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Abstract: There are many extensions of the Standard Model with a dark matter (DM)
candidate obtained via the freeze-out mechanism. It can happen that after all experimental
and theoretical constraints are taken into account, all parameter points have a relic density
below the experimentally measured value. This means that the models solve only partially
the DM problem, and at least one more candidate is needed. In this work we show that
it is possible to further extend the model with a DM candidate obtained via the freeze-in
mechanism to be in agreement with the relic density experimental measurement. Once the
relic density problem is solved with this addition, new questions are raised. This new model
with at least two DM candidates could have a freeze-out undetectable DM particle both
in direct and indirect detection. This could happen if the freeze-out DM particle would
have a very low density. Hence, a collider DM hint via excess in the missing energy with no
correspondence in direct and indirect detection experiments, could signal the existence of
a Feebly Interacting Massive Particle (FIMP). Conversely, if a DM particle is found and a
particular model can explain all observables except the correct relic density, an extension
with an extra FIMP would solve the problem. The freeze-in DM candidate, due to the small
portal couplings, will not change the remaining phenomenology.
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1 Introduction

Ever since Dark Matter (DM) became an unavoidable ingredient of any sound extension of
the Standard Model (SM) the concept of a Higgs portal [1] has been used to bridge the visible
sector with the new dark sector. Portal models assume that the two sectors only interact via
the Higgs doublet field from the SM. The easiest way to conceal one sector from the other is
to impose some kind of symmetry, being the discrete Z2 the most common together with the
continuum U(1) symmetry. However, any symmetry that stabilises the lightest neutral particle
from the dark sector making it a viable DM candidate, is able to implement the concept.

Assuming that DM is indeed a particle, there are two main mechanisms of DM production
in agreement with all observations and in particular with the observed relic density measured
by PLANCK [2]. In the freeze-out [3, 4] mechanism DM is in thermal equilibrium with the
thermal bath and when the temperature drops below the DM mass, the rate of expansion of
the universe eventually becomes larger than the DM annihilation rate to lighter particles,
and the annihilation stops. The surviving DM particles are known as Weakly Interacting
Massive Particles (WIMPs). In the freeze-in mechanism [5] the assumption is that out of
equilibrium DM particles are produced via decay and/or annihilation of other particles from
the model. Again, when a certain temperature is reached, production stops and the co-moving
DM number density becomes constant. Due to the very weak couplings involved, which is
the cause of DM not being in thermal equilibrium, these are known as Feebly Interacting
Massive Particles (FIMPs). Besides the two main mechanisms there are a number of other
interesting proposals in the literature [6–17] which are mainly derivations of the two above
when considering specific regions of the parameter space.

Although over the last years WIMPs are the main paradigm explored both in the
literature and in all kinds of experiments, FIMPs have gained a new life in recent years
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mainly because no DM particle was found in the WIMP mass range that goes roughly from
GeV to TeV. In order to test the WIMP paradigm to the limit we have to explore at least
the simplest models in any new approach to understand if we did not miss something along
the way. Once we pass the threshold of about half the Higgs mass, the most important
constraints on dark matter are the ones coming from direct detection experiments [18, 19]1

(DD) and the ones provided by Planck that establishes the value of the relic density. If
there is only one portal coupling we can look at these constraints in very simple terms: a
large portal coupling is needed to be in agreement with relic density measurements and a
small portal coupling is the way to avoid the direct detection bounds. If freeze-out is the
preferred mechanism of dark matter production, the portal coupling has to find some space
between these two constraints and if that is not possible the model is excluded. In the case
of freeze-in, since the bounds of DD do not apply, the model is usually sound although not
easy to exclude by any of the other experimental results.

The simplest extensions of the SM, like the real singlet extension [20], are usually enough
to provide a DM candidate in agreement with all experimental data both as a WIMP and as
a FIMP in a wide DM mass range. However, present DD constraints together with the need
of abiding by the measured relic density already exclude the freeze-out hypothesis for a dark
matter mass below ≈ 4 TeV as we will show later. Whatever the scalar portal extension of
the SM is, DD is only affected by a limited number out of the possible portal couplings in
the model. The introduction of new fields in the same dark matter sector, with the same
dark quantum number, enables the opening of co-annihilation channels, alleviating therefore
the tension between relic density and direct detection. Such is the case of the Inert Doublet
Model (IDM) [21] with an enlarged dark sector, consisting of two neutral and two charged
particles. Because the DM candidate comes from an SU(2)L doublet, freeze-in is forbidden.
As for freeze-out, the co-annihilation channels do indeed ease the tension allowing for a wider
mass range. As reported in [22–26] the dark matter relic density cannot be saturated for
DM masses between about 100 and 500 GeV. The addition of a real singlet with a different
dark quantum number allows to fill in the relic density gap. This is the Full Dark Phase
(FDP) scenario [26] of the Next-to-Minimal 2-Higgs-Doublet Model (N2HDM) [26–29], where
both freeze-in and freeze-out can occur, leading to the measured value of the experimentally
measured relic density in a complementary way.

As it was briefly discussed in [30, 31] multi-component dark matter models may have two
WIMP candidates but also one WIMP and one FIMP DM particle. In the latter scenario the
relic density can still be saturated while the WIMP DM candidate respects the constraints
from direct and indirect detection experiments. In [31] this possibility was explored with a Z4
symmetry for the IDM plus a singlet. The same idea was discussed in [32] for a scenario with
a vector and a scalar DM particle where the four possibilities of WIMP/FIMP were examined.

In this work we examine the complementarity between freeze-out and freeze-in in models
which can have two dark matter candidates. One of the particles is produced via freeze-out
and the other via freeze-in. Because FIMPs are hard to detect they could reveal themselves
by the fact that they are instrumental in obtaining the correct relic density. Suppose that

1Indirect detection experiments also play a role. However, for most models or at least for the bulk of the
parameter space direct detection dominates.
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a dark matter particle is found in a DD experiment, and that LHC searches (or searches
at future colliders) point to a given extension of the scalar sector of the SM, allowing to
determine couplings and masses of the model. If the relic density is not saturated this
could hint to a FIMP being present in the model. Also, a DM hint at the LHC, having no
correspondence in direct and indirect detection experiments in extensions of the SM with
DM being produced via freeze-out could be solved with the addition of a FIMP candidate.
We will show how this complementarity works in detail using a multi-component dark matter
model with two real singlets with two independent Z2 symmetries. We will then move to
more elaborated extensions of the SM. As a side remark we will also show the difference in
having one or two DM candidates and review some of the possible mechanisms proposed
in the literature for the two scenarios.

The paper is organised as follows. In section 2 we discuss a toy model to make easier the
understanding of the main points we want to make. In section 3 we present the full dark
phase of the N2HDM. Our conclusions are given in section 4.

2 Two real singlets extension of the SM

The simplest extension of the SM that one can build to show the freeze-out and freeze-in
complementarity is the addition of two singlets to the SM field content, that will play the
role of DM candidates. So let us consider a scalar potential where besides the SM Higgs
doublet we have two real singlets and two discrete symmetries ZFO

2 and ZFI
2 under which

the potential is invariant. Only ϕFI is odd under ZFI
2 and only ϕFO is odd under ZFO

2 . The
most general renormalisable scalar potential is then

VScalar = µ2
h|H|2 + λh|H|4 + 1

2µ2
FO ϕ2

FO + λ1
4! ϕ4

FO + 1
2µ2

FI ϕ2
FI + λ2

4! ϕ4
FI

+ λFO
2 ϕ2

FO|H|2 + λFI
2 ϕ2

FI|H|2 + λIO
4 ϕ2

FIϕ
2
FO , (2.1)

where H is the SM Higgs doublet and ϕFI and ϕFO are the two real singlets. As the two
symmetries remain unbroken, we end up with two DM candidates with masses mFO and
mFI. The SM couplings are unchanged and the DM particles only couple to the Higgs boson
via the Higgs portal, at tree-level.

The two limits λFI = 0 and λFO = 0 (with λIO = 0 in both cases) correspond to
scenarios where only one singlet is active and DM is generated via freeze-out and via freeze-in,
respectively. Before discussing the complementary we note that if λFO = 0, the correct DM
density can be generated via freeze-in. In this case, since the coupling is extremely small,
it will be difficult to test the model by any other means. If however λFI = 0 and the DM
candidate is generated via freeze-out the model is excluded in a vast region of the parameter
space. In figure 1 we show in white the allowed region in the plane (λFO, mFO) in the scenario
where λFI = 0 and λIO = 0 (the remaining quartic couplings, λ1 and λ2, are irrelevant for
the relic density, as well as µFI in this case). The mass range chosen for the DM particle
that freezes out, mFO, between mh/2 and 20 TeV, is the one for which the interplay between
direct detection and relic density constraint is clearest. The freeze-out portal coupling, λFO,
varies between 10−4 and 10. As the coupling grows it becomes more and more constrained by
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Figure 1. The white region shows the allowed parameter space in the plane (λFO, mFO) in the
scenario where λFI = λIO = 0, for a dark matter mass for the particle that freezes out between mh/2
and 20 TeV, and for λFO between 10−4 and 10. The scenario corresponds to having only one singlet.
The constraints shown are the strongest ones for this region of the parameter space: the latest direct
detection measurements and the relic density. The red points are excluded by DD experiments, the
dark green line describes points with the experimentally measured relic density, and all other points
are above that value. The colored bar shows the freeze-out relic density for each point, ΩFOh2, in
logarithmic scale.

the DD experiments. These experiments work optimally in the mass region between 10 and
100 GeV and for a mass of 10 TeV the constraints are weaker by about two orders of magnitude.
In order not to produce an overabundant relic density, one needs a large value of the portal
coupling. The tension between these two constraints leads to a small region of allowed
couplings for masses above about 4 TeV. Future DD constraints will further reduce this region
and make the searches at the LHC harder. In fact, for a mass of 4 TeV the DM production
cross section is already negligible. The plot was obtained using micrOMEGAs [33, 34].

2.1 Determining the relic density via freeze-in and freeze-out

In the previous section we have seen that a DM candidate produced via freeze-out is excluded
for a mass below ≈ 4 TeV in the single singlet extension of the SM with DM being produced
via freeze-out. With the improved constraints on direct detection, the allowed mass range
will soon be out of reach of the LHC. In this section we will discuss the complementarity
between the two mechanisms. The coupled Boltzmann equations to determine the freeze-in
and freeze-out yields for this scenario are

dYFI
dx

=
√

π

45G

g
1/2
∗ m

x2

[
⟨σv⟩ϕFIϕFISMSM(Y 2

FI,eq − Y 2
FI)

+⟨σv⟩ϕFIϕFIϕFOϕFO

(
Y 2

FO
Y 2

FO,eq
Y 2

FI,eq − Y 2
FI

)]
, (2.2)
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dYFO
dx

=
√

π

45G

g
1/2
∗ m

x2

[
⟨σv⟩ϕFOϕFOSMSM(Y 2

FO,eq − Y 2
FO)

−⟨σv⟩ϕFIϕFIϕFOϕFO

(
Y 2

FO
Y 2

FO,eq
Y 2

FI,eq − Y 2
FI

)]
, (2.3)

where G is the gravitational constant and g∗ are the relativistic degrees of freedom. The
first equation determines the density of ϕFI via freeze-in. The quantity ⟨σv⟩ϕFIϕFISMSM is
the thermally averaged cross-section (TAC) for the 2 → 2 processes between ϕFI and the
SM particles, where the sum over all possible SM final states is implicit (same definition
for the FO case). The quantity ⟨σv⟩ϕFIϕFIϕFOϕFO is the TAC for the annihilation of two ϕFI
into two DM particles odd under ZFO

2 . YFO/FI,eq are the freeze-out/freeze-in equilibrium
yields. In principle, we could also add a decay term to the freeze-in equation. However, we
do not include this term since we will work with masses for the particle that freezes in, mFI,
which make the decay kinematically forbidden. Note also that the ⟨σv⟩ϕFIϕFIϕFOϕFO TAC is
multiplied by what we define as an enhancement factor, Y

2, given by

Y
2 ≡ Y 2

FO
Y 2

FO,eq
. (2.4)

This enhancement factor is a measure of how much bigger the density of the particle that
freezes out is compared to its equilibrium value. Because the SM is always in thermal
equilibrium during freeze-out (and freeze-in) the corresponding terms do not have such
enhancement factors.

The Boltzmann equations can be simplified by assuming that the density of ϕFI is much
lower than its equilibrium value. This is a good approximation since ϕFI starts with no initial
abundance and remains below the equilibrium density throughout the whole process. Hence,
the terms proportional to YFI can be neglected.

Freeze-out and freeze-in occur at different times of the evolution of the universe. Typical
freeze-out temperatures TFO, which do not result in an overabundance of the relic density, are
in the order of xFO = mFO/TFO ≈ 23− 28 [35], while freeze-in typically ends at temperatures
TFI given by xFI = mFI/TFi ≈ 2 − 5 [5]. Suppose that mFO ≈ mFI. This implies, that
throughout the whole freeze-in of ϕFI, ϕFO is in thermal equilibrium and therefore Y

2 = 1.
If, however, the masses of ϕFO and ϕFI are far apart such that the temperatures of freeze-out
and freeze-in overlap, the enhancement factor becomes non-unity during freeze-in. In this
case (TFO = TFI) one obtains

mFO
mFI

≈ 4.6 − 14 , (2.5)

for the typical freeze-out and freeze-in temperatures mentioned above. On the other hand, such
high mass ratios lead to a small ⟨σv⟩ϕFIϕFIϕFOϕFO TAC making the enhancement negligible.
As a consequence we can set the enhancement factors to one, independently of when freeze-out
occurs. This means that the equations decouple and can be written as

dYFI
dx

=
√

π

45G

g
1/2
∗ mFI

x2 [⟨σv⟩ϕFIϕFISMSM + ⟨σv⟩ϕFIϕFIϕFOϕFO ] Y 2
FI,eq , (2.6)

dYFO
dx

= −
√

π

45G

g
1/2
∗ mFI

x2 ⟨σv⟩ϕFOϕFOSMSM
(
YFO − Y 2

FO,eq

)
, (2.7)
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Figure 2. Lines for which (Ωh2)Planck = (ΩFI + ΩFO)h2 = 0.120 ± 0.002 in the (λFO, λFI) plane for
several combinations of masses. λIO = 0 and left: mFI = 700 GeV, right: mFO = 5 TeV, and no other
constraints were applied.

where we additionally neglect the ⟨σv⟩ϕFIϕFIϕFOϕFO term in the equation for freeze-out because
⟨σv⟩ϕFIϕFIϕFOϕFO ≪ ⟨σv⟩ϕFOϕFOSMSM due to the differences in the coupling strengths between
freeze-out and freeze-in. Solving these equations we can find the regions of the parameter
space that lead to the correct measured value of the relic density, that is

(Ωh2)Planck = (ΩFI + ΩFO)h2 = 0.120 ± 0.002 , (2.8)

where ΩFIh
2 and ΩFOh2 are the relic densities generated via freeze-in and freeze-out, re-

spectively.
In figure 2 we present the lines for which the relic density is saturated, that is, (Ωh2)Planck =

(ΩFI +ΩFO)h2 = 0.120±0.002, in the (λFO, λFI) plane for several combinations of masses and
for λIO = 0. In the left plot the freeze-in mass is fixed to 700 GeV, and in the right plot it is
the freeze-out mass that is fixed to 5 TeV to avoid the DD constraints.2 In the extreme left of
the left plot we recover the scenario where the freeze-in portal coupling is zero. In that limit
we just see the relation between the freeze-out portal coupling and the mass, showing that as
the mass grows the coupling also grows, as we can see in figure 1. In fact, as discussed in [5],
the freeze-out relic density is proportional to m2

FO/λ2
FO and a larger mass requires a larger

coupling. The freeze-in relic density is proportional to λ2
FI with a negligible mass dependence

which is clear from the right plot. This means that larger freeze-out masses need larger
couplings to stay below the measured relic density value of 0.120, while the freeze-in relic
density is independent of the mass up to threshold effects. Looking at figure 1, we can see that
when we only have freeze-out, for mFO = 5 TeV, λFO ≈ 2 to saturate the relic density. Thus,
on the right plot of figure 2, when the FI portal coupling is zero we should have λFO ≈ 2. As
we increase the contribution from FI to the total relic density, by increasing λFI, we need to
decrease the contribution from FO, by increasing λFO. This explains why both λFO and λFI
need to simultaneously increase (or decrease) so that we obtain the correct relic density.

In figure 3 we again present the lines leading to (Ωh2)Planck = (ΩFI + ΩFO)h2 = 0.120 ±
0.002 in the (λFO, λFI) plane. In this case we fix the masses to be mFO = 4 TeV and

2Note that the points corresponding to mFO = 500 GeV and mFO = 1000 GeV are excluded by DD
constraints as can be seen in figure 1.
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Figure 3. Lines for which (Ωh2)Planck = (ΩFI + ΩFO)h2 = 0.120 ± 0.002 in the (λFO, λFI) plane for
several values of λIO. No other constraints were applied apart from fixing the masses to mFO = 4 TeV
and mFI = 5 TeV.

mFI = 5 TeV and vary λIO. As expected, λIO has to be of the order of λFI because both
couplings participate in the freeze-in process. This plot clearly shows that by combining λFI
with λIO we can basically choose any value for the freeze-out coupling, allowing in this way
to consider parameter points which were previously excluded when only FO was taken into
account. Again, this means that an invisible and undetected sector in the model can always
solve the issue of obtaining the correct value of the relic density, provided it is underabundant.

2.2 Consequences of having only one Z2 symmetry

It is well-known that any extension of the SM depends heavily on the symmetries of its
Lagrangian. Let us analyse the scenario where we again extend the model by two real
singlets but now there is only one Z2 symmetry. The most general renormalisable potential
in this case is

VScalar = µ2
h|H|2 + λh|H|4 + m2

1 ϕ2
1 + λ1

4! ϕ4
1 + m2

2 ϕ2
2 + λ2

4! ϕ4
2

+ λ1H

2 ϕ2
1|H|2 + λ2H

2 ϕ2
2|H|2 + λ12

4 ϕ2
1ϕ2

2 (2.9)

+ m2
12ϕ1ϕ2 + λ112

4 ϕ3
1ϕ2 + λ122

4 ϕ1ϕ3
2 + λ12H

2 ϕ1ϕ2|H|2 ,

where we have redefined the indices of the two scalar singlets so that they are now defined
as ϕ1 and ϕ2. The last line of the potential shows the new terms that have to be added if
only one discrete symmetry is present. Before we start the discussion we need to define the
mass eigenstates in the dark sector (DS), which we call hD1 and hD2. These are obtained
from ϕ1 and ϕ2 via the dark rotation angle θD as(

hD1
hD2

)
=
(

cos θD sin θD

− sin θD cos θD

) (
ϕ1
ϕ2

)
. (2.10)
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In the case of having two Z2 symmetries as in the previous section it is easy to see how we
are able to obtain 2 DM candidates which freeze-in and freeze-out respectively. However, the
additional interactions introduced in this potential couple the two scalar fields, forcing them
into thermal equilibrium with each other for typical freeze-out couplings. In this case we
can describe the two scalar fields by one DS bath, and we will only have one DM candidate,
corresponding to the lighter of the two DS particles. The Boltzmann equation describing
the freeze-out of this DS bath is given by [36]

dY

dx
= −

√
π

45G

g
1/2
∗ mhD1

x2 ⟨σv⟩eff
(
Y 2 − Y 2

eq

)
, (2.11)

where mhD1 is the mass of the lighter DS particle. In ⟨σv⟩eff we sum over all possible initial
and final states that contribute to freeze-out and in Yeq we sum the equilibrium yields of both
DS particles. By looking at the potential in eq. (2.9) we see that only the portal couplings
λ1H , λ2H and λ12H contribute to freeze-out. This means that we can draw a plane using
these three parameters in which we obtain the experimentally measured relic density given
in eq. (2.8). This plane is shown in figure 4. Here we chose the mass of the DM candidate
to be mhD1 = 100 GeV and the mass of the second scalar to be mhD2 = 120 GeV (upper
left plot), mhD1 = 500 GeV and mhD2 = 550 GeV (upper right plot), and mhD1 = 1000 GeV
and mhD2 = 1050 GeV (lower plot). The masses must be relatively close to ensure that
co-annihilations between the two DS particles are relevant. The plane has three distinct
points in which each of the couplings is the dominant driver of the freeze-out process such
that (Ωh2)total

(Ωh2)single
> 0.9, where (Ωh2)total is the relic density taking into account all processes,

and (Ωh2)single the relic density where we only consider the processes associated to a specific
single coupling. In the upper left, lower right and lower left corners of each plot in figure 4,
the dominant processes are hD1hD1 → SMSM, hD2hD2 → SMSM and hD1hD2 → SMSM,
respectively. This shows that without additional constraints there is a large and simple
parameter space which allows to obtain the experimental relic density via FO alone, because
now co-annihilation processes play a role, unlike in the previous scenario. Although we do
not apply any other constraints it is easy to see how for example direct detection constraints
would limit this parameter space. Since λ1H is the only relevant coupling for direct detection,
there will be a clear upper bound on this coupling from such constraints.

Another way to obtain the full relic density in such a model would be again to let one
of the DS particles freeze-in while the other one would freeze-out. This way we arrive at
a similar situation as in the previous section in the case of degenerate masses. The only
difference is that now there are more couplings that have to be small enough to enable
freeze-in, which are λ12, λ112, λ122, λ12H and λ1H or λ2H . Additionally, there is also the
possibility that the heavier of the DS particles can now decay into the lighter one via the
coupling to the Higgs boson such that we only have one DM candidate.

This model also allows for another mechanism to take place, the so called DM from
exponential growth, first introduced in [17]. Although a specific model was not put forward
in [17] it can clearly be built with a single Z2 symmetry, like the model presented in this
section. There is also a study for a scenario with a Z3 symmetry [16]. In this production
mechanism, at least two particles from the DS are necessary. Of the two, the heavier one (say

– 8 –
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Figure 4. Parameter points for which (Ωh2)Planck = ΩFOh2 = 0.120 ± 0.002 in the (λ1H , λ2H , λ12H)
plane for different mhD1 , mhD2 mass combinations. The points above the red line are excluded by direct
detection experiments. The remaining parameters of the potential are not relevant in this scenario.

hD2) is in thermal equilibrium with the SM bath and the lighter one (say hD1), which is the
DM candidate, starts with zero initial abundance. The DM candidate then obtains a small
abundance through freeze-in via its interactions with the SM and the heavier hD2 particle.
With the right choice of couplings this small abundance then grows exponentially through
the process hD2hD1 → hD1hD1 until it reaches a plateau. This behaviour is shown in figure 5,
where the lightest DM particle yield is shown as a function of mhD1

/T , with mhD1
= 100 GeV

for several combinations of the potential parameters that lead to the observed relic density.
All of the relevant quartic couplings except for λ112 and λ12 were set to zero in this case.
As expected, for a smaller FI coupling, λ12, the coupling associated with the exponential
growth, λ112, needs to be larger, in order to obtain the observed relic density. Also, the
inclusion of the exponential growth mechanism allows to consider smaller FI couplings which
are otherwise not able to reach the observed relic density.

In fact, as long as λ12 is small enough so that FI alone does not saturate the relic density,
we can pratically choose any value for the FI coupling and then adjust λ112 accordingly
so that we have Ωh2 = 0.120 ± 0.002. Another interesting feature is the fact that, due to
the exponential nature of this mechanism, the coupling associated to exponential growth
changes very little. For instance, while λ12 varies between four orders of magnitude, λ112

– 9 –
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Figure 5. Yield of the DM particle hD1 as a function of mhD1
/T for several combinations of the

potential quartic couplings λ112 and λ12. All other quartic couplings have been set to zero. The red
dotted line corresponds to the yield for which we obtain the observed relic density.

only changes by a factor of ≈ 2.26 for the considered λ12 values, meaning that this parameter
is very constrained.

Assuming that hD2 remains in thermal equilibrium during the exponential growth of
hD1 the evolution of the DM density for hD1 can be obtained from

dYhD1

dx
=
√

π

45G

g
1/2
∗ mhD2

x2 (⟨σv⟩expY eq
hD2

YhD1
+ ⟨σv⟩DS(Y eq

hD2
)2 + ⟨σv⟩SM(Y eq

hD1
)2) . (2.12)

Here Y eq
hD1

(Y eq
hD2

) is the equilibrium yield of the particle hD1 (hD2), and the TACs ⟨σv⟩exp,
⟨σv⟩DS and ⟨σv⟩SM contribute to exponential growth, freeze-in via the DS particle hD2 and
freeze-in via the SM particles, respectively.

Again, it is easy to obtain a parameter combination which is able to generate a relic
density of (Ωh2)Planck = 0.120 ± 0.002 as can be seen in figure 6. Here, we fixed the coupling
responsible for exponential growth, λ112, for each mass, such that for λ1H = λ12H = λ122 = 0
and λ12 = 10−15 we obtain the observed relic density. We furthermore fix the DS masses
such that mhD2

= 2mhD1
. From here we decrease the coupling λ12 and adjust the other

freeze-in couplings and λ112 such that we still obtain the observed relic density. (The λ112
coupling changes by a very small amount due to the fact that it is related to exponential
growth, as we mentioned earlier.) As stated in the previous section, these freeze-in couplings
are too small to be affected by other constraints.

To summarize section 2, we can see that by considering different symmetries for a given
Lagrangian and by moving into different parameter space regions, we are able to obtain
different DM generation scenarios. Here we only focused on scenarios involving freeze-out or
freeze-in with or without exponential growth. However, mechanisms such as Cannibal DM [10]
and Forbidden DM [9] would also allow to generate the experimentally measured relic density
within this model, as well as semi-annihilation [6] in specific regions of the parameter space.
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Figure 6. Parameter points for which the experimental relic density is obtained. The coupling λ112
which is responsible for the exponential growth is fixed for each mass and mhD2

= 2 mhD1
.

3 The full dark phase of the N2HDM

In this section we discuss a particular phase of the N2HDM [26–29], where both FI and FO
occur, and together reproduce the correct value of the experimentally measured relic density
in a complementary way. The N2HDM has the SM particle content plus a second SU(2)L

doublet Φ2 with hypercharge Y = +1 and a real SU(2)L singlet ΦS with Y = 0. The most
general renormalisable scalar potential invariant under the two Z2 symmetries

Z(1)
2 : Φ1 → Φ1, Φ2 → −Φ2, ΦS → ΦS , (3.1)

Z(2)
2 : Φ1 → Φ1, Φ2 → Φ2, ΦS → −ΦS , (3.2)

is

VScalar = m2
11Φ†

1Φ1 + m2
22Φ†

2Φ2 + λ1
2
(
Φ†

1Φ1
)2

+ λ2
2
(
Φ†

2Φ2
)2

+ λ3Φ†
1Φ1Φ†

2Φ2 + λ4Φ†
1Φ2Φ†

2Φ1 + λ5
2

[(
Φ†

1Φ2
)2

+ h.c.
]

(3.3)

+ 1
2m2

sΦ2
S + λ6

8 Φ4
S + λ7

2 Φ†
1Φ1Φ2

S + λ8
2 Φ†

2Φ2Φ2
S ,
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where all 11 free parameters of the Lagrangian,

m2
11 , m2

22 , m2
S , λ1−8 , (3.4)

are real, or can be made to be so via a trivial rephasing of one of the doublets. We introduce
no soft breaking terms in the potential for the discrete symmetries to be exact. Soft breaking
mass terms are usually introduced in these models to allow for a decoupling limit. One such
term is m2

12(Φ†
1Φ2 + h.c.) usually present in 2HDMs and N2HDMs. Since this term would

softly break the Z
(1)
2 symmetry we will not include it. Note that even if this particular term

was included the minimum condition would disallow it.
As the two symmetries are exact both explicitly and spontaneously, two DM candidates

will emerge after electroweak symmetry breaking (EWSB). The two DM quantum numbers
are independent and the corresponding DM candidates cannot decay into each other. This
particular phase of the N2HDM was named in [26] the Full Dark Phase (FDP) of the N2HDM.
A discussion of the different phases of the N2HDM can be found in [26].

After EWSB, the fields can be parametrised in terms of the charged complex fields
ϕ+

i (i ∈ {1, 2}), the neutral CP-even fields ρI (I ∈ {1, 2, s}) and the neutral CP-odd fields
ηi as follows

Φ1 =

 ϕ+
1

1√
2

(v1 + ρ1 + i η1)

 , Φ2 =

 ϕ+
2

1√
2

(ρ2 + i η2)

 , ΦS = ρs . (3.5)

Because all other neutral fields belong to one of the dark phases, the SM-like Higgs is the one
from the doublet with a vacuum expectation value (VEV). There is no mixing in the scalar
sector and therefore the rotation matrix from the gauge eigenstates to the mass eigenstates
is just the unit matrix, R = 13×3. Also, the SM Higgs couplings to the other SM particles
do not change relative to the SM. There are, however, new couplings, the ones between the
Higgs and the dark matter candidates stemming from the Higgs potential and the couplings
of the dark particles from the doublet to the SU(2) gauge bosons, via the covariant derivative.
The mass eigenstates are the SM Higgs, HSM, the four scalars from the dark doublet, HDD,
AD, and the two charged scalars H±

D , and the one from the dark singlet, HDS. We use as
input values the following parameter set,

mHSM , mHDD , mAD , mHDS , mH±
D

, m2
22, λ2, λ6, λ7, λ8, v. (3.6)

The choice of λ7 instead of m2
S is motivated by the fact that we can access the FI region via

the parameter λ7 more directly than with m2
S . They are related by the expression

m2
S = mHDS − λ7

2 v2 . (3.7)

Since the dark doublet particles couple to the SU(2) gauge bosons proportional to
the SU(2)L and U(1)Y coupling constants g and g′, respectively, these interactions have
a fixed value. This in turn means that neither HDD nor AD can be produced via the
freeze-in mechanism, as these particles are in thermal equilibrium. On the other hand, HDS
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can only couple to the SM via the SM Higgs boson as mediator. The trilinear coupling
λ(HDS, HDS, HSM) is given by

λ(HDS, HDS, HSM) = −λ7v . (3.8)

Therefore, the condition for freeze-in can only be accomplished if λ7 is chosen to be small.
Furthermore, the couplings of the doublet dark sector particles to HDS also have to be small,
as these particles are in thermal equilibrium. A large coupling would also bring HDS to
thermal equilibrium, and would therefore preclude freeze-in in the dark singlet sector. As the
quartic coupling λ(X, X, HDS, HDS) (X ∈ {HDD, AD, H±

D}) is given by

λ(X, X, HDS, HDS) = −λ8 , (3.9)

we consequently choose λ8 to be small as well.
The dark sector from the doublet, similar to the one from the Inert doublet model [21, 37–

39], will be responsible for freeze-out with coupling constants of the order of λi ∼ 10−2 − 10−3

(i = 3 − 5), and the dark sector from the singlet will have much smaller couplings so that
freeze-in can occur. This is the setup required to have simultaneously freeze-in and freeze-out.

3.1 Constraints on the model

We will now describe briefly the theoretical and experimental constraints on the model and
justify the choice for the regions of the parameter space scans. The constraints are imposed
via the implementation of the model in ScannerS [40, 41].

The necessary and sufficient conditions for the potential to be bounded from below were
obtained in [42] for a general N2HDM. The discriminant D defined in [29],

D = min(λ4 − |λ5|, 0) , (3.10)

allows to write the region of parameters for a potential bounded from below as

Ω1 ∩ Ω2 , (3.11)

where Ω1 and Ω2 are given by

Ω1 =
{

λ1, λ2, λ6 > 0;
√

λ1λ6 + λ7 > 0;
√

λ2λ6 + λ8 > 0;

√
λ1λ2 + λ3 + D > 0;

√
λ1
λ2

λ8 + λ7 ≥ 0
}

, (3.12)

Ω2 =
{

λ1, λ2, λ6 > 0;
√

λ1λ6 > −λ7 ≥
√

λ1
λ2

λ8;
√

λ2λ6 ≥ λ8 > −
√

λ2λ6;

√
(λ2

7 − λ1λ6)(λ2
8 − λ2λ6) > λ7λ8 − (D + λ3)λ6

}
. (3.13)

To ensure at least (meta-)stability of the electroweak vacuum, we test each parameter point
with EVADE [43–45].
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We require perturbative unitarity [46] to hold, meaning that the eigenvalues Ei of the
tree-level 2 → 2 scattering matrix have to fulfil the following condition,

|Ei| ≤ 8π . (3.14)

The eigenvalues Ei are given in ref. [29].
Adding additional scalars to the theory requires considering possible deviations from

the electroweak precision parameters S, T , and U [47]. Compatibility with electroweak
precision data is imposed by a 95% confidence level (C.L.) exclusion limit using the formulae
in refs. [48, 49] and the fit result of ref. [50]. The formulae and constraints are implemented
in ScannerS.

The experiments at the Tevatron, LHC, and LEP provide additional constraints on
the new scalars of the model. These constraints are tested via HiggsSignals [51, 52] and
HiggsBounds [53–56] which have recently been merged into HiggsTools [57], both interfaced
with ScannerS. HiggsSignals provides a χ2 value used to check for the agreement between
the predicted observables of the SM-like Higgs boson in our model and the experimental
results. HiggsBounds checks the parameter points against the exclusion bounds obtained
by the experiments in their searches of new scalars.

As discussed, the N2HDM provides two DM candidates in the FDP, which is the one of
interest to us. The DM particle with origin in the singlet has no other restrictions besides the
ones from the relic density measurement. The one with origin in the doublet is compelled to be
also in agreement with direct and indirect detection experiments. For the range of parameters
under study, DD constraints dominate over indirect detection limits and, where applicable,
over collider limits. The most recent measurements for DD are from the LUX-ZEPLIN (LZ)
experiment [18]. The results provide a constraint on the spin-independent DM-nucleon direct
detection (SI-DD-N) cross section σ̂SI-DD-N. This exclusion limit assumes the observed relic
density. Since in our scenario the FO relic density is below the measured value, the cross
section has to be multiplied by the corresponding reduced fraction such that the comparison
with the experimental results is performed using

σSI-DD-N = σ̂SI-DD-N
ΩFOh2

Ωexph2 . (3.15)

There is also an indirect constraint on the FO dark sector because of the existence of
a charged scalar H±

D . Since we are dealing with a full dark sector, the couplings of HSM to
the remaining SM particles do not change so that its production cross section at the LHC
remains unchanged. However, the decay width of the SM-like Higgs into photons, HSM → γγ,
will change relative to the SM due to the additional loop with the dark charged Higgs boson.
This implies a change of the signal strength µγγ in the photon final state, which is defined as

µγγ = σ(pp → HSM → γγ)FDP
σ(pp → HSM → γγ)SM

= σprod,FDPB(HSM → γγ)FDP
σprod,SMB(HSM → γγ)SM

= B(HSM → γγ)FDP
B(HSM → γγ)SM

.

(3.16)
Here, σprod, i (i ∈ {SM, FDP}) is the production cross section in either the SM or the new
model, i.e. the FDP of the N2HDM, respectively, and B(HSM → γγ)i is the corresponding
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branching ratio of the Higgs decay into two photons. The signal strength is constrained by
the latest measurement of the ATLAS experiment [58]. The measured value at 1σ is given by

µγγ = 1.04+0.10
−0.09 . (3.17)

We demand for the scanned points that the signal strengths lie in the 2 × 1σ bound of the
measured value, i.e. between 0.86 and 1.24.

3.2 Scans

The parameter scans are performed using ScannerS which checks for all the theoretical and
experimental constraints described in the previous section. The relic density and direct
detection cross section is calculated with micrOMEGAs [33, 34]. We set the VEV v to the
SM value given by

v = 1√√
2GF

≃ 246.22 GeV , (3.18)

where GF denotes the Fermi constant [59]. One of the CP-even scalars is the SM-like Higgs
boson with the experimentally measured mass value

mHSM = 125.09 GeV . (3.19)

The DM masses from the doublet are varied in the range

60 GeV ≤ mHDD , mAD , mH±
D
≤ 1 TeV , (3.20)

whereas we vary the mass of HDS in the range

1 GeV ≤ mHDS ≤ 1TeV . (3.21)

For the FI mechanism to happen the values of λ7 and λ8 are varied in the range

10−14 ≤ λ7, λ8 ≤ 10−9 , (3.22)

while λi with (i ∈ {2, 6}) are varied in

0 ≤ λ2, λ6 ≤ 20 . (3.23)

The scan range for the mass parameter m2
22 is given by

0 ≤ m2
22 ≤ 106 GeV2 . (3.24)

3.3 Results

Once all constraints are imposed we have obtained the sample of points used in the results
shown in this section. Let us first state once more one of the main goals of this work: we are
interested in understanding what is the parameter space where FI and FO are complementary
and if there is something particular to this parameter region from the point of view of
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Figure 7. Left: calculated relic density Ωch2 as a function of the ratio between the FI relic density
ΩFI and the FO relic density ΩFO; the color gradient shows the ratio of the relic density ΩFO generated
via FO and the full relic density. Right: zoom on the left plot showing the region where the relic
density is saturated.

phenomenology. As previously defined, the full relic density Ωch
2 is the sum of the relic

densities ΩFO and ΩFI,

Ωch
2 = ΩFOh2 + ΩFIh

2 . (3.25)

In the left plot of figure 7 we present the full relic density Ωch
2 as a function of the ratio

between the FI and the FO relic density. The color gradient shows the ratio of the FO relic
density and the full relic density. The right plot is a zoom on the left plot showing in more
detail the region where the relic density is saturated. As expected, most points in the scanned
parameter region are dominated by FI. The reason is clear. Once a sector of the model is
built such that a DM particle exists with a very small portal coupling, FI is always an option.
If the ratio of ΩFI/ΩFO > 1, the contribution of FI to the full relic density is more than 50%,
whereas if it is less than 1, the contribution of FO is now more than 50%. The color gradient
provides additional insight by showing the correlation between the relic density ΩFO generated
through FO and the full relic density. As the ratio ΩFI/ΩFO decreases, indicating an increase
in the importance of FO, FI still plays a crucial role in accounting for the total relic density.

In figure 8 we present in the left plot the normalized spin-independent direct detection
cross section σSI-DD-N (cf. eq. (3.15)) as a function of the mass of the FO DM candidate
mDM1. This is the lighter of the two neutral dark doublet states, HDD or AD, which we
denote DM1, and correspondingly its mass by mDM1 . The color gradient shows the value of
the total relic density Ωch

2. The gray points are all scanned points surviving all experimental
and theoretical constraints while the colored points, besides the previous constraints, also
obey the LZ constraint and the one from the signal strength µγγ . In the right plot we present
the correlation between the normalized SI direct detection cross section of the FO particle
and the full relic density, with the color gradient indicating the ratio between ΩFO and the
calculated full relic density Ωc. The conclusion is that it is possible to find parameter points
that comply with the experimental results and which are above the neutrino floor [60] (which
lies below about 10−11 − 10−12 pb in the considered mass range). These parameter points
can be tested in future DM-nucleon-DD experiments. Also, the importance of FI to saturate
the relic density is clear, since a significant amount of the parameter points corresponding
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Figure 8. Left: normalized SI direct detection cross section σSI-DD-N of the FO DM candidate particle
as a function of its mass mDM1; the blue line depicts the fit function of the Lux-Zeplin exclusion
bound. The gray points are from the full scan while the colored points are also allowed by the LZ
direct detection experiments and the newest µγγ constraints. The color gradient shows the value
of the calculated full relic density. Right: correlation between the normalized SI direct detection
cross section σSI-DD-N of the FO particle and the calculated full relic density with the color gradient
indicating the ratio between ΩFO and Ωc.

to the observed relic density have a large contribution from FI. Still, due to the smaller
portal coupling needed for FI, the direct detection cross section for FI is so small that it
is way below the neutrino floor, which does not allow to probe this type of dark matter
particle in future searches in SI-DD experiments. We should also stress that, even when FI is
the dominant process, implying that ΩFO/Ωc has to be small, the SI direct detection cross
section for FO can still be quite large, meaning that it remains possible to detect the FO
DM particle in DD experiments in the scenario where FI is dominant. This occurs because
even though ΩFO/Ωc is small, which should decrease the value of σSI-DD-N, the FO portal
coupling must be larger than what it would normally be without freeze-in so that the relic
density remains saturated, which in turn can increase σSI-DD-N overall. This is why on the
right plot of figure 8, several points where FI is the dominant contribution result in large
DD cross sections for the FO particle.

As stated above, the loop-induced SM branching ratio into the photons changes because
of the possibility of the dark charged Higgs running in the loops. The coupling entering the
corresponding loop is λ(HSM, H±

D , H±
D), which is given by

λ(HSM, H±
D , H±

D) = −λ3v . (3.26)

The signal strength is hence independent of the couplings λ7 and λ8, which are responsible
for the FI mechanism. It depends, however, on λ3 which enters also the couplings of the
dark doublet states to the SM Higgs boson and hence makes a connection between the µγγ

value and the processes contributing to direct detection and the relic density of the freeze-out
particle. The implications are discussed in the following.

In figure 9 we present the relic densities ΩFIh
2 for FI (left) and ΩFOh2 for FO (right)

as a function of the signal strength µγγ . The color gradient denotes the full relic density
Ωch

2. The gray points show the full scan without the updated LZ and µγγ constraints. We
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Figure 9. On the left (right), the relic density generated via FI (FO), ΩFIh
2 (ΩFOh2), as a function

of the signal strength µγγ is shown. The color gradients show the full relic density Ωch2.

observe that for all values of µγγ below about one, the observed value of the relic density
can be achieved through the FI mechanism. Above one, most points are excluded by the
direct detection constraint of the FO candidate. As stated above, µγγ does not depend on the
FI parameters λ7 and λ8. On the other hand, in the case of FO, the parameter space that
saturates the relic density is close to the SM value since only values very close to µγγ = 1
are allowed in this case. Thus, if we were to measure a µγγ value clearly below one, it could
hint to the existence of freeze-in in this model.

The fact that µγγ ≈ 1 for FO provides insight into the parameter regions where the FO
mechanism becomes the dominant process. In fact, only if the additional contribution of
the charged Higgs H±

D loop is small, we can have a SM-like value of µγγ ≈ 1. This can be
achieved if λ3 is small due to the dependence of HSMH±

D H±
D on that parameter only. The

parameter λ3 can be written as a function of the input parameters m2
H±

D

and m2
22 as

λ3 =
2(m2

H±
D

− m2
22)

v2 . (3.27)

Consequently, to make λ3 small, one needs to choose m2
H±

D

≈ m2
22. On the other hand, a

small value of λ3 is directly related to a significant value of the FO relic density, which can
be explained as follows. The TAC for freeze-out is forced to be small in order to obtain a
large FO relic density. The TAC depends on the Higgs portal couplings and the quartic
couplings.3 The relevant couplings involving H±

D are proportional to λ3. Therefore, choosing
a small λ3 leads to a lower TAC and hence a higher final relic density. However, choosing λ3
to be small is not the only condition for a large FO contribution to the final relic density. In
figure 10 we show the FO relic density as a function of the absolute value of the coupling
combinations |λ345| = |λ3 + λ4 + λ5| (left plot) and |λ̄345| = |λ3 + λ4 − λ5| (right plot). One
can see that small values of these coupling combinations lead to a large FO relic density. The
coupling combination λ345 appears in the Higgs portal coupling λ(HDD, HDD, HSM) and the
quartic coupling λ(HDD, HDD, HSM, HSM), and the combination λ̄345 appears in the couplings
λ(AD, AD, HSM) and λ(AD, AD, HSM, HSM). The conditions for a large FO relic density are

3The vertices, where these couplings appear, are given in appendix A.
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Figure 10. On the left we present the relic density generated via FO as a function of the absolute
value of λ345. On the right we show the FO relic density as a function of the absolute value of λ̄345.

therefore that λ3 and the coupling combinations λ345 or λ̄345 (depending on whether HDD
or AD is the DM FO particle) must be small. This in turn explains why a significant FO
relic density is directly related to a photonic signal strength close to 1. The FI mechanism is
needed to obtain the observed relic density if neither of these conditions are fulfilled.

3.4 A note on CP-violation in the FI+FO framework

Starting with the scalar potential of the FDP of the N2HDM, if instead of two symmetries
Z(1)

2 and Z(2)
2 we impose just one but different symmetry

Z(3)
2 : Φ1 → Φ1, Φ2 → −Φ2, ΦS → −ΦS , (3.28)

the most general renormalisable scalar potential invariant under this symmetry can be
written as

VCPD = V FDP
N2HDM + (AΦ†

1Φ2ΦS + h.c.) , (3.29)

which was dubbed in [61] as CP in the dark (CPD).4 The extra term allows for CP-violation in
the dark sector. As shown in [61], FO is possible in a substantial region of the parameter space.
The question is now if FI is also possible in the model, and if the two processes can occur
simultaneously. We note that in this model all dark neutral states couple to gauge bosons.

In order to understand the problem let us start by defining the eigenstates of the neutral
dark sector as hi, with i = 1, 2, 3. The mass eigenstates can be obtained from the gauge
eigenstates defined in eq. (3.5) via the orthogonal rotation matrix parameterised by the
angles α1, α2 and α3 with αi ∈

[
−π

2 , π
2
]
,

R =

 cα1cα2 sα1cα2 sα2

−(cα1sα2sα3 + sα1cα3) cα1cα3 − sα1sα2sα3 cα2sα3

−cα1sα2cα3 + sα1sα3 −(cα1sα3 + sα1sα2cα3) cα2cα3

 , (3.30)

where the notation sin(αi) ≡ sαi and cos(αi) ≡ cαi was used.
4The model was investigated w.r.t. its possibility of a strong first-order phase transition in [62].
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The first step is to look at the coupling strengths between the dark sector particles and
the SM. For the particles that freeze-out, the coupling strength has to be at least of the
order 10−3, while for the particles that FI it has to be below about 10−8. The only way
to achieve such a low value is to force one of the hi to decouple from the Z and W bosons
since the SU(2)L gauge coupling is of order 10−1. Let us take h1 to be the state to decouple
from the gauge bosons which in turn means that the absolute value of the couplings of the
vertices Zh1hj , which can be derived from the kinetic terms for Φ2,

|DµΦ2|2 ∋ −g

cosθW
cα2cα3Zµ (h1∂µh2 − h2∂µh1) for j = 2 and (3.31)

|DµΦ2|2 ∋ g

cosθW
cα2sα3Zµ (h1∂µh3 − h3∂µh1) for j = 3 , (3.32)

have to be very small. If we choose α2 → π
2 the rotation matrix becomes

R =

 0 0 1
−sα1+α3 cα1+α3 0
−cα1+α3 −sα1+α3 0

 (3.33)

and the mass eigenstates

h1 = ρs ,

h2 = −sα1+α3ρ2 + cα1+α3η2 , (3.34)
h3 = −cα1+α3ρ2 − sα1+α3η2 ,

and h1 becomes a singlet like field and can therefore be the FI DM candidate. However, when
we decouple one of the scalars we lose CP-violation in the scalar sector because we need to
set A = 0 and λ5 = 0. This can also be seen by their definitions via the remaining parameters

m2
h3 = −

m2
h2

R21R22 + m2
h1

R11R12

R31R32
= m2

h2 , (3.35)

λ5 =
R13(m2

h3
− m2

h1
R2

23 + m2
h2

(R2
23 − 1) + (m2

h1
− m2

h3
)R2

33)
v2(R13 − 2R21R32) = 0 , (3.36)

Re(A) =
R11((m2

h2
− m2

h1
)R2

21 + (m2
h1

− m2
h3

)R2
31)

v2(R13 − 2R21R32) = 0 , (3.37)

Im(A) =
R12((m2

h2
− m2

h1
)R2

21 + (m2
h1

− m2
h3

)R2
31)

v2(R13 − 2R21R32) = 0 , (3.38)

with the components Rij of the rotation matrix given in eq. (3.33).
These couplings can be made zero by evoking two symmetries: the one already imposed,

Z(3)
2 , and a U(1) symmetry under which Φ1 → Φ1, Φ2 → eiθΦ2, ΦS → ΦS . In this restricted

version of the model we can now have FI for h1 and FO for h2,3 (with the same mass).
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Figure 11. Left: calculated relic density as a function of the ratio between the FI relic density and
the FO relic density; the color gradient shows the ratio of the relic density generated via FO and the
total relic density. Right: freeze-out relic density as a function of µγγ ; the color gradient shows the
calculated relic density.

Figure 12. Calculated relic density as a function of the FI mass (left) and FO mass (right); the color
gradient shows the ratio of the relic density generated via FI and the observed relic density.

The model is now very similar to the one previously discussed and we will just show that
the results are similar.

In figure 11 we show in the left plot the calculated relic density as a function of the
ratio between the FI relic density and the FO relic density. The color gradient shows the
ratio of the relic density generated via FO and the total relic density. As for the N2HDM,
the full relic density has most of the times a much larger contribution from FI. In the right
plot we present the freeze-out relic density as a function of µγγ . The color gradient shows
the calculated relic density. Here again, and for similar reasons, the region where FO has
a large contribution coincides with a µγγ close to one.

In figure 12 we present the calculated relic density as a function of the FI mass (left)
and the FO mass (right). The color gradient shows the ratio of the relic density generated
via FI and the observed relic density. The important point to note is that the entire region
for the DM FO masses in the scan is allowed. Also, we see again that in order to obtain
the observed relic density, the contribution from the FI candidate is larger than the one
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from the FO candidates for the majority of points, and without FI, most of the points would
be excluded. Although for most of the parameter space the FO candidates contribute to
only a fraction of the total relic density, they could still be detected both in direct detection
and collider experiments.

In summary, CP in the Dark is able to generate the observed relic density via the two
complementary mechanisms of FO and FI. However, this is achieved at the cost of losing
the CP-violation feature in the dark scalar sector. If we leave the CP in the dark model
as it is (i.e. not choosing the α2 = π/2) we keep the CP violating properties. From here
we add another singlet to the model which is then able to fill the relic density via FI. This
would allow for a scenario with a strong first order electroweak phase transition and could
possibly explain the baryon asymmetry of the universe.

4 Conclusions

In this work we have discussed the possibility of having two DM candidates, one produced
via freeze-in and the other via freeze-out. We have shown that even a simple extension with
only two extra singlets is able to implement the idea. We have then shown that also other
extensions such as the N2HDM in the Full Dark Phase and the CP in the Dark model, have
this complementarity between freeze-in and freeze-out if two independent Z2 symmetries are
imposed. Hence, any model that does not fulfil the relic density can be easily extended with
a new field and a new symmetry that stabilises it such that it works via freeze-in.

It is clear that freeze-in is always possible but has the problem of being hard to probe
although in some scenarios it could be feasible (see for instance [63, 64]). Now, when we
see the processes as complementary, the possible values of the freeze-out portal coupling
vary in a wider range, allowing for a larger portal coupling. This in turn will make searches
at the LHC much more interesting while the relic density is still saturated by the freeze-in
contribution. At the same time, the dark matter fraction can be small enough that the FO
DM candidate cannot be detected via direct and indirect detection but could be probed
at colliders. Nevertheless, we should emphasise that even for a small FO density fraction,
the SI-DD cross section can be quite large, as we have shown for the FDP of the N2HDM
and for CPD. This in turn means that it can still happen that both collider and direct
detection and indirect detection experiments are sensitive to the FO particle even when
freeze-in is the dominant process.

If a DM particle is found in a direct detection experiment this complementarity should
always be considered, especially if a proposed model does not match the measured relic
density and/or an unexpected result at a collider is found. This also signifies that direct
detection cannot be used as a guide to exclude searches in regions of the parameter space
of a given model and that searches at the LHC have to disregard the bounds from DD
in particular scenarios.

As more data is gathered in direct and indirect detection and collider experiments, the
constraints on the DM mass and portal couplings will become more stringent, which may
provide clues as to which models and mechanisms can explain DM.
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A Full dark phase of the N2HDM couplings

The coupling strengths λ between the dark sector particles of the Full Dark Phase of the
N2HDM and the SM particles, and between the dark sector particles themselves5 are given
here. We start with the cubic and quartic interactions between the SM-like Higgs and the
dark scalars and the interactions just between dark scalars:

λ(HSM,HDS,HDS) =−λ7v (A.1)

λ(HSM,HSM,HDS,HDS) =−λ7 (A.2)

λ(HDD,HDD,HDS,HDS) = λ(AD,AD,HDS,HDS) = λ(H+
D ,H−

D ,HDS,HDS) =−λ8 (A.3)

λ(HDS,HDS,HDS,HDS) =−3λ6 (A.4)

λ(HSM,HDD,HDD) =−λ345v (A.5)

λ(HSM,HSM,HDD,HDD) =−λ345 (A.6)

λ(AD,AD,HDD,HDD) = λ(H+
D ,H−

D ,HDD,HDD) =−λ2 (A.7)

λ(HDD,HDD,HDD,HDD) =−3λ2 (A.8)

λ(HSM,AD,AD) =−λ̄345v (A.9)

λ(HSM,HSM,AD,AD) =−λ̄345 (A.10)

λ(H+
D ,H−

D ,AD,AD) =−λ2 (A.11)

λ(AD,AD,AD,AD) =−3λ2 (A.12)

λ(HSM,H+
D ,H−

D ) =−λ3v (A.13)

λ(HSM,HSM,H+
D ,H−

D ) =−λ3 (A.14)

λ(H+
D ,H+

D ,H−
D ,H−

D ) =−2λ2 . (A.15)

Here, we give the cubic and quartic interactions between the gauge bosons and the
dark scalars:

λ(HDD, H+
D , W−) = −λ(HDD, H−

D , W +) = g

2 (A.16)

λ(HDD, AD, Z) = − i

2(g cos θW + g′ sin θW ) (A.17)

λ(HDD, HDD, W +, W−) = g2

2 (A.18)

λ(HDD, H+
D , W−, γ) = λ(HDD, H−

D , W +, γ) = 1
2gg′ cos θW (A.19)

λ(HDD, H+
D , W−, Z) = λ(HDD, H−

D , W +, Z) = −1
2gg′ sin θW (A.20)

λ(HDD, HDD, Z, Z) = (g cos θW + g′ sin θW )2

2 (A.21)

λ(AD, H+
D , W−) = λ(AD, H−

D , W +) = i

2g (A.22)

5Note that we do not give the Lorentz part for the gauge couplings, as we are only interested in the prefactors.
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λ(AD, AD, W +, W−) = g2

2 (A.23)

λ(AD, H+
D , W−, γ) = −λ(AD, H−

D , W +, γ) = i

2gg′ cos θW (A.24)

λ(AD, H+
D , W−, Z) = −λ(AD, H−

D , W +, Z) = − i

2gg′ sin θW (A.25)

λ(AD, AD, Z, Z) = (g cos θW + g′ sin θW )2

2 (A.26)

λ(H+
D , H−

D , γ) = −1
2(g′ cos θW + g sin θW ) (A.27)

λ(H+
D , H−

D , Z) = −1
2(−g′ sin θW + g cos θW ) (A.28)

λ(H+
D , H−

D , W +, W−) = g2

2 (A.29)

λ(H+
D , H−

D , γ, γ) = 1
2(g′ cos θW + g sin θW )2 (A.30)

λ(H+
D , H−

D , γ, Z) = −1
4(−2g′g cos 2θW + (g′2 − g2) sin 2θW ) (A.31)

λ(H+
D , H−

D , Z, Z) = 1
2(g cos θW − g′ sin θW )2 . (A.32)
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