11.5. Model Inference Time

in Table 11.2. The data preparation process is identical for all three models, and the time
of data preparation represents the time between the start of file reading and the end of
loader initialization. Model inference time represents the time between the start of writing
the first window into GPU memory and the end of transforming the predicted windows to
a single n-dimensional array of predictions. All time measurements presented in the table
are expressed in seconds. Figure 11.3 visualizes the relationship between sequence length
and preparation time required for inference.

Table 11.2.: Data Preparation and Model Inference Time in seconds
Sequence
Length Preparation GRU LSTM Transformer

5 0.01302 0.01151 0.00200 0.02633
10 0.01043 0.00200 0.00200 0.00200
20 0.00951 0.00099 0.00100 0.00099
50 0.00950 0.00100 0.00101 0.00200
100 0.00908 0.00100 0.00200 0.00101
250 0.01103 0.00402 0.00101 0.00250
500 0.01051 0.00151 0.00100 0.00100
1.000 0.01522 0.00204 0.00205 0.00099
1.500 0.01899 0.01671 0.00300 0.01016
2.000 0.01702 0.00200 0.00200 0.00100
10.000 0.04477 0.00701 0.00802 0.00201

11.5.2. Discussion

The dataset preparation time is higher than the model inference time and grows linearly
with the sequence length. Simulations with 5, 10, 50, and 100 have the same dataset
preparation time because all windows are zero-padded to the length of 100, which can be
observed in Figure 11.3.

Each time we started the model inference process, we got a new distribution of values.
Even the longest single sequence requires very little memory - a sequence with 10.000
elements contains only 90.000 floating point values and 10.000 integer values, which
requires approximately 300KB of memory. This variability can be attributed to the inherent
unpredictability of GPU memory allocation and retrieval processes on such a small scale.

119

11. Evaluation and Discussion

Figure 11.3.: Relationship between Sequence Length and Preparation Time

11.6. Job Parameters Influence

We employed the Feature Ablation [51] to measure the influence of the input features
on predictions of each job parameter. Feature Ablation is a technique used to assess
the importance of input features to a model’s predictions by systematically removing or
masking of individual features and observing the resulting impact on model performance.
In the evaluation, we removed the input features, changed the window size, and observed
the changes in prediction accuracy.

Parameters ’job_start’, and ’job_end’ are dependent primarily on the ’index’ of the specific
job, but are influenced by all parameters of all jobs in the window. Parameter ’com-
pute_time’ is not dependent on the job index and is influenced mostly by ’flops’ parameter.
Parameter ’input_files_transfer_time’ is influenced mostly by ’input_files_size’, and ’out-
put_files_transfer_time’, is influenced mostly by ’output_files_size’.

The behavior of ’compute_time’, ’input_files_size’, and ’output_files_transfer_time’ reflects
domain-specific dependencies between job parameters used for modeling dynamics in
computational environments.

11.7. Incorporation of One Longer Sequence into Dataset

In Chapter 9 we observed the capabilities of our models in extrapolation tasks. In this task,
the models trained on sequences with lengths 5, 10, 20, 50, 100, 250, 500, 1.000, 1.500, and

120

11.8. Training to Predict One Type of Sequences

2.000 were applied to predict the parameters of sequences with length 10.000. We aim to
investigate the improvement in predictions for long sequences after incorporating one
additional sequence with 10000 jobs into the training dataset.

11.7.1. Results

We use the best models from Chapter 9, and the extrapolation dataset with 100 sequences
of length 10.000. At first, we trained the model on the dataset with 50 sequences of
each length up to 2.000 and evaluated it on the 99 sequences of length 10.000. Then we
incorporated one sequence of length 10.000 into the training dataset and evaluated it on the
remaining 99 sequences. The predictions for ’job_start’ parameter prediction are presented
in Figure 11.12. The LSTM and GRU models showed no improvement in predictions. The
Transformer model showed an overestimation, which is evident from Figure 11.12f.

11.7.2. Discussion

We can use the models, trained on shorter sequences, to predict the simulation results
for longer sequences, as was demonstrated in Chapter 9. However, the accuracy of such
predictions depends on platform complexity. The integration of one longer sequence leads
to improvement in the model’s prediction but does not guarantee accurate predictions.

11.8. Training to Predict One Type of Sequences

In previous experiments, we trained and evaluated the models on datasets with sequences
of different lengths. In this evaluation, we aim to assess the accuracy of predictions
for extensive sequences comprising 10.000 jobs each, made by models that were trained
exclusively on sequences of identical lengths.

The same test dataset was used for all models, and training datasets of each size contained
the same sequences for all model types. The evaluation dataset contains 50 sequences with
10.000 jobs each, with the simulation data from Chapter 9. We evaluate the models trained
on 6 datasets, containing 1, 10, 20, 30, 40, and 50 sequences with 10.000 jobs each.

11.8.1. Results

The next figures present the predictions for the ’job_start’ parameter. Figures 11.13 and
11.14 present the predictions made by the GRU model. Figures 11.15 and 11.16 present
the predictions made by the LSTM model. Figures 11.17 and 11.18 present the predictions
made by the Transformer model. The predictions ’job_start’ and ’job_end’ parameters
exhibit similar accuracy.

121

11. Evaluation and Discussion

The ’compute_time’ parameter is predicted accurately by the models, trained on one
sequence. The predictions for ’input_files_transfer_time’ and ’output_files_transfer_time’
parameters, generated by models trained on 10 sequences, did not show further improve-
ment with training on larger datasets.

11.8.2. Discussion

The GRU model shows the best result among all models, and the model trained on 20
sequences made good predictions and improved the predictions on larger datasets. The
LSTM model made accurate predictions trained on 30 sequences, but tended to overesti-
mate and underestimate some jobs, which can be observed in Figures 11.16c and 11.16e.
The Transformer model provided accurate predictions, yet they were the least precise com-
pared to those made by GRU and LSTM models. All three models made some inaccurate
predictions for the first jobs in the sequence, which can be observed in all accuracy plots
in the leftmost part of the plot.

11.9. Comparison with DCSim

In the end, we aim to compare the models with DCSim. We compare the time that is
required for DCSim to perform a simulation with time for model training and model
inference. The time required for dataset preparation depends directly on time required for
DCSim simulations.

Each simulation containing 10.000 jobs with configuration from the third scenario, de-
scribed in Section 5.4 took between 14 and 25 minutes of CPU time in BwUniCluster, with
an average duration of 14,5 minutes. The simulation duration depends heavily on the
platform’s complexity.

In Section 11.8, we showed that the GRU model is capable of predicting parameters for
sequences of uniform length on a particular platform configuration with a training set of
just 20 sequences. In contrast, while the LSTM model required slightly more sequences
for training, it also produced very accurate predictions. In Section 11.2 we demonstrated,
that all three model types are capable of predicting parameters for sequences of different
lengths, trained on a dataset which contained the 50 sequences of each length.

The model training requires less than 2 minutes for this platform. As discussed in Section
11.3, that one training epoch takes less than one second even on the largest dataset. Further
in Section 11.4 we found, that all models require less than 100 epochs for training, and the
GRU models reduce the loss systematically faster.

In all scenarios, the models demonstrated the ability to predict the job simulation results
and match the distribution for the sequences of the known lengths. The results of the
second and third scenarios, described in Chapters 8 and 9 demonstrate, that the predictions
for longer sequences can include systematical errors for some parameters. The findings

122

11.10. Limitations

of the fourth Scenario, described in Chapter 10 demonstrate, that such models are not
suitable for platform generalization with the current strategy.

All models take under 1 second for inference of the one sequence with 10.000 jobs including
the data preparation, which was demonstrated in Section 11.5. Once the model is trained,
it can generate predictions almost instantaneously.

While models excel in specific configurations and can greatly reduce the time required for
predictions compared to a simulation, they are not a direct replacement for simulators and
their accuracy is inherently limited to the quality and range of the training data provided.
The models developed in this work cannot directly overcome the platform scalability
issues of the simulator, but they offer a practical trade-off by being trainable on simulated
or historical data, balancing prediction accuracy with enhanced processing speed.

11.10. Limitations

The models are trained and optimized to specific platform and workload configurations
tested during the study. This specificity limits their applicability to different configurations
not represented in the training data.

The evaluation of the models was constrained to a small number of platform configurations.
Real-world distributed systems could exhibit greater complexity and variability, which
may challenge the scalability and effectiveness of the models.

The inherent complexity of the employed RNN and Transformer architectures limits the
transparency of the predictive processes. This poses challenges to their interpretability
and acceptance in practical applications.

The models are primarily designed for numerical predictions. Integration of categorical
variables alongside numerical ones presents additional challenges and requires further
research and methodological adjustments to ensure accurate modeling. This limitation is
particularly relevant when considering the diverse nature of data in distributed computing
environments, where categorical variables often play an important role.

11.11. Threats to Validity

The choice and tuning of hyperparameters might not be optimal for all scenarios tested,
potentially leading to overfitting or underfitting. Ensuring the internal validity of our
conclusions requires cross-validation and sensitivity analysis to demonstrate that results
are not dependent on specific model configurations.

MSE and R-squared provide a single summary statistic that represents the average per-
formance of a model across all predictions. This aggregation can mask variations in
prediction accuracy within different segments of long sequences or across different types

123

11. Evaluation and Discussion

of job parameters. For example, the model might perform well overall but poorly on certain
segments that are critical for the system’s performance.

Since the training data is derived fromDCSim simulations, any errors in DCSim simulations
will also affect the predictions. We used the DCSim simulations as the ground truth.
Any inaccuracies in DCSim simulations would lead to biased or incorrect training data,
compromising the reliability of the model’s predictions.

Another threat to validity arises from the limited variety of platforms used in our evaluation,
restricted to only three configurations. This limitation raises concerns about the model’s
ability to generalize for new workloads and accurately predict outcomes for more complex
or substantially different platform configurations, which were not represented in the
training data. Additionally, the training data consisted of simulated jobs generated from
at most five predefined workload classes. This limited variety in workload classes may
pose a threat to validity, as the models might not perform as effectively when exposed
to job types or classes beyond those included in the training set. The introduction of
new workload classes could disrupt the model’s prediction accuracy, challenging their
robustness and generalizability in more complex real-world environments.

124

11.11. Threats to Validity

(a) Trained on one sequence of each length (b) Trained on 10 sequences of each length

(c) Trained on 20 sequences of each length (d) Trained on 30 sequences of each length

(e) Trained on 40 sequences of each length (f) Trained on 50 sequences of each length

Figure 11.4.: GRU Training Efficiency for ’job_start’ Prediction

125

11. Evaluation and Discussion

(a) Trained on one sequence of each length (b) Trained on 10 sequences of each length

(c) Trained on 20 sequences of each length (d) Trained on 30 sequences of each length

(e) Trained on 40 sequences of each length (f) Trained on 50 sequences of each length

Figure 11.5.: GRU Training Efficiency for ’input_files_transfer_time’ Prediction

126

11.11. Threats to Validity

(a) Trained on one sequence of each length (b) Trained on 10 sequences of each length

(c) Trained on 20 sequences of each length (d) Trained on 30 sequences of each length

(e) Trained on 40 sequences of each length (f) Trained on 50 sequences of each length

Figure 11.6.: LSTM Training Efficiency for ’job_start’ Prediction

127

11. Evaluation and Discussion

(a) Trained on one sequence of each length (b) Trained on 10 sequences of each length

(c) Trained on 20 sequences of each length (d) Trained on 30 sequences of each length

(e) Trained on 40 sequences of each length (f) Trained on 50 sequences of each length

Figure 11.7.: LSTM Training Efficiency for ’input_files_transfer_time’ Prediction

128

11.11. Threats to Validity

(a) Trained on one sequence of each length (b) Trained on 10 sequences of each length

(c) Trained on 20 sequences of each length (d) Trained on 30 sequences of each length

(e) Trained on 40 sequences of each length (f) Trained on 50 sequences of each length

Figure 11.8.: Transformer Training Efficiency for ’job_start’ Prediction

129

11. Evaluation and Discussion

(a) Trained on one sequence of each length (b) Trained on 10 sequences of each length

(c) Trained on 20 sequences of each length (d) Trained on 30 sequences of each length

(e) Trained on 40 sequences of each length (f) Trained on 50 sequences of each length

Figure 11.9.: Transformer Training Efficiency for ’input_files_transfer_time’ Prediction

130

11.11. Threats to Validity

(a) GRU: one sequence of each length (b) GRU: 500 sequences of each length

(c) LSTM: one sequence of each length (d) LSTM: 500 sequences of each length

(e) Transformer: one sequence of each length (f) Transformer: 500 sequences of each length

Figure 11.10.: Training Efficiency for ’compute_time’ Prediction

131

11. Evaluation and Discussion

(a) GRU Trained on 50 sequence of each length (b) GRU trained on 500 sequences of each length

(c) LSTM trained on 50 sequences of each length
(d) LSTM trained on 500 sequences of each

length

(e) Transformer trained on 50 sequences of each
length

(f) Transformer trained on 500 sequences of each
length

Figure 11.11.: Models trained on larger datasets132

11.11. Threats to Validity

(a) GRU default dataset (b) GRU with additional long sequence

(c) LSTM default dataset (d) LSTM with additional long sequence

(e) Transformer default dataset (f) Transformer with additional long sequence

Figure 11.12.: Models trained on the data with additional long sequence

133

11. Evaluation and Discussion

(a) Trained on one sequence (b) Trained on 10 sequences

(c) Trained on 20 sequences (d) Trained on 30 sequences

(e) Trained on 40 sequences (f) Trained on 50 sequences

Figure 11.13.: GRU Training Efficiency for ’job_start’ Prediction

134

11.11. Threats to Validity

(a) Trained on one sequence (b) Trained on 10 sequences

(c) Trained on 20 sequences (d) Trained on 30 sequences

(e) Trained on 40 sequences (f) Trained on 50 sequences

Figure 11.14.: GRU Training Efficiency for ’job_start’ Prediction (KDE)

135

11. Evaluation and Discussion

(a) Trained on one sequence (b) Trained on 10 sequences

(c) Trained on 20 sequences (d) Trained on 30 sequences

(e) Trained on 40 sequences (f) Trained on 50 sequences

Figure 11.15.: LSTM Training Efficiency for ’job_start’ Prediction

136

11.11. Threats to Validity

(a) Trained on one sequence (b) Trained on 10 sequences

(c) Trained on 20 sequences (d) Trained on 30 sequences

(e) Trained on 40 sequences (f) Trained on 50 sequences

Figure 11.16.: LSTM Training Efficiency for ’job_start’ Prediction (KDE)

137

11. Evaluation and Discussion

(a) Trained on one sequence (b) Trained on 10 sequences

(c) Trained on 20 sequences (d) Trained on 30 sequences

(e) Trained on 40 sequences (f) Trained on 50 sequences

Figure 11.17.: Transformer Training Efficiency for ’job_start’ Prediction

138

11.11. Threats to Validity

(a) Trained on one sequence (b) Trained on 10 sequences

(c) Trained on 20 sequences (d) Trained on 30 sequences

(e) Trained on 40 sequences (f) Trained on 50 sequences

Figure 11.18.: Transformer Training Efficiency for ’job_start’ Prediction

139

12. Conclusion

In this thesis, we explored the application of RNN and Transformer networks to predict job
execution metadata in distributed computing systems, developing a flexible methodology
for numerical sequence-to-sequence predictions. The models require training data, which
can be obtained either from the simulator or from actual job processing. We employed the
DCSim to perform the simulations of WLCG workloads on GridKa infrastructure. Since
DCSim simulation results share a similar format for job inputs and outputs as WLCG logs,
the concepts we propose in this thesis can be adapted to real-world data.

In our research, we created datasets with simulation data for three distinct scenarios to
train our models. These scenarios represent two real data centers and workloads with
increasing complexity. To facilitate this process, we developed an automated infrastructure
for data generation and preparation.

We created models with three distinct architectures — BiGRU, BiLSTM, and Encoder-
Only Transformer — and evaluated their performance on two tasks: interpolation and
extrapolation. Interpolation tasks involved evaluating models on unseen simulations of
lengths (number of jobs in simulation) observed in the training set, while extrapolation
tasks tested themodel’s ability to predict outcomes of longer simulations. In these scenarios,
distinct models were trained for specific platforms and demonstrated very good results in
interpolation tasks and good results in extrapolation tasks.

Additionally, we attempted to incorporate information about simulated platforms (from a
small data center to a large grid) into the models to achieve generalizability across different
platforms. Access to platform information during model training is important as job input
parameters alone do not provide all the essential details required for accurate predictions.
We faced challenges with the scaling of numerical platform information and dealing with
categorical variables. Training a distinct model for each platform emerged as the most
practical approach in our evaluation.

During the evaluation, BiGRU models demonstrated slightly better performance in both
training rate and accuracy of predictions among the models evaluated. The BiLSTM
and Encoder-Only Transformer models also delivered good results. Once trained with a
sufficient amount of data, these models can generate predictions within a few milliseconds,
making them useful for integration into scheduling algorithms where rapid cost evaluation
is critical. Our findings demonstrate that while these models offer substantial benefits in
speed and efficiency, they can not completely replace traditional simulators due to their
limitations in handling complex system dynamics.

141

12. Conclusion

12.1. Future Work

We used the data generated by the DCSim simulator for model training and evaluation.
The next research step would be applying these models to process and predict outcomes
based on real-world data, exploring their prediction capabilities and generalization in
practical distributed computing environments.

An interesting area for future research lies in exploring the use of Encoder-Decoder Trans-
formers for making predictions on complete sequences without the need for segmenting
them into smaller parts. Implementing this approach would necessitate autoregressive
generation, where predictions from the last jobs are used as inputs for subsequent jobs.

142

A. Appendix

A.1. Platform Configurations

Listing A.1: Platform Configuration for Sgbatch
1 <?xml version="1.0"?>

2 <!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid/simgrid.dtd">

3 <platform version="4.1">

4 <config>

5 <prop id="network/loopback-bw" value="1000000000000"/>

6 </config>

7

8 <zone id="global" routing="Full">

9 <zone id="ETP" routing="Floyd">

10 <host id="sg01" speed="1117Mf" core="24">

11 <prop id="type" value="worker,cache"/>

12 <prop id="ram" value="64GiB"/>

13 <disk id="ssd_cache1" read_bw="9.6Gbps" write_bw="9.6Gbps">

14 <prop id="size" value="2.5TB"/>

15 <prop id="mount" value="/"/>

16 </disk>

17 </host>

18 <host id="sg02" speed="1117Mf" core="24">

19 <prop id="type" value="worker,cache"/>

20 <prop id="ram" value="64GiB"/>

21 <disk id="ssd_cache1" read_bw="9.6Gbps" write_bw="9.6Gbps">

22 <prop id="size" value="2.5TB"/>

23 <prop id="mount" value="/"/>

24 </disk>

25 </host>

26 <host id="sg03" speed="1258Mf" core="12">

27 <prop id="type" value="worker,cache"/>

28 <prop id="ram" value="32GiB"/>

29 <disk id="ssd_cache1" read_bw="9.6Gbps" write_bw="9.6Gbps">

30 <prop id="size" value="2.5TB"/>

31 <prop id="mount" value="/"/>

32 </disk>

33 </host>

34 <host id="WMSHost" speed="10Gf" core="10">

35 <prop id="type" value="scheduler,executor"/>

143

A. Appendix

36 <prop id="ram" value="16GB"/>

37 </host>

38

39 <router id="etpgateway"/>

40

41 <link id="loopback" bandwidth="5000GBps" latency="0us"/>

42 <link id="etp_link0" bandwidth="6Gbps" latency="0us"/>

43 <link id="etp_link1" bandwidth="6Gbps" latency="0us"/>

44 <link id="etp_link2" bandwidth="6Gbps" latency="0us"/>

45 <link id="etp_link3" bandwidth="6Gbps" latency="0us"/>

46

47 <route src="etpgateway" dst="WMSHost">

48 <link_ctn id="etp_link0"/>

49 </route>

50 <route src="etpgateway" dst="sg01">

51 <link_ctn id="etp_link1"/>

52 </route>

53 <route src="etpgateway" dst="sg02">

54 <link_ctn id="etp_link2"/>

55 </route>

56 <route src="etpgateway" dst="sg03">

57 <link_ctn id="etp_link3"/>

58 </route>

59 </zone>

60

61 <zone id="Remote" routing="Full">

62 <host id="RemoteStorage" speed="1000Gf" core="10">

63 <prop id="type" value="storage"/>

64 <disk id="hard_drive" read_bw="40Gbps" write_bw="40Gbps">

65 <prop id="size" value="1PB"/>

66 <prop id="mount" value="/"/>

67 </disk>

68 </host>

69

70 <link id="etp_to_remote" bandwidth="10Gbps" latency="0us"/>

71 </zone>

72

73 <zoneRoute src="ETP" dst="Remote" gw_src="etpgateway" gw_dst="RemoteStorage"

>

74 <link_ctn id="etp_to_remote"/>

75 </zoneRoute>

76 </zone>

77 </platform>

Listing A.2: Platform Configuration for GridKa and DESY
1 <?xml version="1.0"?>

2 <!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid/simgrid.dtd">

144

A.1. Platform Configurations

3 <platform version="4.1">

4 <config>

5 <prop id="network/loopback-bw" value="1000000000000"/>

6 </config>

7

8 <zone id="global" routing="Floyd">

9

10 <zone id="KIT" routing="Floyd">

11

12 <zone id="GridKA" routing="Floyd">

13

14 <cluster id="Tier1" prefix="Tier1" radical="0-9" suffix="" speed="

2555Mf" core="42" bw="1150Mbps" lat="0us">

15 <prop id="type" value="worker"/>

16 <prop id="ram" value="1187.20GiB"/>

17 </cluster>

18

19 <zone id="GridKA-service" routing="Floyd">

20

21 <host id="GridKA_dCache" speed="1000Gf" core="10">

22 <prop id="type" value="storage"/>

23 <disk id="hard_drive" read_bw="920Mbps" write_bw="920Mbps">

24 <prop id="size" value="7PB"/>

25 <prop id="mount" value="/"/>

26 </disk>

27 </host>

28

29 <host id="WMSHost" speed="10Gf" core="10">

30 <prop id="type" value="scheduler,executor"/>

31 <prop id="ram" value="16GB"/>

32 </host>

33

34 <router id="GridKAgateway"/>

35

36 <link id="GridKA_sched" bandwidth="115Mbps" latency="0us"/>

37

38 <link id="GridKA_Tier1_FATPIPE" bandwidth="1150Mbps" latency="0

us" sharing_policy="FATPIPE"/>

39 <link id="GridKA_Tier1" bandwidth="2300Mbps" latency="0us"/>

40

41 <link id="GridKA_dcachepool_FATPIPE" bandwidth="460Mbps" latency

="0us" sharing_policy="FATPIPE"/>

42 <link id="GridKA_dcachepool" bandwidth="920Mbps" latency="0us"/>

43

44 <route src="GridKAgateway" dst="WMSHost">

45 <link_ctn id="GridKA_sched"/>

46 </route>

145

A. Appendix

47

48 <route src="GridKAgateway" dst="GridKA_dCache">

49 <link_ctn id="GridKA_dcachepool_FATPIPE"/>

50 <link_ctn id="GridKA_dcachepool"/>

51 </route>

52 </zone>

53

54 <zoneRoute src="GridKA-service" dst="Tier1" gw_src="GridKAgateway"

gw_dst="Tier1Tier1_router">

55 <link_ctn id="GridKA_Tier1_FATPIPE"/>

56 <link_ctn id="GridKA_Tier1"/>

57 </zoneRoute>

58

59 </zone>

60

61

62 <zone id="KITcentral" routing="Floyd">

63

64 <router id="KITgateway"/>

65

66 <link id="GridKA_to_KIT" bandwidth="1150Mbps" latency="0us"/>

67 <link id="KIT_to_DESY" bandwidth="115Mbps" latency="0us"/>

68

69 </zone>

70

71

72 <zoneRoute src="GridKA" dst="KITcentral" gw_src="GridKAgateway" gw_dst="

KITgateway">

73 <link_ctn id="GridKA_to_KIT"/>

74 </zoneRoute>

75

76 </zone>

77

78

79 <zone id="DESY" routing="Floyd">

80

81 <zone id="DESYGrid" routing="Floyd">

82

83 <host id="Tier2" speed="2209Mf" core="200">

84 <prop id="type" value="worker"/>

85 <prop id="ram" value="500GiB"/>

86 </host>

87

88 <host id="DESY_dCache" speed="1000Gf" core="10">

89 <prop id="type" value="cache"/>

90 <disk id="hard_drive" read_bw="920Mbps" write_bw="920Mbps">

91 <prop id="size" value="7PB"/>

146

A.2. Workload Configurations

92 <prop id="mount" value="/"/>

93 </disk>

94 </host>

95

96 <router id="DESYGridgateway"/>

97

98 <link id="DESY_Tier2" bandwidth="460Mbps" latency="0us"/>

99

100 <link id="DESY_dCachepool" bandwidth="460Mbps" latency="0us"/>

101

102 <route src="DESYGridgateway" dst="Tier2">

103 <link_ctn id="DESY_Tier2"/>

104 </route>

105

106 <route src="DESYGridgateway" dst="DESY_dCache">

107 <link_ctn id="DESY_dCachepool"/>

108 </route>

109

110 </zone>

111

112 <zone id="DESYcentral" routing="Floyd">

113

114 <router id="DESYgateway"/>

115

116 <link id="DESYGrid_to_DESY" bandwidth="1150Mbps" latency="0us"/>

117

118 </zone>

119

120 <zoneRoute src="DESYGrid" dst="DESYcentral" gw_src="DESYGridgateway"

gw_dst="DESYgateway">

121 <link_ctn id="DESYGrid_to_DESY"/>

122 </zoneRoute>

123

124 </zone>

125

126 <zoneRoute src="KIT" dst="DESY" gw_src="KITgateway" gw_dst="DESYgateway">

127 <link_ctn id="KIT_to_DESY"/>

128 </zoneRoute>

129

130 </zone>

131

132 </platform>

A.2. Workload Configurations

147

A. Appendix

Listing A.3: WLCG Workload Configuration KIT
1 {

2 "Analysis_T1": {

3 "num_jobs": 15,

4 "cores": {

5 "type": "histogram",

6 "counts": [0, 206746, 35, 0, 3709, 0, 0, 0, 406],

7 "bins": [-0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5]

8 },

9 "flops": {

10 "type": "histogram",

11 "counts": [210623, 263, 4, 6, 0, 0, 0, 0, 0, 0],

12 "bins": [0, 1.5e+14, 3e+14, 4.5e+14, 6e+14, 7.5e+14, 9e+14, 1.05e+15,

1.2e+15, 1.35e+15, 1.5e+15]

13 },

14 "memory": {

15 "type": "histogram",

16 "counts": [650, 204277, 3161, 1560, 20, 0, 949, 0, 225, 0],

17 "bins": [100, 1290, 2480, 3670, 4860, 6050, 7240, 8430, 9620, 10810,

12000]

18 },

19

20 "outfilesize": {

21 "type": "histogram",

22 "counts": [210319, 577, 0, 0, 0, 0, 0, 0, 0, 0],

23 "bins": [0, 2e+09, 4e+09, 6e+09, 8e+09, 1e+10, 1.2e+10, 1.4e+10, 1.6e

+10, 1.8e+10, 2e+10]

24 },

25 "workload_type": "streaming",

26 "submission_time": 10,

27 "infile_datasets": "Analysis_T1"

28 },

29 "Digi_T1": {

30 "num_jobs": 15,

31 "cores": {

32 "type": "histogram",

33 "counts": [0, 30704, 101899, 0, 86729, 0, 0, 0, 626]

34 },

35 "flops": {

36 "type": "histogram",

37 "counts": [74119, 141559, 3664, 38, 213, 317, 40, 8, 0, 0],

38 "bins": [0, 1.5e+14, 3e+14, 4.5e+14, 6e+14, 7.5e+14, 9e+14, 1.05e+15,

1.2e+15, 1.35e+15, 1.5e+15]

39 },

40 "memory": {

41 "type": "histogram",

42 "counts": [131371, 8158, 54096, 20739, 192, 0, 5398, 0, 4, 0],

148

A.2. Workload Configurations

43 "bins": [100, 1290, 2480, 3670, 4860, 6050, 7240, 8430, 9620, 10810,

12000]

44 },

45 "outfilesize": {

46 "type": "histogram",

47 "counts": [155865, 59084, 1274, 593, 280, 211, 383, 131, 1528, 255],

48 "bins": [0, 2e+09, 4e+09, 6e+09, 8e+09, 1e+10, 1.2e+10, 1.4e+10, 1.6e

+10, 1.8e+10, 2e+10]

49 },

50 "workload_type": "streaming",

51 "submission_time": 10,

52 "infile_datasets": "Digi_T1"

53 },

54 "DataProcessing_T1": {

55 "num_jobs": 10,

56 "cores": {

57 "type": "histogram",

58 "counts": [0, 0, 1776, 0, 54222, 0, 0, 0, 0]

59 },

60 "flops": {

61 "type":"histogram",

62 "counts": [21063, 5534, 6066, 6909, 6006, 5984, 3002, 1030, 322, 57],

63 "bins": [0, 1.5e+14, 3e+14, 4.5e+14, 6e+14, 7.5e+14, 9e+14, 1.05e+15,

1.2e+15, 1.35e+15, 1.5e+15]

64 },

65 "memory": {

66 "type":"histogram",

67 "counts": [295, 1339, 182, 200, 2095, 0, 50907, 0, 980, 0],

68 "bins": [100, 1290, 2480, 3670, 4860, 6050, 7240, 8430, 9620, 10810,

12000]

69 },

70 "outfilesize": {

71 "type":"histogram",

72 "counts": [53731, 1799, 61, 231, 166, 10, 0, 0, 0, 0],

73 "bins": [0, 2e+09, 4e+09, 6e+09, 8e+09, 1e+10, 1.2e+10, 1.4e+10, 1.6e

+10, 1.8e+10, 2e+10]

74 },

75 "workload_type": "streaming",

76 "submission_time": 10,

77 "infile_datasets": "DataProcessing_T1"

78 },

79 "Others_T1": {

80 "num_jobs": 5,

81 "cores": {

82 "type": "histogram",

83 "counts": [0, 0, 28, 0, 485, 0, 0, 0, 282]

84 },

149

A. Appendix

85 "flops": {

86 "type":"histogram",

87 "counts": [789, 2, 0, 4, 0, 0, 0, 0, 0, 0],

88 "bins": [0, 1.5e+14, 3e+14, 4.5e+14, 6e+14, 7.5e+14, 9e+14, 1.05e+15,

1.2e+15, 1.35e+15, 1.5e+15]

89 },

90 "memory": {

91 "type":"histogram",

92 "counts": [38, 270, 477, 10, 0, 0, 0, 0, 0, 0],

93 "bins": [100, 1290, 2480, 3670, 4860, 6050, 7240, 8430, 9620, 10810,

12000]

94 },

95 "outfilesize": {

96 "type":"histogram",

97 "counts": [612, 175, 4, 0, 4, 0, 0, 0, 0, 0],

98 "bins": [0, 1.5e+09, 3e+09, 4.5e+09, 6e+09, 7.5e+09, 9e+09, 1.05e+10,

1.2e+10, 1.35e+10, 1.5e+10]

99 },

100 "workload_type": "streaming",

101 "submission_time": 10,

102 "infile_datasets": "Others_T1"

103 },

104 "Merge_T1": {

105 "num_jobs": 5,

106 "cores": {

107 "type": "histogram",

108 "counts": [0, 23054, 0, 0, 0, 0, 0, 0, 0]

109 },

110 "flops": {

111 "type":"histogram",

112 "counts": [23054, 0, 0, 0, 0, 0, 0, 0, 0, 0],

113 "bins": [0, 1.5e+14, 3e+14, 4.5e+14, 6e+14, 7.5e+14, 9e+14, 1.05e+15,

1.2e+15, 1.35e+15, 1.5e+15]

114 },

115 "memory": {

116 "type":"histogram",

117 "counts": [16533, 6521, 0, 0, 0, 0, 0, 0, 0, 0],

118 "bins": [100, 1290, 2480, 3670, 4860, 6050, 7240, 8430, 9620, 10810,

12000]

119 },

120 "outfilesize": {

121 "type":"histogram",

122 "counts": [3170, 15334, 4550, 0, 0, 0, 0, 0, 0, 0],

123 "bins": [0, 2e+09, 4e+09, 6e+09, 8e+09, 1e+10, 1.2e+10, 1.4e+10, 1.6e

+10, 1.8e+10, 2e+10]

124 },

125 "workload_type": "streaming",

150

A.2. Workload Configurations

126 "submission_time": 10,

127 "infile_datasets": "Merge_T1"

128 }

129 }

Listing A.4: WLCG Workload Configuration KIT and DESY
1 {

2 "Analysis_T2": {

3 "num_jobs": 15,

4 "cores": {

5 "type": "histogram",

6 "counts": [0, 441598, 10, 0, 29325, 0, 0, 0, 5244],

7 "bins": [-0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5]

8 },

9 "flops": {

10 "type": "histogram",

11 "counts": [471947, 4169, 54, 2, 0, 0, 5, 0, 0, 0],

12 "bins": [0, 1.5e+14, 3e+14, 4.5e+14, 6e+14, 7.5e+14, 9e+14, 1.05e+15,

1.2e+15, 1.35e+15, 1.5e+15]

13 },

14 "memory": {

15 "type": "histogram",

16 "counts": [644, 271820, 86090, 82679, 8262, 0, 22801, 0, 1764, 0],

17 "bins": [100, 1290, 2480, 3670, 4860, 6050, 7240, 8430, 9620, 10810,

12000]

18 },

19 "infilesize": {

20 "type": "histogram",

21 "counts": [456792, 10442, 1316, 6796, 581, 121, 91, 0, 19, 19],

22 "bins": [0, 5e+09, 1e+10, 1.5e+10, 2e+10, 2.5e+10, 3e+10, 3.5e+10, 4e

+10, 4.5e+10, 5e+10]

23 },

24 "outfilesize": {

25 "type": "histogram",

26 "counts": [473812, 2317, 48, 0, 0, 0, 0, 0, 0, 0],

27 "bins": [0, 2e+09, 4e+09, 6e+09, 8e+09, 1e+10, 1.2e+10, 1.4e+10, 1.6e

+10, 1.8e+10, 2e+10]

28 },

29 "workload_type": "streaming",

30 "submission_time": 10,

31 "infile_datasets": "Analysis_T2"

32 },

33 "Digi_T2": {

34 "num_jobs": 15,

35 "cores": {

36 "type": "histogram",

37 "counts": [0, 86939, 151890, 0, 87586, 0, 0, 0, 304]

151

A. Appendix

38 },

39 "flops": {

40 "type": "histogram",

41 "counts": [175687, 149681, 804, 92, 279, 156, 12, 6, 0, 0],

42 "bins": [0, 1.5e+14, 3e+14, 4.5e+14, 6e+14, 7.5e+14, 9e+14, 1.05e+15,

1.2e+15, 1.35e+15, 1.5e+15]

43 },

44 "memory": {

45 "type": "histogram",

46 "counts": [212797, 32272, 12499, 63662, 58, 0, 5431, 0, 0, 0],

47 "bins": [100, 1290, 2480, 3670, 4860, 6050, 7240, 8430, 9620, 10810,

12000]

48 },

49 "outfilesize": {

50 "type": "histogram",

51 "counts": [255261, 66445, 1547, 670, 349, 293, 564, 245, 889, 2],

52 "bins": [0, 2e+09, 4e+09, 6e+09, 8e+09, 1e+10, 1.2e+10, 1.4e+10, 1.6e

+10, 1.8e+10, 2e+10]

53 },

54 "workload_type": "streaming",

55 "submission_time": 10,

56 "infile_datasets": "Digi_T2"

57 },

58 "DataProcessing_T2": {

59 "num_jobs": 10,

60 "cores": {

61 "type": "histogram",

62 "counts": [0, 0, 1613, 0, 47233, 0, 0, 0, 0]

63 },

64 "flops": {

65 "type":"histogram",

66 "counts": [12823, 3957, 13415, 10139, 6275, 1490, 499, 144, 61, 23],

67 "bins": [0, 1.5e+14, 3e+14, 4.5e+14, 6e+14, 7.5e+14, 9e+14, 1.05e+15,

1.2e+15, 1.35e+15, 1.5e+15]

68 },

69 "memory": {

70 "type":"histogram",

71 "counts": [76, 1499, 42, 113, 5541, 0, 41522, 0, 53, 0],

72 "bins": [100, 1290, 2480, 3670, 4860, 6050, 7240, 8430, 9620, 10810,

12000]

73 },

74 "outfilesize": {

75 "type":"histogram",

76 "counts": [47160, 1623, 51, 2, 8, 2, 0, 0, 0, 0],

77 "bins": [0, 2e+09, 4e+09, 6e+09, 8e+09, 1e+10, 1.2e+10, 1.4e+10, 1.6e

+10, 1.8e+10, 2e+10]

78 },

152

A.2. Workload Configurations

79 "workload_type": "streaming",

80 "submission_time": 10,

81 "infile_datasets": "DataProcessing_T2"

82 },

83 "Others_T2": {

84 "num_jobs": 5,

85 "cores": {

86 "type": "histogram",

87 "counts": [0, 0, 127, 0, 998, 0, 0, 0, 608]

88 },

89 "flops": {

90 "type":"histogram",

91 "counts": [1697, 34, 2, 0, 0, 0, 0, 0, 0, 0],

92 "bins": [0, 1.5e+14, 3e+14, 4.5e+14, 6e+14, 7.5e+14, 9e+14, 1.05e+15,

1.2e+15, 1.35e+15, 1.5e+15]

93 },

94 "memory": {

95 "type":"histogram",

96 "counts": [50, 263, 1416, 4, 0, 0, 0, 0, 0, 0],

97 "bins": [100, 1290, 2480, 3670, 4860, 6050, 7240, 8430, 9620, 10810,

12000]

98 },

99 "outfilesize": {

100 "type":"histogram",

101 "counts": [1402, 313, 14, 2, 0, 2, 0, 0, 0, 0],

102 "bins": [0, 1.5e+09, 3e+09, 4.5e+09, 6e+09, 7.5e+09, 9e+09, 1.05e+10,

1.2e+10, 1.35e+10, 1.5e+10]

103 },

104 "workload_type": "streaming",

105 "submission_time": 10,

106 "infile_datasets": "Others_T2"

107 },

108 "Merge_T2": {

109 "num_jobs": 5,

110 "cores": {

111 "type": "histogram",

112 "counts": [0, 18627, 0, 0, 0, 0, 0, 0, 0]

113 },

114 "flops": {

115 "type":"histogram",

116 "counts": [18627, 0, 0, 0, 0, 0, 0, 0, 0, 0],

117 "bins": [0, 1.5e+14, 3e+14, 4.5e+14, 6e+14, 7.5e+14, 9e+14, 1.05e+15,

1.2e+15, 1.35e+15, 1.5e+15]

118 },

119 "memory": {

120 "type":"histogram",

121 "counts": [7877, 10746, 4, 0, 0, 0, 0, 0, 0, 0],

153

A. Appendix

122 "bins": [100, 1290, 2480, 3670, 4860, 6050, 7240, 8430, 9620, 10810,

12000]

123 },

124 "outfilesize": {

125 "type":"histogram",

126 "counts": [3677, 11877, 3073, 0, 0, 0, 0, 0, 0, 0],

127 "bins": [0, 2e+09, 4e+09, 6e+09, 8e+09, 1e+10, 1.2e+10, 1.4e+10, 1.6e

+10, 1.8e+10, 2e+10]

128 },

129 "workload_type": "streaming",

130 "submission_time": 10,

131 "infile_datasets": "Merge_T2"

132 }

133 }

A.3. Dataset Configurations

Listing A.5: WLCG Dataset Configuration for RemoteStorage
1 {

2 "Analysis_T1":{

3 "location":"RemoteStorage",

4 "num_files":5000,

5 "filesize": {

6 "type": "histogram",

7 "counts": [208159, 967, 701, 447, 270, 154, 72, 31, 38, 6],

8 "bins": [0, 5e+09, 1e+10, 1.5e+10, 2e+10, 2.5e+10, 3e+10, 3.5e+10, 4e

+10, 4.5e+10, 5e+10]

9 }

10 },

11 "Digi_T1":{

12 "location":"RemoteStorage",

13 "num_files":5000,

14 "filesize": {

15 "type": "histogram",

16 "counts": [157564, 3767, 32275, 353, 25151, 89, 0, 0, 759, 0],

17 "bins": [0, 5e+09, 1e+10, 1.5e+10, 2e+10, 2.5e+10, 3e+10, 3.5e+10, 4e+10,

4.5e+10, 5e+10]

18 }

19 },

20 "DataProcessing_T1":{

21 "location":"RemoteStorage",

22 "num_files":2500,

23 "filesize": {

24 "type":"histogram",

25 "counts": [54197, 1801, 0, 0, 0, 0, 0, 0, 0, 0],

154

A.3. Dataset Configurations

26 "bins": [0, 5e+09, 1e+10, 1.5e+10, 2e+10, 2.5e+10, 3e+10, 3.5e+10, 4e+10,

4.5e+10, 5e+10]

27 }

28 },

29 "Others_T1":{

30 "location":"RemoteStorage",

31 "num_files":2500,

32 "filesize": {

33 "type":"histogram",

34 "counts": [687, 102, 6, 0, 0, 0, 0, 0, 0, 0],

35 "bins": [0, 3e+09, 6e+09, 9e+09, 1.2e+10, 1.5e+10, 1.8e+10, 2.1e+10, 2.4e

+10, 2.7e+10, 3e+10]

36 }

37 },

38 "Merge_T1":{

39 "location":"RemoteStorage",

40 "num_files":2500,

41 "filesize": {

42 "type":"histogram",

43 "counts": [23054, 0, 0, 0, 0, 0, 0, 0, 0, 0],

44 "bins": [0, 5e+09, 1e+10, 1.5e+10, 2e+10, 2.5e+10, 3e+10, 3.5e+10, 4e+10,

4.5e+10, 5e+10]

45 }

46 }

47 }

Listing A.6: WLCG Dataset Configuration for GridKA_dCache
1 {

2 "Analysis_T2":{

3 "location":"GridKA_dCache",

4 "num_files":500,

5 "filesize": {

6 "type": "histogram",

7 "counts": [456792, 10442, 1316, 6796, 581, 121, 91, 0, 19, 19],

8 "bins": [0, 5e+09, 1e+10, 1.5e+10, 2e+10, 2.5e+10, 3e+10, 3.5e+10, 4e+10,

4.5e+10, 5e+10]

9 }

10 },

11 "Digi_T2":{

12 "location":"GridKA_dCache",

13 "num_files":500,

14 "filesize": {

15 "type": "histogram",

16 "counts": [323934, 2694, 91, 0, 0, 0, 0, 0, 0, 0],

17 "bins": [0, 5e+09, 1e+10, 1.5e+10, 2e+10, 2.5e+10, 3e+10, 3.5e+10, 4e+10,

4.5e+10, 5e+10]

18 }

155

A. Appendix

19 },

20 "DataProcessing_T2":{

21 "location":"GridKA_dCache",

22 "num_files":500,

23 "filesize": {

24 "type":"histogram",

25 "counts": [48846, 0, 0, 0, 0, 0, 0, 0, 0, 0],

26 "bins": [0, 5e+09, 1e+10, 1.5e+10, 2e+10, 2.5e+10, 3e+10, 3.5e+10, 4e+10,

4.5e+10, 5e+10]

27 }

28 },

29 "Others_T2":{

30 "location":"GridKA_dCache",

31 "num_files":250,

32 "filesize": {

33 "type":"histogram",

34 "counts": [1733, 0, 0, 0, 0, 0, 0, 0, 0, 0],

35 "bins": [0, 3e+09, 6e+09, 9e+09, 1.2e+10, 1.5e+10, 1.8e+10, 2.1e+10, 2.4e

+10, 2.7e+10, 3e+10]

36 }

37 },

38 "Merge_T2":{

39 "location":"GridKA_dCache",

40 "num_files":250,

41 "filesize": {

42 "type":"histogram",

43 "counts": [18627, 0, 0, 0, 0, 0, 0, 0, 0, 0],

44 "bins": [0, 5e+09, 1e+10, 1.5e+10, 2e+10, 2.5e+10, 3e+10, 3.5e+10, 4e+10,

4.5e+10, 5e+10]

45 }

46 }

47 }

156

Bibliography
[1] Md Ahsan et al. “Effect of Data Scaling Methods on Machine Learning Algorithms

and Model Performance”. en. In: Technologies 9.3 (July 2021), p. 52. issn: 2227-7080.
doi: 10.3390/technologies9030052.

[2] Prasanna Balaprakash, Robert B. Gramacy, and Stefan M. Wild. “Active-learning-
based surrogatemodels for empirical performance tuning”. In: 2013 IEEE International
Conference on Cluster Computing (CLUSTER). Indianapolis, IN, USA: IEEE, Sept. 2013,
pp. 1–8. isbn: 978-1-4799-0898-1. doi: 10.1109/CLUSTER.2013.6702683.

[3] S. Balasundaram and Subhash Chandra Prasad. “Robust twin support vector regres-
sion based on Huber loss function”. en. In: Neural Computing and Applications 32.15
(Aug. 2020), pp. 11285–11309. issn: 0941-0643, 1433-3058. doi: 10.1007/s00521-019-
04625-8.

[4] Victor R. Basili and David M. Weiss. “A Methodology for Collecting Valid Software
Engineering Data”. In: IEEE Transactions on Software Engineering SE-10.6 (Nov. 1984),
pp. 728–738. issn: 0098-5589. doi: 10.1109/TSE.1984.5010301.

[5] Steffen Becker, Heiko Koziolek, and Ralf Reussner. “Model-Based performance
prediction with the palladio component model”. en. In: Proceedings of the 6th inter-
national workshop on Software and performance. Buenes Aires Argentina: ACM, Feb.
2007, pp. 54–65. isbn: 978-1-59593-297-6. doi: 10.1145/1216993.1217006.

[6] I. Bird et al. Update of the Computing Models of the WLCG and the LHC Experiments.
en. Tech. rep. Number: CERN-LHCC-2014-014. Apr. 2014.

[7] Jannis Born and Matteo Manica. “Regression Transformer enables concurrent se-
quence regression and generation for molecular language modelling”. en. In: Nature
Machine Intelligence 5.4 (Apr. 2023), pp. 432–444. issn: 2522-5839. doi: 10.1038/
s42256-023-00639-z.

[8] Steven L. Brunton, Bernd R. Noack, and Petros Koumoutsakos. “Machine Learning for
Fluid Mechanics”. en. In: Annual Review of Fluid Mechanics 52.1 (Jan. 2020), pp. 477–
508. issn: 0066-4189, 1545-4479. doi: 10.1146/annurev-fluid-010719-060214.

[9] Peter Bühlmann. “Bagging, Boosting and Ensemble Methods”. en. In: Handbook
of Computational Statistics. Ed. by James E. Gentle, Wolfgang Karl Härdle, and
Yuichi Mori. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 985–1022.
isbn: 978-3-642-21550-6 978-3-642-21551-3. doi: 10.1007/978-3-642-21551-3_33.

[10] Rajkumar Buyya and Manzur Murshed. GridSim: A Toolkit for the Modeling and
Simulation of Distributed Resource Management and Scheduling for Grid Computing.
arXiv:cs/0203019. Mar. 2002. url: http://arxiv.org/abs/cs/0203019 (visited on
11/15/2023).

157

Bibliography

[11] Alexandru Calotoiu et al. “Fast Multi-parameter Performance Modeling”. In: 2016
IEEE International Conference on Cluster Computing (CLUSTER). Taipei, Taiwan: IEEE,
Sept. 2016, pp. 172–181. isbn: 978-1-5090-3653-0. doi: 10.1109/CLUSTER.2016.57.

[12] H. Casanova. “Simgrid: a toolkit for the simulation of application scheduling”. In:
Proceedings First IEEE/ACM International Symposium on Cluster Computing and the
Grid. Brisbane, Qld., Australia: IEEE Comput. Soc, 2001, pp. 430–437. isbn: 978-0-
7695-1010-1. doi: 10.1109/CCGRID.2001.923223.

[13] Henri Casanova, Arnaud Legrand, and Martin Quinson. “SimGrid: A Generic Frame-
work for Large-Scale Distributed Experiments”. In: Tenth International Conference
on Computer Modeling and Simulation (uksim 2008). Cambridge, UK: IEEE, 2008,
pp. 126–131. isbn: 978-0-7695-3114-4. doi: 10.1109/UKSIM.2008.28.

[14] Henri Casanova et al. “Developing accurate and scalable simulators of production
workflow management systems with WRENCH”. en. In: Future Generation Computer
Systems 112 (Nov. 2020), pp. 162–175. issn: 0167739X. doi: 10.1016/j.future.2020.
05.030.

[15] Henri Casanova et al. “Versatile, scalable, and accurate simulation of distributed
applications and platforms”. en. In: Journal of Parallel and Distributed Computing
74.10 (Oct. 2014), pp. 2899–2917. issn: 07437315. doi: 10.1016/j.jpdc.2014.06.008.

[16] René Caspart et al. “Modeling and Simulation of Load Balancing Strategies for
Computing in High Energy Physics”. In: EPJ Web of Conferences 214 (2019). Ed. by
A. Forti et al., p. 03027. issn: 2100-014X. doi: 10.1051/epjconf/201921403027.

[17] Patricio Cerda and Gael Varoquaux. “Encoding High-Cardinality String Categorical
Variables”. In: IEEE Transactions on Knowledge and Data Engineering 34.3 (Mar. 2022),
pp. 1164–1176. issn: 1041-4347, 1558-2191, 2326-3865. doi: 10.1109/TKDE.2020.
2992529.

[18] CERN. “CERNAnnual report 2022”. en. In: (2023). Publisher: CERNDocument Server.
doi: 10.17181/ANNUALREPORT2022.

[19] T. Chai and R. R. Draxler. “Root mean square error (RMSE) or mean absolute error
(MAE)? – Arguments against avoiding RMSE in the literature”. en. In: Geoscientific
Model Development 7.3 (June 2014), pp. 1247–1250. issn: 1991-9603. doi: 10.5194/
gmd-7-1247-2014.

[20] Philippe Charpentier. “LHC Computing: past, present and future”. In: EPJ Web
of Conferences 214 (2019). Ed. by A. Forti et al., p. 09009. issn: 2100-014X. doi:
10.1051/epjconf/201921409009.

[21] Kyunghyun Cho et al. Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. arXiv:1406.1078 [cs, stat]. Sept. 2014. url: http:
//arxiv.org/abs/1406.1078 (visited on 03/03/2024).

[22] A. Colin Cameron and Frank A.G. Windmeijer. “An R-squared measure of goodness
of fit for some common nonlinear regression models”. en. In: Journal of Econometrics
77.2 (Apr. 1997), pp. 329–342. issn: 03044076. doi: 10.1016/S0304-4076(96)01818-0.

158

[23] Wim Depoorter et al. “Scalability of Grid Simulators: An Evaluation”. en. In: Euro-
Par 2008 – Parallel Processing. Ed. by Emilio Luque, Tomàs Margalef, and Domingo
Benítez. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2008,
pp. 544–553. isbn: 978-3-540-85451-7. doi: 10.1007/978-3-540-85451-7_58.

[24] Yann Dubois et al. “Location Attention for Extrapolation to Longer Sequences”. In:
(2019). Publisher: arXiv Version Number: 2. doi: 10.48550/ARXIV.1911.03872.

[25] A Forti et al. “Multicore job scheduling in the Worldwide LHC Computing Grid”. In:
Journal of Physics: Conference Series 664.6 (Dec. 2015), p. 062016. issn: 1742-6588,
1742-6596. doi: 10.1088/1742-6596/664/6/062016.

[26] John T. Hancock and Taghi M. Khoshgoftaar. “Survey on categorical data for neural
networks”. en. In: Journal of Big Data 7.1 (Dec. 2020), p. 28. issn: 2196-1115. doi:
10.1186/s40537-020-00305-w.

[27] Oliver Hennigh et al. “NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simu-
lation framework”. In: (2020). Publisher: arXiv Version Number: 1. doi: 10.48550/
ARXIV.2012.07938.

[28] Jane Hillston. A Compositional Approach to Performance Modelling. 1st ed. Cambridge
University Press, June 1996. isbn: 978-0-521-57189-0 978-0-521-67353-2 978-0-511-
56995-1. doi: 10.1017/CBO9780511569951.

[29] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. en. In:
Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667, 1530-888X. doi:
10.1162/neco.1997.9.8.1735.

[30] Maximilian Horzela et al. 26TH INTERNATIONAL CONFERENCE ON COMPUTING
IN HIGH ENERGY & NUCLEAR PHYSICS (CHEP2023). Aug. 2023. url: https://
indico.jlab.org/event/459/contributions/11490/ (visited on 11/03/2023).

[31] Maximilian Horzela et al. HEPCompSim/DCSim: DCSim simulator release v0.3. Aug.
2023. doi: 10.5281/ZENODO.8300961. url: https://zenodo.org/record/8300961
(visited on 10/31/2023).

[32] Reka Howard and Diego Jarquin. “Genomic Prediction Using Canopy Coverage Im-
age and Genotypic Information in Soybean via a Hybrid Model”. en. In: Evolutionary
Bioinformatics 15 (Jan. 2019), p. 117693431984002. issn: 1176-9343, 1176-9343. doi:
10.1177/1176934319840026.

[33] Frank Hutter et al. “Algorithm runtime prediction: Methods & evaluation”. en. In:
Artificial Intelligence 206 (Jan. 2014), pp. 79–111. issn: 00043702. doi: 10.1016/j.
artint.2013.10.003.

[34] Interpolation — The Science of Machine Learning. url: https://www.ml-science.
com/interpolation (visited on 11/10/2023).

[35] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”. en. In: Proceedings of the 2019 Conference of the North.
Minneapolis, Minnesota: Association for Computational Linguistics, 2019, pp. 4171–
4186. doi: 10.18653/v1/N19-1423.

159

Bibliography

[36] Aryan Jadon, Avinash Patil, and Shruti Jadon. A Comprehensive Survey of Regression
Based Loss Functions for Time Series Forecasting. arXiv:2211.02989 [cs]. Nov. 2022.
url: http://arxiv.org/abs/2211.02989 (visited on 02/09/2024).

[37] C Jung et al. “ALICE Grid Computing at the GridKa Tier-1 Center”. In: Journal of
Physics: Conference Series 396.4 (Dec. 2012), p. 042032. issn: 1742-6588, 1742-6596.
doi: 10.1088/1742-6596/396/4/042032.

[38] Kamal Basulaiman and Masoud Barati. “Sequence-to-Sequence Forecasting-aided
State Estimation for Power Systems”. In: 2021 IEEE Texas Power and Energy Conference
(TPEC). College Station, TX, USA: IEEE, Feb. 2021, pp. 1–6. isbn: 978-1-72818-612-2.
doi: 10.1109/TPEC51183.2021.9384984.

[39] Khaled A. Althelaya, El-Sayed M. El-Alfy, and Salahadin Mohammed. “Evaluation
of bidirectional LSTM for short-and long-term stock market prediction”. In: 2018 9th
International Conference on Information and Communication Systems (ICICS). Irbid:
IEEE, Apr. 2018, pp. 151–156. isbn: 978-1-5386-4366-2. doi: 10.1109/IACS.2018.
8355458.

[40] KIT - SCC - Research - Data Management, Data Analysis and secure IT Federations
- GridKa. 2022. url: https://www.scc.kit.edu/en/research/gridka.php (visited
on 03/04/2024).

[41] M. Křížek. “Brezinski, C.; Redivo Zaglia, M., Extrapolation Methods. Theory and
Practice. Amsterdam etc., North-Holland 1991. X, 464 pp., Dfl. 225.00. ISBN 0-444-
88814-4 (Studies in Computational Mathematics 2)”. en. In: ZAMM - Journal of
Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und
Mechanik 73.9 (Jan. 1993), pp. 236–236. issn: 0044-2267, 1521-4001. doi: 10.1002/
zamm.19930730912.

[42] Adrien Lebre et al. “Adding Storage Simulation Capacities to the SimGrid Toolkit:
Concepts, Models, and API”. In: 2015 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing. Shenzhen, China: IEEE, May 2015, pp. 251–260.
isbn: 978-1-4799-8006-2. doi: 10.1109/CCGrid.2015.134.

[43] I.C. Legrand and H.B. Newman. “The MONARC toolset for simulating large network-
distributed processing systems”. In: 2000 Winter Simulation Conference Proceedings
(Cat. No.00CH37165). Vol. 2. Orlando, FL, USA: IEEE, 2000, pp. 1794–1801. isbn:
978-0-7803-6579-7. doi: 10.1109/WSC.2000.899171.

[44] Petro Liashchynskyi and Pavlo Liashchynskyi. Grid Search, Random Search, Genetic
Algorithm: A Big Comparison for NAS. arXiv:1912.06059 [cs, stat]. Dec. 2019. url:
http://arxiv.org/abs/1912.06059 (visited on 02/08/2024).

[45] Jefrey Lijffijt, Panagiotis Papapetrou, and Kai Puolamäki. “Size Matters: Finding the
Most Informative Set of Window Lengths”. In: Machine Learning and Knowledge
Discovery in Databases. Ed. by David Hutchison et al. Vol. 7524. Series Title: Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 451–466. isbn: 978-3-642-33485-6 978-3-642-33486-3. doi: 10.1007/978-3-642-
33486-3_29.

160

[46] T Maeno et al. “Overview of ATLAS PanDA Workload Management”. In: Journal
of Physics: Conference Series 331.7 (Dec. 2011), p. 072024. issn: 1742-6596. doi: 10.
1088/1742-6596/331/7/072024.

[47] Dzmitry Makatun et al. “Simulations and study of a new scheduling approach for
distributed data production”. In: Journal of Physics: Conference Series 762 (Oct. 2016),
p. 012023. issn: 1742-6588, 1742-6596. doi: 10.1088/1742-6596/762/1/012023.

[48] Preeti Malakar et al. “Benchmarking Machine Learning Methods for Performance
Modeling of Scientific Applications”. In: 2018 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS). Dallas,
TX, USA: IEEE, Nov. 2018, pp. 33–44. isbn: 978-1-72810-182-8. doi: 10.1109/PMBS.
2018.8641686.

[49] Mean Squared Error (MSE). url: https://www.probabilitycourse.com/chapter9/
9_1_5_mean_squared_error_MSE.php (visited on 11/06/2023).

[50] L. R. Medsker and L. C. Jain, eds. Recurrent neural networks: design and applications.
The CRC Press international series on computational intelligence. Boca Raton, FL:
CRC Press, 2000. isbn: 978-0-8493-7181-3.

[51] Luke Merrick. Randomized Ablation Feature Importance. arXiv:1910.00174 [cs, stat].
Oct. 2019. url: http://arxiv.org/abs/1910.00174 (visited on 04/28/2024).

[52] Siddartha Mootha et al. “Stock Price Prediction using Bi-Directional LSTM based
Sequence to Sequence Modeling and Multitask Learning”. In: 2020 11th IEEE Annual
Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON).
New York, NY, USA: IEEE, Oct. 2020, pp. 0078–0086. isbn: 978-1-72819-656-5. doi:
10.1109/UEMCON51285.2020.9298066.

[53] Haykuhi Musheghyan et al. “The GridKa tape storage: latest improvements and
current production setup”. en. In: (2021). Publisher: EDP Sciences. doi: 10.5445/IR/
1000154088.

[54] Deepak Narayanan et al. Efficient Large-Scale Language Model Training on GPU
Clusters Using Megatron-LM. arXiv:2104.04473 [cs]. Aug. 2021. url: http://arxiv.
org/abs/2104.04473 (visited on 03/03/2024).

[55] Harvey B. Newman. “Simulating distributed systems”. en. In: AIP Conference Pro-
ceedings. Vol. 583. ISSN: 0094243X. Batavia, Illinois (USA): AIP, 2001, pp. 164–166.
doi: 10.1063/1.1405293.

[56] Truong Thao Nguyen et al. “Why Globally Re-shuffle? Revisiting Data Shuffling
in Large Scale Deep Learning”. In: 2022 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). Lyon, France: IEEE, May 2022, pp. 1085–1096. isbn:
978-1-66548-106-9. doi: 10.1109/IPDPS53621.2022.00109.

[57] Seol-Hyun Noh. “Analysis of Gradient Vanishing of RNNs and Performance Com-
parison”. en. In: Information 12.11 (Oct. 2021), p. 442. issn: 2078-2489. doi: 10.3390/
info12110442.

161

Bibliography

[58] Peshawa J Muhammad Ali and Rezhna Hassan Faraj. “Data Normalization and
Standardization: A Technical Report”. en. In: (2014). Publisher: Unpublished. doi:
10.13140/RG.2.2.28948.04489.

[59] Jun Qi et al. “On Mean Absolute Error for Deep Neural Network Based Vector-to-
Vector Regression”. In: IEEE Signal Processing Letters 27 (2020), pp. 1485–1489. issn:
1070-9908, 1558-2361. doi: 10.1109/LSP.2020.3016837.

[60] Antônio H. Ribeiro et al. Beyond exploding and vanishing gradients: analysing RNN
training using attractors and smoothness. arXiv:1906.08482 [cs, math, stat]. Mar. 2020.
url: http://arxiv.org/abs/1906.08482 (visited on 03/03/2024).

[61] Hojjat Salehinejad et al. “Recent Advances in Recurrent Neural Networks”. In: (2018).
Publisher: arXiv Version Number: 3. doi: 10.48550/ARXIV.1801.01078.

[62] Sreelekshmy Selvin et al. “Stock price prediction using LSTM, RNN and CNN-
sliding window model”. In: 2017 International Conference on Advances in Computing,
Communications and Informatics (ICACCI). Udupi: IEEE, Sept. 2017, pp. 1643–1647.
isbn: 978-1-5090-6367-3. doi: 10.1109/ICACCI.2017.8126078.

[63] Akhil Sethia and Purva Raut. “Application of LSTM, GRU and ICA for Stock Price
Prediction”. In: Information and Communication Technology for Intelligent Systems. Ed.
by Suresh Chandra Satapathy and Amit Joshi. Vol. 107. Series Title: Smart Innovation,
Systems and Technologies. Singapore: Springer Singapore, 2019, pp. 479–487. isbn:
9789811317460 9789811317477. doi: 10.1007/978-981-13-1747-7_46.

[64] Jamie Shiers. “The Worldwide LHC Computing Grid (worldwide LCG)”. en. In:
Computer Physics Communications 177.1-2 (July 2007), pp. 219–223. issn: 00104655.
doi: 10.1016/j.cpc.2007.02.021.

[65] Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. “The Performance of
LSTM and BiLSTM in Forecasting Time Series”. In: 2019 IEEE International Conference
on Big Data (Big Data). Los Angeles, CA, USA: IEEE, Dec. 2019, pp. 3285–3292. isbn:
978-1-72810-858-2. doi: 10.1109/BigData47090.2019.9005997.

[66] B.W. Silverman. Density Estimation for Statistics and Data Analysis. en. 1st ed. Rout-
ledge, Feb. 2018. isbn: 978-1-315-14091-9. doi: 10.1201/9781315140919.

[67] sklearn.preprocessing.StandardScaler — scikit-learn 1.4.1 documentation. url: https:
/ / scikit - learn . org / stable / modules / generated / sklearn . preprocessing .

StandardScaler.html (visited on 03/10/2024).
[68] Leslie N. Smith. A disciplined approach to neural network hyper-parameters: Part 1 –

learning rate, batch size, momentum, and weight decay. arXiv:1803.09820 [cs, stat].
Apr. 2018. url: http://arxiv.org/abs/1803.09820 (visited on 05/05/2024).

[69] Anthony Sulistio et al. “A toolkit for modelling and simulating data Grids: an
extension to GridSim”. en. In: Concurrency and Computation: Practice and Experience
20.13 (Sept. 2008), pp. 1591–1609. issn: 1532-0626, 1532-0634. doi: 10.1002/cpe.1307.

[70] Jingwei Sun et al. “Automated Performance Modeling of HPC Applications Using
Machine Learning”. In: IEEE Transactions on Computers 69.5 (May 2020), pp. 749–763.
issn: 0018-9340, 1557-9956, 2326-3814. doi: 10.1109/TC.2020.2964767.

162

[71] Ashish Vaswani et al. “Attention Is All You Need”. In: (2017). Publisher: arXiv Version
Number: 7. doi: 10.48550/ARXIV.1706.03762.

[72] Borislava Vrigazova. “The Proportion for Splitting Data into Training and Test Set for
the Bootstrap in Classification Problems”. en. In: Business Systems Research Journal
12.1 (May 2021), pp. 228–242. issn: 1847-9375. doi: 10.2478/bsrj-2021-0015.

[73] Shuhei Watanabe. Tree-Structured Parzen Estimator: Understanding Its Algorithm
Components and Their Roles for Better Empirical Performance. arXiv:2304.11127 [cs].
May 2023. url: http://arxiv.org/abs/2304.11127 (visited on 02/08/2024).

[74] Bob Wescott. The Every Computer Performance Book: How to avoid and solve per-
formance problems on the computer you work with. eng. First ed. Leipzig: Amazon
Distribution [Print On Demand], 2013. isbn: 978-1-4826-5775-3.

[75] Cj Willmott and K Matsuura. “Advantages of the mean absolute error (MAE) over
the root mean square error (RMSE) in assessing average model performance”. en.
In: Climate Research 30 (2005), pp. 79–82. issn: 0936-577X, 1616-1572. doi: 10.3354/
cr030079.

[76] Carl Witt et al. “Predictive performance modeling for distributed batch processing
using black box monitoring and machine learning”. en. In: Information Systems 82
(May 2019), pp. 33–52. issn: 03064379. doi: 10.1016/j.is.2019.01.006.

[77] Neo Wu et al. “Deep Transformer Models for Time Series Forecasting: The Influenza
Prevalence Case”. In: (2020). Publisher: arXiv Version Number: 1. doi: 10.48550/
ARXIV.2001.08317.

[78] Peter T. Yamak, Li Yujian, and Pius K. Gadosey. “A Comparison between ARIMA,
LSTM, and GRU for Time Series Forecasting”. en. In: Proceedings of the 2019 2nd
International Conference on Algorithms, Computing and Artificial Intelligence. Sanya
China: ACM, Dec. 2019, pp. 49–55. isbn: 978-1-4503-7261-9. doi: 10.1145/3377713.
3377722.

[79] Li Yang and Abdallah Shami. “On hyperparameter optimization of machine learning
algorithms: Theory and practice”. en. In: Neurocomputing 415 (Nov. 2020), pp. 295–
316. issn: 09252312. doi: 10.1016/j.neucom.2020.07.061.

[80] Yuanshuai Duan et al. “Improved BIGRU Model and Its Application in Stock Price
Forecasting”. en. In: Electronics 12.12 (June 2023), p. 2718. issn: 2079-9292. doi:
10.3390/electronics12122718.

[81] Jieyu Zhang et al. WRENCH: A Comprehensive Benchmark for Weak Supervision.
arXiv:2109.11377 [cs, stat]. Oct. 2021. url: http://arxiv.org/abs/2109.11377
(visited on 10/31/2023).

163

