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The program ftint is introduced which numerically evaluates dimensionally regularized integrals as they 
occur in the perturbative approach to the gradient-flow formalism in quantum field theory. It relies on sector 
decomposition in order to determine the coefficients of the individual orders in 𝜖 = (4 −𝐷)∕2, where 𝐷 is the 
space-time dimension. For that purpose, it implements an interface to the public library pySecDec. The current 
version works for massive and massless integrals up to three-loop level with vanishing external momenta, but 
the underlying method is extendable to more general cases.
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PROGRAM SUMMARY

Program title: ftint
CPC Library link to program files: https://doi .org /10 .17632 /bt6bkffxh9 .1
Developer’s repository link: https://gitlab .com /ftint /ftint

Licensing provisions: MIT license

Programming language: Python

Supplementary material: README.md

Nature of problem: The perturbative approach to the gradient-flow for-

malism in quantum field theory leads to integrals which closely resemble 
regular Feynman integrals. However, they involve exponential factors 
which depend on the loop and external momenta, as well as on so-called 
flow-time variables. In general, the latter are also integrated over a finite 
interval. These integrals cannot be solved immediately with standard 
tools.

Solution method: The flow-time integrals are transformed to integrals 
over a hypercube by introducing Schwinger parameters. The latter are 
numerically evaluated using the public program pySecDec, which per-

forms a sector decomposition and calculates the coefficients of the poles 
in the parameter 𝜖 = (4 −𝐷)∕2 by numerical integration, where 𝐷 is the 
space-time dimension which occurs in dimensional regularization.

Additional comments including restrictions and unusual features: In its cur-

rent form, ftint is restricted to one-, two-, and three-loop integrals 
with vanishing external momenta. It does allow for massive propaga-

tors though, raised to virtually arbitrary integer powers.

1. Introduction

The gradient-flow formalism (GFF) [1–5] is a useful tool for practi-

cal calculations in Quantum Field Theory (QFT). Its main feature is to 
suppress the high-momentum modes of quantum fields. In lattice Quan-

tum Chromodynamics (QCD), this leads to a smoothing of the gauge 
field. Among many other applications, this allows for efficient ways to 
determine the lattice spacing, for example [3,6].

On the other hand, various applications of the GFF have been sug-

gested that involve also perturbative calculations, among them the so-

called short-flow-time expansion (SFTX) [4], where composite operators 
of flowed fields are expressed in terms of regular operators via matching 
coefficients which can be determined perturbatively. This approach has 
proven viable for evaluating matrix elements of the energy-momentum 
tensor in QCD, for example, or for the calculation of observables in flavor 
physics [7–14]. For more applications, see Refs. [15–21], for example.

The form of the integrals that occur in the perturbative approach 
to the GFF is remarkably close to the Feynman integrals of regular 
QFT. The only modifications are: (i) an exponential factor in the inte-

grand which depends on the loop momenta, the external momenta and 
the masses, in general, as well as on so-called flow-time variables, and 
(ii) additional integrations over these flow-time variables [3,4].

It has been shown that many of the tools that have been developed 
for higher-order calculations in the perturbative approach to regular 
QFT can be applied or extended to flowed QFT [22]. In particular, this 
holds for the automatic generation of the associated Feynman diagrams, 
their simplification to scalar integrals, as well as their reduction to mas-

ter integrals using integration-by-parts (IbP) relations. However, while 
there are powerful publicly available software tools for the numerical 
evaluation of the master integrals in regular QFT, this is not the case for 
flow-time integrals. In this paper, we will close this gap by providing 
the program ftint, which constitutes an interface for such integrals to
pySecDec [23–25], allowing to evaluate them via the sector decom-

position algorithm [26–28]. In this first version of the program we put 
the focus on integrals which depend only on a single mass scale, the 
flow-time 𝑡. This is certainly one of the most important cases, as the cal-

culation of the matching coefficients in the SFTX leads to exactly this 
class of integrals [10]. However, ftint also allows for non-vanishing 
masses in the propagators, which may prove useful in many applications 
2

such as the calculation of mass effects to the action density ⟨𝐺𝜇𝜈𝐺𝜇𝜈⟩.
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The structure of the remainder of this paper is as follows. After 
defining the problem in Section 2, we describe the method of our calcu-

lation in Section 3. The way to use the program ftint is presented in 
Section 4, including some examples and checks. Section 5 contains con-

clusions and an outlook for future work. In the appendix, we describe 
the possibility to adjust the input and output format of ftint.

2. General outline

We work in Euclidean space throughout this paper, unless stated 
otherwise. The generic form of the integrals which we will consider 
is [22,29]

𝑓 (𝐜,𝐚,𝐛) = (4𝜋𝑡)𝑙𝐷∕2 𝑡−𝑏 ∫
[0,1]𝑓

d𝐮𝐮𝐜 ∫
𝐩

exp[−𝑡
∑𝑘

𝑖=1 𝑎𝑖𝑃
2
𝑖
]

(𝑃 2
1 +𝑚2

1)
𝑏1 ⋯ (𝑃 2

𝑘
+𝑚2

𝑘
)𝑏𝑘

(1)

where 𝐩 = {𝑝1, … , 𝑝𝑙} is the set of loop momenta,

𝐛 = {{𝑏1,𝑚1},… ,{𝑏𝑘,𝑚𝑘}} (2)

collects the so-called indices 𝑏𝑖 ∈ Z and masses 𝑚𝑖 ∈ R. The prefactor 
𝑡−𝑏, with 𝑏 =

∑𝑘

𝑖=1 𝑏𝑖, in Eq. (1) thus compensates the mass dimension of 
the integral, such that 𝑓 (𝐜, 𝐚, 𝐛) is dimensionless. We furthermore define 
the simplified notation {𝑏𝑖, 0} → 𝑏𝑖 for massless propagators.

The 𝑘 functions 𝑎𝑖 ∈ 𝐚 are real-valued polynomials of the (dimen-

sionless) flow-time variables 𝐮 = {𝑢1, … , 𝑢𝑓 } that are non-negative on 
the hypercube [0, 1]𝑓 . Furthermore, we define

𝐮𝐜 ≔ 𝑢
𝑐1
1 ⋯𝑢

𝑐𝑓

𝑓
, (3)

where 𝐜 = {𝑐1, … , 𝑐𝑓 } is a set of non-negative integers.

The integration measure over the loop momenta is

∫
𝐩

≔∫
𝑝1

⋯∫
𝑝𝑙

, with ∫
𝑝

= ∫
d𝐷𝑝
(2𝜋)𝐷

, 𝐷 = 4 − 2𝜖 . (4)

The 𝑃𝑖 in Eq. (1) are linear combinations of the loop momenta. External 
momenta will be neglected in this paper. This is justified for the calcu-

lation of the perturbative matching coefficients of the SFTX to which

ftint is tailored.1 It implies that the number of propagators 𝑘 in Eq.

(1) is related to the number of loops 𝑙 as

𝑘 =
{

1 for 𝑙 = 1 ,
3 (𝑙 − 1) for 𝑙 ≥ 2 . (5)

In principle, there could be propagator factors in Eq. (1) which differ 
only in their mass term, i.e., 𝑃𝑖 = 𝑃𝑗 but 𝑚𝑖 ≠𝑚𝑗 . However, using partial 
fractioning, these can always be re-written to integrals where 𝑚𝑖 =𝑚𝑗 if 
𝑃𝑖 = 𝑃𝑗 .

For later purposes, it is convenient to define a symmetric square ma-

trix 𝐴(𝐚) through the condition

𝐩𝑇 𝐴(𝐚)𝐩 =
𝑘∑
𝑖=1

𝑎𝑖𝑃
2
𝑖
, (6)

where 𝐩 are the loop momenta. Its explicit form depends on the choice 
of linear combinations 𝑃𝑖. To be specific, we choose

one-loop:

𝑃1 = 𝑝1 ,

⇒ 𝐴(𝐚) = 𝑎1 .
(7a)

1 The matching coefficients are most conveniently determined by using the 
method of projectors [30,31], which results in integrals whose only dimensional 

scale is the external flow-time 𝑡, see Ref. [10], for example.

https://doi.org/10.17632/bt6bkffxh9.1
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Fig. 1. One-, two-, and three-loop topologies of the integrals considered in this 
paper. All Feynman diagrams are produced with the help of FeynGame [32,33].

two-loop:

𝑃1 = 𝑝1 , 𝑃2 = 𝑝2 , 𝑃3 = 𝑝1 + 𝑝2 , (8a)

⇒ 𝐴(𝐚) =
(
𝑎1 + 𝑎3 𝑎3
𝑎3 𝑎2 + 𝑎3

)
. (8b)

three-loop:

𝑃1 = 𝑝1 , 𝑃2 = 𝑝2 , 𝑃3 = 𝑝3 ,

𝑃4 = 𝑝1 − 𝑝2 , 𝑃5 = 𝑝1 − 𝑝3 , 𝑃6 = 𝑝2 − 𝑝3 ,
(9a)

⇒ 𝐴(𝐚) =
⎛⎜⎜⎝
𝑎1 + 𝑎4 + 𝑎5 −𝑎4 −𝑎5

−𝑎4 𝑎2 + 𝑎4 + 𝑎6 −𝑎6
−𝑎5 −𝑎6 𝑎3 + 𝑎5 + 𝑎6

⎞⎟⎟⎠ . (9b)

This choice defines the so-called integral topologies shown in Fig. 1. 
Note that there is only a single topology at each loop order up to the 
three-loop level. This pattern does not extend to higher orders though.

3. Calculation of the integrals

The method we pursue for the evaluation of the integrals closely fol-

lows Ref. [29]. However, while this paper employed the public software 
tools FIESTA [34–37] and the MPFR integration library,2 we use py-
SecDec for the main calculational steps.

3.1. One loop

In order to describe the method that we apply for the calculation of 
the integrals, it is instructive to consider the one-loop level first. This is 
a particularly simple case which, however, already introduces the main 
concepts. The formal step to a general number of loops can then be 
achieved rather easily. Furthermore, it is useful to neglect all masses in 
a first outline. It turns out that their inclusion is almost trivial in the 
approach described below.

3.1.1. Massless case

At the one-loop level and neglecting the masses, Eq. (1) takes the 
form

𝑓 (𝐜,{𝑎},{𝑏}) = (4𝜋𝑡)𝐷∕2 𝑡−𝑏 ∫
[0,1]𝑓

d𝐮𝐮𝐜 ∫
𝑝

exp[−𝑡𝑎𝑝2]
(𝑝2)𝑏

. (10)

It is useful to distinguish three cases.

Vanishing index. For 𝑏 = 0, evaluating the integral over 𝑝 gives

𝑓 (𝐜,{𝑎},{0}) = ∫
[0,1]𝑓

d𝐮𝐮𝐜 [𝑎]−𝐷∕2 .
(11)

Recall that 𝑎 is a polynomial in the flow-time variables 𝑢𝑖. This 
can be passed directly to pySecDec for numerical integration, see 
Section 3.4.

2 See http://www .holoborodko .com /pavel /mpfr/ and https://www .mpfr .
3

org/.
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Positive index. For 𝑏 > 0, we apply Schwinger parameters to make the 
𝑝 integral Gaußian:

𝑓 (𝐜,{𝑎},{𝑏}) = (4𝜋𝑡)𝐷∕2

(𝑏− 1)!

∞

∫
0

d𝑥𝑥𝑏−1 ∫
[0,1]𝑓

d𝐮𝐮𝐜 ∫
𝑝

exp{−𝑡[𝑎+ 𝑥]𝑝2} =

= 1
(𝑏− 1)!

∞

∫
0

d𝑥𝑥𝑏−1 ∫
[0,1]𝑓

d𝐮𝐮𝐜 [𝑎+ 𝑥]−𝐷∕2 .

(12)

In order to evaluate the integral over Schwinger parameters with

pySecDec, we map them to the interval [0, 1]. Unfortunately, the 
mapping

𝑥→
1 − 𝑥

𝑥
(13)

introduces singularities at 𝑥 = 1, while pySecDec expects them to 
occur only at 𝑥 = 0. Therefore, we split the integration intervals 
of the Schwinger parameters as [0, ∞) = [0, 1] ∪ (1, ∞), and map 
𝑥 → 1∕𝑥 in the second interval, leading to

𝑓 (𝐜,{𝑎},{𝑏}) = 1
(𝑏− 1)! ∫

[0,1]𝑓

d𝐮𝐮𝐜

×

1

∫
0

d𝑥
(
𝑥𝑏−1 [𝑎+ 𝑥]−𝐷∕2 + 𝑥𝐷∕2−1−𝑏 [𝑥𝑎+ 1]−𝐷∕2) . (14)

pySecDec can now treat the 𝑥 and 𝐮 integration on the same foot-

ing.

Negative index. In the case 𝑏 < 0, we can use

(𝑝2)−𝑏 = (−𝑡)𝑏 𝜕−𝑏

𝜕𝑥−𝑏
𝑒−𝑥𝑡𝑝

2 ||||𝑥=0 (15)

and obtain

𝑓 (𝐜,{𝑎},{𝑏}) = (−1)𝑏 𝜕−𝑏

𝜕𝑥−𝑏 ∫
[0,1]𝑓

d𝐮𝐮𝐜[𝑎+ 𝑥]−𝐷∕2||||𝑥=0
= 𝑃 (−𝑏) (−1)𝑏 ∫

[0,1]𝑓

d𝐮𝐮𝐜[𝑎]−𝐷∕2+𝑏 ,

(16)

where

𝑃 (𝑚) =
𝑚∏
𝑘=1

(1 − 𝑘−𝐷∕2) =
Γ(1 −𝐷∕2)

Γ(1 −𝐷∕2 −𝑚)
. (17)

This expression can again be directly passed to pySecDec.

Let us look at a few simple examples which can be calculated ana-

lytically:

𝑓 ({},{1},{0}) = 1 ,

𝑓 ({},{𝑎},{𝑛}) = (4𝜋𝑡)𝐷∕2 𝑡−𝑛 ∫
𝑝

exp[−𝑡𝑎𝑝2]
(𝑝2)𝑛

=

= 𝑎𝑛−𝐷∕2

(𝑛− 1)!

∞

∫
0

d𝑥𝑥𝑛−1(1 + 𝑥)−𝐷∕2 =

= 𝑎𝑛−𝐷∕2

(𝑛− 1)!
Γ(𝑛)Γ(𝐷∕2 − 𝑛)

Γ(𝐷∕2)
, for 𝑛 ≥ 1 , 𝑎 ∈R , (18)

𝑓 ({},{𝑎},{−𝑛}) = (4𝜋𝑡)𝐷∕2 𝑡𝑛 ∫
𝑝

𝑝2𝑛 exp[−𝑡𝑎𝑝2] =

= (4𝜋𝑡)𝐷∕2(−𝑎)−𝑛 𝜕𝑛

𝑛
exp[−𝑡𝑎(1 + 𝑥)𝑝2]

||| =

𝜕𝑥 ∫

𝑝
|𝑥=0

http://www.holoborodko.com/pavel/mpfr/
https://www.mpfr.org/
https://www.mpfr.org/
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= (−1)𝑛𝑎−𝑛−𝐷∕2 𝜕𝑛

𝜕𝑥𝑛
(1 + 𝑥)−𝐷∕2||||𝑥=0 ,

from which it follows that

𝑓 ({},{1},{1}) = 1
𝐷∕2 − 1

= 1 + 𝜖 + 𝜖2 +⋯ ,

𝑓 ({},{1},{2}) = −1
𝜖

(
1 + 𝜖 + 𝜖2 +…

)
,

𝑓 ({0},{𝑢1},{1}) = (4𝜋𝑡)𝐷∕2 𝑡−1

1

∫
0

d𝑢1 ∫
𝑝

exp[−𝑡𝑢1𝑝2]
𝑝2

=

= −(4𝜋𝑡)𝐷∕2 𝑡−2 ∫
𝑝

exp[−𝑡𝑝2]
(𝑝2)2

= −𝑓 ({0},{1},{2}) ,

𝑓 ({0},{𝑢1},{−1}) = −1 ,

(19)

for example, where we have used the fact that scaleless integrals are 
zero in dimensional regularization.

3.1.2. Massive propagators

We may generalize the integral in Eq. (10) by allowing for massive 
propagators. Specifically, we consider the integral

𝑓 (𝐜,{𝑎},{{𝑏,𝑚}}) ≡ (4𝜋𝑡)𝐷∕2 𝑡−𝑏 ∫
[0,1]𝑓

d𝐮𝐮𝐜 ∫
𝑝

exp[−𝑡𝑎𝑝2]
(𝑝2 +𝑚2)𝑏

. (20)

Note that we only need to consider positive 𝑏, because the other cases 
can be algebraically reduced to already known integrals via the binomial 
formula:

(𝑝2 +𝑚2)−𝑏 =
−𝑏∑
𝑛=0

(
−𝑏
𝑛

)
(𝑝2)𝑛(𝑚2)−𝑏−𝑛 for 𝑏 ≤ 0 . (21)

Following the same steps as above for 𝑏 > 0, on the other hand, we 
arrive at

𝑓 (𝐜,{𝑎},{{𝑏,𝑚}}) =

= 1
(𝑏− 1)!

∞

∫
0

d𝑥𝑥𝑏−1𝑒−𝑥𝑡𝑚2

∫
[0,1]𝑓

d𝐮𝐮𝐜 [𝑎+ 𝑥]−𝐷∕2 .
(22)

We again split the integration interval into 𝑥 ∈ [0, 1] ∪ (1, ∞) and per-

form the substitution 𝑥 → 1∕𝑥 in the second interval. This leads to a 
singularity at 𝑥 = 0 in the argument of the exponential, which is spu-

rious, however, as the exponential vanishes at this point. Therefore, 
the only effect on the integrals due to propagators being massive is the 
multiplication of a positive function. Since it is factorized and does not 
contribute to the true singularity structure, it has no impact on pole ex-

traction during sector decomposition. Section 3.4 describes how such 
factors are treated in pySecDec.

As mentioned above, the more general case of several masses,

∫
[0,1]𝑓

d𝐮𝐮𝐜 ∫
𝑝

exp[−𝑡𝑎𝑝2]
(𝑝2 +𝑚2

1)
𝑏1 ⋯ (𝑝2 +𝑚2

𝑛
)𝑏𝑛 (23)

can be reduced to integrals of the form Eq. (22) by partial fractioning.

Let us consider a particularly simple example for a massive one-loop 
integral which can be solved analytically:

𝑓 ({},{1},{{1,1}}) = 1 − 𝑧𝑒𝑧Γ(0, 𝑧) , 𝑧 =𝑚2𝑡 , (24)

where Γ(𝑛, 𝑧) = ∫ ∞
𝑧

d𝑥 𝑥𝑛−1𝑒−𝑥 is the incomplete Γ function.

3.2. Higher orders

Let us now move on to the multi-loop level, first focusing on the 
4

massless case. It is helpful to define the auxiliary function
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𝐹 (𝐚,𝐱) = (4𝜋𝑡)𝑙𝐷∕2 ∫
𝐩

exp

{
−𝑡

𝑘∑
𝑖=1

[𝑎𝑖 + 𝑥𝑖]𝑃 2
𝑖

}
. (25)

Using Eq. (6), one can perform the Gaußian integral over the loop mo-

menta to obtain

𝐹 (𝐚,𝐱) = [det𝐴(𝐚+ 𝐱)]−𝐷∕2 . (26)

We refer to the 𝐱 = {𝑥1, … , 𝑥𝑘} as Schwinger parameters in the follow-

ing, even if they are not integrated over. It is helpful to note that each 
𝑥𝑖 ∈ 𝐱 occurs only linearly in det𝐴(𝐚 + 𝐱).

Consider now a flow-time integral with indices 𝑏1, … , 𝑏𝑘, which we 
divide up as follows:

𝑏𝑖 > 0 for 𝑖 ∈ 𝐼int ,

𝑏𝑖 < 0 for 𝑖 ∈ 𝐼diff ,

𝑏𝑖 = 0 for 𝑖 ∈ 𝐼0 .

(27)

For the vanishing indices 𝑏𝑖 = 0, we can simply set the corresponding 
Schwinger parameters to zero in Eq. (26), 𝑥𝑖 = 0. For the negative in-

dices 𝑏𝑖 < 0, on the other hand, we use Eq. (15), meaning that we need 
to take the derivative w.r.t. −𝑥𝑖 at 𝑥𝑖 = 0. Note that 𝑛 derivatives acting 
on Eq. (26) produce 𝑛 terms of the form

[det𝐴(𝐚+ 𝐱)]−𝐷∕2−𝑘 𝑔𝑘(𝐚,𝐱,𝐷) , 𝑘 ∈ {1,… , 𝑛} , (28)

where 𝑔𝑘 is polynomial in its arguments at most of order 𝑥𝑘
𝑖

for each 𝑥𝑖. 
Finally, for the positive indices 𝑏𝑖 > 0, we integrate over 𝑥𝑖 and multiply 
by 1∕(𝑏𝑖 − 1)!. In summary,

𝑓 (𝐜,𝐚,𝐛) =
⎡⎢⎢⎣
∏
𝑗∈𝐼int

1
(𝑏𝑗 − 1)!

∞

∫
0

d𝑥𝑗 𝑥
𝑏𝑗−1
𝑗

⎤⎥⎥⎦×
× ∫
[0,1]𝑓

d𝐮𝐮𝐜
[( ∏

𝑖∈𝐼diff

𝜕−𝑏𝑖

𝜕(−𝑥𝑖)−𝑏𝑖

)
[det𝐴(𝐚+ 𝐱)]−𝐷∕2

]
𝑥𝑘=0 for 𝑘∈(𝐼diff∪𝐼0)

.

(29)

Again, we split the integration region for the Schwinger parameters into 
𝑥𝑗 ∈ [0, 1] ∪ (1, ∞]. The integrand in Eq. (29) thus consists of polynomi-

als of the 𝑥𝑖 with 𝑖 ∈ 𝐼int and the 𝐮, raised to non-integer powers which 
can be passed to pySecDec for integration.

Non-vanishing masses 𝐦 can be taken into account in a straight-

forward way. As pointed out above, only massive propagators with pos-

itive indices need to be considered, because non-positive indices can be 
reduced algebraically to known integrals. Also, we can assume that each 
independent momentum is associated with only a single mass, which can 
always be achieved by partial fractioning as pointed out in the one-loop 
case. In this case, the only modification is to include a factor

exp

(
−𝑡

∑
𝑗∈𝐼int

𝑥𝑗𝑚
2
𝑗

)
(30)

in the integrand of Eq. (29).

3.3. Symmetries of the flow-time integrals

The representation of a flow-time integral in the form of Eq. (1) is not 
unique. The integrals remain invariant under certain combined permu-

tations of the parameters 𝐜, 𝐚, 𝐮, and 𝐛. Employing such symmetries may 
significantly reduce the number of integrals that need to be evaluated.

ftint provides an option to map any flow-time integral to a standard 
form which we refer to as normal form. This section briefly describes our 
basic strategy to determine the normal form.

The first symmetry we employ corresponds to re-naming the flow-

time integration variables. In general, the integral is preserved when 
permuting the variables 𝐮 in the polynomials 𝐚(𝐮) and applying the in-
verse permutation to 𝐜, i.e.
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𝑓 (𝐜,𝐚(𝐮),𝐛) = 𝑓 (𝑝𝐜,𝐚(𝑝−1𝐮),𝐛) , (31)

where 𝑝 denotes a permutation and 𝑝−1 its inverse. For example, one 
arrives at the identity

𝑓 ({0,1},{𝑢1𝑢2, 𝑢2, 𝑢1},{3,1,2}) = 𝑓 ({1,0},{𝑢1𝑢2, 𝑢1, 𝑢2},{3,1,2}) (32)

by just interchanging the names of 𝑢1 and 𝑢2.

The second symmetry is related to permutations of the momenta 𝑃𝑖
(modulo signs) which leave the topologies in Fig. 1 (i.e., the momen-

tum conservation relations) invariant. Since each line of these topologies 
corresponds to a momentum 𝑃𝑖, an index 𝑏𝑖 and a polynomial 𝑎𝑖, per-

mutations of the 𝑃𝑖 correspond to simultaneous permutations of the 𝑏𝑖
and the 𝑎𝑖. In the one-loop case, there is only a single line and thus 
no additional symmetry results from these considerations. The two-loop 
topology, on the other hand, is symmetric under any permutation of 
lines, and thus any simultaneous permutations of 𝐚 and 𝐛. For example,

𝑓 ({1,0},{𝑢1𝑢2, 𝑢1, 𝑢2},{3,1,2}) = 𝑓 ({1,0},{𝑢1𝑢2, 𝑢2, 𝑢1},{3,2,1}) .

(33)

At three-loop level, there are 4! = 24 permutations of the 𝑃𝑖 that pre-

serve the topology shown in Fig. 1 (corresponding to the permutations 
of the four vertices). For example,

(𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6)→ (−𝑃3,−𝑃2,−𝑃1, 𝑃6, 𝑃5, 𝑃4) (34)

corresponds to the mirror symmetry along the vertical axis, while

(𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑃5, 𝑃6)→ (−𝑃3, 𝑃6, 𝑃5,−𝑃2,−𝑃1,−𝑃4) (35)

implies a non-trivial continuous deformation of the diagram. Each such 
transformation results in a permutation 𝑝, for which it holds that3

𝑓 (𝐜,𝐚,𝐛) = 𝑓 (𝐜, 𝑝𝐚, 𝑝𝐛) . (36)

Using these symmetries, we can map any flow-time integral 𝐼 onto 
an equivalent standard form. To achieve this, we generate a list of equiv-

alent integrals by applying all combinations of permutations from each 
of the two symmetries to 𝐼 . This list then gets sorted according to a lex-

icographical criterion, and the first element is defined to be the normal 
form of 𝐼 . Our procedure guarantees that two flow-time integrals can 
be transformed into one another by the symmetry operations described 
above if and only if they have the same normal form; they will then ob-

viously integrate to the same result. Note that the converse is not true: 
Integrals with different normal forms cannot be transformed into one 
another by the discussed symmetry operations; however, they may still 
integrate to the same result.

A specific example and how to use ftint in order to map an integral 
to its normal form will be discussed in Section 4.4.

3.4. Implementation with pySecDec

pySecDec [23–25] is a toolbox for the evaluation of dimensionally 
regularized parameter integrals. It utilizes the sector decomposition al-

gorithm to isolate and subtract overlapping endpoint singularities, and 
produces an integration library to evaluate the coefficients of an expan-

sion in the dimensional regulator. The parameter integrals pySecDec
targets are of the form

𝐼 = ∫
[0,1]𝑑

d𝐱 𝑓𝛼1
1 (𝐱)⋯𝑓

𝛼𝑘
𝑘
(𝐱), (37)

where the 𝑓𝑙 are functions of the parameters and the 𝛼𝑙 are linear in the 
space-time dimension 𝐷. These integrals are divergent in general, but 

3 Since only the squares of the 𝑃𝑖 enter the integral, sign changes of the 𝑃𝑖
5

like in Eqs. (34) and (35) do not matter here.
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can be evaluated in dimensional regularization by taking 𝐷 = 4 −2𝜖 and 
extracting the poles in a Laurent series in 𝜖. Performing such an expan-

sion requires defining adequate subtraction terms, which can be highly 
non-trivial for integrands with nested singularity structures. The sector 
decomposition approach offers an algorithmic procedure of decompos-

ing the integral into sectors with factorized singularity structures, where 
it is straightforward to define subtractions [26–28]. pySecDec provides 
implementations of several decomposition algorithms, based on either 
iterative or geometric strategies. The interface in ftint uses geomet-

ric sector decomposition as it usually leads to fewer sectors than the 
iterative approaches [38,39]. After sector decomposition, the integral is 
represented as a sum of Laurent series in 𝛼 sectors

𝐼 =
𝛼∑
𝑙=1

𝑝∑
𝑛=−𝑟

𝐼𝑙,𝑛
1
𝜖𝑛

+(𝜖𝑟+1), (38)

where 𝑝 is the order of the highest pole and the expansion coefficients 
𝐼𝑙,𝑛 are sector integrals that are finite at the integration boundaries. A 
simple example of a sector integral 𝐼𝑗,0 making up the finite part of the 
expansion in a sector 𝑗 where a logarithmic divergence in 𝑥1 has been 
extracted is

𝐼𝑗,0 = ∫
[0,1]𝑑

d𝐱 𝑥−1−𝜖1
[(𝑥1,… , 𝑥𝑑 ) − (𝑥1 = 0,… , 𝑥𝑑 )

]
. (39)

The subtraction term (𝑥1 = 0, … , 𝑥𝑑 ) ensures that the sector integral is 
finite as 𝑥1 → 0. For more severe divergences, the power of the extracted 
pole is raised through a number of integration-by-parts iterations until 
there are only logarithmic divergences remaining. In this form, the sec-

tor integrals are well suited for numerical integration. The latest release 
of pySecDec [25] introduced Disteval, a new integration library. It 
implements a quasi-Monte Carlo integrator which has yielded significant 
performance increases compared to previous versions. The integration 
interface in ftint exclusively uses the Disteval integrator as it su-

persedes all older integrators.

The massive flow-time integrals described in Section 3.1.2 include 
factors 𝑒−𝑡𝑚

2
𝑗
𝑥𝑗 . After the substitution 𝑥 → 1∕𝑥 in the second interval (to 

map (1, ∞) → (0, 1)) they transform into 𝑒−𝑡𝑚
2
𝑗
∕𝑥𝑗 . The 1∕𝑥 pole in the 

argument is spurious and does not need to be extracted through sector 
decomposition. To minimize the work of the decomposition algorithm,

pySecDec allows for the definition of finite functions that only enter at 
subtraction level. Factors like these effectively scale the magnitude of 
the integrand, which means they still need to be included in subtraction 
terms such as (𝑥1 = 0, … , 𝑥𝑑 ) in Eq. (39). In order to avoid practical 
issues of having a spurious 1∕𝑥 pole in the exponent, a regulator 𝛿 is 
added to the transformed exponential functions such that

𝑒
−𝑡𝑚2

𝑗
∕𝑥𝑗 → 𝑒

−𝑡𝑚2
𝑗
∕(𝑥𝑗+𝛿). (40)

By default, 𝛿 is set to 10−10 at integration. In order to ensure that this 
parameter does not affect the accuracy of the integration result, the user 
may change it using the option --delta, see Section 4.2. Since the ex-

ponential function does not affect sector decomposition, this additional 
parameter has virtually no impact on performance.

4. Using ftint

Following the spirit of pySecDec, the evaluation of an integral with

ftint is divided into two steps. In the first step, the integral is decom-

posed into sectors where the boundary singularities have been isolated 
and subtracted with the help of pySecDec. It creates and compiles a
C++ integration library which is used in the second step to numerically 
evaluate the integrals. The motivation for splitting the program into two 
parts is that the user may want to perform the second step several times, 
for example with different target errors or for several mass parameters. 

Since this only affects the numerical integration, one can save on com-
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puting time for the decomposition and compilation step which needs to 
be done only once in this case.

It is important to note that the current version of ftint is limited 
to evaluating integrals of the form specified in Eq. (1). Specifically, this 
implies that all external momenta must be zero, all massive propaga-

tors must have a positive index 𝑏, and no two propagators may carry 
the same momentum while having different masses. As previously men-

tioned, the latter two constraints do not really represent limitations, 
as any integral that does not meet these criteria can be algebraically 
transformed into a linear combination of integrals that do. While future 
versions of ftint may include built-in support for these transforma-

tions, the current version requires the user to apply these modifications 
before passing them to ftint. This can be readily accomplished using 
built-in functions in Mathematica [40] or FORM [41,42], for example, 
or via the Python library SymPy.

4.1. Sector decomposition

The decomposition part of the program is implemented in ftint_py-
SecDec.py. It is called from the command line as

$ python3 <ftint_path>/ftint_pySecDec.py <ft_integrals> [<
↪ options>]

Listing 1: Command for sector decomposition.

where, here and in the following, <ftint_path> is to be replaced 
by the actual path to the source code of ftint. In the simplest case,

<ft_integrals> is a string encoding a single flow-time integral. Its 
format follows closely the definition in Eq. (1), with some adjustments. 
The most significant one is the representation of the masses. For the sec-

tor decomposition, the actual value of a mass is irrelevant, as long as it is 
non-zero. In the input for ftint_pySecDec.py, non-zero masses are 
indicated only by their index, i.e. 𝑚1 → 1, 𝑚2 → 2, etc.4 Let us consider 
a specific two-loop example5:

f[{0,1},{u2-u1*u2,2,u2},{-1,{2,2},{1,3}}]=

= 𝑓 ({0,1},{𝑢2 − 𝑢1 𝑢2,2, 𝑢2},{−1,{2,𝑚2},{1,𝑚3}}) =

(4𝜋𝑡)𝐷 ∫
𝑝,𝑘

∫
𝑢1,2

𝑢2
𝑝2

(𝑘2 +𝑚2
2)

2((𝑝+ 𝑘)2 +𝑚2
3)
𝑒−𝑡[(−𝑢1𝑢2+𝑢2)𝑝

2+2𝑘2+𝑢2(𝑝+𝑘)2]

(41)

The first line contains the input for ftint_pySecDec.py, the second 
line corresponds to the notation of Eq. (1). The flow-time integration 
variables must be named u1, u2, . . . , and the multiplication symbol 
“*” must be given explicitly. The actual numerical values for the masses 
must be provided only upon numerical integration, using the --masses
option of ftint_integrate.py, as will be discussed in more detail 
in Section 4.2.

If a propagator is massless, the mass argument is 0, or it can be left 
out altogether. For example, for 𝑚2 = 0, the third argument of f in the 
first line of Eq. (41) could be given either as {-1,{2,0},{1,3}} or as 
{-1,2,{1,3}}. Recall that an integral may contain additional infrared 
singularities in the limit where a mass is zero. This is indeed the case 
in the example considered here: while for 𝑚2 ≠ 0 the integral contains 
only poles up to 1∕𝜖 (see Listing 5 below), there are also 1∕𝜖2 poles for 
𝑚2 = 0. It is important to indicate all massless propagators already at 
the decomposition stage in this case.

The command to run the decomposition for the integral in Eq. (41), 
assuming default settings, is

4 The reason why we do not adopt the more intuitive notation f[{0,1},{u2-

u1*u2,2,u2},{-1,{2,m2},{1,m3}}] is not to interfere with any locally 
defined symbols m2, m3 in the user’s code.
6

5 See examples/2L_massive.in in the code repository.
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$ python3 <ftint_path>/ftint_pySecDec.py \
’f[{0,1},{u2-u1*u2,2,u2},{-1,{2,2},{1,3}}]’

ftint will first convert the flow-time integral from the momentum rep-

resentation of Eq. (1) to the parameter form of Eq. (37), and then pass 
it on to pySecDec. In this particular case, sector decomposition and 
subsequent compilation take of the order of one and ten seconds on a 
regular modern desktop computer, respectively.6 By default, the output 
files are written to the directory ftint_out_<n>, created by ftint in 
the current working directory. Initially, the parameter <n> is set to 0; 
it is recursively increased by one if the directory ftint_out_<n> al-

ready exists. In the following, we will assume <n>=0, unless indicated 
otherwise.

The content of the output directory ftint_out_0 is

|-- integral_information.json
\-- secdec

\-- secdec_ft_integral_1
|-- secdec.out
|-- compilation.out
|-- ftint_data.json
\-- disteval

Listing 2: Contents of the output directory ftint_out_0.

The file integral_information.json collects the relevant param-

eters of the specific run, while the directory secdec contains one

secdec_ft_integral_<n> for each compiled flow-time integral (in 
this case the input consisted of only one integral). Inside there are log-

files secdec.out and compilation.out of the decomposition and 
compilation respectively, a data-file ftint_data.json with integral-

specific information, as well as the compiled integral library disteval.

The input <ft_integrals> in Listing 1 can also be one or sev-

eral strings containing several flow-time integrals, or even one or sev-

eral file names. ftint will extract the flow-time integrals given in 
the proper format and perform the decomposition and the compilation 
of the integration library for each integral (duplicates are removed).7

The output for all of them will be written to a single output directory

ftint_out_<n>, whose contents will look as in Listing 2, but with a 
separate library secdec_ft_integral_* for each integral of the in-

put. An example will be presented in Section 4.3.

ftint_pySecDec.py provides a number of options which can be 
displayed using the command

$ python3 <ftint_path>/ftint_pySecDec.py --help

These options are

--help: Print this list of options.

--list=STR_NUM_LIST: Specify a sublist of integrals to be eval-

uated. The format is either a comma-separated list of integers, or 
an interval of the form 3-10, for example.

--print_list: Print the list of integrals to be calculated and exit.

--exclude=EXCLUDE [EXCLUDE ...]: Do not evaluate the in-

tegrals in EXCLUDE, which is of the same format as <ft_inte-
grals> in Listing 1.

--normalform: Map the integrals to their normal form.

--normalform_only: Map the integrals to their normal form and 
stop.

6 This can change with suitable options for the compiler and for make, see 
below.

7 The regular expression searched for is f\[\{*.?\}\]. The user is advised 
to make sure that this cannot be confused with any other objects in the input. 

See also Appendix A.
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--normalform_list: Return the list of equivalent integrals and 
stop.

--normal_key=NORMAL_KEY: 0/-1: define first/last element of

normalform_list as normal form, see Section 4.4.

--count_only: Return the number of integrals to be calculated 
and stop.

--latex: Return the input diagrams in LATEX format and stop.

--epsorder=EPSORDER: Required order in 𝜖 = (4 −𝐷)∕2.

--input_format INPUT_FORMAT: Specification of input format, 
see Appendix A.

--outdir=OUT_DIR: Name of output directory.

--CXX_flags=CXX_FLAGS: C++ compiler flags, example:

--CXX_flags="-mavx2 -mfma".

--make_flags=MAKE_FLAGS: Makefile flags, example:

--make_flags=-j4.

--CUDA_flags=CUDA_FLAGS: CUDA flags to compile with GPU 
support, example: --CUDA_flags=-arch=sm_XX where sm_XX
should be replaced with the target NVidia GPU architecture.

--integrate: Automatically calls ftint_integrate.py after 
sector decomposition to perform the numerical integration (with 
default options).

--dimension=DIMENSION: The integer part 𝑁 of the space-time 
dimension 𝐷 =𝑁 − 2 𝜖.

--overwrite: Overwrite existing directory. Otherwise, appends

_<n> to existing output directory.

--append: Append new integrals from the input to the compiled 
integrals in the output directory. This flag can not be passed to-

gether with --overwrite.

--ibp_power_goal=IBP_POWER_GOAL: Before defining sub-

traction terms, pySecDec performs a number of integration by 
parts iterations to raise the order of the factorized poles to

IBP_POWER_GOAL.

4.2. Numerical integration

The integration part of the program is implemented in ftint_in-
tegrate.py. It is called from the command line as:

$ python3 <ftint_path>/ftint_integrate.py <integral_directory>
↪ [<options>]

Listing 3: Command for numerical integration.

where <integral_directory> is the name of the output directory 
created by ftint_pySecDec.py, i.e. ftint_out_<n> by default.

ftint will pass the integral to pySecDec for numerical integration. If 
not specified otherwise, the output files will be written to the directory

<integral_directory>/result_<m>, where by default <m> is set 
to “0”, but is recursively increased by one if the output directory exists. 
The numerical result of the integral is stored in the file mathf_out.m in 
the form of a Mathematica replacement rule. For example, the follow-

ing command would evaluate the integral in Eq. (41) with 𝑚2
2 = 2.5∕𝑡

and 𝑚2
3 = 3∕𝑡 with otherwise default settings:

$ python3 <ftint_path>/ftint_integrate.py ftint_out_0 --masses
↪ =0,2.5,3

Listing 4: Numerical evaluation of the integral in Eq. (41).

The numerical values for the squared masses have to be specified via the

--masses option in units of the inverse flow time 1∕𝑡.8 Upon comple-

8 Recall that Eq. (1) is dimensionless and thus only depends on 𝑚2
1𝑡, ⋯ , 𝑚2

𝑘
𝑡. 

It is instructive to note that, if we had specified the l.h.s. of Eq. (41) as

f[{0,1},{u2-u1*u2,2,u2},{-1,{2,3},{1,2}}], the command in List-
7

ing 4 would evaluate the r.h.s. of that equation with 𝑚2
3 = 2.5∕𝑡 and 𝑚2

2 = 3∕𝑡.
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tion, ftint has added a directory result_0 to ftint_out_0 which, 
aside from some other information on the integration run, contains the 
file mathf_out.m with the following content:

(*
produced by ftint, version 1.0, Fri May 24 13:50:34 2024

*)
{
(* integral 1 [ m2**2 = 2.5/t, m3**2 = 3/t ]: *)
f[{0,1},{u2-u1*u2,2,u2},{-1,{2,2},{1,3}}] -> (

+eps
↪ ^-2*(+0.0000000000000000*10^+00+0.0000000000000000*10^+00*
↪ I)

+eps
↪ ^-2*(+0.0000000000000000*10^+00+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps
↪ ^-1*(+1.1266529421611552*10^-02+0.0000000000000000*10^+00*
↪ I)

+eps
↪ ^-1*(+2.3027953579787037*10^-10+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps^0*(+1.7797179680747620*10^-04+0.0000000000000000*10^+00*
↪ I)

+eps^0*(+1.0762786605309655*10^-09+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps^1*(+6.8615123921316060*10^-03+0.0000000000000000*10^+00*
↪ I)

+eps^1*(+1.1513874186746525*10^-09+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps^2*(-5.5497372202654837*10^-03+0.0000000000000000*10^+00*
↪ I)

+eps^2*(+7.0664076906102803*10^-09+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps^3*(+5.2760242194534335*10^-03+0.0000000000000000*10^+00*
↪ I)

+eps^3*(+3.2253823531270829*10^-08+0.0000000000000000*10^+00*
↪ I)*plusminus

)
}

Listing 5: Output file of the numerical integration.

The integration uncertainties are marked by the variable plusminus. 
The mass values are specified only in the comment on line 5. This 
makes it easy to use the replacement rule in order to evaluate the same 
expression for different mass values. For example, if the result of the cal-

culation is stored in a Mathematica variable result which depends 
on the integral under consideration, one can obtain a numerical value 
for result as

replace = Get["ftint_out_0/result_0/mathf_out.m"]; result /.
↪ replace

Listing 6: Inserting the numerical value for the integral within Mathe-
matica.

One may now call ftint_integrate.py again with different mass 
parameters, and the result would be stored in ftint_out_0/re-
sult_1/mathf_out.m. One can then use again the code in Listing 6, 
simply replacing result_0 by result_1.

In addition to the Mathematica output file, ftint provides the 
result also as YAML9 and JSON10 files named sympyf_out.yml and

out.json. The ftint distribution includes the files read_yaml.py
and read_json.py as examples on how to read these files in Python.

To see an overview of the optional parameters related to the integra-

tion, together with their defaults, one can run

$ python3 ftint_integrate.py --help

The options are

9 https://yaml .org/.

10 https://www .json .org/.

https://yaml.org/
https://www.json.org/


1

2

3

4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1

2

3

4

R.V. Harlander, T. Nellopoulos, A. Olsson et al.

--help: Print this list of options.

--masses=MASSES: Values for masses of each propagator, pro-

vided as comma-separated list. The 𝑛th value of that list is inserted 
for the mass labeled 𝑛 in the input of ftint_pySecDec.py; see 
also Footnote 8.

--epsrel=EPSREL: Stop if this relative precision is reached.

--epsabs=EPSABS: Stop if this absolute precision is reached.

--delta=DELTA: Cut-off parameter for mass exponential, see Eq.

(40).

--output_format=OUTPUT_FORMAT: Specification of output 
format, see Appendix A.

--points=POINTS: Begin integration with this lattice size.11

--presamples=PRESAMPLES: Use this many points for presam-

pling.11

--shifts=LATTICE_SHIFTS: Use this many lattice shifts per in-

tegral.11

--lattice_candidates=LATTICE_CANDIDATES: Number of 
median lattice candidates.11

--outfile=OUTFILE: Name of the individual integration output 
files.

--timeout=TIMEOUT: The maximum number of seconds the inte-

grator will spend on each integral. If TIMEOUT is reached a result 
that may not meet the desired numerical accuracy will be returned.

In addition, the options --list, --print_list, --overwrite and

--outdir are available, with the same meaning as in ftint_py-
SecDec.py, see above.

4.3. Example: checking an integration-by-parts relation

As already pointed out above, like regular Feynman integrals in di-

mensional regularization, flow-time integrals obey certain IbP relations 
which can be derived by considering integrals over total derivatives 
w.r.t. the loop momenta or the flow-time variables; details can be found 
in Ref. [22]. Let us numerically check such an IbP relation in order to 
give an example on how ftint can be used in practice. We formulate 
the relation in terms of a Mathematica replacement rule which we 
assume is contained in a file12 ibp_rule.in, see Listing 7.

{f[{},{0,0,0,1,1,1},{-1,1,1,1,1,1}] ->
-f[{},{0,0,0,1,1,1},{0,1,1,1,1,0}]/2
-(f[{},{0,0,0,1,1,1},{1,0,1,1,0,0}])/(1-n/4)
-(f[{},{0,0,0,1,1,1},{1,1,0,0,0,0}])/(2*(1+(-7/12+n/12)*n))}

Listing 7: A three-loop IbP identity in Mathematica format.

Here, n = 4 − 2 𝜖. Since some of the integrals on the r.h.s. have a pref-

actor ∼ 1∕𝜖, we need to evaluate them through (𝜖) in order to check 
this relation through (𝜖0), while the other integrals are needed only 
through (𝜖0). In realistic cases, it is advisable to split the set of in-

tegrals according to the required power in 𝜖. For this simple example 
though, we evaluate all integrals to (𝜖).

This is done by first performing the sector decomposition:

$ python3 <ftint_path>/ftint_pySecDec.py ibp_rule.in --epsorder
↪ =1

This will first report that ftint finds four different flow-time integrals 
in the file. It will then perform the sector decomposition for the first dia-

gram and compile the corresponding integration library, before turning 
to the second diagram etc. After completion, ftint has created a direc-

tory named ftint_out_0 with the following structure:

11 These are QMC parameters, see e.g. Ref. [25] for a more detailed explana-

tion. The default settings are fine for most examples.
8

12 See examples/ibp_rule.in in the code repository.
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\-- ftint_out_0
|-- integral_information.json
\-- secdec

|-- secdec_ft_integral_1
|-- secdec_ft_integral_2
|-- secdec_ft_integral_3
\-- secdec_ft_integral_4

The directories secdec_ft_integral_* contain the integration li-
braries for each of the four integrals, as well as other information re-

quired by ftint for the numerical integration. The latter is performed 
through the command

$ python3 <ftint_path>/ftint_integrate.py ftint_out_0

This again first reports that four integrals will be evaluated. The cor-

responding numerical results will be printed to the screen. After com-

pletion, ftint will have created a subdirectory named results_0

in ftint_out_0, which, among other information, contains the file

mathf_out.m, whose contents are shown in Listing 8.

(*
produced by ftint, version 1.0, Fri May 24 09:21:05 2024

*)
{
(* integral 1 : *)
f[{},{0,0,0,1,1,1},{-1,1,1,1,1,1}] -> (

+eps
↪ ^-1*(+1.4384102482242656*10^-01+0.0000000000000000*10^+00*
↪ I)

+eps
↪ ^-1*(+7.5901486511209429*10^-09+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps^0*(+9.1030039859574119*10^-01+0.0000000000000000*10^+00*
↪ I)

+eps^0*(+7.7645751796859680*10^-06+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps^1*(+3.6458111371273918*10^+00+0.0000000000000000*10^+00*
↪ I)

+eps^1*(+4.2456809764811359*10^-05+0.0000000000000000*10^+00*
↪ I)*plusminus

),
(* integral 2 : *)
f[{},{0,0,0,1,1,1},{0,1,1,1,1,0}] -> (

+eps
↪ ^-1*(+2.8768207244049038*10^-01+0.0000000000000000*10^+00*
↪ I)

+eps
↪ ^-1*(+1.2597382329360634*10^-11+0.0000000000000000*10^+00*
↪ I)*plusminus

+eps^0*(+1.4717502294126590*10^+00+0.0000000000000000*10^+00*
↪ I)

.

.

.

Listing 8: Result for the integrals of Listing 7. Only the first few lines are 
shown.

One can now check the IbP relation within Mathematica using the 
following code13:

rule = Get["ibp_rule.in"][[1]];
replace = Get["ftint_out_0/result_0/mathf_out.m"];
check = Normal[Series[(rule[[1]]-rule[[2]]) /. n -> 4-2*eps /.

↪ replace,
{eps,0,0}]];

The result is
13 See examples/check_ibp_rule.m in the code repository.
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-15 -15
-3.66374 10 + 4.85345 10 plusminus

Out[19]= ---------------------------------------- +
2

eps

-9
7.64685 10 (-1.48995 + 1. plusminus)

> -------------------------------------- +
eps

-6
> 7.90387 10 (2.47724 + 1. plusminus)

meaning that the l.h.s. and the r.h.s. of the relation agree within the 
default numerical precision. It is now easy to increase this precision by 
running

$ python3 <ftint_path>/ftint_integrate.py ftint_out_0 \
--epsrel=1e-8 --epsabs=1e-8

4.4. Mapping to the normal form

If one needs to compute a large list of integrals, it may be ad-

vantageous to map them to their normal form before integration, 
see Section 3.3. This can be done by calling ftint_pySecDec.py
with the option --normalform. ftint will then produce the file

ftint_out_<n>/normalmap.m which contains the mapping of each 
integral to its normal form (unless it already is in the normal form) in
Mathematica format. ftint will then proceed with the calculation 
only for the normal-form integrals.

For example, if the file14 normal_form.in contains the following 
list of flow-time integrals

f[{},{2,1,0},{2,2,1}]
f[{1},{2*u1,u1,u1},{2,1,3}]
f[{2,1},{u1*u2,2,u1},{3,2,1}]
f[{1,2},{u1*u2,u2,2},{3,1,2}]

Listing 9: List of flow-time integrals to be brought to normal form.

then the call

$ python3 <ftint_path>/ftint_pySecDec.py integrals.m --
↪ normalform

will produce the file ftint_out_0/normal_form.in with the fol-

lowing content:

{f[{},{2,1,0},{2,2,1}] -> f[{},{2,1,0},{{2,0},{2,0},{1,0}}],
f[{1},{2*u1,u1,u1},{2,1,3}] -> f[{1},{2*u1,u1,u1

↪ },{{2,0},{3,0},{1,0}}],
f[{2,1},{u1*u2,2,u1},{3,2,1}] -> f[{2,1},{u1*u2,u1

↪ ,2},{{3,0},{1,0},{2,0}}],
f[{1,2},{u1*u2,u2,2},{3,1,2}] -> f[{2,1},{u1*u2,u1

↪ ,2},{{3,0},{1,0},{2,0}}]}

The first thing to notice is that ftint does not use the abbreviated nota-

tion for massless propagators, simply to ensure a unique output format. 
Furthermore, aside from this notational aspect, the integral in line 1 of 
Listing 9 is already in normal form. The integrals in line 3 and line 4 are 
mapped to the same normal form. Thus, ftintwill do the sector decom-

position only for the three different normal-form integrals. As usual, it 
will write the integration libraries to ftint_out_0, compile them, and 
the user can evaluate them numerically using ftint_integrate.py.
9

14 See examples/normal_form.in in the code repository.
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If the user is only interested in the normal-form mappings, one may 
use the --normalform_only option instead. In this case, ftint will 
write the file ftint_out_0/normalform.m and stop.

For integrals with non-vanishing masses, the procedure works in the 
very same way. The only subtlety here is that the order of the masses 
may change. Consider, for example, the integral

f[{1,2},{3*u1,2,u1*u2},{{1,1},{4,2},{2,3}}]=

= ∫
𝑝,𝑘

∫
𝑢1,2

𝑢1𝑢
2
2

𝑒−𝑡[3𝑢1𝑝
2+2𝑘2+𝑢1𝑢2(𝑝+𝑘)2]

(𝑝2 +𝑚2
1)(𝑘

2 +𝑚2
2)

4((𝑝+ 𝑘)2 +𝑚2
3)

2
.

(42)

Mapping it to normal form will result in

f[{1,2},{u1*u2,3*u1,2},{{2,3},{1,1},{4,2}}]=

= ∫
𝑝,𝑘

∫
𝑢1,2

𝑢1𝑢
2
2

𝑒−𝑡[𝑢1𝑢2𝑝
2+3𝑢1𝑘2+2(𝑝+𝑘)2]

(𝑝2 +𝑚2
3)

2(𝑘2 +𝑚2
1)((𝑝+ 𝑘)2 +𝑚2

2)
4
.

(43)

In order to numerically evaluate these integrals with ftint_inte-

grate.py, one must use the same order of arguments 𝑚1, 𝑚2, 𝑚3 in 
the --masses option. This means that the command for the integra-

tion is independent of whether one evaluates the original integral or its 
normal form (aside from the fact that their integration libraries may be 
located in different directories).

As described in Section 3.3, if the option --normalform is given,

ftint generates a list of equivalent integrals and continues the calcula-

tion with the first element of this list. The user may alter this behavior by 
adding the option --normal_key=-1, in which case ftint will con-

tinue with the last element of the sorted list. The full (sorted) list can 
be viewed by calling ftint with the option --normalform_list. We 
have not observed any significant differences in computing times among 
these integrals.

4.5. Checks

4.5.1. Analytic solutions, symmetries, and simple identities

There are a number of rather straightforward checks that we have 
used to validate ftint:

• Some simple integrals can be solved analytically, see, e.g., Eqs. (19)

and (24). We have compared a number of them to the numerical 
result from ftint and found agreement.

• An integral and its normal form, see Section 3.3, must lead to the 
same numerical result, of course. We have confirmed this symmetry 
with ftint, which both checks the numerical evaluation of the 
integral, as well as the algorithm and implementation for mapping 
the integrals to their normal form.

• Certain multi-loop integrals can be written as products of integrals 
at lower loop order. For example, it is easy to see that

𝑓 ({},{1,0,1},{−1,0,0}) = 𝑓 ({},{1},{−1}) ⋅ 𝑓 ({},{1},{0}) (44)

All such checks were passed by ftint.

4.5.2. Flow-time derivatives

In a dimensionally regularized integral, one can interchange inte-

gration and differentiation without changing the result. In the massless 
case, one may derive non-trivial relations from this that can be easily 
checked. For example, since the integral as defined in Eq. (1) is dimen-

sionless, in the massless case it follows that

0 = 𝑡
𝜕

𝜕𝑡
𝑓 (𝐜,𝐚,𝐛) =

(
𝑙𝐷

2
− 𝑏

)
𝑓 (𝐜,𝐚,𝐛)

− (4𝜋𝑡)𝑙𝐷∕2 𝑡−𝑏+1 d𝐮𝐮𝐜
𝑘∑
𝑎𝑗 𝑃 2

𝑗

exp[−𝑡
∑𝑘

𝑖=1 𝑎𝑖𝑃
2
𝑖
]

2 𝑏 2 𝑏
.

(45)
∫
[0,1]𝑓

𝑗=1
∫
𝐩

(𝑃1 ) 1 ⋯ (𝑃
𝑘
) 𝑘
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Canceling the power of 𝑃 2
𝑗

and inserting the explicit polynomials 𝑎𝑗 of 
the flow-time variables turns the r.h.s. into the sum of regular flow-time 
integrals of the form Eq. (1) with varied parameters. As an example, 
consider again a two-loop case:

(−6 + 2 𝜖)𝑓 ({},{1,1,0},{0,−2,0}) =

= −𝑓 ({},{1,1,0},{−1,−2,0}) − 𝑓 ({},{1,1,0},{0,−3,0}) .
(46)

This relation can be checked in close analogy to the example discussed 
in Section 4.3.

4.5.3. Integration-by-parts identities

In Section 4.3, we used the check of a two-loop IbP relation in order 
to demonstrate the operation of ftint. In fact, we have used hundreds 
of such relations at three-loop level, derived in the context of calcula-

tions performed in Ref. [16], for example, in order to check ftint.

5. Conclusions and outlook

With more and more potential applications of the perturbative ap-

proach to the GFF identified, the demand for suitable software tools is 
increasing. In this paper, we described the application of the sector-

decomposition algorithm to flow-time integrals up to the three-loop 
level in the form of a Python program named ftint. It transforms 
a flow-time integral without external momenta to a multidimensional 
parameter integral over a unit hypercube, which is then passed to the 
public library pySecDec for sector decomposition and numerical inte-

gration.

We have performed a number of checks on the program and made 
an effort towards user-friendliness and flexibility. Future releases of the 
program will support partial fractioning for propagators with identical 
momenta but different masses, as well as non-vanishing external mo-

menta. Furthermore, we plan to make use of pySecDec’s main strengths 
of evaluating complete amplitudes rather than individual integrals.
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Appendix A. In- and output format

By default, ftint assumes the format defined in Eq. (1), as exem-

plified by Eq. (41), for the flow-time integrals, both in the input and the 
output. ftint provides a basic way to convert between other formats 
and the ftint-format by editing the file user_format.py. This de-

fines three functions. For the sake of clarity, let us assume that the user 
would like to perform a mapping

f[{a},{b},{c}] <-> g([a],[b],[c])

The purpose of the three functions in user_format.py is given as 
follows.

• user_patterns allows the user to specify the pattern which de-

fines a gradient-flow integral. In the example above, the function 
could be defined as

def user_patterns(input_format):
if input_format==2:

out = [r"g\(\[.*?\]\)"]
else:

out = [r"f\[\{.*?\}\]"]
return(out)

• from_user defines how to translate the user’s format to the ftint
format. In this case, one could define

def from_user(input_format,string):
if input_format==2:

out = re.sub(r’g\(\[(.*?)\],\[(.+?)\],\[(.+?)\]\)’,r’f
↪ [{\1},{\2},{\3}]’,string)

else:
out = string

return(out)

• to_user defines how to translate the ftint format to the user’s 
format. For the current example, this could be achieved through

def to_user(output_format,string):
if output_format==2:

out = re.sub(r’f\[\{(.*?)\},\{(.+?)\},\{(.+?)\}\]’,r’g
↪ ([\1],[\2],[\3])’,string)

else:
out = string

return(out)

The user can now switch to the new input format by providing the op-

tion --input_format=2 to ftint_pySecDec.py. The new output 
format is obtained by providing the option --output_format=2 to

ftint_integrate.py. Without these options, the default format will 
be adopted. Let us stress that this is a very rudimentary implementa-

tion. The user is advised to use it with care. It may be safer to convert 
all input to the default ftint notation before using ftint.
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