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Abstract: We analyze optimal low-rank approximations and correspondence analysis of the dependence struc-
ture given by arbitrary bivariate checkerboard copulas. Methodologically, we make use of the truncation of
singular value decompositions of doubly stochastic matrices representing the copulas. The resulting (truncated)
representations of the dependence structures are sparse, in particular, compared to the number of squares on
the checkerboard. The additive structure of the decomposition carries through to statistical functionals of the
copula, such as Kendall’s τ or Spearman’s ρ, and also motivates similarity measures for checkerboard copulas.
We link our analysis to continuous decompositions of copula densities and copula-generating algorithms and
discuss further general properties of the decomposition and its truncation. For example, truncated series might
lack nonnegativity, and approximation errors increase for monotonicity-like copulas. We provide algorithms and
extensions that account for and counteract these properties. The low-rank representation is illustrated for
various copula examples, and some analytical results are derived. The resulting correspondence analysis profile
plots are analyzed, providing graphical insights into the dependence structure implied by the copula. An
illustration is provided with an empirical data set on fuel injector spray characteristics in jet engines.

Keywords: correspondence analysis, checkerboard copulas, measures of concordance, singular value
decomposition

MSC 2020: primary 62H05; secondary 62A09

1 Introduction

Copulas are a standard tool for modeling random vectors, as they separate marginal and dependence mod-
eling. A copula contains information on the likelihood of joint occurrence of random variables on their
intrinsic quantile scale. For two-dimensional vectors, the copula thus encodes a possibly large or infinite
two-dimensional frequency table specifying the joint likelihood of the transformed random vector. If finite,
square, and scaled appropriately, this table can be interpreted as a checkerboard copula [15,29]. The tables are
generally large and may contain redundant information, and assessing the incorporated dependence informa-
tion is not straightforward. We apply the well-known decomposition and dimensionality reduction techniques
of high-dimensional data analysis to this table, thereby decomposing the copula. The decomposition opens a
wide range of further analyses, for example, to compute and analyze copula characteristics, plot meaningful
two-dimensional plots of the copula, or build simpler, reasonable approximations of complicated dependency
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structures. Through the low-rank approximation, one can drastically decrease the number of items to be
stored compared to the full checkerboard matrix, i.e., the square of the lattice size.

Checkerboard copulas can be obtained from empirical data or, for example, by discretizing continuous
copulas [16,27]. In either way, the copula frequency table is a doubly stochastic matrix. Taking the doubly
stochastic matrix, we apply correspondence analysis methods that are mainly based on singular value decom-
position (SVD).

Additive decompositions of copulas using variable-specific functions already exist in the literature, but
only for continuous representations. Continuous decompositions are considered, for example, in Mesiar
and Najjari [33] or Rodríguez-Lallena [40] for the generation of new copulas and in Cuadras [8] for the
decomposition of copulas. The checkerboard case differs from existing approaches and yields different
decompositions, as discussed in Section 3.3. Durrleman et al. [16] mentioned SVD of checkerboard copulas
but did not go into detail, and Cuadras [9] considered discrete and continuous decompositions of general
bivariate distributions. In contrast to these studies, we concentrate on the decomposition of doubly stochastic
matrices that represent checkerboard copulas, allowing us to focus on the features of copulas. We provide
formulas for important statistical functionals, including Spearman’s ρ, Kendall’s τ , and Pearson’s ϕ

2. Through
the Frobenius distance between the matrices, we express the similarity of two checkerboard copulas in terms
of their ϕ

2.
Using the standard kit of correspondence analysis has obstacles for some copulas. Copulas such as

the comonotonicity copula are costly to represent in standard SVD, as the corresponding frequency
matrix is similar to an identity matrix, having full rank and many equally large singular vectors. Thus,
approximations by truncating the SVD series have slowly decaying errors. Therefore, we propose to use
a monotonicity-anchored representation (MAR) (adapted from [18] and [24]), taking into account the indepen-
dence and comonotonicity-like characteristics. This representation does not change the singular vectors
for symmetric copulas but can considerably reduce the approximation error. Also, the obtained truncations
are not necessarily valid checkerboard copulas, as negative values can occur. We provide an algorithm that
yields the nearest valid copula for the Frobenius norm by generalizing an algorithm by Zass and Shashua [47]
and thus maps the obtained truncated (not doubly stochastic) matrix to the nearest doubly stochastic matrix.
While this article is focused on the Frobenius error norm, we remark on using the Hellinger distance in
Appendix B.

The frequency table decomposition corresponds to a decomposition of the discretized copula probability
distribution function (PDF). Section 2.6 links our analysis to continuous decompositions, as in the literature on
copula generation and continuous copula decomposition, and to cumulative distribution function (CDF)
decompositions. Through the decomposition, we motivate a decomposition of the Gaussian copula into trans-
formed Hermite polynomials.

Thus, this article makes several contributions. We define the decomposition of checkerboard copulas
and give extensions of the approach for comonotonicity-like copulas and non-copula truncations. We
link the approach to important existing copula concepts such as dependence measures, similarities of copulas,
and continuous decompositions of copulas. We derive characteristics of the graphs obtained by the approach
and thus provide a new method of graphical copula representations. Finally, we apply the approach to
theoretical copula families of various complexities and an empirical data example from the engineering
context.

This article is structured as follows. Section 2 describes the approach, including the extensions for como-
notonicity-like copulas, non-copula truncations, and the computation of statistical functionals. We analyze the
difference between decomposed copulas and draw the connection between discrete (checkerboard) and
continuous decompositions. We provide the resulting decompositions for the well-known copulas of different
complexities and for symmetric and asymmetric dependencies in Section 3. We use the graphical tools of
correspondence analysis to interpret the two-dimensional graphs of copulas and apply the graphical tools to
an empirical checkerboard from data on the fuel injection spray characteristics of jet engines in Section 4.
Section 5 concludes this article.
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2 Checkerboard copula decomposition and its characteristics

This section examines the SVD and its truncation for checkerboard copulas, i.e., doubly stochastic matrices. We
introduce some notations in Section 2.1 and then define the truncated decomposition, including an MAR that
accounts for dependencies similar to comonotonicity in Section 2.2. To correct negative matrix elements in the
truncated representation, Section 2.3 formulates an algorithm to approximate the truncation by a doubly
stochastic matrix. Sections 2.4 and 2.5 derive statistical functionals and similarity measures using the decom-
position. Section 2.6 links the decompositions of continuous copulas and their discretized counterparts.

2.1 Doubly stochastic matrices from bivariate copulas

Let X and Y be random variables with CDF FX Y, and marginal CDFs FX and FY , respectively. Through the well-
known theorem of Sklar [45] the multivariate CDF ( )F x y,X Y, can be decomposed as

( ) ( ( ) ( ))=F x y C F x F y, , ,X Y X Y,

whereby the copula C encodes the dependence structure of X and Y . The copula C can also be seen as CDF of
( )F XX and ( )F YY , and thus, has the properties of a multivariate CDF with uniform margins, provided that X

and Y are continuous. While the copula is unique for continuous random variables, it is only uniquely
identified on the image of FX and FY , respectively, in the discrete case.

A checkerboard copula [29] is a special type of copula that assumes a uniform mass within the squares of
an evenly spaced lattice ×I I

n n ( { }= ∕I n0, 1 , …,1n ). Checkerboard copulas can be computed from empirical
data or by the discretization of continuous copulas. The discretization facilitates the (asymptotic) comparison
of discrete and continuous characteristics.

Any continuous copula C defines a doubly stochastic matrix Cn on the grid ×I I
n n by evaluating C on

×I I
n n, i.e., � ( ) ( )≔ ∈C u v u v I, , n [27,31] and computing
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The properties of Cn follow from the copula properties of C :
(1) Cn has nonnegative entries as the defining equation (1) coincides with a scaled version of the 2-volume of

the copula, which is nonnegative.
(2) From ( ) ( ) ( [ ])= = ∈C u C u u u, 1 1, 0, 1 and ( ) ( ) ( [ ])= = ∈C u C u u, 0 0, 0 0, 1 follows for [ ]∈j n
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An analogous computation shows ( [ ])∑ = ∈= i nC 1
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1 , , and thus, the row and column sums of Cn are 1.

The matrix Cn is by construction square, together with (1) and (2), a doubly stochastic matrix. The element C
i j

n

,

( [ ]∈i j n, , where [ ] { }≔n n1, 2, …, ) corresponds to the density of the checkerboard copula
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We denote by � ⋅ the indicator function. Thus, C
i j

n

, can be interpreted naturally as a table of the likelihood of
occurrence in the copula domain. Integration over equation (2) yields a checkerboard approximation of the
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copula CDF Ĉ and the conditional CDF ∣ =Ĉu V v. The discretizations approximate the copula C with increasing n,
and every copula C is the limit of its discretizations for → ∞n [see 27, Theorem 1].

2.2 SVD and MAR

Having the table of likelihood of occurrence, Cn, correspondence analysis can be applied to the matrix Cn to
analyze the structural properties of the matrix. Correspondence analysis uses the SVD to compute low-dimen-
sional approximations of the matrix. To this end, the SVD is truncated, yielding the nearest matrix of the
specified rank according to the Frobenius or the spectral norm [34]. In correspondence analysis, the matrix Cn

is usually centered, and some scaling is applied to rows and columns to account for the sum differences of the
rows or columns [18]. In the case of Cn, the centering step is implemented by subtracting the matrix

≔ − ⊤
nΠ 11n 1 from Cn, where 1 is the vector of ones of suitable dimension. We denote this by

( )= ≔ −GA C C Π .n n n n

Note that 1
n

1 is a (left and right) singular vector of Cn with singular value 1, whereby 1 is the largest singular
value for doubly stochastic matrices [37], and thus, the rank of An is at most −n 1. We denote the SVD of An by

( ) ( ) ( )= = = =⊤
s sA USV U u u S V v v, with , …, , diag , …, , , …, ,n

n n n1 1 1 (3)

where U and V are the orthogonal matrices and the singular values sk are in [ ]0, 1 and are sorted in descending
order as usual.

The decomposition in equation (3) may be truncated by using only the ≤n n* largest singular values of s,

and the corresponding first n* columns of U and V:

( ) ( )≔ ⊤
T A U S V ,n

n

n n n n:,1: 1: ,1: :,1:* * * * *

where we will use ( )⋅Tn* as a truncation operator of the argument’s SVD in the following. The truncated ( )T An

n
*

yields an approximation of Cn by applying the inverse function of G, i.e.,

( ( )) ( )= +−
G T TA A Π .n

n

n

n n1
* *

The truncated SVD yields low-rank approximations with small errors for matrices with a few large and
many small (or zero) singular values. We will show examples in Section 3. However, in the copula context,
many copulas share characteristics with the comonotonicity copula, an identity matrix with singular value 1
with multiplicity n, and thus, high approximation errors for small-rank representations. To “remove” the
comonotonicity copula characteristics before applying the SVD, we suggest transforming the matrix Cn so that
we account for high frequencies on the diagonal of the matrix and thus the monotone dependence structures.
We denote this transformation by ( )⋅GMAR and call it MAR. As we argue in Lemma 1, through this representa-
tion, the singular vectors do not change for symmetric copulas, but the series of singular values sk decreases
faster, leading to better low-rank approximations. The MAR is given by

( ) ( )= ≔ + − + ⊤
G η c ηI η

n

A C 11˜ , 1
1

,
n

n

nMAR
(4)

with �∈η and In denoting the n-by-n identity matrix. The centering step is implemented by the last summand
( )− + ⊤

η 111
n

1 , i.e., for �∈η ,
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+

= + −
+
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nA 1 C 1 1 11 1 1 1 1 1˜
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0
n

n

n

and analogously for ( )⊤A 1˜ n . The approach also suits strong negative dependence by rotating the copula first. A
similar transformation to GMAR can be found in Kazmierczak [24], in Greenacre [18, Section 8.6] formulated in
the context of frequency tables. Unlike Greenacre [18] who used two parameters and demands them to be
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chosen such that ( ) ( )≥ ∀ i jÃ 0 ,
n

i j, for merely illustrative purposes, we do not require this additional restric-
tion here. We scale the last summand by ∕n1 to preserve the margins shown earlier.

Note that ( )G Cn is nested within the MAR by setting =η 0. Later, the parameter η is calculated such that the
Frobenius distance between the inverse transformed version of Ã

n, denoted by ( )( )−
G T ηÃ ,n

n

MAR

1
* , and (the

original) An is minimized.
Analogously to the aforementioned notation, we denote the SVD of Ã

n by

( ) ( ) ( )= = = =⊤
s sA USV U u u S V v v˜ ˜ ˜ ˜ , with ˜ ˜ , …, ˜ , ˜ diag ˜ , …, ˜ , and ˜ ˜ , …, ˜ .

n

n n n1 1 1

The following lemma shows that singular values and vectors of Ã
n and An are closely connected, provided that

Cn is symmetric.

Lemma 1. For the SVD of = ⊤
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and equations (6) and (7) are, again, only valid for symmetric copulas. PDF and CDF can be computed using
( ( ) )−

G T ηÃ ,n

n

MAR

1
* analogously to equation (2). The parameter η of equation (4) can be determined by minimizing

some error norm of interest. For example, we calculate the fraction η that minimizes the residual inertia (thus,
Frobenius error) for a specified approximation of rank n* by
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For a symmetric matrix Cn and an approximation of dimension n*, this yields

�
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For asymmetric matricesCn, the problem in equation (8) can be solved numerically. The simulations in Section 3
examine the choices of η and the resulting matrices Ã

n.

2.3 Ensuring double stochasticity of truncations

As noted earlier, truncations of the SVD can yield low error approximations with considerably lower rank
matrices. In general, truncations of the SVD are not necessarily doubly stochastic matrices. Truncations keep
the property of having row and column sums of one as the singular vectors uk and vk , or ũk and ṽk ,
respectively, are perpendicular to 1 for [ ]∈ −k n 1 , but the truncations do not necessarily have nonnegative
elements. One can approximate the truncation by the nearest, doubly stochastic matrix to ensure nonnega-
tivity. This step does not increase the complexity of the representation, as it does not include any information
other than the truncated matrix. We give a general idea of the algorithms for symmetric and asymmetric
matrices here; they are more specifically described in Appendix A.

Zass and Shashua [47] proposed an algorithm to find the nearest doubly stochastic matrix for any sym-
metric matrix �{ }∈ ∈ =× ⊤A A A A:n nsym according to the Frobenius norm, i.e., a solution to the problem

( )P A , with
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A1 and A2 refer to the iterative solutions of P2 and P1, respectively. Algorithm 1 formulates the algorithm
explicitly. P1 and P2 have closed-form solutions and calculations for the solution of P1 and P2 are carried out in
A. In the case of asymmetric matrices, Algorithm 1 retains its overall structure while incorporating a deflection
component to maintain validity [17]. The resulting Algorithm 2 is shown in A. Note that there are algorithms for
approximations with a particular interest in keeping the sparsity structure of A. Rontsis and Goulart [41]
formulated an algorithm for a slightly modified problem that accounts for the sparsity of the matrix A based
on the alternate direction method of multipliers and applied to symmetric and asymmetric matrices A.
Sparsity thereby refers to zero entries in matrix A. In general, the SVD approximations typically contain
many small, nonzero values, and thus, the approximation does not benefit from exploiting the sparsity
structure.
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2.4 Statistical functionals of decompositions and truncations

Various statistical properties can be computed using the decomposition, including dependence measures such
as Kendall’s τ , Spearman’s ρ

S
, and Pearson’s ϕ

2. We start by expressing the well-known dependency measures
Kendall’s τ and Spearman’s ρ

S
through the decomposition. The structure of both measures inherits the SVD

structure of the checkerboard copula, and thus, copulas with many high singular values tend to have a
measure representation with many terms, subject to the direction of the singular vectors. The empirical
computation of dependence measures using the checkerboard copula itself might be inefficient, and the use
of a low-rank approximation might be more robust. We leave the asymptotics of the decomposed measures for
further research.

Durrleman et al. [16] showed that for checkerboard copulas, Kendall’s τ and Spearman’s ρ
S
can be

computed by
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and for Kendall’s τ
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Details of the calculations are provided in Appendix C. Both dependence measures can also be put in terms of
the MAR, for example,
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Note that η refers to the MAR coefficient of equation (4). The calculations are performed in Appendix C. The
decompositions of ρ

S
and τ are both based on the singular-value-weighted sum of scalar products containing
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the singular vectors. Thus, they account for the importance and the direction of the component. For τ , the
projection vector contains transformations of the other singular vectors, reflecting the integral’s measure
being the copula CDF. The representations in equations (10) and (11) yield approximations for Spearman’s ρ

S

and Kendall’s τ in terms of the truncated representations, i.e.,

( ) ( ) ⟨ ⟩⟨ ⟩∑≔ − ∕
=

ρ n sC ω u v ωˆ 4 1 , , and
Sn

n

k

n

k k k

2

1

*

*

(14)

( ) ⟨ ⟩⟨ ⟩∑ ∑≔ −
= =

τ

n

s s E EC u u v vˆ 1
1

, , .n

n

k

n

l

n

k l l k k l2

0 0

*

* *

(15)

In the SVD representation, Pearson’s ϕ
2 boils down to the total inertia of the copula from independence

[44, p. 223]

( ) ( )

( )

‖ ‖

∫∫

∑∑

∑

= −

= −

=

=

= =

=

ϕ c u v u v

n

n

s

C

C

A

ˆ , d d 1

1
1

,

n

i

n

j

n

ij

n

n

F

k

n

k

2

0

1

0

1

2

1 1

2 2

2

2

1

2

where s s, , …1 2 are the singular values of the centered An. Note that this is proportional to Pearson’s χ
2 statistic

for testing independence in an empirical contingency table (for Pearson’s χ
2 statistic in the copula context, see,

e.g., [43]). The truncated representation ϕ
2 is

( ) ( ( ( )))∑= =
=

−
ϕ s ϕ G TC Aˆ .

n

n

k

n

k n

n2

1

2 2 1
*

*

*

In correspondence analysis, the ratio of the total inertia of approximation and the original matrix is a standard
measure for the approximation’s goodness of fit, i.e.,

( )

( )

∑
∑ ==

=

s

s

ϕ

ϕ

C

C

ˆ

.
k

n

k

k

n

k

n

n

n

1

2

1

2

2

2

*

*

Counting the number of nonzero singular values yields an estimate of the dimensionality of the repre-
sentation, i.e.,

( ) ∣{ [ ]}∣ ( )= > ∈ =ϕ s s k nC A: 0, rank .
g

n

k k

n

It counts the dimensions needed to model all information in Cn and does not consider the strength of the
information, in contrast to, for example, Pearson’s ϕ

2. Cuadras and Díaz [12] called this the geometric dimen-
sion of a copula. For discretizations of a continuous copula, the values of ϕ

2 and ϕ
g
depend on the grid

resolution n and are, therefore, the discretized copula’s properties and not of the continuous counterpart.
The following lemma formulates this explicitly, and the example in Section 2.6 shows that the geometric
dimension can decrease with increasing grid size when the grid sizes are not nested.

Lemma 2. Let >n n1 2, with =n n m1 2 ( �∈m ), be the grid resolutions of the discretizations [ ]nCn

1 and [ ]nCn

2 of a
copula C . Then,

( [ ]) ( [ ])≥ϕ n ϕ nC C .
g

n

g

n

1 2

Proof. Let M1 and M2 be the discretized copula C with grid sizes n1 and n2, respectively. Then,

= ⊤
M AM A ,2 1
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with �∈ ×
A

n n2 1 and � (( ) ]= ∈ − ⋅ ⋅Aij
m

j i m i m

1

1 , and

( ) ( ) ( ( ) ( ) ( ))

( ( ) ( )) ( )

= ≤
= ≤

⊤ ⊤
M AM A A M A

A M M

rank rank min rank , rank , rank

min rank , rank rank .

2 1 1

1 1 □

2.5 Similarity of copulas

Using the decomposition makes it easy to compute the similarity of copulas if they have a shared grid size. We
show that this similarity in terms of the Frobenius distance is mainly driven by Pearson’s ϕ

2 of the product of
the two copulas. The Frobenius distance is highly dependent on the grid size n; thus, we propose two normal-
izations. Let ( )= ⊤A U S VA A A A and ( )= ⊤A U S VB B B B be the two matrices after centering the bistochastic matrices
CA and CB, respectively. For ease of notation, we omit the common grid size n. Then,

‖ ‖ ‖ ‖

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )∑ ∑

− = −
= − +
= + −

= + − +

⊤ ⊤ ⊤

=

−

=

−
⊤

ϕ ϕ ϕ

s s

A A C C

C C C C C C

C C C

A A

trace 2trace trace

2

2trace 2,

A B

F

A B

F

A A B A B B

A B P

k

n

k

A

k

n

k

B B A

2 2

2 2 2

1

1

2

1

1

2

(16)

with the product copula ( )= ⊤C C CP B A (see [27], p. 700). Whereas the terms ( )ϕ CA2 and ( )ϕ CB2 depend on the
individual copulas solely, ( )⊤A Atrace B A depends on the relative orientation of the singular vectors, i.e.,

( ) ⟨ ⟩⟨ ⟩

( ) ( )

∑ ∑

∑ ∑

=

=

⊤

=

−

=

−

=

−

=

−

s s

s s α α

A A v v u u

v v u u

trace , ,

cos , cos , ,

B A

k

n

l

n

k

B

l

A

k

B

l

A

l

A

k

B

k

n

l

n

k

B

l

A

k

B

l

A

l

A

k

B

1

1

1

1

1

1

1

1

where ( )⋅ ⋅α , is the angle between the two vectors. Thus, the copula similarity is driven by the similarity of the
singular vectors weighted by the singular values.

Although the distance (squared) in equation (16) is straightforward to compute, it depends on the grid size
n, as the range of values increases with n. Clearly, ‖ ‖− ≥A A 0A B

F

2 and ‖ ‖− =A A 0A B

F

2 for =A AA B. The
maximum

‖ ‖ ( ) ( ) ( )− = + − ≤ + − ⋅ =ϕ ϕ ϕ C n n nA A C C 2 2 0 2A B

F

A B P2 2 2 2 (17)

is attained, for example, for = ICA

n and CB any doubly stochastic matrix with ones on off-diagonal elements,
for example,

=
⎛

⎝

⎜
⎜ ⋮

⎞

⎠

⎟
⎟

C

0 1 0 0 …

0 0 1 0 …

1 0 …

.B

Thus, the use of the Frobenius distance suffers from a high dependence on the grid size n, and we propose
two simple rescalings of the distance that account for the increase in n. The first one uses the maximal distance
from equation (17), yielding

( )
‖ ‖

=
−

δ

n

C C
C C

,
2

,A B

A B

F

1

so that the values lie within [ ]0, 1 . The examples in Section 3.4 indicate that this normalization overcorrects,
resulting in decreasing δ1 for checkerboard approximations of the same copulas with increasing n.

Another approach is to standardize the distance by the sum of Pearson’s ϕ
2 of the copulas CA and CB, i.e.,
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( )
‖ ‖

( ) ( )
=

−
+

δ

ϕ ϕ

C C
C C

C C

, .A B

A B

F

A B
2

2 2

As ‖ ‖− ≥C C 0A B

F , ( )⋅ ⋅ ≥δ , 02 and from ‖ ‖

( ) ( ) ( )
=−

+ − 1
ϕ ϕ ϕ C

C C

A A 2

A B

F

A B P

2

2 2 2 follows ( )⋅ ⋅ ≤δ , 12 . This standardization yields

values that exhibit less variation with n. The similarity measures are applied to copulas in Section 3.4.

2.6 Some considerations on the link to continuous decompositions

Cuadras and Díaz [12] and Cuadras [8] defined continuous PDF decompositions for continuous copulas. In the
following, we briefly expand on the connection between the continuous decomposition and the decomposition
of the corresponding checkerboard copulas. Let again C denote the copula CDF, c the copula PDF and

( ) ( ) ( )∑= +
≥

c u v λ a u b v, 1 ,

k

k k k

1

(18)

with complete orthonormal sets { }ak and { }bk . Cuadras and Díaz [12] call the cardinality of the set { }≥λ λ: 0k k

geometric dimensionality, γ, of the copula, provided that γ is finite, analogously to the discretized case. The
decomposition exists if the copula’s ϕ

2, i.e., ( ) = ∑ϕ C λ
k k

2 2, is finite and induces a decomposition of the
copula CDF

�( ) ( ) ( )

( ) ( )

∫∫

∫∫

∑

∑

⎜ ⎟=
⎛
⎝

+
⎞
⎠

= +

=

=

u v λ a u b v u v

uv λ a u b v u v

, 1 ¯ ¯ d ¯d ¯

¯ ¯ d ¯d ¯.

u v

k

γ

k k k

k

γ
u v

k k k

0 0
1

1
0 0

The discretized copula of grid size n yields

( ) ( )∫ ∫∑

= ⎛
⎝

⎞
⎠ − ⎛

⎝
− ⎞

⎠ − ⎛
⎝

− ⎞
⎠ + ⎛

⎝
− − ⎞

⎠

=
= − −

C C

i

n

j

n

C

i

n

j

n

C

i

n

j

n

C

i

n

j

n

λ a u u b v v

,
1

, ,
1 1

,
1

d d ,

ij

n

k

γ

k

i

n

i

n

k

j

n

j

n

k

1 1 1

and with the additional vectors

a ( ) ( ) ( [ ])∫ ∫=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ∈

⊤

a u u a u u k γd , d , … , ,k

n

k

n

n

k

0

1

1

2

(19)

b ( ) ( ) ( [ ])∫ ∫=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ∈

⊤

b v v b v v k γd , d , … , ,k

n

k

n

n

k

0

1

1

2

(20)

a b∑=
=

⊤
λC .n

k

γ

k k k

1

(21)

Note that equation (21) denotes an exact decomposition of Cn, but not necessarily the SVD decomposition.
The difference becomes particularly evident if <n γ and the summation in (21) has more summands than the
dimensionality of the ×n n matrix Cn. To be the SVD, the vectors ak and bk must be left and right singular
vectors. Take al with [ ]∈l γ ,
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a a b a( ) ∑⎜ ⎟=
⎛
⎝

⎞
⎠

⊤

=

⊤
⊤

λCn

l

k

γ

k k k l

1

(22)

b a a∑⎜ ⎟=
⎛
⎝

⎞
⎠=

⊤
λ

k

γ

k k k l

1

(23)

b a a( )∑=
=

⊤
λ .

k

γ

k k k l

1

(24)

Thus, al is the left singular vector if it is orthogonal to the other a{ [ ] }∈ ≠k γ k l: ,k and if bl is a right singular
vector. The corresponding singular value is λk . The orthogonality condition is trivially fulfilled for =γ 1 and
generally depends on the grid size n. The orthogonal { }ak and { }bk do not induce the orthogonality of the
vectors a{ [ ]}∈k n:k and b{ [ ]}∈k n:k .

In addition, the decomposition in equation (21) bounds the geometric dimension of the discretized decom-
position by the geometric dimension of the continuous decomposition. The trivial matrix-order bound is −n 1.
Example 1 shows that this is, indeed, an upper bound and not an equality. A representation with fewer
summands could be possible with fewer orthogonal vectors.

Example 1. Let C1 be a continuous copula with uniform support on the rectangles shown in Figure 1(a). The
continuous copula’s decomposition has geometric dimension ( ) =γ C 31 . Figure 1(c) shows the geometric dimen-
sions of discretizations of C1 with various grid sizes. For =n 4, the geometric dimension of the discretization is 1,
and thus strictly smaller than the continuous geometric dimension and −n 1 (Figure 1(b)).

Similar to the decompositions of the continuous copula, the decompositions of the copula CDF do not
directly yield decompositions of the PDF. A continuous decomposition of the CDF with d summands is in
general form

( ) ( ) ( )∑= +
=

C u v uv λ F u G v, ,

k

d

k k k

1

(25)

with orthogonal F F,…, d1 and G G,…, d1 . It implies a decomposition of the PDF for differentiable Fk and Gk

( =k d1,…, ),

( ) ( ) ( ) ( )∑=
∂

∂ ∂
= +

∂
∂

∂
∂=

c u v

C

u v

u v λ

F

u

u

G

v

v, , 1 ,

k

d

k

k k

2

1

that generally lacks the orthogonality of the function ( ) ( )∂ ∕∂ ∂ ∕∂F u u F u u, , …1 2 . However, the aforementioned
calculation shows that the number of summands for a representation of PDF is, at most, the number of
summands of CDF, such that d is an upper bound for the geometric dimension, γ, of a PDF decomposition.

Equations (25) and (18) enable constructing copulas from appropriate { }λk , { }f
k
, and { }g

k
. Rodríguez-

Lallena [40] formulated conditions on the components to ensure the validity of the resulting copula. Mesiar

Figure 1: Example for a copula C1 with corresponding doubly stochastic matrix Cn that has strictly smaller geometric dimension ( )γ Cn

than ( ( ) )γ C nmin , ‒1 for =n 4: (a) the continuous copula’s mass is uniformly distributed over the blue rectangles, (b) the checkerboard
copula’s mass is uniformly distributed over the blue rectangles for =n 4, and (c) the geometric dimension ( )γ Cn for increasing n.
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and Najjari [33] extended this construction to higher (finite) dimensions. The construction only yields copulas
without tail dependence and thus excludes, for example, the Cuadras-Augé (CA) or Gumbel copula. Instead of
estimating all components, some parts in equation (25) can be fixed. Bakam and Pommeret [2], for example,
used a Legendre polynomial basis and only fitted the remaining coefficients. In Section 3.3, we show that for
(transformed) Hermite polynomials and certain { }λk , the Gaussian copula arises. Allowing not only pairs in
equation (18) but also the cross products for ( ) ( )a u b vk l ( ≠k l) in the summation leads to further copula
decomposition methods (see, for example, called generalized partition of unity copulas) [30,38].

We give further examples of the difference between continuous and discretized decomposition for the
Farlie-Gumbel-Morgenstern (FGM) copula in Section 3.1 and for the Gaussian copula in Section 3.3.

3 Illustrative SVDs of copulas

This section provides the resulting decompositions for some checkerboard approximations of parametric
copula families. Section 3.1 focuses on symmetric copulas, whereas Section 3.2 analyzes asymmetric copulas.
These sections give examples of the resulting singular values and singular vectors, and we expand on the
Frobenius norm-minimizing choice of η in the MAR. At the end of Section 3.1, we provide examples of invalid,
i.e., non-copula, truncations, and the use of Algorithm 1. Section 3.3 compares the checkerboard and contin-
uous decomposition, as introduced in Section 2.6, for the Gaussian copula. Section 3.4 applies the similarity
measures of Section 2.5 to various checkerboard copulas.

In this section, we will denote the rank of the truncation by �∈n* 0 and refer to the non-MAR model by
raw model.

3.1 Decompositions of symmetric copulas

We start with simple copulas with low geometric dimensions and obtain up to high geometric-dimensional
copulas with tail dependence in the later examples in this section. The independence copula

( ) =C u v uv,Π

yields the checkerboard copula =C Πn of geometric dimension 0. The comonotonicity copula

( ) ( )=C u v u v, min ,M

yields the checkerboard copula = ICn

n with geometric dimension −n 1. The MAR with = −η 1 fully recovers
the matrix for ≥n* 0. Thus, the geometric dimensionality is significantly reduced in the MAR for the como-
notonicity copula.

The FGM copula family with CDF

( ) ( )( )= + − −C u v uv θuv u v, 1 1θ FGM,

for [ ]∈ −θ 1, 1 is of geometric dimensionality 1. Figure 2(a) depicts the first singular vector with respect to n and
Figure 2(b) the first singular value, ∣ ∣= ∕s θ 31 for the continuous representation with respect to θ. The
first singular vector is ( ( ) )= − ∕ − − ⊤

u α n1, 1 2 1 , …, 11 ( �∈α such that ‖ ‖ =u 12 ), being the checkerboard
analog of ( ) ( )= −a x x3 1 21 according to equation (19). The singular vector is the piecewise integrated a1

since the geometric dimension is one. For =n* 1, the MAR following the optimization in (9) has parameters
( ) ∣ ∣ ( ( ))= ∕ − = ∕ −η s n θ n1 3 11 . A numerical optimization in MATLAB yields numerically equivalent values, as

shown in Figure 2(c). The approximation is improved with the MAR, but the gain is smaller than for the
comonotonicity copula (Figure 2(d)). The matrix can be fully recovered for any ≥n* 1. The calculation of
Spearman’s ρ

S
according to the representation in equation (10) yields the result for the FGM copula ( ≥n* 1)
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( ) ( ) ⟨ ⟩⟨ ⟩

( )
‖ ‖

⟨ ( ) ⟩

( )

∑

⎜ ⎟

= − ∕

= − ∕ ⎛
⎝

− ∕ − ⎞
⎠

= − ∕

=

⊤

ρ C n s ω u v ω

n

θ

α

ω

ω n

θ

n

ˆ ˆ 4 1 , ,

4 1
3

1

˜
˜, 1, 1 2 , …, 1

3
1 1 .

S

θ FGM

k

n

k k k

, 2

1

2

2

2

*

The approximated ρ̂
S
yields the FGM copula’s analytical Spearman’s ρ

S
of ∕θ 3 for → ∞n .

The CA family of copulas [10] with CDF

( ) =
⎧
⎨
⎩

≤
≥

−

−C u v

uv u v

u v u v

,
, ,

, ,

θ

θ

θ

, CA

1

1

for [ ]∈θ 0, 1 has an upper tail dependency of =λ θu . The corresponding centered, doubly stochastic matrix is
of rank −n 1. For =θ 0, =C C

0, CA Π, while =C C
M1, CA with the decompositions argued earlier. Figure 3 shows

the computed singular vectors and values for ( )∈θ 0, 1 . The singular vectors in Figure 3(a) drop near =u 1.
The decay of singular values starting from s1 is similar for the different values of θ, but it is shifted upward for
higher values of θ, as shown in Figure 3(b). Figure 3(d) shows that the reconstruction is significantly improved
when the MAR is used, especially for large θ. For large absolute values of θ, larger absolute values of η in the
MAR are chosen (Figure 3(c)).

The Gumbel family of copulas with CDF

( ) [( ) ( ) ]= ⎛
⎝− − + − ⎞

⎠C u v u v, exp ln lnθ θ θ, Gu
θ

1

for [ )∈ ∞θ 1, is an Archimedean copula and exhibits upper tail dependence like the CA copula. The checker-
board copula contains high values in the upper right part (Figures 4(a) and 5(a)). The Gumbel copula is the
independence copula for =θ 1 and approaches the comonotonicity copula for → ∞θ . The singular vectors in
Figure 6(a) contain jumps next to =u 1 like the singular vectors for the CA copula. Again, the approximation
improves considerably when using the MAR, particularly for higher values of θ, as shown in Figure 6(c) for
approximations of rank one or in Figure 6(d) for approximations of rank five. The difference in the MAR and
the raw representation approximation reduces when the approximation order increases (Figure 6(b)).

Figure 2: Analysis of the FGM checkerboard copula decompositions using the raw and MAR model: (a) elements u j1, ( [ ]∈j n ) of the first
singular vector u1 for =θ 0.8 and various grid resolutions n. The same plots arise for other values of ≠θ 0. The different slopes result
from the normalization of the singular vector, (b) the first singular value s1 for various values of θ. The value is, by definition, positive, (c)
the values of η in the MAR minimizing the Frobenius error for a 0-truncation, which is only the MAR. The values for η are obtained by
numerical minimization using MATLAB’s fminsearch. The resulting values of η coincide with their theoretical counterparts (see equation
(9), and (d) Frobenius error of the MAR and the standard representation for 0-truncations. The values of η are in plot c). The MAR reduces
the error slightly.
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For higher parameter values θ, the truncated representations of the Gumbel copula contain negative
entries. Figures 4 and 5 show the discretized PDF, its approximation, and an indicator plot for the invalidity of
the elements. The negative elements in Figures 4(b) and 5(b) have a waveform. The Gumbel copula contains
higher peaks for higher parameters θ, and the approximation tends to have more negative elements. After
applying the correction algorithm, all elements are nonnegative, and the Frobenius distance between the
(corrected) approximation and the discretized PDF is smaller (Table 1). The corrections are smaller for small
values of θ (Figure 4(c)) than for larger values of θ (Figure 5(c)).

Figure 3: Analysis of the CA checkerboard copula decompositions using the raw and MAR model for various values of θ and =n 50: (a)
elements ui j, ( [ ] [ ]∈ ∈i j n5 , ) of the first five singular vectors for =θ 0.5. The singular vectors have a similar course for other values of

( )∈θ 0, 1 , (b) the singular values for { }∈θ 0.25, 0.5, 0.75 , (c) Frobenius-norm minimizing choice of η in the MAR for approximations of
rank one, and (d) Frobenius error of the MAR and raw representation for approximations of rank one.

Figure 4: Analysis of the truncation of order 10 of a Gumbel checkerboard copula with =θ 2.5 and =n 50: (a) the checkerboard PDF, (b)
the yellow squares indicate negative matrix elements in ( [ ])T A 50n

10 , and (c) difference of approximation and corrected approximation,
( ( [ ])) ( ( ( [ ])))G T P G TA A50 ‒ 50n n‒1

10
‒1

10 , using Algorithm 1. Note the different scaling compared to (a).

Figure 5: Analysis of the truncation of order 10 of a Gumbel checkerboard copula with =θ 7.5 and =n 50: (a) the checkerboard PDF, (b)
the yellow squares indicate the negative matrix elements in ( [ ])T A 50n

10 . They occur more frequently than for =θ 2.5, and (c) difference of
approximation and corrected approximation, ( ( [ ])) ( ( ( [ ])))G T P G TA A50 ‒ 50n n‒1

10
‒1

10 , using Algorithm 1. Note the different scaling
compared to (a).
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3.2 Decompositions of asymmetric copulas

For asymmetric copulas, the left and right singular vectors do not coincide. We use an asymmetric construc-
tion method from Nelsen [35, p. 84], which yields copulas with cubic sections. The copula CDF is

( ) ( )( )[( ) ( ) ]= + − − − − +C u v uv uv u v a b v u b, 1 1 1 ,a b, , asym (26)

where ∣ ∣ [ ( ) ]≤ − − + − ∕ ≤ ≤∕
b b b b a1, 3 9 6 3 2 12 1 2 , and ≠a b. The conditions on a and b ensure the validity of

the resulting copula. For [ ]= ∈ −a b 1, 1 the FGM copula with parameter b arises. Figure 7 shows the resulting
SVD for two configurations of a and b. For =a 0.5 and = −b 0.5 the resulting copula CDF is

( ) ( ) ( ) ( )( )= + − − − − −−
C u v uv u u v v uv u v, 1 1 0.5 1 1 ,0.5, 0.5, asym 2 2

and for = −a 1.5 and =b 0.5

( ) ( ) ( ) ( )( )= − − − + − −−
C u v uv uv u v uv u v, 2 1 1 0.5 1 1 .1.5,0.5, asym 2 2

In both cases, the left and right singular vectors are the polynomials of degree two. The geometric dimension of
the discretized copula is 2. Thus, the singular values in Figure 7(e) drop at 3 to zero. The singular values are
larger for the first singular value combination than for the second. The left singular vectors in Figure 7(a) and
(c) have similar courses but change order. The right singular vectors (Figure 7(b) and (d)) exhibit a greater
variation between the combinations of parameters than the left singular values. They show y-axis mirroring
but also change slope and are shifted.

Figure 6: Analysis of the Gumbel checkerboard copula decompositions using the raw and MARmodel for =θ 10 and =n 50: (a) elements
ui j, ( [ ] [ ]∈ ∈i j n5 , ) of the first singular vectors for =θ 10. The continuous Gumbel copula has an upper tail dependence, (b) the
Frobenius error of the approximation for a Gumbel copula with =θ 10 and increasing approximation order n*. The MAR reduces the
error considerably, (c) Frobenius error for approximations of rank one, and (d) Frobenius error for approximations of rank five.

Table 1: Frobenius distances for the approximation of a Gumbel checkerboard copula with parameter θ and =n 50

==θ 2.5 ==θ 7.5

‖ [ ] ( ( [ ]))‖G TC A50 ‒ 50n n

F

‒1
10

0.0084 0.6449

‖ [ ] ( ( ( [ ])))‖P G TC A50 ‒ 50n n

F

‒1
10

0.0084 0.5476

‖ ( ( [ ])) ( ( ( [ ])))‖G T P G TA A50 ‒ 50n n

F

‒1
10

‒1
10

0.0008 0.3099

‖ ( ( [ ])) ( ( ( [ ])))‖ ‖ [ ]‖∕G T P G TA A C50 ‒ 50 50n n

F

n

F

‒1
10

‒1
10

0.05% 11.47%

( ( [ ]))G T A 50n‒1
10 denotes the truncation, and ( ( ( [ ])))P G T A 50n‒1

10 the result of Algorithm 1. The distance between the original and the
approximation decreases with the application of Algorithm 1. The last row displays the relative change through Algorithm 1 with respect
to the Frobenius norm of the raw matrix [ ]C 50n .
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3.3 Gaussian copula

We end the section with the Gaussian copula and apply the notions of Section 2.6. The Gaussian copula models
the dependence structure of multivariate Gaussian distributions. Let Fρ denote a bivariate Gaussian CDF with
correlation ρ, variance ( )⊤1, 1 and mean ( )⊤0, 0 , the PDF by f

ρ
and the standard univariate Gaussian counter-

parts by Φ and φ, respectively. Then, the CDF of a Gaussian copula with correlation [ ]∈ −ρ 1, 1 is given by

( ( ) ( ))= − −
C F u vΦ , Φ .ρ Ga

ρ

, 1 1

Figure 8(a) and (b) shows the resulting (PDF) decompositions for the checkerboard copula. As proven in the
following, the singular vectors are identical for different ∣ ∣ ( )∈ρ 0, 1 in the continuous decomposition. No
noticeable differences can be observed for the singular vectors of the checkerboard approximations for
different values of ρ.

For a bivariate Gaussian distribution, Hill [19] showed a PDF decomposition using Hermite polynomials.
The following theorem extends its results to the Gaussian copula, yielding a representation in terms of

Figure 7: Analysis of the asymmetric checkerboard copula decomposition of the copula following equation (26) with =n 50 and two
configurations of a and b. The left singular vectors are similar between the two parameter configurations, whereas the right singular
values exhibit strong differences: (a) elements ui j, ( [ ] [ ]∈ ∈i j n2 , ) of the left singular vectors ui with =a 0.5 and =b ‒0.5, (b) elements
vi j, ( [ ] [ ]∈ ∈i j n2 , ) of the right singular vectors vi with =a 0.5 and =b ‒0.5, (c) elements ui j, ( [ ] [ ]∈ ∈i j n2 , ) of the left singular vectors
ui with =a ‒1.5 and =b 0.5, (d) elements vi j, ( [ ] [ ]∈ ∈i j n2 , ) of the right singular vectors vi with =a ‒1.5 and =b 0.5, and (e) the
singular values si drop to zero after s2 as the geometric dimension is 2.

Figure 8: Checkerboard decomposition of the Gaussian family of copulas for =n 50, the transformed probabilist’s Hermite polynomials,
and numerical estimates for the geometric dimension: (a) elements ui j, ( [ ] [ ]∈ ∈i j n5 , ) of the singular vectors for =ρ 0.5. No
discernible difference is evident in the plots for the other ρ, (b) the singular values si increase for larger values of ρ, (c) the first five
(normalized) transformed probabilist’s Hermite polynomials ψ

i
, and (d) the numerical estimations of the geometric dimensions increase

with the grid size and are comparable for the different values of ρ.
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transformed Hermite polynomials. We use the representation of the probabilist’s Hermite polynomial ψ
i
of

order i by

( ) ( ) ( ) ( )= − ∕ − ∕ψ x x

x

x1 exp 2
d

d
exp 2 .

i

i

i

i

2 2

Theorem 1. Let cρ be a Gaussian copula density with parameter − < <ρ1 1, Φ the standard Gaussian CDF, andψ
i

the probabilist’s Hermite polynomial of order i. Then,

( ) ( ( )) ( ( )) ( )∑= + ∈
=

∞
− −

c u v

ρ

i

ψ u ψ v u v, 1
!

Φ Φ , , 0, 1 .ρ

i

i

i i

1

1 1 (27)

Proof.
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∣
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= ≔ ≔

=
⋅
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⎧
⎨
⎩

+
⎫
⎬
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⎠
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− −

− −
− −
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∞

=

∞
− −

c u v
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ρ

i

ψ u ψ v

,

Φ , Φ

Φ Φ
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,

Hill 26
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1

2
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2 2
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1

2 2

0

1 1

i

2 2

□

Using the well-known maximal correlation property of the Gaussian distribution [25, Section 6 and
references therein], the representation in equation (27) is the one obtained by canonical correlation and
thus a decomposition in the sense of Section 2.6 [28].

Figure 8(c) shows the first transformed probabilist’s Hermite polynomials ψ
i
and Figure 8(d) the geometric

dimension of Gaussian checkerboard copulas for various grid sizesn. The geometric dimension is bounded by −n 1

and increases withn, whereas the continuous Gaussian copula has an infinite geometric dimension. Figure 9 shows
the distance between the piecewise integrated transformed Hermite polynomials (equations (19) and (20)) and the
singular vectors of the Gaussian checkerboard copula for polynomial degrees 1 to 7. The distance decreases with n

for all degrees. The smaller the parameter ρ and the degree, the faster the distance decreases.

3.4 Copula similarities

The difference between copulas can be quantified using the calculated measures of Section 2.5. Figures 10 and
11 show the examples of the similarity of copulas using the (normalized) Frobenius distance of discretizations

Figure 9: Distance between the d-th piecewise integrated continuous singular vectors and d-th singular vector of the discretized matrix
for a Gaussian copula for increasing n and different values of ρ. Distance decreases for all degrees and parameters ρ considered with n:
(a) =ρ 0.25, (b) =ρ 0.50, and (c) =ρ 0.75.
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of Section 2.5. Figure 10 shows the distance between Gaussian copulas with different correlations. While
Figure 10(a) shows the Frobenius distance, Figure 10(b) and (c) shows the results using the normalizations.
In Figure 10(b), the distances are scaled by a common factor, which results in pairs of Gaussian copulas with
large ρ being considered more dissimilar than pairs with small ρ with identical difference. The second
normalization, δ2, scales based on Pearson’s ϕ

2 of the copulas and yields similar differences for pairs of the
same ρ difference. With increasing discretization grid size, n, δ1 tends to shrink the distance, whereas δ2

maintains the value (Figure 10(d)). Figure 11 shows the two normalizations for various checkerboard approx-
imations of parametric copulas for two values of τ . Using the Frobenius distance or δ1 in Figure 11(a) generally
produces higher distances if at least one copula has a high τ . Normalization δ2 produces close distance values
for similar values of τ as shown in Figure 11(b) and covers a wider range of possible distances between 0 and 1.
Figure 11(c) shows the results of the truncated approximation of δ1 and δ2. Most of the pairs of Gaussian
copulas considered already approximate the distance for small k*.

4 Visual exploratory analysis of copulas with profile plots

A primary purpose of correspondence analysis is usually to generate visual representations of high-dimen-
sional data by projecting row and column profiles into a low-dimensional space while maximizing the covered
variation of the data (for an introduction, see, e.g., [18]). We start by describing the approach and identifying
the characteristics of the copula visible in the graphs, and thus, the characteristics of the graphs to be analyzed
in Section 4.1. In Section 4.2, we use empirical data plots from ranked pseudo-observations to analyze the
dependence structure.

4.1 Understanding and interpreting profile plots

In profile plots, the similarity of the rows and columns of the checkerboard copula is shown. A row corre-
sponds to the conditional distribution of u given the “row” value of v (where we use the standard notation of u

being the horizontal coordinate and v being the vertical coordinate). The row profiles, F, and the column
profiles, G, correspond to the singular value-weighted coordinates in the space spanned by the opposing
singular vectors, i.e., in the notation of Section 2.2, ≔F US and ≔G VS. All n row and column profiles are
shown on the basis of their first two coordinates in the profile plot. Therefore, a row profile shows the two
most significant coordinates of the rows with respect to the basis spanned by the columns and vice versa. The
proximity of different row profiles reflects the similarity of the corresponding conditional distributions of u

given the value of v. For example, for independent variables, the distribution of u given v does not change with
the value of v, and all profile points in a profile plot would match. In a case with monotone dependence
instead, the distribution of u given v changes with v, and the profile points referring to different values of v

would not match, and their distance increases with the dissimilarity of the respective conditional distributions.

Figure 10: Comparison of the normalizations of Section 2.5 for a Gaussian copula with various copula correlations ρ and =n 100.
Normalization δ1 tends to shrink the distance with increasing n: (a) ‖ ‖⋅ F , (b) ( )⋅δ1 . For small ρ, the copulas are assigned similar
differences, (c) ( )⋅δ2 , and (d) comparison the normalizations for two Gaussian copulas with =ρ 0.4 and =ρ 0.6, respectively, with
increasing grid size n.
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In a 2D plot of the first two basis vectors, the v value of the row profile is not visible in the coordinates of the
points. Thus, we color the profiles to reflect the position of the profile: the lighter the color, the closer the v

value is to zero. Thus, the row profile for the conditional distribution u given ≈v 0 is the point with the lightest
color, and the profile given ≈v 1 is the point with the darkest color.

The profiles of rows and columns, F̃ and G̃, using the MAR can be computed analogously. We compare F

and F̃ for the Clayton copula below. For symmetric copulas, F and F̃ differ only in singular values and not in
singular vectors that lead to the same shapes but different profile scalings (Lemma 1). In traditional correspon-
dence analysis, normalizations of the row and column profiles account for the variation of the frequencies of the
individual profiles. All profiles have the same frequencies in the copula domain. Therefore, normalizations are
not necessary in this setting. Although sometimes plotted in one figure, the distances between a row and a
column profile cannot be interpreted directly because the representation is based on a different basis. The
profile plots of rows and columns are identical if the underlying copula is symmetric positive definite; i.e., Cn

and ( )⊤Cn are equal, and Cn is positive definite. The matrix Cn is, in particular, for exchangeable copulas,
symmetric but not necessarily positive definite. A copula is exchangeable if ( ( ) ( ))F X F Y,X Y has the same
distribution as ( ( ) ( ))F Y F X,Y X . The plot of several copula profiles in one plot displays differences between
copulas.

Figure 12 shows the graphs for some of the copulas of Sections 3.1 and 3.2, visualizing the general
characteristics depicted in the profile plot. Profiles of the raw model lying close to the zero point indicate
approximately conditionally independent distributions since the most significant coordinates are close to zero.
For an independence copula, all profiles lie close to zero. Significant deviations between the components
in the raw model graph and the MAR model graph refer to strong characteristics of the comonotonicity
copula. Figure 12(a) shows the examples for an independence and in Figure 12(b) and (c) for a comonotonicity
copula. Through the points’ colors, the plots also display how the profiles evolve and how rapidly the profiles
change. Points of similar colors lying close together exhibit a smooth evolution of the copula, whereas varying
distances show more extensive changes of the copula in certain areas. Increasing changes are evident,
for example, in the case of tail dependence, where the profiles change rapidly in the area of the tail. The
plot of the comonotonicity copula in the raw model in Figure 12(b) shows unordered profiles. The comono-
tonicity copulas SVD is ambiguous since any orthonormal set of vectors forms singular vectors of the diagonal
matrix. Thus, the calculated basis is merely random, and the profiles are scattered. For the Gumbel copula, the
profiles in Figure 12(d) and (e) evolve smoothly. Still, the differences become larger for higher values of θ and
the profiles closer to one since the copula has an upper tail dependence that increases with θ. Using the MAR
affects the profiles only slightly in Figure 12(e) as MAR only changes singular values and not singular vectors
for symmetric copulas. Figure 12(f) shows the profiles of a Gaussian copula for different values of ρ in one
chart. The similarity of profiles changes most pronounced in the tails of the profiles, whereas the profile
differences corresponding to middle columns and rows remain similar. Figure 12(g) depicts the row and
column profiles of an asymmetric copula, where the profiles do not coincide but are mirrored with respect
to the horizontal axis.

Figure 11: Comparison of the normalizations of Section 2.5 for a (G)umbel, (C)layton, and (Ga)ussian copula for two different values of τ

and =n 100. Kendall’s τ values refer to the copula to be discretized. 11(c) uses the truncated representation of δ1 and δ2 and shows the
computed values for increasing truncation parameter: (a) ( )⋅δ1 . For =τ 0.3, the copulas are assigned similar differences, (b) ( )⋅δ2 , and (c)
the truncated, normalized distances δ1 and δ2 from Section 2.5 over truncation order ⋆

k for pairs of Gaussian copulas with =n 100.
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4.2 Profile plots illustrated with a data example

Using data from an engineering context, we apply the graphical dependence assessment to empirical data.
Coblenz et al. [6] modeled the distribution of fuel drops that are generated by a fuel injector in a jet engine
using vine copulas. The droplets are characterized by five variables x x, …,1 5, i.e., the size of the drop, the
position in the x and y directions, and the velocity in the x and y directions. Data are generated using
numerical simulations under different operating conditions of jet engines, specified by the air velocity, the
air pressure, and the thickness of the atomizing edge. Coblenz et al. [6] published statistically simulated data
for different operating conditions. We focus on one of the ten operating conditions modeled, i.e., an air velocity
of −90 m s 1, an air pressure of 5 bar, and a thickness of the atomizing edge of 230 μm since this is the largest of
the provided datasets. It consists of 5,252 points in the five dimensions listed earlier.

The published data of Coblenz et al. [6] are available in the rank-transformed copula domain, which we
denote by u u, …,1 5. Note that due to the rank transformation, all values of uj are in the discrete set
{ }∕ ∕1 5,252, 2 2,525 , …, 1 . The copula domain’s relative frequency table, Cn, is computed by counting the number
of points per lattice box in ×I I

n n. Observations lying precisely on a grid boundary are counted for the box
below. We use =n 26 as a divisor of 5,252 for the analysis so that the resulting table has 202 observations in
each row and column, and dividing each cell by 202 leads to a doubly stochastic matrix. For each distinct pair
of dimensions, we plot the row profiles, the column profiles, and a checkerboard copula plot of the pseudo-

Figure 12: Row and column profiles for four copulas with various parameters, each with grid size =n 50. Except for the copula in (g), the
displayed copulas are symmetric and have identical row and column profiles. The profiles reflect various copula characteristics, such as
the strength of dependence, symmetry for different axes, and areas with high variation: (a) the independence copula in the raw model.
All profiles lie close to zero, (b) the comonotonicity copula in the raw model. The profiles are scattered, (c) the comonotonicity copula in
the MAR. All profiles lie close to zero, (d) the Gumbel copula in the raw model, (e) the Gumbel copula in the MAR. The axis limits vary
slightly compared to (d) and (f) the Gaussian copula in the raw model, and (g) the asymmetric copula according to equation (26). Row
and column profiles differ.
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observations in Figure 13. We focus on five of the pairs here, and the graphs for the combinations ( )u u,1 3 ,
( )u u,1 5 , ( )u u,2 5 , ( )u u,3 5 , and ( )u u,4 5 are shown in Appendix D in Figure A1.

As profile points are obtained from empirical data, they deviate from their theoretical counterparts. To
visualize statistical noise in the plots, we show the typical minimal and maximal values of profiles for an
independence copula by a gray rectangle in the plots. The gray rectangles are obtained by sampling 5,252
realizations from an independence copula and computing their row and column profiles. The procedure is

Figure 13: Profile and checkerboard plots of the fuel injector spray characteristics in jet engines from Coblenz et al. [6]. The physical
interpretations of the variables are drop size (u1), x-position (u2), y-position (u3), x-velocity (u4), and y-velocity (u5): (a) row profiles for variables
u2 and u2, (b) column profiles for variables u1 and u2, (c) checkerboard plot for variables u1 and u2, (d) row profiles for variables u1 and u4, (e)
column profiles for variables u1 and u4, (f) checkerboards plot for variables u1 and u4, (g) row profiles for variables u2 and u3, (h) column
profiles for variables u2 and u3, (i) checkerboard plot for variables u2 and u3, (j) row profiles for variables u2 and u4. A profile at (0.60, 0.27) is
out of scope, (k) column profiles for variables u2 and u4. A profile at (0.60, 0.27) is out of scope, (l) checkerboard copula plot for variables u2
and u4, (m) row profiles for variables u3 and u4, (n) column profiles for variables u3 and u4, and (o) checkerboard plot for variables u3 and u4.
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repeated 100 times. The rectangles cover 95% of the minimal and maximal point coordinates of the 100
samples in every dimension. Thus, if the profiles are outside the gray box, the underlying copula is unlikely
to be the independence copula. This approach aligns with Greenacre [18], who advocates resampling methods,
for example, bootstrapping, over using asymptotic results for profile values. Again, the darker the point’s
color, the closer the conditional distribution’s conditioning variable is to one.

The profile plots for variables u1 and u2 in Figure 13(a) and (b) show that some profiles deviate from others
and that there is a continuous development with the conditioning variable. For row profiles, i.e., conditional
distributionsu2 givenu1, withu1 close to one (dark points in the row profile plot) and column profilesu2 close to
zero (light points in the column profile plot), the profiles change and indicate that the variables are not
independent. The checkerboard plot in Figure 13(c) shows a peak at ( )0, 1 . Further information is covered
by noise. The profiles in Figure 13(d) and (e) exhibit a U-shaped pattern and are mirrored with respect to the
vertical axis. Thus, the dependence has a countermonotonic characteristic that is reflected loosely in the
checkerboard copula plot in Figure 13(f). While high values are apparent near ( )0, 1 and ( )1, 0 , the pattern
in between is hard to distinguish. The row and column profiles of Figure 13(g) and (h) differ clearly. Whereas
the row profiles evolve in a similar direction with stronger changes near 0, the column profiles undergo a
cyclical transformation. The profiles corresponding to small and large values of u3 are similar, and the profiles
for u3 near 0.5 are different. This pattern is a sign of U or hump-shaped dependence, which is also reflected in
the checkerboard plot. For variables u2 and u4, Figure 13(j) to (l) show a typical tail-dependence behavior. The
profiles change rapidly for small values of u2 andu4, whereas they evolve relatively smoothly for larger values.
The behavior of the profile plots in Figure 13(m) and (n) is similar to variables u2 and u3, but is exchanged. The
row profiles undergo a cyclical transformation, while the column profiles evolve smoothly. As the U-shaped
form is more apparent than for variablesu1 andu4, the profiles show a stronger pattern for variablesu3 andu4.
The u-shape is distinguishable in Figure 13(o).

Overall, the row and profile plots provide at least the same amount of information as the checkerboard
plots, but they are more transparent and less cluttered than the checkerboard plots.

5 Conclusion

This article analyzes truncations of SVD and correspondence analysis of checkerboard copulas. Checkerboard
copulas can be mapped to doubly stochastic matrices, making it straightforward to ensure copula properties
for the approximations. We find that some common copulas, for example, comonotonicity-like, have high
ranks and thus are poorly represented in the straightforward SVD and that truncations can have negative
elements. To account for comonotonicity-like copulas with high ranks, we adapt a representation anchored
with the comonotonicity copula and show its performance in examples. We compute the nearest valid doubly
stochastic matrix to correct the truncations with negative entries. We analyze the representations of statistical
characteristics of copulas, such as Kendall’s τ , Spearman’s ρ, or differences between copulas through the
decomposition. The truncations can be used to compute discretized versions of continuous decompositions,
linking our analysis to continuous decompositions. We derive a decomposition of the Gaussian copula into
transformed Hermite polynomials and show that the discretized singular vectors draw closer to the trans-
formed Hermite polynomials with increasing grid size. We analyze correspondence analysis profile plots for
copulas and show that they reveal asymmetries and non-monotonic dependence. Profile plots for various
copulas are shown, and the graphical analysis is illustrated on a dataset on fuel injector spray characteristics
in jet engines.

Other approaches for reducing the comonoticity-like characteristics of the copula are possible, such as using
rook copulas [7] and, for empirical data, sample-dependent grid sizes [22] or anchoring with respect to other
copulas while varying the sample size [13]. They need more complex fitting of the parameters and components
and might use different grid sizes. Thus, we leave the comparison of these methods for further research.

In this article, we do not expand on the empirical estimation of the model. It is well known that the
empirical checkerboard copula converges to the theoretical checkerboard copula. Perturbation theory
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analyzes the effect of noise on the results of the SVD (for a concise overview, see, e.g., [46]). The singular
vectors can suffer from large fluctuations for small noise; the singular values, however, are estimated more
robustly. Thus, the visual analysis in Section 4 is less prone to noise than plotting the singular vectors directly.

Although the approach can be extended to larger dimensions, it is not straightforward. The concept of the
checkerboard copula is viewed in a higher dimension, for example, in Carley and Taylor [5]. There is no direct
analog of SVD in three and higher dimensions, but various approaches exist (see, for example, Kolda and Bader
[26] for an introduction). Copula-specific methods for modeling high-dimensional data include vine copulas
[3,14,23,36] and nested Archimedean copulas [20,42], where the copulas involved could be analyzed using the
methods presented here.
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Appendix

A Calculations for the algorithms of Section 2.3

We consider the problem

�
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n n

with a symmetric matrix A in Appendix A.1 and an asymmetric A in Appendix A.2.
The solution of ( )P A1 1 has a closed form, if the matrix A1 is symmetric, i.e.,
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In the case of an asymmetric matrix A1, the problem ( )P A1 1 boils down to a linear system (Appendix A.2).
For ( )P A2 2 ,
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there exists a closed-form solution independent of the symmetry of A2. As the Frobenius norm can be mini-
mized elementwise,
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the solution of ( )P A2 2 is the elementwise positive part of A2. Algorithm 1 combines P1 and P2.
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A.1 Symmetric copula

The proof is analogous to Zass and Shashua [47] for symmetric A. We provide it here for completeness and to
emphasize its inapplicability to asymmetric matrices. Let = ⊤A A and ( )P A*

1 be the relaxation
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The result for B in equation (A4) is symmetric, and thus, also solution for ( )P A1 :

= ⎛
⎝ + ⎛

⎝ − + ⎞
⎠ − ⎞

⎠

= + ⎛
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⎠ −
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Algorithm 1: Algorithm to compute the nearest doubly stochastic matrix in terms of the Frobenius error
following Zass and Shashua [47] for symmetric matrices A and >ε 0. The stopping criterion ≤c cmax ensures
the termination of the algorithm. The solutions of P1 and P2 can be found in Appendix A.

input Matrix �∈ ×A n n, >ε 0, number of maximal iterations cmax

output: nearest doubly stochastic matrix B

1 Set =B A and =c 1;
1 Update ( )= PB B1 ;
3 while ∃ < − ∧ ≤i j ε c cB, : i j, max do

4

5

6

( )

( )

=
=
= +

P

P

c c

B B

B B

Update ;

Update ;

Update 1;

2

1

7 end

A.2 Asymmetric copula

For asymmetric A, the result of ( )P A*
1 is not symmetric and thus is not a solution to the original problem ( )P A1 .

Instead, the solution of a Karush-Kuhn-Tucker equation system yields the solution for P1. The problem

�

( ) ‖ ‖≔ − = =
∈

⊤
×

P A A B B1 1 B 1 1arg min s.t. ,
F

B

1
2

n n

with the Lagrange function and its derivative

( ) ( ) ( ) ( ) ( )

( ) [ ]

= − − − − −
∂
∂

= − − − ∈

⊤ ⊤ ⊤ ⊤ ⊤
L λ μ λ μ

L

λ μ λ μ i j n

B B B A B B1 1 B 1 1

B
B B A

, , trace trace 2

, , 2 2 , for ,
ij

ij ij j i

yields the system

( ) [ ] [ ]− − = ∀ ∈ ×λ μ i j n nB A2 2 , , ,ij j i ij (A5)

[ ]∑ = ∀ ∈
=

j nB 1, ,

i

n

ij

1

(A6)

[ ]∑ = ∀ ∈
=

i nB 1, .

j

n

ij

1

(A7)

The solution of the Karush-Kuhn-Tucker equation system is the solution of the linear equation system
=Kb a with

[ ] [ [ ]] [ [ ] ]

[ [ ]]

[ [ ] ]

=

⎛

⎝

⎜
⎜

× ⊗ × × ⊗
⊗ ×

× ⊗
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⎠

⎟
⎟

=
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⎠
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K

I n n I n n I n n
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b λ

μ

a

A
1 1

1

1

B
˜

2

0 0

0 0

, ˜ , ˜

2

0

0

n n n

n

n

n

n

2 2

1

1

and = + − + −K K̃ n n n n1: 2 1,1: 2 1
2 2 , = + −b b̃ n n1: 2 1

2 , and = + −a ã
n n1: 2 1

2 . Thereby, ⊗ denotes the Kronecker product of the
matrices, and ⋅→ denotes the column-wise stacking of a matrix into a vector. The last row and column are
excluded, as the matrix K is singular and the constraint∑ == B 1

j

n

nj1 is guaranteed by the remaining constraints
(A6) and (A7). Then, the first n

2 elements of the solution b rearranged as matrix B are the solution of P1.
Additionally, Algorithm 1 includes a deflection component to account for the more general setting [17,47],

as summarized in Algorithm 2.
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Algorithm 2: Algorithm to compute the nearest doubly stochastic matrix in terms of the Frobenius error
following Zass and Shashua [47] for asymmetric matrices A and >ε 0. The stopping criterion ≤c cmax ensures
the termination of the algorithm. The solutions of P1 and P2 can be found in A.2. Bc d, denotes the solution in
iteration c in the subproblem d and Ic d, the corresponding incremental change

input: Matrix �∈ ×A n n, >ε 0, number of maximal iterations cmax

output: Nearest doubly stochastic matrix B

1 Set =B A and =c 1;
2 Set ( )= PB B1,1 1 and = −I B B1,1 1,1 ;
3 Set ( )= +P IB B1,2 2 1,1 and ( )= − +I IB Bc c1,2 ,2 ,1 ;
4 repeat
5

6

7
( ) ( )

( ) ( )

= +
= + = − +
= + = − +

− −

c c

P I I I

P I I I

B B B B

B B B B

Update 1;

Set and ;

Set and ;

c c c c c

c c c c c

,1 1 1,2 ,1 ,1 1,2

,2 2 ,1 ,2 ,2 ,1

8 ( ) ∣( ) ∣ ∣( ) ∣+ + ≥ − ∧ + + − < ∧ + + − < ∧ ≤⊤
I I ε I I ε I I ε c cB B 1 1 B 1 1c c c c c c,1 ,2 ,1 ,2 ,1 ,2 max

B Decomposition in terms of the Hellinger distance

The SVD and the algorithms of Section 2.3 yield minimal errors in terms of the Frobenius norm. The SVD is also
the best low-rank approximation considering the spectral norm [34]. In statistics, the Hellinger distance is
often used to assess the proximity of densities (see [1,32], for two recent contributions). In this section, we
analyze Hellinger distance-based decompositions for two different versions of the Hellinger distance for
matrices, as, to our knowledge, there is no agreed definition in the matrix case yet. For a matrix square
root-based Hellinger distance, the decomposition generalizes from the Frobenius case, while it is of a different
and more complicated structure for an elementwise square root Hellinger distance.

For discrete probability distributions ( )=p p p, …,
n1
and ( )=q q q, …,

n1
, the Hellinger norm dH is computed

by

( ) ( )

( )

∑

∑ ∑

=
⎡
⎣⎢

−
⎤
⎦⎥

=
⎡
⎣⎢

+ −
⎤
⎦⎥

=

∕

= =

∕

d p q p q

p q p q

,
1

2

1

2
2 .

H

i

n

i i

i

n

i i

i

i i

1

2

1 2

1 1

1 2

For matrices, there are different notions of the Hellinger distance in the literature. We consider a formulation
based on the matrix square root first [4] and then turn to an elementwise square root method [39].

Bhatia et al. [4] started from the decomposition of the Hellinger distance for densities into an arithmetic
and geometric mean. As the geometric mean for matrices can be interpreted in various ways, different notions
of the distance can be obtained. We use their most straightforward generalization yielding the Hellinger
distance for positive semidefinite, and thus, symmetric, matrices A and B

( ) ‖ ‖ [ ( ) ( )]= − = + −∕ ∕ ∕ ∕ ∕
d A B A B A B A B, trace 2trace .H F

1 2 1 2 1 2 1 2 1 2

Thereby, ∕
A

1 2 denotes the matrix square root with ( ) = =∕ ⊤ ∕ ∕ ∕
A A A A A

1 2 1 2 1 2 1 2 .

Lemma 3. The low-rank approximation problem of a positive definite matrix A yields the same eigenvectors and
eigenvalues for the Frobenius and the Hellinger distance.
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Proof. Let ( )P A k,F the low-rank approximation problem in terms of the Frobenius distance

�
( ) ‖ ‖ ( )≔ − ≤

∈ ×
P A k A B B k, min s.t. rankF

B

F
n n

and ( )P A k,H in terms of the Hellinger distance

�
( ) ‖ ‖ ( )= − ≤

∈
∕ ∕

×
P A k A B B k B, min s.t. rank , positive semidefinite ,H

B

F

1 2 1 2

n n
(A8)

as the matrix square root is unique and ( ) ( )= ∕
B Brank rank 1 2 [21, Theorem 7.2.6].

Thus, the minimizing argument, ∕
B

1 2, of Problem ( )P A k,H is the k -truncated SVD of ∕
A

1 2. Due to the positive
definiteness of A, left and right singular values are identical, and the eigenvalue decomposition

( )≔∕ ⊤
A U UΛ1 2 (A9)

exists with eigenvector matrix U and diagonal eigenvalue matrix Λ. This yields for the matrix square root of
the minimizing argument, ∕

B
1 2, of ( )P A k,H and the minimizing argument, B,

( ) ( )[ ] [ ] [ ] [ ] [ ] [ ]= = =∕ ⊤ ∕ ∕ ⊤
B U U B B B U UΛ and Λ .k k k k k k

1 2 1 2 1 2 2

The eigenvectors of ∕
A

1 2 and A are identical and the singular vectors are squared, as

( )( )= = =∕ ∕ ⊤ ⊤ ⊤ ⊤
A A A U U U U U UΛ Λ Λ .1 2 1 2 2

Thus, the minimizing argument of ( )P A k,F is

( )[ ] [ ] [ ]
⊤

U UΛk k k

2

and equal to the minimizing argument of ( )P A k,H . □

This definition of the Hellinger distance obtains the same decomposition as with the Frobenius distance. The
coefficient η in the MAR can also be computed with the Hellinger distance instead of the Frobenius distance in
equation (8). However, the definition of the Hellinger distance only for positive semidefinite copulas is restrictive,
as valid bistochastic matrices do not need to be positive definite, for example, unsymmetric.

Rao [39] and Cuadras and Cuadras [11] defined the Hellinger distance in terms of an elementwise square
root, thus considering only matrices with non-negative elements. Let A denote the elementwise square root
of a matrix A. Then, the decomposition based on the elementwise Hellinger decomposition is for a symmetric
checkerboard copula Cn

( )= ⊤
U UC Λ .n H H H (A10)

Truncations ( )T Cn

n
* have to be squared elementwise to obtain a low-rank approximation of the Hellinger

decomposition. Note that the squared decomposition does not keep the rank of ( )T An

n
* . The MAR could be

used in the elementwise Hellinger decomposition, and the optimization in equation (8) could be adapted and
solved by a general optimization problem solver. To our knowledge, no optimizations similar to those in the
Frobenius case are available for the elementwise Hellinger scenario, as either the objective function contains
square roots or the constraints are non-linear. While the elements of the squared decomposition are non-
negative, the row and column sums are not one, in general, and thus, the squared decomposition is not doubly
stochastic.

All in all, the elementwise Hellinger decomposition is not as straightforward as the Frobenius decomposi-
tion, as the squared decomposition does not keep the rank of the truncation, and the attached optimization
problems obtain more complex. Through the elementwise square root, the influence of peaks in the checker-
board copula on the objective function is reduced compared to the Frobenius case. It is a modeling choice,
whether this is desired or not. Rao [39] and Cuadras and Cuadras [11] pointed out that elementwise Hellinger-
based decomposition’s main advantage is the independence from the row and column marginals. However,
the marginals are constant in the checkerboard copula setting; thus, the correspondence analysis does not
depend on them. Thus, we do not expand on the Hellinger decompositions in the main part of this article.
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C Computations for Spearman’s ρ and Kendall’s τ in Section 2.4

As in Section 2.4, = ⊤A USVn denotes the centered copulas SVD. Let additionally be = = ∕ ⋅nu v 110 0 and =s 10

to ease the notation. The equations for Spearman’s ρ in Section 2.4 follow from
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Similarly, follows for the MAR decomposition, ( )= ⊤A US V˜ ˜ ˜ ˜n ,
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where ( )* is only valid for symmetric Ã
n.

The respective computations for Kendall’s τ are
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and for the MAR analogously.
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D Further figures for Section 4.2

Figure A1: Remaining profile and checkerboard plots of the fuel injector spray characteristics in jet engines from Coblenz et al. [6] from
Section 4.2. The other dimension combinations are shown in Figure 13. The physical interpretations of the variables are drop size (u1), x-
position (u2), y-position (u3), x-velocity (u4), and y-velocity (u5). For the variable pairs (u1, u5) and (u2, u5), no deviation from independence
is discernible. A weak hump-shape can be observed for variables u1 and u3. Again, the course of column profiles is reversed in the middle
of the profiles. The plots show a Gaussian-like behavior for variables u3 and u5. The profile plots for variables u4 and u5 show a weak
deviation from independence for the profiles near =u 14 and extreme values of u5: (a) row profiles for variables u1 and u3, (b) column
profiles for variablesu1 andu3, (c) checkerboard plot for variablesu1 andu3, (d) row profiles for variablesu1 andu5, (e) column profiles for
variables u1 and u5, (f) checkerboard plot for variables u1 and u5, (g) row profiles for variables u2 and u5, (h) column profiles for variables
u2 andu5, (i) checkerboard plot for variablesu2 andu5, (j) row profiles for variablesu3 andu5, (k) column profiles for variablesu3 andu5, (l)
checkerboard plot for variables u3 and u5, (m) Row profiles for variables u4 and u5, (n) column profiles for variables u4 and u5, and (o)
checkerboard plot for variables u4 and u5.
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