
Computer Physics Communications 306 (2025) 109384

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

ftint: Calculating gradient-flow integrals with pySecDec✩

Robert V. Harlander a,∗, Theodoros Nellopoulos a, Anton Olsson b, Marius Wesle c

a TTK, RWTH Aachen University, 52056 Aachen, Germany
b Institute for Theoretical Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
c Department of Mathematics, University of Tübingen, 72076 Tübingen, Germany

A R T I C L E I N F O A B S T R A C T

Dataset link: https://gitlab .com /ftint /ftint

Keywords:

Gradient flow

Perturbation theory

Feynman integrals

The program ftint is introduced which numerically evaluates dimensionally regularized integrals as they
occur in the perturbative approach to the gradient-flow formalism in quantum field theory. It relies on sector
decomposition in order to determine the coefficients of the individual orders in 𝜖 = (4 −𝐷)∕2, where 𝐷 is the
space-time dimension. For that purpose, it implements an interface to the public library pySecDec. The current
version works for massive and massless integrals up to three-loop level with vanishing external momenta, but
the underlying method is extendable to more general cases.

Contents

1. Introduction . 2

2. General outline . 2

3. Calculation of the integrals . 3

3.1. One loop . 3

3.2. Higher orders . 4

3.3. Symmetries of the flow-time integrals . 4

3.4. Implementation with pySecDec . 5

4. Using ftint . 5

4.1. Sector decomposition . 6

4.2. Numerical integration . 7

4.3. Example: checking an integration-by-parts relation . 8

4.4. Mapping to the normal form . 9

4.5. Checks . 9

5. Conclusions and outlook . 10

CRediT authorship contribution statement . 10

Declaration of competing interest . 10

Data availability . 10

Acknowledgements . 10

Appendix A. In- and output format . 10

References . 10
✩ The review of this paper was arranged by Prof. Z. Was.

* Corresponding author.
Available online 20 September 2024
0010-4655/© 2024 The Author(s). Published by Elsevier B.V. This is an open access

E-mail address: robert.harlander@rwth-aachen.de (R.V. Harlander).

https://doi.org/10.1016/j.cpc.2024.109384

Received 25 July 2024; Received in revised form 6 September 2024; Accepted 17 Se
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ptember 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
https://gitlab.com/ftint/ftint
mailto:robert.harlander@rwth-aachen.de
https://doi.org/10.1016/j.cpc.2024.109384
https://doi.org/10.1016/j.cpc.2024.109384
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109384&domain=pdf
http://creativecommons.org/licenses/by/4.0/

R.V. Harlander, T. Nellopoulos, A. Olsson et al.

PROGRAM SUMMARY

Program title: ftint
CPC Library link to program files: https://doi .org /10 .17632 /bt6bkffxh9 .1
Developer’s repository link: https://gitlab .com /ftint /ftint

Licensing provisions: MIT license

Programming language: Python

Supplementary material: README.md

Nature of problem: The perturbative approach to the gradient-flow for-

malism in quantum field theory leads to integrals which closely resemble
regular Feynman integrals. However, they involve exponential factors
which depend on the loop and external momenta, as well as on so-called
flow-time variables. In general, the latter are also integrated over a finite
interval. These integrals cannot be solved immediately with standard
tools.

Solution method: The flow-time integrals are transformed to integrals
over a hypercube by introducing Schwinger parameters. The latter are
numerically evaluated using the public program pySecDec, which per-

forms a sector decomposition and calculates the coefficients of the poles
in the parameter 𝜖 = (4 −𝐷)∕2 by numerical integration, where 𝐷 is the
space-time dimension which occurs in dimensional regularization.

Additional comments including restrictions and unusual features: In its cur-

rent form, ftint is restricted to one-, two-, and three-loop integrals
with vanishing external momenta. It does allow for massive propaga-

tors though, raised to virtually arbitrary integer powers.

1. Introduction

The gradient-flow formalism (GFF) [1–5] is a useful tool for practi-

cal calculations in Quantum Field Theory (QFT). Its main feature is to
suppress the high-momentum modes of quantum fields. In lattice Quan-

tum Chromodynamics (QCD), this leads to a smoothing of the gauge
field. Among many other applications, this allows for efficient ways to
determine the lattice spacing, for example [3,6].

On the other hand, various applications of the GFF have been sug-

gested that involve also perturbative calculations, among them the so-

called short-flow-time expansion (SFTX) [4], where composite operators
of flowed fields are expressed in terms of regular operators via matching
coefficients which can be determined perturbatively. This approach has
proven viable for evaluating matrix elements of the energy-momentum
tensor in QCD, for example, or for the calculation of observables in flavor
physics [7–14]. For more applications, see Refs. [15–21], for example.

The form of the integrals that occur in the perturbative approach
to the GFF is remarkably close to the Feynman integrals of regular
QFT. The only modifications are: (i) an exponential factor in the inte-

grand which depends on the loop momenta, the external momenta and
the masses, in general, as well as on so-called flow-time variables, and
(ii) additional integrations over these flow-time variables [3,4].

It has been shown that many of the tools that have been developed
for higher-order calculations in the perturbative approach to regular
QFT can be applied or extended to flowed QFT [22]. In particular, this
holds for the automatic generation of the associated Feynman diagrams,
their simplification to scalar integrals, as well as their reduction to mas-

ter integrals using integration-by-parts (IbP) relations. However, while
there are powerful publicly available software tools for the numerical
evaluation of the master integrals in regular QFT, this is not the case for
flow-time integrals. In this paper, we will close this gap by providing
the program ftint, which constitutes an interface for such integrals to
pySecDec [23–25], allowing to evaluate them via the sector decom-

position algorithm [26–28]. In this first version of the program we put
the focus on integrals which depend only on a single mass scale, the
flow-time 𝑡. This is certainly one of the most important cases, as the cal-

culation of the matching coefficients in the SFTX leads to exactly this
class of integrals [10]. However, ftint also allows for non-vanishing
masses in the propagators, which may prove useful in many applications
2

such as the calculation of mass effects to the action density ⟨𝐺𝜇𝜈𝐺𝜇𝜈⟩.
Computer Physics Communications 306 (2025) 109384

The structure of the remainder of this paper is as follows. After
defining the problem in Section 2, we describe the method of our calcu-

lation in Section 3. The way to use the program ftint is presented in
Section 4, including some examples and checks. Section 5 contains con-

clusions and an outlook for future work. In the appendix, we describe
the possibility to adjust the input and output format of ftint.

2. General outline

We work in Euclidean space throughout this paper, unless stated
otherwise. The generic form of the integrals which we will consider
is [22,29]

𝑓 (𝐜,𝐚,𝐛) = (4𝜋𝑡)𝑙𝐷∕2 𝑡−𝑏 ∫
[0,1]𝑓

d𝐮𝐮𝐜 ∫
𝐩

exp[−𝑡
∑𝑘

𝑖=1 𝑎𝑖𝑃
2
𝑖
]

(𝑃 2
1 +𝑚2

1)
𝑏1 ⋯ (𝑃 2

𝑘
+𝑚2

𝑘
)𝑏𝑘

(1)

where 𝐩 = {𝑝1, … , 𝑝𝑙} is the set of loop momenta,

𝐛 = {{𝑏1,𝑚1},… ,{𝑏𝑘,𝑚𝑘}} (2)

collects the so-called indices 𝑏𝑖 ∈ Z and masses 𝑚𝑖 ∈ R. The prefactor
𝑡−𝑏, with 𝑏 =

∑𝑘

𝑖=1 𝑏𝑖, in Eq. (1) thus compensates the mass dimension of
the integral, such that 𝑓 (𝐜, 𝐚, 𝐛) is dimensionless. We furthermore define
the simplified notation {𝑏𝑖, 0} → 𝑏𝑖 for massless propagators.

The 𝑘 functions 𝑎𝑖 ∈ 𝐚 are real-valued polynomials of the (dimen-

sionless) flow-time variables 𝐮 = {𝑢1, … , 𝑢𝑓 } that are non-negative on
the hypercube [0, 1]𝑓 . Furthermore, we define

𝐮𝐜 ≔ 𝑢
𝑐1
1 ⋯𝑢

𝑐𝑓

𝑓
, (3)

where 𝐜 = {𝑐1, … , 𝑐𝑓 } is a set of non-negative integers.

The integration measure over the loop momenta is

∫
𝐩

≔∫
𝑝1

⋯∫
𝑝𝑙

, with ∫
𝑝

= ∫
d𝐷𝑝
(2𝜋)𝐷

, 𝐷 = 4 − 2𝜖 . (4)

The 𝑃𝑖 in Eq. (1) are linear combinations of the loop momenta. External
momenta will be neglected in this paper. This is justified for the calcu-

lation of the perturbative matching coefficients of the SFTX to which

ftint is tailored.1 It implies that the number of propagators 𝑘 in Eq.

(1) is related to the number of loops 𝑙 as

𝑘 =
{

1 for 𝑙 = 1 ,
3 (𝑙 − 1) for 𝑙 ≥ 2 . (5)

In principle, there could be propagator factors in Eq. (1) which differ
only in their mass term, i.e., 𝑃𝑖 = 𝑃𝑗 but 𝑚𝑖 ≠𝑚𝑗 . However, using partial
fractioning, these can always be re-written to integrals where 𝑚𝑖 =𝑚𝑗 if
𝑃𝑖 = 𝑃𝑗 .

For later purposes, it is convenient to define a symmetric square ma-

trix 𝐴(𝐚) through the condition

𝐩𝑇 𝐴(𝐚)𝐩 =
𝑘∑
𝑖=1

𝑎𝑖𝑃
2
𝑖
, (6)

where 𝐩 are the loop momenta. Its explicit form depends on the choice
of linear combinations 𝑃𝑖. To be specific, we choose

one-loop:

𝑃1 = 𝑝1 ,

⇒ 𝐴(𝐚) = 𝑎1 .
(7a)

1 The matching coefficients are most conveniently determined by using the
method of projectors [30,31], which results in integrals whose only dimensional

scale is the external flow-time 𝑡, see Ref. [10], for example.

https://doi.org/10.17632/bt6bkffxh9.1
https://gitlab.com/ftint/ftint

R.V. Harlander, T. Nellopoulos, A. Olsson et al.

Fig. 1. One-, two-, and three-loop topologies of the integrals considered in this
paper. All Feynman diagrams are produced with the help of FeynGame [32,33].

two-loop:

𝑃1 = 𝑝1 , 𝑃2 = 𝑝2 , 𝑃3 = 𝑝1 + 𝑝2 , (8a)

⇒ 𝐴(𝐚) =
(
𝑎1 + 𝑎3 𝑎3
𝑎3 𝑎2 + 𝑎3

)
. (8b)

three-loop:

𝑃1 = 𝑝1 , 𝑃2 = 𝑝2 , 𝑃3 = 𝑝3 ,

𝑃4 = 𝑝1 − 𝑝2 , 𝑃5 = 𝑝1 − 𝑝3 , 𝑃6 = 𝑝2 − 𝑝3 ,
(9a)

⇒ 𝐴(𝐚) =
⎛⎜⎜⎝
𝑎1 + 𝑎4 + 𝑎5 −𝑎4 −𝑎5

−𝑎4 𝑎2 + 𝑎4 + 𝑎6 −𝑎6
−𝑎5 −𝑎6 𝑎3 + 𝑎5 + 𝑎6

⎞⎟⎟⎠ . (9b)

This choice defines the so-called integral topologies shown in Fig. 1.
Note that there is only a single topology at each loop order up to the
three-loop level. This pattern does not extend to higher orders though.

3. Calculation of the integrals

The method we pursue for the evaluation of the integrals closely fol-

lows Ref. [29]. However, while this paper employed the public software
tools FIESTA [34–37] and the MPFR integration library,2 we use py-
SecDec for the main calculational steps.

3.1. One loop

In order to describe the method that we apply for the calculation of
the integrals, it is instructive to consider the one-loop level first. This is
a particularly simple case which, however, already introduces the main
concepts. The formal step to a general number of loops can then be
achieved rather easily. Furthermore, it is useful to neglect all masses in
a first outline. It turns out that their inclusion is almost trivial in the
approach described below.

3.1.1. Massless case

At the one-loop level and neglecting the masses, Eq. (1) takes the
form

𝑓 (𝐜,{𝑎},{𝑏}) = (4𝜋𝑡)𝐷∕2 𝑡−𝑏 ∫
[0,1]𝑓

d𝐮𝐮𝐜 ∫
𝑝

exp[−𝑡𝑎𝑝2]
(𝑝2)𝑏

. (10)

It is useful to distinguish three cases.

Vanishing index. For 𝑏 = 0, evaluating the integral over 𝑝 gives

𝑓 (𝐜,{𝑎},{0}) = ∫
[0,1]𝑓

d𝐮𝐮𝐜 [𝑎]−𝐷∕2 .
(11)

Recall that 𝑎 is a polynomial in the flow-time variables 𝑢𝑖. This
can be passed directly to pySecDec for numerical integration, see
Section 3.4.

2 See http://www .holoborodko .com /pavel /mpfr/ and https://www .mpfr .
3

org/.
Computer Physics Communications 306 (2025) 109384

Positive index. For 𝑏 > 0, we apply Schwinger parameters to make the
𝑝 integral Gaußian:

𝑓 (𝐜,{𝑎},{𝑏}) = (4𝜋𝑡)𝐷∕2

(𝑏− 1)!

∞

∫
0

d𝑥𝑥𝑏−1 ∫
[0,1]𝑓

d𝐮𝐮𝐜 ∫
𝑝

exp{−𝑡[𝑎+ 𝑥]𝑝2} =

= 1
(𝑏− 1)!

∞

∫
0

d𝑥𝑥𝑏−1 ∫
[0,1]𝑓

d𝐮𝐮𝐜 [𝑎+ 𝑥]−𝐷∕2 .

(12)

In order to evaluate the integral over Schwinger parameters with

pySecDec, we map them to the interval [0, 1]. Unfortunately, the
mapping

𝑥→
1 − 𝑥

𝑥
(13)

introduces singularities at 𝑥 = 1, while pySecDec expects them to
occur only at 𝑥 = 0. Therefore, we split the integration intervals
of the Schwinger parameters as [0, ∞) = [0, 1] ∪ (1, ∞), and map
𝑥 → 1∕𝑥 in the second interval, leading to

𝑓 (𝐜,{𝑎},{𝑏}) = 1
(𝑏− 1)! ∫

[0,1]𝑓

d𝐮𝐮𝐜

×

1

∫
0

d𝑥
(
𝑥𝑏−1 [𝑎+ 𝑥]−𝐷∕2 + 𝑥𝐷∕2−1−𝑏 [𝑥𝑎+ 1]−𝐷∕2) . (14)

pySecDec can now treat the 𝑥 and 𝐮 integration on the same foot-

ing.

Negative index. In the case 𝑏 < 0, we can use

(𝑝2)−𝑏 = (−𝑡)𝑏 𝜕−𝑏

𝜕𝑥−𝑏
𝑒−𝑥𝑡𝑝

2 ||||𝑥=0 (15)

and obtain

𝑓 (𝐜,{𝑎},{𝑏}) = (−1)𝑏 𝜕−𝑏

𝜕𝑥−𝑏 ∫
[0,1]𝑓

d𝐮𝐮𝐜[𝑎+ 𝑥]−𝐷∕2||||𝑥=0
= 𝑃 (−𝑏) (−1)𝑏 ∫

[0,1]𝑓

d𝐮𝐮𝐜[𝑎]−𝐷∕2+𝑏 ,

(16)

where

𝑃 (𝑚) =
𝑚∏
𝑘=1

(1 − 𝑘−𝐷∕2) =
Γ(1 −𝐷∕2)

Γ(1 −𝐷∕2 −𝑚)
. (17)

This expression can again be directly passed to pySecDec.

Let us look at a few simple examples which can be calculated ana-

lytically:

𝑓 ({},{1},{0}) = 1 ,

𝑓 ({},{𝑎},{𝑛}) = (4𝜋𝑡)𝐷∕2 𝑡−𝑛 ∫
𝑝

exp[−𝑡𝑎𝑝2]
(𝑝2)𝑛

=

= 𝑎𝑛−𝐷∕2

(𝑛− 1)!

∞

∫
0

d𝑥𝑥𝑛−1(1 + 𝑥)−𝐷∕2 =

= 𝑎𝑛−𝐷∕2

(𝑛− 1)!
Γ(𝑛)Γ(𝐷∕2 − 𝑛)

Γ(𝐷∕2)
, for 𝑛 ≥ 1 , 𝑎 ∈R , (18)

𝑓 ({},{𝑎},{−𝑛}) = (4𝜋𝑡)𝐷∕2 𝑡𝑛 ∫
𝑝

𝑝2𝑛 exp[−𝑡𝑎𝑝2] =

= (4𝜋𝑡)𝐷∕2(−𝑎)−𝑛 𝜕𝑛

𝑛
exp[−𝑡𝑎(1 + 𝑥)𝑝2]

||| =

𝜕𝑥 ∫

𝑝
|𝑥=0

http://www.holoborodko.com/pavel/mpfr/
https://www.mpfr.org/
https://www.mpfr.org/

R.V. Harlander, T. Nellopoulos, A. Olsson et al.

= (−1)𝑛𝑎−𝑛−𝐷∕2 𝜕𝑛

𝜕𝑥𝑛
(1 + 𝑥)−𝐷∕2||||𝑥=0 ,

from which it follows that

𝑓 ({},{1},{1}) = 1
𝐷∕2 − 1

= 1 + 𝜖 + 𝜖2 +⋯ ,

𝑓 ({},{1},{2}) = −1
𝜖

(
1 + 𝜖 + 𝜖2 +…

)
,

𝑓 ({0},{𝑢1},{1}) = (4𝜋𝑡)𝐷∕2 𝑡−1

1

∫
0

d𝑢1 ∫
𝑝

exp[−𝑡𝑢1𝑝2]
𝑝2

=

= −(4𝜋𝑡)𝐷∕2 𝑡−2 ∫
𝑝

exp[−𝑡𝑝2]
(𝑝2)2

= −𝑓 ({0},{1},{2}) ,

𝑓 ({0},{𝑢1},{−1}) = −1 ,

(19)

for example, where we have used the fact that scaleless integrals are
zero in dimensional regularization.

3.1.2. Massive propagators

We may generalize the integral in Eq. (10) by allowing for massive
propagators. Specifically, we consider the integral

𝑓 (𝐜,{𝑎},{{𝑏,𝑚}}) ≡ (4𝜋𝑡)𝐷∕2 𝑡−𝑏 ∫
[0,1]𝑓

d𝐮𝐮𝐜 ∫
𝑝

exp[−𝑡𝑎𝑝2]
(𝑝2 +𝑚2)𝑏

. (20)

Note that we only need to consider positive 𝑏, because the other cases
can be algebraically reduced to already known integrals via the binomial
formula:

(𝑝2 +𝑚2)−𝑏 =
−𝑏∑
𝑛=0

(
−𝑏
𝑛

)
(𝑝2)𝑛(𝑚2)−𝑏−𝑛 for 𝑏 ≤ 0 . (21)

Following the same steps as above for 𝑏 > 0, on the other hand, we
arrive at

𝑓 (𝐜,{𝑎},{{𝑏,𝑚}}) =

= 1
(𝑏− 1)!

∞

∫
0

d𝑥𝑥𝑏−1𝑒−𝑥𝑡𝑚2

∫
[0,1]𝑓

d𝐮𝐮𝐜 [𝑎+ 𝑥]−𝐷∕2 .
(22)

We again split the integration interval into 𝑥 ∈ [0, 1] ∪ (1, ∞) and per-

form the substitution 𝑥 → 1∕𝑥 in the second interval. This leads to a
singularity at 𝑥 = 0 in the argument of the exponential, which is spu-

rious, however, as the exponential vanishes at this point. Therefore,
the only effect on the integrals due to propagators being massive is the
multiplication of a positive function. Since it is factorized and does not
contribute to the true singularity structure, it has no impact on pole ex-

traction during sector decomposition. Section 3.4 describes how such
factors are treated in pySecDec.

As mentioned above, the more general case of several masses,

∫
[0,1]𝑓

d𝐮𝐮𝐜 ∫
𝑝

exp[−𝑡𝑎𝑝2]
(𝑝2 +𝑚2

1)
𝑏1 ⋯ (𝑝2 +𝑚2

𝑛
)𝑏𝑛 (23)

can be reduced to integrals of the form Eq. (22) by partial fractioning.

Let us consider a particularly simple example for a massive one-loop
integral which can be solved analytically:

𝑓 ({},{1},{{1,1}}) = 1 − 𝑧𝑒𝑧Γ(0, 𝑧) , 𝑧 =𝑚2𝑡 , (24)

where Γ(𝑛, 𝑧) = ∫ ∞
𝑧

d𝑥 𝑥𝑛−1𝑒−𝑥 is the incomplete Γ function.

3.2. Higher orders

Let us now move on to the multi-loop level, first focusing on the
4

massless case. It is helpful to define the auxiliary function
Computer Physics Communications 306 (2025) 109384

𝐹 (𝐚,𝐱) = (4𝜋𝑡)𝑙𝐷∕2 ∫
𝐩

exp

{
−𝑡

𝑘∑
𝑖=1

[𝑎𝑖 + 𝑥𝑖]𝑃 2
𝑖

}
. (25)

Using Eq. (6), one can perform the Gaußian integral over the loop mo-

menta to obtain

𝐹 (𝐚,𝐱) = [det𝐴(𝐚+ 𝐱)]−𝐷∕2 . (26)

We refer to the 𝐱 = {𝑥1, … , 𝑥𝑘} as Schwinger parameters in the follow-

ing, even if they are not integrated over. It is helpful to note that each
𝑥𝑖 ∈ 𝐱 occurs only linearly in det𝐴(𝐚 + 𝐱).

Consider now a flow-time integral with indices 𝑏1, … , 𝑏𝑘, which we
divide up as follows:

𝑏𝑖 > 0 for 𝑖 ∈ 𝐼int ,

𝑏𝑖 < 0 for 𝑖 ∈ 𝐼diff ,

𝑏𝑖 = 0 for 𝑖 ∈ 𝐼0 .

(27)

For the vanishing indices 𝑏𝑖 = 0, we can simply set the corresponding
Schwinger parameters to zero in Eq. (26), 𝑥𝑖 = 0. For the negative in-

dices 𝑏𝑖 < 0, on the other hand, we use Eq. (15), meaning that we need
to take the derivative w.r.t. −𝑥𝑖 at 𝑥𝑖 = 0. Note that 𝑛 derivatives acting
on Eq. (26) produce 𝑛 terms of the form

[det𝐴(𝐚+ 𝐱)]−𝐷∕2−𝑘 𝑔𝑘(𝐚,𝐱,𝐷) , 𝑘 ∈ {1,… , 𝑛} , (28)

where 𝑔𝑘 is polynomial in its arguments at most of order 𝑥𝑘
𝑖

for each 𝑥𝑖.
Finally, for the positive indices 𝑏𝑖 > 0, we integrate over 𝑥𝑖 and multiply
by 1∕(𝑏𝑖 − 1)!. In summary,

𝑓 (𝐜,𝐚,𝐛) =
⎡⎢⎢⎣
∏
𝑗∈𝐼int

1
(𝑏𝑗 − 1)!

∞

∫
0

d𝑥𝑗 𝑥
𝑏𝑗−1
𝑗

⎤⎥⎥⎦×
× ∫
[0,1]𝑓

d𝐮𝐮𝐜
[(∏

𝑖∈𝐼diff

𝜕−𝑏𝑖

𝜕(−𝑥𝑖)−𝑏𝑖

)
[det𝐴(𝐚+ 𝐱)]−𝐷∕2

]
𝑥𝑘=0 for 𝑘∈(𝐼diff∪𝐼0)

.

(29)

Again, we split the integration region for the Schwinger parameters into
𝑥𝑗 ∈ [0, 1] ∪ (1, ∞]. The integrand in Eq. (29) thus consists of polynomi-

als of the 𝑥𝑖 with 𝑖 ∈ 𝐼int and the 𝐮, raised to non-integer powers which
can be passed to pySecDec for integration.

Non-vanishing masses 𝐦 can be taken into account in a straight-

forward way. As pointed out above, only massive propagators with pos-

itive indices need to be considered, because non-positive indices can be
reduced algebraically to known integrals. Also, we can assume that each
independent momentum is associated with only a single mass, which can
always be achieved by partial fractioning as pointed out in the one-loop
case. In this case, the only modification is to include a factor

exp

(
−𝑡

∑
𝑗∈𝐼int

𝑥𝑗𝑚
2
𝑗

)
(30)

in the integrand of Eq. (29).

3.3. Symmetries of the flow-time integrals

The representation of a flow-time integral in the form of Eq. (1) is not
unique. The integrals remain invariant under certain combined permu-

tations of the parameters 𝐜, 𝐚, 𝐮, and 𝐛. Employing such symmetries may
significantly reduce the number of integrals that need to be evaluated.

ftint provides an option to map any flow-time integral to a standard
form which we refer to as normal form. This section briefly describes our
basic strategy to determine the normal form.

The first symmetry we employ corresponds to re-naming the flow-

time integration variables. In general, the integral is preserved when
permuting the variables 𝐮 in the polynomials 𝐚(𝐮) and applying the in-
verse permutation to 𝐜, i.e.

R.V. Harlander, T. Nellopoulos, A. Olsson et al.

𝑓 (𝐜,𝐚(𝐮),𝐛) = 𝑓 (𝑝𝐜,𝐚(𝑝−1𝐮),𝐛) , (31)

where 𝑝 denotes a permutation and 𝑝−1 its inverse. For example, one
arrives at the identity

𝑓 ({0,1},{𝑢1𝑢2, 𝑢2, 𝑢1},{3,1,2}) = 𝑓 ({1,0},{𝑢1𝑢2, 𝑢1, 𝑢2},{3,1,2}) (32)

by just interchanging the names of 𝑢1 and 𝑢2.

The second symmetry is related to permutations of the momenta 𝑃𝑖
(modulo signs) which leave the topologies in Fig. 1 (i.e., the momen-

tum conservation relations) invariant. Since each line of these topologies
corresponds to a momentum 𝑃𝑖, an index 𝑏𝑖 and a polynomial 𝑎𝑖, per-

mutations of the 𝑃𝑖 correspond to simultaneous permutations of the 𝑏𝑖
and the 𝑎𝑖. In the one-loop case, there is only a single line and thus
no additional symmetry results from these considerations. The two-loop
topology, on the other hand, is symmetric under any permutation of
lines, and thus any simultaneous permutations of 𝐚 and 𝐛. For example,

𝑓 ({1,0},{𝑢1𝑢2, 𝑢1, 𝑢2},{3,1,2}) = 𝑓 ({1,0},{𝑢1𝑢2, 𝑢2, 𝑢1},{3,2,1}) .

(33)

At three-loop level, there are 4! = 24 permutations of the 𝑃𝑖 that pre-

serve the topology shown in Fig. 1 (corresponding to the permutations
of the four vertices). For example,

(𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6)→ (−𝑃3,−𝑃2,−𝑃1, 𝑃6, 𝑃5, 𝑃4) (34)

corresponds to the mirror symmetry along the vertical axis, while

(𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6)→ (−𝑃3, 𝑃6, 𝑃5,−𝑃2,−𝑃1,−𝑃4) (35)

implies a non-trivial continuous deformation of the diagram. Each such
transformation results in a permutation 𝑝, for which it holds that3

𝑓 (𝐜,𝐚,𝐛) = 𝑓 (𝐜, 𝑝𝐚, 𝑝𝐛) . (36)

Using these symmetries, we can map any flow-time integral 𝐼 onto
an equivalent standard form. To achieve this, we generate a list of equiv-

alent integrals by applying all combinations of permutations from each
of the two symmetries to 𝐼 . This list then gets sorted according to a lex-

icographical criterion, and the first element is defined to be the normal
form of 𝐼 . Our procedure guarantees that two flow-time integrals can
be transformed into one another by the symmetry operations described
above if and only if they have the same normal form; they will then ob-

viously integrate to the same result. Note that the converse is not true:
Integrals with different normal forms cannot be transformed into one
another by the discussed symmetry operations; however, they may still
integrate to the same result.

A specific example and how to use ftint in order to map an integral
to its normal form will be discussed in Section 4.4.

3.4. Implementation with pySecDec

pySecDec [23–25] is a toolbox for the evaluation of dimensionally
regularized parameter integrals. It utilizes the sector decomposition al-

gorithm to isolate and subtract overlapping endpoint singularities, and
produces an integration library to evaluate the coefficients of an expan-

sion in the dimensional regulator. The parameter integrals pySecDec
targets are of the form

𝐼 = ∫
[0,1]𝑑

d𝐱 𝑓𝛼1
1 (𝐱)⋯𝑓

𝛼𝑘
𝑘
(𝐱), (37)

where the 𝑓𝑙 are functions of the parameters and the 𝛼𝑙 are linear in the
space-time dimension 𝐷. These integrals are divergent in general, but

3 Since only the squares of the 𝑃𝑖 enter the integral, sign changes of the 𝑃𝑖
5

like in Eqs. (34) and (35) do not matter here.
Computer Physics Communications 306 (2025) 109384

can be evaluated in dimensional regularization by taking 𝐷 = 4 −2𝜖 and
extracting the poles in a Laurent series in 𝜖. Performing such an expan-

sion requires defining adequate subtraction terms, which can be highly
non-trivial for integrands with nested singularity structures. The sector
decomposition approach offers an algorithmic procedure of decompos-

ing the integral into sectors with factorized singularity structures, where
it is straightforward to define subtractions [26–28]. pySecDec provides
implementations of several decomposition algorithms, based on either
iterative or geometric strategies. The interface in ftint uses geomet-

ric sector decomposition as it usually leads to fewer sectors than the
iterative approaches [38,39]. After sector decomposition, the integral is
represented as a sum of Laurent series in 𝛼 sectors

𝐼 =
𝛼∑
𝑙=1

𝑝∑
𝑛=−𝑟

𝐼𝑙,𝑛
1
𝜖𝑛

+(𝜖𝑟+1), (38)

where 𝑝 is the order of the highest pole and the expansion coefficients
𝐼𝑙,𝑛 are sector integrals that are finite at the integration boundaries. A
simple example of a sector integral 𝐼𝑗,0 making up the finite part of the
expansion in a sector 𝑗 where a logarithmic divergence in 𝑥1 has been
extracted is

𝐼𝑗,0 = ∫
[0,1]𝑑

d𝐱 𝑥−1−𝜖1
[(𝑥1,… , 𝑥𝑑) − (𝑥1 = 0,… , 𝑥𝑑)

]
. (39)

The subtraction term (𝑥1 = 0, … , 𝑥𝑑) ensures that the sector integral is
finite as 𝑥1 → 0. For more severe divergences, the power of the extracted
pole is raised through a number of integration-by-parts iterations until
there are only logarithmic divergences remaining. In this form, the sec-

tor integrals are well suited for numerical integration. The latest release
of pySecDec [25] introduced Disteval, a new integration library. It
implements a quasi-Monte Carlo integrator which has yielded significant
performance increases compared to previous versions. The integration
interface in ftint exclusively uses the Disteval integrator as it su-

persedes all older integrators.

The massive flow-time integrals described in Section 3.1.2 include
factors 𝑒−𝑡𝑚

2
𝑗
𝑥𝑗 . After the substitution 𝑥 → 1∕𝑥 in the second interval (to

map (1, ∞) → (0, 1)) they transform into 𝑒−𝑡𝑚
2
𝑗
∕𝑥𝑗 . The 1∕𝑥 pole in the

argument is spurious and does not need to be extracted through sector
decomposition. To minimize the work of the decomposition algorithm,

pySecDec allows for the definition of finite functions that only enter at
subtraction level. Factors like these effectively scale the magnitude of
the integrand, which means they still need to be included in subtraction
terms such as (𝑥1 = 0, … , 𝑥𝑑) in Eq. (39). In order to avoid practical
issues of having a spurious 1∕𝑥 pole in the exponent, a regulator 𝛿 is
added to the transformed exponential functions such that

𝑒
−𝑡𝑚2

𝑗
∕𝑥𝑗 → 𝑒

−𝑡𝑚2
𝑗
∕(𝑥𝑗+𝛿). (40)

By default, 𝛿 is set to 10−10 at integration. In order to ensure that this
parameter does not affect the accuracy of the integration result, the user
may change it using the option --delta, see Section 4.2. Since the ex-

ponential function does not affect sector decomposition, this additional
parameter has virtually no impact on performance.

4. Using ftint

Following the spirit of pySecDec, the evaluation of an integral with

ftint is divided into two steps. In the first step, the integral is decom-

posed into sectors where the boundary singularities have been isolated
and subtracted with the help of pySecDec. It creates and compiles a
C++ integration library which is used in the second step to numerically
evaluate the integrals. The motivation for splitting the program into two
parts is that the user may want to perform the second step several times,
for example with different target errors or for several mass parameters.

Since this only affects the numerical integration, one can save on com-

R.V. Harlander, T. Nellopoulos, A. Olsson et al.

puting time for the decomposition and compilation step which needs to
be done only once in this case.

It is important to note that the current version of ftint is limited
to evaluating integrals of the form specified in Eq. (1). Specifically, this
implies that all external momenta must be zero, all massive propaga-

tors must have a positive index 𝑏, and no two propagators may carry
the same momentum while having different masses. As previously men-

tioned, the latter two constraints do not really represent limitations,
as any integral that does not meet these criteria can be algebraically
transformed into a linear combination of integrals that do. While future
versions of ftint may include built-in support for these transforma-

tions, the current version requires the user to apply these modifications
before passing them to ftint. This can be readily accomplished using
built-in functions in Mathematica [40] or FORM [41,42], for example,
or via the Python library SymPy.

4.1. Sector decomposition

The decomposition part of the program is implemented in ftint_py-
SecDec.py. It is called from the command line as

$ python3 <ftint_path>/ftint_pySecDec.py <ft_integrals> [<
↪ options>]

Listing 1: Command for sector decomposition.

where, here and in the following, <ftint_path> is to be replaced
by the actual path to the source code of ftint. In the simplest case,

<ft_integrals> is a string encoding a single flow-time integral. Its
format follows closely the definition in Eq. (1), with some adjustments.
The most significant one is the representation of the masses. For the sec-

tor decomposition, the actual value of a mass is irrelevant, as long as it is
non-zero. In the input for ftint_pySecDec.py, non-zero masses are
indicated only by their index, i.e. 𝑚1 → 1, 𝑚2 → 2, etc.4 Let us consider
a specific two-loop example5:

f[{0,1},{u2-u1*u2,2,u2},{-1,{2,2},{1,3}}]=

= 𝑓 ({0,1},{𝑢2 − 𝑢1 𝑢2,2, 𝑢2},{−1,{2,𝑚2},{1,𝑚3}}) =

(4𝜋𝑡)𝐷 ∫
𝑝,𝑘

∫
𝑢1,2

𝑢2
𝑝2

(𝑘2 +𝑚2
2)

2((𝑝+ 𝑘)2 +𝑚2
3)
𝑒−𝑡[(−𝑢1𝑢2+𝑢2)𝑝

2+2𝑘2+𝑢2(𝑝+𝑘)2]

(41)

The first line contains the input for ftint_pySecDec.py, the second
line corresponds to the notation of Eq. (1). The flow-time integration
variables must be named u1, u2, . . . , and the multiplication symbol
“*” must be given explicitly. The actual numerical values for the masses
must be provided only upon numerical integration, using the --masses
option of ftint_integrate.py, as will be discussed in more detail
in Section 4.2.

If a propagator is massless, the mass argument is 0, or it can be left
out altogether. For example, for 𝑚2 = 0, the third argument of f in the
first line of Eq. (41) could be given either as {-1,{2,0},{1,3}} or as
{-1,2,{1,3}}. Recall that an integral may contain additional infrared
singularities in the limit where a mass is zero. This is indeed the case
in the example considered here: while for 𝑚2 ≠ 0 the integral contains
only poles up to 1∕𝜖 (see Listing 5 below), there are also 1∕𝜖2 poles for
𝑚2 = 0. It is important to indicate all massless propagators already at
the decomposition stage in this case.

The command to run the decomposition for the integral in Eq. (41),
assuming default settings, is

4 The reason why we do not adopt the more intuitive notation f[{0,1},{u2-

u1*u2,2,u2},{-1,{2,m2},{1,m3}}] is not to interfere with any locally
defined symbols m2, m3 in the user’s code.
6

5 See examples/2L_massive.in in the code repository.
Computer Physics Communications 306 (2025) 109384

$ python3 <ftint_path>/ftint_pySecDec.py \
’f[{0,1},{u2-u1*u2,2,u2},{-1,{2,2},{1,3}}]’

ftint will first convert the flow-time integral from the momentum rep-

resentation of Eq. (1) to the parameter form of Eq. (37), and then pass
it on to pySecDec. In this particular case, sector decomposition and
subsequent compilation take of the order of one and ten seconds on a
regular modern desktop computer, respectively.6 By default, the output
files are written to the directory ftint_out_<n>, created by ftint in
the current working directory. Initially, the parameter <n> is set to 0;
it is recursively increased by one if the directory ftint_out_<n> al-

ready exists. In the following, we will assume <n>=0, unless indicated
otherwise.

The content of the output directory ftint_out_0 is

|-- integral_information.json
\-- secdec

\-- secdec_ft_integral_1
|-- secdec.out
|-- compilation.out
|-- ftint_data.json
\-- disteval

Listing 2: Contents of the output directory ftint_out_0.

The file integral_information.json collects the relevant param-

eters of the specific run, while the directory secdec contains one

secdec_ft_integral_<n> for each compiled flow-time integral (in
this case the input consisted of only one integral). Inside there are log-

files secdec.out and compilation.out of the decomposition and
compilation respectively, a data-file ftint_data.json with integral-

specific information, as well as the compiled integral library disteval.

The input <ft_integrals> in Listing 1 can also be one or sev-

eral strings containing several flow-time integrals, or even one or sev-

eral file names. ftint will extract the flow-time integrals given in
the proper format and perform the decomposition and the compilation
of the integration library for each integral (duplicates are removed).7

The output for all of them will be written to a single output directory

ftint_out_<n>, whose contents will look as in Listing 2, but with a
separate library secdec_ft_integral_* for each integral of the in-

put. An example will be presented in Section 4.3.

ftint_pySecDec.py provides a number of options which can be
displayed using the command

$ python3 <ftint_path>/ftint_pySecDec.py --help

These options are

--help: Print this list of options.

--list=STR_NUM_LIST: Specify a sublist of integrals to be eval-

uated. The format is either a comma-separated list of integers, or
an interval of the form 3-10, for example.

--print_list: Print the list of integrals to be calculated and exit.

--exclude=EXCLUDE [EXCLUDE ...]: Do not evaluate the in-

tegrals in EXCLUDE, which is of the same format as <ft_inte-
grals> in Listing 1.

--normalform: Map the integrals to their normal form.

--normalform_only: Map the integrals to their normal form and
stop.

6 This can change with suitable options for the compiler and for make, see
below.

7 The regular expression searched for is f\[\{*.?\}\]. The user is advised
to make sure that this cannot be confused with any other objects in the input.

See also Appendix A.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1

R.V. Harlander, T. Nellopoulos, A. Olsson et al.

--normalform_list: Return the list of equivalent integrals and
stop.

--normal_key=NORMAL_KEY: 0/-1: define first/last element of

normalform_list as normal form, see Section 4.4.

--count_only: Return the number of integrals to be calculated
and stop.

--latex: Return the input diagrams in LATEX format and stop.

--epsorder=EPSORDER: Required order in 𝜖 = (4 −𝐷)∕2.

--input_format INPUT_FORMAT: Specification of input format,
see Appendix A.

--outdir=OUT_DIR: Name of output directory.

--CXX_flags=CXX_FLAGS: C++ compiler flags, example:

--CXX_flags="-mavx2 -mfma".

--make_flags=MAKE_FLAGS: Makefile flags, example:

--make_flags=-j4.

--CUDA_flags=CUDA_FLAGS: CUDA flags to compile with GPU
support, example: --CUDA_flags=-arch=sm_XX where sm_XX
should be replaced with the target NVidia GPU architecture.

--integrate: Automatically calls ftint_integrate.py after
sector decomposition to perform the numerical integration (with
default options).

--dimension=DIMENSION: The integer part 𝑁 of the space-time
dimension 𝐷 =𝑁 − 2 𝜖.

--overwrite: Overwrite existing directory. Otherwise, appends

_<n> to existing output directory.

--append: Append new integrals from the input to the compiled
integrals in the output directory. This flag can not be passed to-

gether with --overwrite.

--ibp_power_goal=IBP_POWER_GOAL: Before defining sub-

traction terms, pySecDec performs a number of integration by
parts iterations to raise the order of the factorized poles to

IBP_POWER_GOAL.

4.2. Numerical integration

The integration part of the program is implemented in ftint_in-
tegrate.py. It is called from the command line as:

$ python3 <ftint_path>/ftint_integrate.py <integral_directory>
↪ [<options>]

Listing 3: Command for numerical integration.

where <integral_directory> is the name of the output directory
created by ftint_pySecDec.py, i.e. ftint_out_<n> by default.

ftint will pass the integral to pySecDec for numerical integration. If
not specified otherwise, the output files will be written to the directory

<integral_directory>/result_<m>, where by default <m> is set
to “0”, but is recursively increased by one if the output directory exists.
The numerical result of the integral is stored in the file mathf_out.m in
the form of a Mathematica replacement rule. For example, the follow-

ing command would evaluate the integral in Eq. (41) with 𝑚2
2 = 2.5∕𝑡

and 𝑚2
3 = 3∕𝑡 with otherwise default settings:

$ python3 <ftint_path>/ftint_integrate.py ftint_out_0 --masses
↪ =0,2.5,3

Listing 4: Numerical evaluation of the integral in Eq. (41).

The numerical values for the squared masses have to be specified via the

--masses option in units of the inverse flow time 1∕𝑡.8 Upon comple-

8 Recall that Eq. (1) is dimensionless and thus only depends on 𝑚2
1𝑡, ⋯ , 𝑚2

𝑘
𝑡.

It is instructive to note that, if we had specified the l.h.s. of Eq. (41) as

f[{0,1},{u2-u1*u2,2,u2},{-1,{2,3},{1,2}}], the command in List-
7

ing 4 would evaluate the r.h.s. of that equation with 𝑚2
3 = 2.5∕𝑡 and 𝑚2

2 = 3∕𝑡.
Computer Physics Communications 306 (2025) 109384

tion, ftint has added a directory result_0 to ftint_out_0 which,
aside from some other information on the integration run, contains the
file mathf_out.m with the following content:

(*
produced by ftint, version 1.0, Fri May 24 13:50:34 2024

*)
{
(* integral 1 [m2**2 = 2.5/t, m3**2 = 3/t]: *)
f[{0,1},{u2-u1*u2,2,u2},{-1,{2,2},{1,3}}] -> (

+eps
↪ ^-2*(+0.0000000000000000*10^+00+0.0000000000000000*10^+00*
↪ I)

+eps
↪ ^-2*(+0.0000000000000000*10^+00+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps
↪ ^-1*(+1.1266529421611552*10^-02+0.0000000000000000*10^+00*
↪ I)

+eps
↪ ^-1*(+2.3027953579787037*10^-10+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps^0*(+1.7797179680747620*10^-04+0.0000000000000000*10^+00*
↪ I)

+eps^0*(+1.0762786605309655*10^-09+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps^1*(+6.8615123921316060*10^-03+0.0000000000000000*10^+00*
↪ I)

+eps^1*(+1.1513874186746525*10^-09+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps^2*(-5.5497372202654837*10^-03+0.0000000000000000*10^+00*
↪ I)

+eps^2*(+7.0664076906102803*10^-09+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps^3*(+5.2760242194534335*10^-03+0.0000000000000000*10^+00*
↪ I)

+eps^3*(+3.2253823531270829*10^-08+0.0000000000000000*10^+00*
↪ I)*plusminus

)
}

Listing 5: Output file of the numerical integration.

The integration uncertainties are marked by the variable plusminus.
The mass values are specified only in the comment on line 5. This
makes it easy to use the replacement rule in order to evaluate the same
expression for different mass values. For example, if the result of the cal-

culation is stored in a Mathematica variable result which depends
on the integral under consideration, one can obtain a numerical value
for result as

replace = Get["ftint_out_0/result_0/mathf_out.m"]; result /.
↪ replace

Listing 6: Inserting the numerical value for the integral within Mathe-
matica.

One may now call ftint_integrate.py again with different mass
parameters, and the result would be stored in ftint_out_0/re-
sult_1/mathf_out.m. One can then use again the code in Listing 6,
simply replacing result_0 by result_1.

In addition to the Mathematica output file, ftint provides the
result also as YAML9 and JSON10 files named sympyf_out.yml and

out.json. The ftint distribution includes the files read_yaml.py
and read_json.py as examples on how to read these files in Python.

To see an overview of the optional parameters related to the integra-

tion, together with their defaults, one can run

$ python3 ftint_integrate.py --help

The options are

9 https://yaml .org/.

10 https://www .json .org/.

https://yaml.org/
https://www.json.org/

1

2

3

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1

2

3

4

R.V. Harlander, T. Nellopoulos, A. Olsson et al.

--help: Print this list of options.

--masses=MASSES: Values for masses of each propagator, pro-

vided as comma-separated list. The 𝑛th value of that list is inserted
for the mass labeled 𝑛 in the input of ftint_pySecDec.py; see
also Footnote 8.

--epsrel=EPSREL: Stop if this relative precision is reached.

--epsabs=EPSABS: Stop if this absolute precision is reached.

--delta=DELTA: Cut-off parameter for mass exponential, see Eq.

(40).

--output_format=OUTPUT_FORMAT: Specification of output
format, see Appendix A.

--points=POINTS: Begin integration with this lattice size.11

--presamples=PRESAMPLES: Use this many points for presam-

pling.11

--shifts=LATTICE_SHIFTS: Use this many lattice shifts per in-

tegral.11

--lattice_candidates=LATTICE_CANDIDATES: Number of
median lattice candidates.11

--outfile=OUTFILE: Name of the individual integration output
files.

--timeout=TIMEOUT: The maximum number of seconds the inte-

grator will spend on each integral. If TIMEOUT is reached a result
that may not meet the desired numerical accuracy will be returned.

In addition, the options --list, --print_list, --overwrite and

--outdir are available, with the same meaning as in ftint_py-
SecDec.py, see above.

4.3. Example: checking an integration-by-parts relation

As already pointed out above, like regular Feynman integrals in di-

mensional regularization, flow-time integrals obey certain IbP relations
which can be derived by considering integrals over total derivatives
w.r.t. the loop momenta or the flow-time variables; details can be found
in Ref. [22]. Let us numerically check such an IbP relation in order to
give an example on how ftint can be used in practice. We formulate
the relation in terms of a Mathematica replacement rule which we
assume is contained in a file12 ibp_rule.in, see Listing 7.

{f[{},{0,0,0,1,1,1},{-1,1,1,1,1,1}] ->
-f[{},{0,0,0,1,1,1},{0,1,1,1,1,0}]/2
-(f[{},{0,0,0,1,1,1},{1,0,1,1,0,0}])/(1-n/4)
-(f[{},{0,0,0,1,1,1},{1,1,0,0,0,0}])/(2*(1+(-7/12+n/12)*n))}

Listing 7: A three-loop IbP identity in Mathematica format.

Here, n = 4 − 2 𝜖. Since some of the integrals on the r.h.s. have a pref-

actor ∼ 1∕𝜖, we need to evaluate them through (𝜖) in order to check
this relation through (𝜖0), while the other integrals are needed only
through (𝜖0). In realistic cases, it is advisable to split the set of in-

tegrals according to the required power in 𝜖. For this simple example
though, we evaluate all integrals to (𝜖).

This is done by first performing the sector decomposition:

$ python3 <ftint_path>/ftint_pySecDec.py ibp_rule.in --epsorder
↪ =1

This will first report that ftint finds four different flow-time integrals
in the file. It will then perform the sector decomposition for the first dia-

gram and compile the corresponding integration library, before turning
to the second diagram etc. After completion, ftint has created a direc-

tory named ftint_out_0 with the following structure:

11 These are QMC parameters, see e.g. Ref. [25] for a more detailed explana-

tion. The default settings are fine for most examples.
8

12 See examples/ibp_rule.in in the code repository.
Computer Physics Communications 306 (2025) 109384

\-- ftint_out_0
|-- integral_information.json
\-- secdec

|-- secdec_ft_integral_1
|-- secdec_ft_integral_2
|-- secdec_ft_integral_3
\-- secdec_ft_integral_4

The directories secdec_ft_integral_* contain the integration li-
braries for each of the four integrals, as well as other information re-

quired by ftint for the numerical integration. The latter is performed
through the command

$ python3 <ftint_path>/ftint_integrate.py ftint_out_0

This again first reports that four integrals will be evaluated. The cor-

responding numerical results will be printed to the screen. After com-

pletion, ftint will have created a subdirectory named results_0

in ftint_out_0, which, among other information, contains the file

mathf_out.m, whose contents are shown in Listing 8.

(*
produced by ftint, version 1.0, Fri May 24 09:21:05 2024

*)
{
(* integral 1 : *)
f[{},{0,0,0,1,1,1},{-1,1,1,1,1,1}] -> (

+eps
↪ ^-1*(+1.4384102482242656*10^-01+0.0000000000000000*10^+00*
↪ I)

+eps
↪ ^-1*(+7.5901486511209429*10^-09+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps^0*(+9.1030039859574119*10^-01+0.0000000000000000*10^+00*
↪ I)

+eps^0*(+7.7645751796859680*10^-06+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps^1*(+3.6458111371273918*10^+00+0.0000000000000000*10^+00*
↪ I)

+eps^1*(+4.2456809764811359*10^-05+0.0000000000000000*10^+00*
↪ I)*plusminus

),
(* integral 2 : *)
f[{},{0,0,0,1,1,1},{0,1,1,1,1,0}] -> (

+eps
↪ ^-1*(+2.8768207244049038*10^-01+0.0000000000000000*10^+00*
↪ I)

+eps
↪ ^-1*(+1.2597382329360634*10^-11+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps^0*(+1.4717502294126590*10^+00+0.0000000000000000*10^+00*
↪ I)

.

.

.

Listing 8: Result for the integrals of Listing 7. Only the first few lines are
shown.

One can now check the IbP relation within Mathematica using the
following code13:

rule = Get["ibp_rule.in"][[1]];
replace = Get["ftint_out_0/result_0/mathf_out.m"];
check = Normal[Series[(rule[[1]]-rule[[2]]) /. n -> 4-2*eps /.

↪ replace,
{eps,0,0}]];

The result is
13 See examples/check_ibp_rule.m in the code repository.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

2

3

4

1

2

3

4

R.V. Harlander, T. Nellopoulos, A. Olsson et al.

-15 -15
-3.66374 10 + 4.85345 10 plusminus

Out[19]= -- +
2

eps

-9
7.64685 10 (-1.48995 + 1. plusminus)

> -------------------------------------- +
eps

-6
> 7.90387 10 (2.47724 + 1. plusminus)

meaning that the l.h.s. and the r.h.s. of the relation agree within the
default numerical precision. It is now easy to increase this precision by
running

$ python3 <ftint_path>/ftint_integrate.py ftint_out_0 \
--epsrel=1e-8 --epsabs=1e-8

4.4. Mapping to the normal form

If one needs to compute a large list of integrals, it may be ad-

vantageous to map them to their normal form before integration,
see Section 3.3. This can be done by calling ftint_pySecDec.py
with the option --normalform. ftint will then produce the file

ftint_out_<n>/normalmap.m which contains the mapping of each
integral to its normal form (unless it already is in the normal form) in
Mathematica format. ftint will then proceed with the calculation
only for the normal-form integrals.

For example, if the file14 normal_form.in contains the following
list of flow-time integrals

f[{},{2,1,0},{2,2,1}]
f[{1},{2*u1,u1,u1},{2,1,3}]
f[{2,1},{u1*u2,2,u1},{3,2,1}]
f[{1,2},{u1*u2,u2,2},{3,1,2}]

Listing 9: List of flow-time integrals to be brought to normal form.

then the call

$ python3 <ftint_path>/ftint_pySecDec.py integrals.m --
↪ normalform

will produce the file ftint_out_0/normal_form.in with the fol-

lowing content:

{f[{},{2,1,0},{2,2,1}] -> f[{},{2,1,0},{{2,0},{2,0},{1,0}}],
f[{1},{2*u1,u1,u1},{2,1,3}] -> f[{1},{2*u1,u1,u1

↪ },{{2,0},{3,0},{1,0}}],
f[{2,1},{u1*u2,2,u1},{3,2,1}] -> f[{2,1},{u1*u2,u1

↪ ,2},{{3,0},{1,0},{2,0}}],
f[{1,2},{u1*u2,u2,2},{3,1,2}] -> f[{2,1},{u1*u2,u1

↪ ,2},{{3,0},{1,0},{2,0}}]}

The first thing to notice is that ftint does not use the abbreviated nota-

tion for massless propagators, simply to ensure a unique output format.
Furthermore, aside from this notational aspect, the integral in line 1 of
Listing 9 is already in normal form. The integrals in line 3 and line 4 are
mapped to the same normal form. Thus, ftintwill do the sector decom-

position only for the three different normal-form integrals. As usual, it
will write the integration libraries to ftint_out_0, compile them, and
the user can evaluate them numerically using ftint_integrate.py.
9

14 See examples/normal_form.in in the code repository.
Computer Physics Communications 306 (2025) 109384

If the user is only interested in the normal-form mappings, one may
use the --normalform_only option instead. In this case, ftint will
write the file ftint_out_0/normalform.m and stop.

For integrals with non-vanishing masses, the procedure works in the
very same way. The only subtlety here is that the order of the masses
may change. Consider, for example, the integral

f[{1,2},{3*u1,2,u1*u2},{{1,1},{4,2},{2,3}}]=

= ∫
𝑝,𝑘

∫
𝑢1,2

𝑢1𝑢
2
2

𝑒−𝑡[3𝑢1𝑝
2+2𝑘2+𝑢1𝑢2(𝑝+𝑘)2]

(𝑝2 +𝑚2
1)(𝑘

2 +𝑚2
2)

4((𝑝+ 𝑘)2 +𝑚2
3)

2
.

(42)

Mapping it to normal form will result in

f[{1,2},{u1*u2,3*u1,2},{{2,3},{1,1},{4,2}}]=

= ∫
𝑝,𝑘

∫
𝑢1,2

𝑢1𝑢
2
2

𝑒−𝑡[𝑢1𝑢2𝑝
2+3𝑢1𝑘2+2(𝑝+𝑘)2]

(𝑝2 +𝑚2
3)

2(𝑘2 +𝑚2
1)((𝑝+ 𝑘)2 +𝑚2

2)
4
.

(43)

In order to numerically evaluate these integrals with ftint_inte-

grate.py, one must use the same order of arguments 𝑚1, 𝑚2, 𝑚3 in
the --masses option. This means that the command for the integra-

tion is independent of whether one evaluates the original integral or its
normal form (aside from the fact that their integration libraries may be
located in different directories).

As described in Section 3.3, if the option --normalform is given,

ftint generates a list of equivalent integrals and continues the calcula-

tion with the first element of this list. The user may alter this behavior by
adding the option --normal_key=-1, in which case ftint will con-

tinue with the last element of the sorted list. The full (sorted) list can
be viewed by calling ftint with the option --normalform_list. We
have not observed any significant differences in computing times among
these integrals.

4.5. Checks

4.5.1. Analytic solutions, symmetries, and simple identities

There are a number of rather straightforward checks that we have
used to validate ftint:

• Some simple integrals can be solved analytically, see, e.g., Eqs. (19)

and (24). We have compared a number of them to the numerical
result from ftint and found agreement.

• An integral and its normal form, see Section 3.3, must lead to the
same numerical result, of course. We have confirmed this symmetry
with ftint, which both checks the numerical evaluation of the
integral, as well as the algorithm and implementation for mapping
the integrals to their normal form.

• Certain multi-loop integrals can be written as products of integrals
at lower loop order. For example, it is easy to see that

𝑓 ({},{1,0,1},{−1,0,0}) = 𝑓 ({},{1},{−1}) ⋅ 𝑓 ({},{1},{0}) (44)

All such checks were passed by ftint.

4.5.2. Flow-time derivatives

In a dimensionally regularized integral, one can interchange inte-

gration and differentiation without changing the result. In the massless
case, one may derive non-trivial relations from this that can be easily
checked. For example, since the integral as defined in Eq. (1) is dimen-

sionless, in the massless case it follows that

0 = 𝑡
𝜕

𝜕𝑡
𝑓 (𝐜,𝐚,𝐛) =

(
𝑙𝐷

2
− 𝑏

)
𝑓 (𝐜,𝐚,𝐛)

− (4𝜋𝑡)𝑙𝐷∕2 𝑡−𝑏+1 d𝐮𝐮𝐜
𝑘∑
𝑎𝑗 𝑃 2

𝑗

exp[−𝑡
∑𝑘

𝑖=1 𝑎𝑖𝑃
2
𝑖
]

2 𝑏 2 𝑏
.

(45)
∫
[0,1]𝑓

𝑗=1
∫
𝐩

(𝑃1) 1 ⋯ (𝑃
𝑘
) 𝑘

1

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

R.V. Harlander, T. Nellopoulos, A. Olsson et al.

Canceling the power of 𝑃 2
𝑗

and inserting the explicit polynomials 𝑎𝑗 of
the flow-time variables turns the r.h.s. into the sum of regular flow-time
integrals of the form Eq. (1) with varied parameters. As an example,
consider again a two-loop case:

(−6 + 2 𝜖)𝑓 ({},{1,1,0},{0,−2,0}) =

= −𝑓 ({},{1,1,0},{−1,−2,0}) − 𝑓 ({},{1,1,0},{0,−3,0}) .
(46)

This relation can be checked in close analogy to the example discussed
in Section 4.3.

4.5.3. Integration-by-parts identities

In Section 4.3, we used the check of a two-loop IbP relation in order
to demonstrate the operation of ftint. In fact, we have used hundreds
of such relations at three-loop level, derived in the context of calcula-

tions performed in Ref. [16], for example, in order to check ftint.

5. Conclusions and outlook

With more and more potential applications of the perturbative ap-

proach to the GFF identified, the demand for suitable software tools is
increasing. In this paper, we described the application of the sector-

decomposition algorithm to flow-time integrals up to the three-loop
level in the form of a Python program named ftint. It transforms
a flow-time integral without external momenta to a multidimensional
parameter integral over a unit hypercube, which is then passed to the
public library pySecDec for sector decomposition and numerical inte-

gration.

We have performed a number of checks on the program and made
an effort towards user-friendliness and flexibility. Future releases of the
program will support partial fractioning for propagators with identical
momenta but different masses, as well as non-vanishing external mo-

menta. Furthermore, we plan to make use of pySecDec’s main strengths
of evaluating complete amplitudes rather than individual integrals.

CRediT authorship contribution statement

Robert V. Harlander: Writing – review & editing, Writing – original
draft, Validation, Supervision, Software, Methodology, Funding acqui-

sition, Conceptualization. Theodoros Nellopoulos: Writing – review &
editing, Software, Methodology. Anton Olsson: Writing – review & edit-

ing, Writing – original draft, Validation, Software, Methodology. Marius
Wesle: Writing – review & editing, Writing – original draft, Validation,
Software, Methodology.

Declaration of competing interest

The authors declare the following financial interests/personal rela-

tionships which may be considered as potential competing interests:
Anton Olsson reports financial support and travel were provided by
German Research Foundation. Robert Harlander reports administrative
support was provided by German Research Foundation. If there are other
authors, they declare that they have no known competing financial in-

terests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The program is available at https://gitlab .com /ftint /ftint.

Acknowledgements

We would like to thank Janosch Borgulat, Nils Felten, Gudrun Hein-

rich, Stephen Jones, Matthias Kerner, Jonas Kohnen, Fabian Lange,
10

Henri Lindlahr, Vitaly Magerya, Tobias Neumann, Johannes Schlenk,
Computer Physics Communications 306 (2025) 109384

and Henry Werthenbach for helpful input and comments. This research
was supported by the Deutsche Forschungsgemeinschaft (DFG, German Re-

search Foundation) under grants 396021762 - TRR 257 and 460791904.

Appendix A. In- and output format

By default, ftint assumes the format defined in Eq. (1), as exem-

plified by Eq. (41), for the flow-time integrals, both in the input and the
output. ftint provides a basic way to convert between other formats
and the ftint-format by editing the file user_format.py. This de-

fines three functions. For the sake of clarity, let us assume that the user
would like to perform a mapping

f[{a},{b},{c}] <-> g([a],[b],[c])

The purpose of the three functions in user_format.py is given as
follows.

• user_patterns allows the user to specify the pattern which de-

fines a gradient-flow integral. In the example above, the function
could be defined as

def user_patterns(input_format):
if input_format==2:

out = [r"g\(\[.*?\]\)"]
else:

out = [r"f\[\{.*?\}\]"]
return(out)

• from_user defines how to translate the user’s format to the ftint
format. In this case, one could define

def from_user(input_format,string):
if input_format==2:

out = re.sub(r’g\(\[(.*?)\],\[(.+?)\],\[(.+?)\]\)’,r’f
↪ [{\1},{\2},{\3}]’,string)

else:
out = string

return(out)

• to_user defines how to translate the ftint format to the user’s
format. For the current example, this could be achieved through

def to_user(output_format,string):
if output_format==2:

out = re.sub(r’f\[\{(.*?)\},\{(.+?)\},\{(.+?)\}\]’,r’g
↪ ([\1],[\2],[\3])’,string)

else:
out = string

return(out)

The user can now switch to the new input format by providing the op-

tion --input_format=2 to ftint_pySecDec.py. The new output
format is obtained by providing the option --output_format=2 to

ftint_integrate.py. Without these options, the default format will
be adopted. Let us stress that this is a very rudimentary implementa-

tion. The user is advised to use it with care. It may be safer to convert
all input to the default ftint notation before using ftint.

References

[1] R. Narayanan, H. Neuberger, Infinite N phase transitions in continuum Wilson loop
operators, J. High Energy Phys. 03 (2006) 064, arXiv :hep -th /0601210.

[2] M. Lüscher, Trivializing maps, the Wilson flow and the HMC algorithm, Commun.
Math. Phys. 293 (2010) 899–919, arXiv :0907 .5491 [hep -lat].

[3] M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, J. High Energy
Phys. 08 (2010) 071, arXiv :1006 .4518 [hep -lat], Erratum: J. High Energy Phys. 03
(2014) 092.

[4] M. Lüscher, P. Weisz, Perturbative analysis of the gradient flow in non-abelian gauge

theories, J. High Energy Phys. 02 (2011) 051, arXiv :1101 .0963 [hep -th].

https://gitlab.com/ftint/ftint
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib19DF17E3B3181C32E6DEE96DFFB5A60Cs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib19DF17E3B3181C32E6DEE96DFFB5A60Cs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib161858EF70F1D73EC281F7C54A891E5Bs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib161858EF70F1D73EC281F7C54A891E5Bs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibE7F57AD770612B57705D33E48386EBB7s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibE7F57AD770612B57705D33E48386EBB7s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibE7F57AD770612B57705D33E48386EBB7s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibF4DFAA61E61081E80356335EC0CCC146s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibF4DFAA61E61081E80356335EC0CCC146s1

Computer Physics Communications 306 (2025) 109384R.V. Harlander, T. Nellopoulos, A. Olsson et al.

[5] M. Lüscher, Chiral symmetry and the Yang–Mills gradient flow, J. High Energy Phys.
04 (2013) 123, arXiv :1302 .5246 [hep -lat].

[6] BMW collaboration, S. Borsányi, S. Dürr, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg,
T. Kurth, L. Lellouch, T. Lippert, C. McNeile, High-precision scale setting in lattice
QCD, J. High Energy Phys. 09 (2012) 010, arXiv :1203 .4469 [hep -lat].

[7] H. Suzuki, Energy–momentum tensor from the Yang–Mills gradient flow, PTEP 2013
(2013) 083B03, arXiv :1304 .0533 [hep -lat], Erratum: PTEP 2015 (2015) 079201.

[8] H. Makino, H. Suzuki, Lattice energy–momentum tensor from the Yang–Mills gradi-

ent flow—inclusion of fermion fields, PTEP 2014 (2014) 063B02, arXiv :1403 .4772

[hep -lat], Erratum: PTEP 2015 (2015) 079202.

[9] T. Iritani, M. Kitazawa, H. Suzuki, H. Takaura, Thermodynamics in quenched QCD:
energy–momentum tensor with two-loop order coefficients in the gradient-flow for-

malism, PTEP 2019 (2) (2019) 023B02, arXiv :1812 .06444 [hep -lat].

[10] R.V. Harlander, Y. Kluth, F. Lange, The two-loop energy–momentum tensor within
the gradient-flow formalism, Eur. Phys. J. C 78 (11) (2018) 944, arXiv :1808 .09837

[hep -lat], Erratum: Eur. Phys. J. C 79 (2019) 858.

[11] A. Suzuki, Y. Taniguchi, H. Suzuki, K. Kanaya, Four quark operators for kaon bag
parameter with gradient flow, Phys. Rev. D 102 (3) (2020) 034508, arXiv :2006 .
06999 [hep -lat].

[12] H. Suzuki, H. Takaura, 𝑡 → 0 extrapolation function in the small flow time expansion
method for the energy–momentum tensor, PTEP 2021 (7) (2021) 073B02, arXiv :
2102 .02174 [hep -lat].

[13] R.V. Harlander, F. Lange, Effective electroweak Hamiltonian in the gradient-flow
formalism, Phys. Rev. D 105 (7) (2022) L071504, arXiv :2201 .08618 [hep -lat].

[14] M. Black, R. Harlander, F. Lange, A. Rago, A. Shindler, O. Witzel, Using gradient flow
to renormalise matrix elements for meson mixing and lifetimes, PoS LATTICE2023
(2024) 263, arXiv :2310 .18059 [hep -lat].

[15] SymLat collaboration, M.D. Rizik, C.J. Monahan, A. Shindler, Short flow-time co-

efficients of 𝐶𝑃 -violating operators, Phys. Rev. D 102 (3) (2020) 034509, arXiv :
2005 .04199 [hep -lat].

[16] R.V. Harlander, F. Lange, T. Neumann, Hadronic vacuum polarization using gradient
flow, J. High Energy Phys. 08 (2020) 109, arXiv :2007 .01057 [hep -lat].

[17] E. Mereghetti, C.J. Monahan, M.D. Rizik, A. Shindler, P. Stoffer, One-loop matching
for quark dipole operators in a gradient-flow scheme, J. High Energy Phys. 04 (2022)
050, arXiv :2111 .11449 [hep -lat].

[18] R. Harlander, M.D. Rizik, J. Borgulat, A. Shindler, Two-loop matching of the chromo-

magnetic dipole operator with the gradient flow, PoS LATTICE2022 (2023) 313,
arXiv :2212 .09824 [hep -lat].

[19] J. Borgulat, R.V. Harlander, J.T. Kohnen, F. Lange, Short-flow-time expansion of
quark bilinears through next-to-next-to-leading order QCD, J. High Energy Phys. 05
(2024) 179, arXiv :2311 .16799 [hep -lat].

[20] A. Shindler, Moments of parton distribution functions of any order from lattice QCD,
arXiv :2311 .18704 [hep -lat].

[21] J. Dragos, T. Luu, A. Shindler, J. de Vries, A. Yousif, Confirming the existence of
the strong CP problem in lattice QCD with the gradient flow, Phys. Rev. C 103 (1)
(2021) 015202, arXiv :1902 .03254 [hep -lat].

[22] J. Artz, R.V. Harlander, F. Lange, T. Neumann, M. Prausa, Results and techniques
for higher order calculations within the gradient-flow formalism, J. High Energy

Phys. 06 (2019) 121, arXiv :1905 .00882 [hep -lat], Erratum: J. High Energy Phys. 10
(2019) 032.

[23] S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk, T. Zirke, py-

SecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput.
Phys. Commun. 222 (2018) 313–326, arXiv :1703 .09692 [hep -ph].

[24] S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk, A GPU compatible
quasi-Monte Carlo integrator interfaced to pySecDec, Comput. Phys. Commun. 240
(2019) 120–137, arXiv :1811 .11720 [physics .comp -ph].

[25] G. Heinrich, S.P. Jones, M. Kerner, V. Magerya, A. Olsson, J. Schlenk, Numerical
scattering amplitudes with pySecDec, Comput. Phys. Commun. 295 (2024) 108956,
arXiv :2305 .19768 [hep -ph].

[26] T. Binoth, G. Heinrich, An automatized algorithm to compute infrared divergent
multiloop integrals, Nucl. Phys. B 585 (2000) 741–759, arXiv :hep -ph /0004013.

[27] T. Binoth, G. Heinrich, Numerical evaluation of multiloop integrals by sector decom-

position, Nucl. Phys. B 680 (2004) 375–388, arXiv :hep -ph /0305234.

[28] G. Heinrich, Sector decomposition, Int. J. Mod. Phys. A 23 (2008) 1457–1486, arXiv :
0803 .4177 [hep -ph].

[29] R.V. Harlander, T. Neumann, The perturbative QCD gradient flow to three loops, J.
High Energy Phys. 06 (2016) 161, arXiv :1606 .03756 [hep -ph].

[30] S.G. Gorishnii, S.A. Larin, F.V. Tkachov, The algorithm for OPE coefficient functions
in the MS scheme, Phys. Lett. B 124 (1983) 217–220.

[31] S.G. Gorishnii, S.A. Larin, Coefficient functions of asymptotic operator expansions
in minimal subtraction scheme, Nucl. Phys. B 283 (1987) 452.

[32] R.V. Harlander, S.Y. Klein, M. Lipp, FeynGame, Comput. Phys. Commun. 256 (2020)
107465, arXiv :2003 .00896 [physics .ed -ph].

[33] R. Harlander, S.Y. Klein, M.C. Schaaf, FeynGame-2.1 – Feynman diagrams made
easy, PoS EPS-HEP2023 (2024) 657, arXiv :2401 .12778 [hep -ph].

[34] A.V. Smirnov, M.N. Tentyukov, Feynman Integral Evaluation by a Sector decom-

posiTion Approach (FIESTA), Comput. Phys. Commun. 180 (2009) 735–746, arXiv :
0807 .4129 [hep -ph].

[35] A.V. Smirnov, V.A. Smirnov, M. Tentyukov, FIESTA 2: parallelizeable multiloop nu-

merical calculations, Comput. Phys. Commun. 182 (2011) 790–803, arXiv :0912 .
0158 [hep -ph].

[36] A.V. Smirnov, FIESTA 3: cluster-parallelizable multiloop numerical calculations in
physical regions, Comput. Phys. Commun. 185 (2014) 2090–2100, arXiv :1312 .3186

[hep -ph].

[37] A.V. Smirnov, FIESTA4: optimized Feynman integral calculations with GPU support,
Comput. Phys. Commun. 204 (2016) 189–199, arXiv :1511 .03614 [hep -ph].

[38] T. Kaneko, T. Ueda, A geometric method of sector decomposition, Comput. Phys.
Commun. 181 (2010) 1352–1361, arXiv :0908 .2897 [hep -ph].

[39] G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, F. Langer, V. Magerya, A. Pöldaru, J.
Schlenk, E. Villa, Expansion by regions with pySecDec, Comput. Phys. Commun.
273 (2022) 108267, arXiv :2108 .10807 [hep -ph].

[40] Wolfram Research, Inc., Mathematica, version 14.1, https://www .wolfram .com /
mathematica, 2024, Champaign, IL.

[41] J.A.M. Vermaseren, New features of FORM, arXiv :math -ph /0010025.

[42] J. Kuipers, T. Ueda, J.A.M. Vermaseren, J. Vollinga, FORM version 4.0, Comput.
Phys. Commun. 184 (2013) 1453–1467, arXiv :1203 .6543 [cs .SC].
11

http://refhub.elsevier.com/S0010-4655(24)00307-2/bib62DEFDE67E0BE18B53C61C167423E541s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib62DEFDE67E0BE18B53C61C167423E541s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib3560AC2AA4123153DA5BB50C12CCD925s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib3560AC2AA4123153DA5BB50C12CCD925s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib3560AC2AA4123153DA5BB50C12CCD925s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib05598A9AB08C528E3A5E83219449EFA3s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib05598A9AB08C528E3A5E83219449EFA3s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibAC72D8DB12CC6BA6E3E515D438177EF6s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibAC72D8DB12CC6BA6E3E515D438177EF6s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibAC72D8DB12CC6BA6E3E515D438177EF6s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib40AFE4380C7447B4B7AC99653D68E25Fs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib40AFE4380C7447B4B7AC99653D68E25Fs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib40AFE4380C7447B4B7AC99653D68E25Fs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib8D074DABA869D0059DA05092565F3D4Cs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib8D074DABA869D0059DA05092565F3D4Cs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib8D074DABA869D0059DA05092565F3D4Cs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib0BC7D9EEFF8DE310A40D4F4BFAC75616s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib0BC7D9EEFF8DE310A40D4F4BFAC75616s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib0BC7D9EEFF8DE310A40D4F4BFAC75616s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib870DB040328EE3E48A299BF062C17EDCs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib870DB040328EE3E48A299BF062C17EDCs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib870DB040328EE3E48A299BF062C17EDCs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib268B4F710E74E43D45162BCCA4E56551s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib268B4F710E74E43D45162BCCA4E56551s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibDBDB44378E7EE6F074F3FFAD2EFE4895s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibDBDB44378E7EE6F074F3FFAD2EFE4895s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibDBDB44378E7EE6F074F3FFAD2EFE4895s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibF47EE12C57E27E7DD1B2D1FEEF553D6Ds1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibF47EE12C57E27E7DD1B2D1FEEF553D6Ds1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibF47EE12C57E27E7DD1B2D1FEEF553D6Ds1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibE99B3346622825C9625B43A6F0E6384Es1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibE99B3346622825C9625B43A6F0E6384Es1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib2F99F74CA6DC29DB2B609B060BA737ABs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib2F99F74CA6DC29DB2B609B060BA737ABs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib2F99F74CA6DC29DB2B609B060BA737ABs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib97BDBA69C04E966CD654D5454F94C4C5s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib97BDBA69C04E966CD654D5454F94C4C5s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib97BDBA69C04E966CD654D5454F94C4C5s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib670092E7318F94140E5E2078DA4AF000s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib670092E7318F94140E5E2078DA4AF000s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib670092E7318F94140E5E2078DA4AF000s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib7D7A4333A515C398CC3EB71032D5529Ds1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib7D7A4333A515C398CC3EB71032D5529Ds1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibB0C4EF7E1CF7F526F8520EF21ED35604s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibB0C4EF7E1CF7F526F8520EF21ED35604s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibB0C4EF7E1CF7F526F8520EF21ED35604s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib507940F9CA19911A01CC49F9CA3BF36Cs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib507940F9CA19911A01CC49F9CA3BF36Cs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib507940F9CA19911A01CC49F9CA3BF36Cs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib507940F9CA19911A01CC49F9CA3BF36Cs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib09A024CB01F596F080BD9F7ED71DB8F7s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib09A024CB01F596F080BD9F7ED71DB8F7s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib09A024CB01F596F080BD9F7ED71DB8F7s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib9F4A9D180ADFF56D0DFC584A85E9A819s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib9F4A9D180ADFF56D0DFC584A85E9A819s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib9F4A9D180ADFF56D0DFC584A85E9A819s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib9AA01BBF9DF7CDCA7C28316EF1D307B8s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib9AA01BBF9DF7CDCA7C28316EF1D307B8s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib9AA01BBF9DF7CDCA7C28316EF1D307B8s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib5078FE9CBB1A5B527AFEC3012E164A24s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib5078FE9CBB1A5B527AFEC3012E164A24s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib39407DC069EE7F4E2A2E1281C7BD00D1s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib39407DC069EE7F4E2A2E1281C7BD00D1s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib24DBD0A71E2CE57825CF83BC057E72E7s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib24DBD0A71E2CE57825CF83BC057E72E7s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibDC797E596342DC5C15DA452D9BBB7825s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibDC797E596342DC5C15DA452D9BBB7825s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib4F266E5B5A1D0741DE2D1FBBA7AD541Ds1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib4F266E5B5A1D0741DE2D1FBBA7AD541Ds1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibD58E4EB994AEB3404A623C5771C15484s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibD58E4EB994AEB3404A623C5771C15484s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib753DB3C6E8D66D7CB55B214E044C7F88s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib753DB3C6E8D66D7CB55B214E044C7F88s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib0846DB7B84846D30C904858EEB10CDE9s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib0846DB7B84846D30C904858EEB10CDE9s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibF31DBD796E1686FB1AF4A9ADC7842F92s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibF31DBD796E1686FB1AF4A9ADC7842F92s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibF31DBD796E1686FB1AF4A9ADC7842F92s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib9356529FFD11FA6E56F597D13DD8DEA8s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib9356529FFD11FA6E56F597D13DD8DEA8s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib9356529FFD11FA6E56F597D13DD8DEA8s1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib1AF9FD29AD4D17E3C893ECFA9BA7843Ds1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib1AF9FD29AD4D17E3C893ECFA9BA7843Ds1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib1AF9FD29AD4D17E3C893ECFA9BA7843Ds1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib1D54A31B0E8CB2300D89D8E559E42C3Es1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib1D54A31B0E8CB2300D89D8E559E42C3Es1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibA9157692B62D344E7BA2F0F56313EE6Es1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibA9157692B62D344E7BA2F0F56313EE6Es1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibC312B2BCEE15E87891E47148494FD25As1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibC312B2BCEE15E87891E47148494FD25As1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibC312B2BCEE15E87891E47148494FD25As1
https://www.wolfram.com/mathematica
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibCE5DCEE0DBC496743F68D2911B7CD05Bs1
https://www.wolfram.com/mathematica
http://refhub.elsevier.com/S0010-4655(24)00307-2/bibCE5DCEE0DBC496743F68D2911B7CD05Bs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib3B68F55E0CCC8A66D3AE8E32FD871CAEs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib44C79F2C80A62FB6310449651AA0329Fs1
http://refhub.elsevier.com/S0010-4655(24)00307-2/bib44C79F2C80A62FB6310449651AA0329Fs1

	ftint: Calculating gradient-flow integrals with pySecDec
	1 Introduction
	2 General outline
	3 Calculation of the integrals
	3.1 One loop
	3.1.1 Massless case
	3.1.2 Massive propagators

	3.2 Higher orders
	3.3 Symmetries of the flow-time integrals
	3.4 Implementation with pySecDec

	4 Using ftint
	4.1 Sector decomposition
	4.2 Numerical integration
	4.3 Example: checking an integration-by-parts relation
	4.4 Mapping to the normal form
	4.5 Checks
	4.5.1 Analytic solutions, symmetries, and simple identities
	4.5.2 Flow-time derivatives
	4.5.3 Integration-by-parts identities

	5 Conclusions and outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A In- and output format
	References

