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1 Introduction

Among the most compelling solutions to the strong CP problem is the Peccei-Quinn (PQ)
mechanism [1, 2] that predicts the existence of a new light pseudoscalar particle called the
QCD axion [3, 4], which is also an excellent candidate for cold dark matter (DM). Most of
the parameter space in which the axion can explain the observed DM abundance has not
been probed experimentally, but several experiments targeting the most interesting axion
region are in preparation, see ref. [5] for a review.

To successfully account for cold dark matter, QCD axions have to be produced non-
thermally in the early universe [6–8]. However, QCD axions could also be thermally produced
via their interactions with the Standard Model (SM) bath, and contribute to the energy density
of relativistic degrees of freedom, usually parametrized as the effective number of neutrinos
Neff . This axion contribution, dubbed in the following ∆Neff, is constrained by observations
of the cosmic microwave background (CMB) and low-redshift baryon acoustic oscillations
(BAO) data. The most recent (2018) analysis from the Planck collaboration provides the
combined constraint ∆Neff ≤ 0.3 at the 95% confidence level (CL) [9]. In the near future this
bound may be further improved by a factor of few with the help of the Simons Observatory,
down to about 0.1 [10], and eventually by the CMB-S4 experiments down to about 0.05 [11].

The axion couples to the SM particles with strength inversely proportional to the axion
decay constant fa. For sufficiently small fa, the axion is in thermal equilibrium with the
SM bath for some range of temperatures. As the temperature drops, axion interactions
become suppressed, and eventually freeze out at a temperature Td. Smaller fa leads to
later axion decoupling from the SM bath and hence larger ∆Neff, since ∆Neff ∝ g∗s(Td)−4/3

(assuming instantaneous decoupling), where g∗s(Td) is the effective number of SM entropy
degrees of freedom at Td. On the other hand, for sufficiently large fa, the axion is never
in thermal equilibrium and only produced via its interactions with the SM bath through
thermal freeze-in [12]. In this case the late-time abundance is proportional to the production
rates scaling as ∝ 1/f2

a , so that ∆Neff ∝ f
−8/3
a .

Using the current constraint1 on ∆Neff, it is therefore possible to set a lower bound on fa,
which can be further improved in the near future. The lower bound on fa obtained from ∆Neff
depends on the nature of the axion interactions, and thus is model-dependent. For example, in
the KSVZ model [14, 15] the current bound is fa ≳ 2×107 GeV and is expected to be improved
up to fa ≳ 6× 107 GeV with CMB-S4 data [16] (see also refs. [17, 18]). However, smaller fa

also leads to more efficient axion emission in various stellar environments, and the resulting
bounds are typically much stronger than those from ∆Neff. In the KSVZ model, the cooling
rate of neutron stars (NS) [19] and the duration of the neutrino burst from SN1987A [20] lead,
independently, to a lower bound on fa of about 4× 108 GeV. For such large fa, the KSVZ
model predicts ∆Neff ≲ 0.03 so it is difficult to probe the KSVZ axion with cosmological
data in the foreseeable future. The same conclusion is valid for simple DFSZ models [21, 22],
which have been studied in the context of thermal axion production in e.g. refs. [17, 23–27].

1For sufficiently small fa the axion is no longer ultra-relativistic at the time of recombination, and its
contribution to the total energy density is constrained rather by limits on warm/hot DM, although one can
still formulate this bound in terms of ∆Neff [13].

– 2 –



J
H
E
P
0
9
(
2
0
2
4
)
1
3
6

For this reason future experimental probes of ∆Neff are only sensitive to QCD axion
models in which either astrophysical bounds are absent for some reason or the relevant axion
couplings are suppressed.2 For example, in order to relax the constraints on fa from NS
cooling and SN1987A, it is necessary to suppress simultaneously the axion couplings to
protons and neutrons. This may be possible if the axion couples to up- and down-quarks in
such a way that the model-independent contribution to axion-nucleon couplings from the
QCD anomaly is cancelled to good approximation. Also axion couplings to electrons need to
be suppressed, in order to avoid stringent constraints from white dwarfs [28]. Such models,
dubbed “astrophobic” axion models, have been discussed in refs. [29–35]. The goal of the
present paper is to systematically compute ∆Neff in these kind of models, which allow to
satisfy astrophysical constraints with rather low fa, and assess their prospects for discovery
through ∆Neff by the Simons Observatory [10] and CMB-S4 [11], laboratory searches such
as IAXO [36], and the James Webb Space Telescope (JWST) [37].

In common QCD axion benchmark models the dominant contribution to ∆Neff comes from
axion scatterings with pions (ππ ↔ πa) [38]. However, this production mode is necessarily
suppressed in astrophobic axion models, because the suppression of axion-nucleon couplings
also leads to the suppression of axion-pion couplings. We will show, in a model-independent
way, that other contributions to ∆Neff can still be sizeable, even after taking into account
all astrophysical constraints. We will first discuss the original astrophobic models [29],
which are two-Higgs-doublet models (2HDM) that generalize common DFSZ scenarios. By
allowing for flavor non-universal PQ charges, axion couplings to nucleons and electrons can be
suppressed, so that in these scenarios axions are mainly produced from lepton flavor-violating
(LFV) decays τ → ea, which are unavoidable in this class of models in order to suppress
the axion-electron coupling. This leads to a sharp prediction for ∆Neff that only depends
on fa, which is however limited by astrophysical constraints on the axion-photon coupling
and axion-muon coupling.

For this reason we consider “proper” astrophobic models, in which not only axion
couplings to nucleons and electrons, but also to muons and/or photons are suppressed.
Examples of such models have been recently proposed in ref. [34], in which the coupling of
the axion with SM particles are controlled by the PQ charges of SM fermions and astrophobia
is naturally obtained without any tuning. See ref. [39] for earlier attempts. We also construct
new “proper” astrophobic models and show that the required suppression of couplings can be
realized in generalized DFSZ models with three Higgs doublets (3HDMs), and systematically
classify such models, which not only allow for axion decay constants fa < 107 GeV compatible
with all constraints, but also to suppress the axion-electron coupling without tuning (in
contrast to 2HDMs).

The rest of the article is organized as follows. In section 2 we discuss the general
QCD axion effective Lagrangian and summarise laboratory and astrophysical constraints
on the axion decay constant. In section 3 we analyse dominant channels for thermal axion
production in a model independent way. In section 4 we compute the thermal axion abundance

2Note however that the calculation of the thermal axion abundance in minimal axion models is subject to
large QCD uncertainties at finite temperature. If these non-perturbative effects turn out to be large, future
CMB probes may well be competitive to astrophysical limits, see ref. [16] for a recent discussion on this issue.
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in astrophobic 2HDMs, while in section 5 we present a similar analysis for 3HDMs. In section 6
we discuss cosmological constraints on the naturally astrophobic axion. We conclude our
work in section 7, which is followed by several appendices, in which we present the details
of the computations of axion couplings to pions and kaons in Chiral Perturbation Theory
(appendix A), thermal axion production rates (appendix B), approximate solutions to the
Boltzmann equation (appendix C) and the explicit construction of astrophobic models
(appendix D).

2 QCD axion couplings

In this section we define the general effective Lagrangian and review the laboratory and
astrophysical constraints on axion couplings relevant for our analysis.

2.1 Axion effective Lagrangian

At energies much below the PQ breaking scale, the effective axion couplings to gauge fields
and fermions are given by

L = a

fa

αs

8π
GG̃ + E

N

a

fa

αem
8π

FF̃ + ∂µa

2fa
f iγ

µ
(
CV

ij + CA
ij γ5

)
fj , (2.1)

where fa is the axion decay constant, FF̃ ≡ 1/2 ϵµνρσF µνF ρσ with the electromagnetic
(EM) field strengths F µν and similar for gluons, E/N is the ratio of EM and color anomaly
coefficients and we use the convention ϵ0123 = −1. For later convenience we define Cij =√
|CA

ij |2 + |CV
ij |2 for the flavor-violating couplings, as thermal axion production typically does

not depend on the chiral structure of axion couplings.
The first term in eq. (2.1) gives rise to the axion mass, which can be conveniently

calculated in chiral perturbation theory, giving [40]

ma = 0.5691(51) eV
(
107 GeV

fa

)
. (2.2)

Below the scale of the QCD phase transition the relevant couplings are those to photons,
nucleons, leptons and pions,

L = Cγ
a

fa

αem
8π

FF̃ + ∂µa

2fa
CN Nγµγ5N + ∂µa

2fa
ℓiγ

µ
(
CV

ij + CA
ij γ5

)
ℓj +

∂µa

fafπ
Cπ∂[πππ]µ , (2.3)

where N = n, p and ∂[πππ]µ = 2∂µπ0π+π− − π0∂µπ+π− − π0π+∂µπ−. Matching to the UV
coefficients in the Lagrangian of eq. (2.1) gives [34]

Cp + Cn = 0.40(4)
(
0.95 (Cu + Cd) + 0.05− 1 + z

1 + z + w

)
− 2δ , (2.4)

Cp − Cn = 1.273(2)
(

Cu − Cd −
1− z

1 + z + w

)
, (2.5)

Cπ = −1
3

(
Cu − Cd −

1− z

1 + z + w

)
, (2.6)

Cγ = 2πfagaγγ = E/N − 2.07(4) , (2.7)
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where Cq ≡ CA
qq(µ = fa), z = mu/md = 0.48(2), w = mu/ms = 0.023(1), and δ ≈∑

i=s,c,b,t δiCi. The coefficients δi for i = s, c, b are O(10−2), arising from QCD renormalization
group (RG) effects, and their exact values can be found in ref. [34]. On the other hand,
δt ∼ O(0.1) is much larger due to RG effects induced by the large top Yukawa coupling [41–44],
and its exact value is sensitive to fa and the details of the UV model. We also note that
Cπ ∝ (Cn − Cp), so that pion couplings are suppressed whenever couplings to nucleons are
suppressed. In the above result for Cγ we quote the value 2.07(4) obtained in ref. [34] using
the results from ref. [45], which include the effects of the strange quark within three-flavor
ChPT at NLO. This value is different from the usually quoted value 1.92(4) from ref. [46].
Nevertheless, this difference does not have important impact on our results.

2.2 Constraints on axion couplings

There are several constraints on axion couplings from astrophysics and laboratory searches.
In the following we collect the limits on axion couplings to nucleons, pions, electrons, muons,
photons and LFV couplings, which are most relevant for our analysis.

2.2.1 Nucleon couplings

Since the axion-gluon coupling is crucial in solving the strong CP problem with the PQ
mechanism, axion-nucleon couplings are generically present and mainly constrained by
astrophysical observations, prominently the duration of the neutrino burst observed in
SN1987A and the cooling rate of neutron stars. The constraints obtained from SN1987A [20]
and neutron stars [19] are roughly comparable, but for concreteness we only use the SN1987A
bound from ref. [20], which provides a formula for the general case when the axion couples
differently to neutrons and protons:

0.61g2
ap + g2

an + 0.53gangap < 8.26× 10−19 , (2.8)

where gai ≡ Cimi/fa with i = n, p. For Cn = 0 this leads to the lower bound

fa

|Cp|
≳ 8× 108 GeV , (2.9)

while varying Cn in the range |Cn| ≤ |Cp| can strengthen the above bound by at most a factor
of 2. In the KSVZ model, Cp ≈ −0.47, which implies fa ≳ 4 × 108 GeV. As we will see in
the next section, large values of ∆Neff typically require much smaller values of fa, and thus
suppressed nucleon couplings |Cp|, |Cn| ≲ O(10−2). Indeed axion-nucleon couplings can be
suppressed if there is an approximate cancellation between the axion-gluon and axion-quark
contributions [29]. This happens if Cu ≈ 2/3 and Cd ≈ 1/3, as can be seen from eqs. (2.4)
and (2.5). We refer to axions satisfying these criteria as “nucleophobic” axions. Due to higher
order corrections to the axion-nucleon couplings, the values of fa satisfying the bounds from
SN1987A and neutron stars cannot be arbitrary low, but values as small as 107 GeV (or even
106 GeV if z is very close to 0.49) may be allowed [34].

2.2.2 Pion couplings

Suppressed couplings to nucleons imply suppressed pion couplings. The maximal pion coupling
consistent with the constraints on the nucleon couplings is obtained for Cp ≈ −Cn. Using

– 5 –



J
H
E
P
0
9
(
2
0
2
4
)
1
3
6

eqs. (2.5) and (2.6) one can relate pion couplings to nucleon couplings

Cπ ≈ −1
4(Cp − Cn) ≈

1
2Cn . (2.10)

Using the bound on the neutron coupling (2.9) one can derive an upper bound on the pion
coupling to the astrophobic axion:

Cπ ≲ 0.5 fa

109 GeV . (2.11)

As we will see below, for an axion-pion coupling satisfying the above constraint, ∆Neff from
axion-pion scattering is below 0.01, and thus negligible given near future sensitivities.

2.2.3 Electron coupling

The axion-electron coupling is constrained by the observed shape of the white dwarf luminosity
function, giving the 95% CL lower bound [28]

fa

|Ce|
≳ 2× 109 GeV . (2.12)

This implies that the axion-electron coupling must also be suppressed, at least to the level
O(10−2) in order to allow for sizeable contributions to ∆Neff.

2.2.4 Muon coupling

Also the axion-muon coupling is constrained by the energy-loss argument for SN1987A [47–
49], which lead to the conservative lower bound [49]

fa

|Cµ|
≳ 1.2× 107 GeV . (2.13)

For O(1) couplings the limit on fa from the axion-muon coupling is much weaker than the
bounds on nucleon and electron couplings. However, in nucleophobic and electrophobic axion
models, this becomes a relevant constraint and limits the maximal contribution to ∆Neff
from axion scatterings with muons.

2.2.5 Photon coupling

Observations of the evolution of horizontal branch stars in globular clusters constrain the
axion-photon coupling as [50]

fa

|Cγ |
> 1.8× 107 GeV . (2.14)

In order to satisfy the above bound, fa should be above O(107)GeV, unless the axion-photon
coupling is suppressed. This is indeed the case for E/N = 2, as noted already in ref. [51],
and fa down to O(106)GeV is allowed. Note also that within theoretical uncertainties even
Cγ = 0 is possible for E/N = 2.

– 6 –
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2.2.6 Flavor-violating couplings

Flavor-violating axion couplings are constrained by high-intensity laboratory experiments
looking for missing energy in rare decays. The strongest constraint is set by the experiments
searching for µ → ea decays at TRIUMF [52] or TWIST [53], depending on the chirality
structure of the axion couplings. For purely left-handed or right-handed couplings the upper
bounds at 95% CL read [54]

fa

|Cµe|
≥ 5.0× 108 GeV , for CV

µe = −CA
µe , (2.15)

fa

|Cµe|
≥ 2.5× 109 GeV , for CV

µe = CA
µe . (2.16)

For values of fa where ∆Neff can be non-negligible, the above limits imply |Cµe| ≪ 1.
Constraints from flavor-violating τ -decays are much weaker. The strongest constraints

have been recently provided by the Belle-II [55] collabaration, which result in the following
lower bounds at 95% CL

fa

|Cτe|
≳ 3.6× 106 GeV , (2.17)

fa

|Cτµ|
≳ 4.6× 106 GeV . (2.18)

Rescaling the current expected bounds provided in ref. [55] for 62.8 fb−1, Belle-II with 50
ab−1 can be expected to probe flavor-violating τ -couplings down to

fa

|Cτe|
≳ 1.6× 107 GeV , (2.19)

fa

|Cτµ|
≳ 1.7× 107 GeV . (2.20)

3 Model-independent analysis of ∆Neff

We first perform the calculation of ∆Neff in nucleophobic axion models in a model independent
way, allowing all lepton-axion couplings that are consistent with experimental and astrophys-
ical constraints.3 This will allow us to understand which couplings are the most relevant for
thermal axion production in astrophobic models. We do not study the impact of axion-quark
couplings on ∆Neff in this section, as they cannot be reliably computed due to non-perturbative
effects, but will discuss their potential impact in the following sections for specific models.

A crucial feature of nucleophobic models is that the axion-pion coupling is tiny, since
it is proportional to Cp − Cn, which in turn must be strongly suppressed to avoid axion
couplings to nucleons. In contrast to common axion benchmark models, where ππ → πa

scattering is the dominant source of axion thermalization, nucleophobia implies that other
processes for axion production become relevant. In figure 1 we show the predicted value
of ∆Neff as a function of fa/Ci, assuming the presence of a single axion coupling Ci at a

3Model-independent analyses of thermal axion production in various channels without taking into account
astrophysical constraints were presented in refs. [56–58].

– 7 –
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time. Details of the calculation are outlined in appendices B and C.4 We restrict to leptonic
couplings Cτ , Cµ, Ce, Cµe, Cτe (Cτµ gives predictions essentially identical to Cτe), and also
include Cπ for comparison. The constraints on fa/Ci discussed in section 2 are taken into
account by dashing the predicted curve ∆Neff for values of fa/Ci below the respective limit,
while drawing it solid where the bound is respected.

Even for O(1) axion couplings sizeable ∆Neff requires values of fa corresponding to
axion masses close to the recombination temperature, so that axions cannot be treated
as ultra-relativistic around recombination, and the Planck constraints on ∆Neff [9] cannot
be used to reliably constrain axions with small fa. We instead use the constraints on the
(ma,∆Neff) plane from figure 1 in ref. [13], where the CMB and BAO constraints have been
obtained for general axion masses. We converted these limits to the (fa/Ci,∆Neff) plane
using the QCD axion mass relation and fixing Ci. We show in red the region excluded for
Ci = 1, and show the contours of the excluded regions for Ci = 1/3 and Ci = 1/10. While the
bounds on the axion couplings are essentially independent of Ci for large fa, they drastically
strengthen for fa < O(107)GeV, corresponding to ma > O(0.6) eV, where the axion can no
longer be treated as ultra-relativistic around recombination. Such axions affect the CMB
in a different way than extra relativistic degrees of freedom and behave as hot (warm) dark
matter for ma between about 0.1 and 1 eV (1 and 30 eV) [13]. Note that for sufficiently
heavy axions (ma ≳ 0.1 eV) ∆Neff no longer denotes extra relativistic degrees of freedom,
but remains a useful parametrization of the total energy density of thermally produced
axions. We should warn the reader that the bound on ∆Neff we use is only approximate,
because the number of sampled axion masses in ref. [13] is rather low and we have to rely
on interpolation in the particularly relevant range of axion masses between 0.1 and 1 eV.
Nevertheless, this is still an improvement with respect to the previous literature on CMB
constraints on thermally produced axions, where the axion was assumed to be massless (with
the notable exception of refs. [16, 18], which however analysed only the KSVZ model). Similar
issues will be relevant also for the expected limits from the Simons Observatory and CMB-S4.
However, in order to show the sensitivity of future experiments in figure 1, we conservatively
assume forecasted sensitivities to ∆Neff for massless axions ∆NSimons

eff (2σ) = 0.1 [10] and
∆NCMB-S4

eff (2σ) = 0.054 [11].
It is clear from figure 1 that for generic (flavor-universal) models, where all axion

couplings are of similar size, ππ → πa scattering gives by far the largest contribution to
∆Neff. In hadronic axion models, such as KSVZ with Cπ ≈ 0.1, this results in the so-
called hot dark matter bound fa ≳ 2 × 107 GeV, which is expected to be improved up to
fa ≳ 6×107 GeV by CMB-S4 experiments [16]. However, the astrophysical constraints require
fa/Cπ ≳ 2 × 109 GeV (the entire Cπ curve is dashed), which implies that for values of fa

consistent with these constraints ∆Neff is much below 0.01. Therefore axion interactions
with leptons often lead to larger ∆Neff than production from pion scattering, after taking
into account the astrophysical constraints on fa.

4For freeze-in production, where the axion does not reach thermal equilibrium, our computation underesti-
mates ∆Neff. The underestimation is most significant for muon scattering, where it is off by at most a factor 2
in the phenomenologically relevant parameter range. The sensitivity of future CMB observations on fa is
largely unaffected by this, due to the strong dependence of ∆Neff on fa for the freeze-in case. See appendix C
for details.
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BAO+CMB

CMB S4

Simons Obs.

Cτe

Cτ

Ce

Cμ
CμeCπ

Figure 1. Additional effective number of neutrinos ∆Neff as a function of fa/Ci, for i = π, τ, µ, e, µe, τe

(Cτµ gives predictions essentially identical to Cτe). The red region is excluded by BAO+CMB assuming
Ci = 1, while dotted curves show the bound for the representative values Ci = 1/3 and Ci = 1/10.
These limits have been obtained from figure 1 in ref. [13], and include the effects of non-vanishing
axion masses. Dashed (solid) lines indicate ranges of excluded (viable) values of fa/Ci for a given
type of coupling, as discussed in section 2.2.

We first consider the case in which flavor-violating axion couplings are absent. Axion
scatterings with electrons give non-negligible contribution to ∆Neff only for fa/Ce below
few×106 GeV (because the scattering cross-section is suppressed by the small electron mass, cf.
appendix B), but such small values of fa/Ce are already excluded by astrophysical constraints.
The contribution to ∆Neff from axion-muon scatterings is less limited by astrophysics, but
after taking into account the bound from SN1987A, ∆Neff from axion production off muons
is at most about 0.1, which is at the verge of the future sensitivity of the Simons Observatory.
Axion-tau couplings instead are not constrained by astrophysics, but axion production off
taus leads to ∆Neff > 0.05 only for fa/Cτ ≲ 107 GeV. Note that for large fa the curves indeed
follow the expected scaling ∆Neff ∝ (mℓ/f2

a )−4/3, cf. appendix C.3, in particular roughly the
same ∆Neff ≈ 0.01 is obtained for constant values of mℓ/f2

a for all three leptons.
Turning to lepton flavor-violating axion couplings, it is instead possible to produce sizable

values of ∆Neff even for large fa/Ci, as can be seen from figure 1. If all LFV couplings are
of similar size, the largest contribution comes from µ → ea axion production controlled by
Cµe, but the strong laboratory constraints on these decays limit the resulting contribution
to ∆Neff to negligible values. Instead LFV decays τ → ℓa with ℓ = µ, e that are controlled
by Cτℓ are much less constrained by experiments and can give sizable contributions to
∆Neff. If such couplings are present, CMB-S4 will be sensitive to values of fa/Cτℓ as large
as 2 × 108 GeV, which is an order magnitude stronger than the forecasted sensitivity of

– 9 –
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Belle-II, cf. eq. (2.19). The current lower bound on fa from ∆Neff is about 8 × 106 GeV
for Cτℓ = 1, but it is very sensitive to the actual value of Cτℓ, as in this regime the axion
ceases to be a relativistic particle at recombination. Accordingly the bound on ∆Neff gets
stronger for fa < O(107)GeV, and values of fa much below 107 GeV are excluded, even for
Cτl significantly below unity. Also axion production from decays roughly follow the expected
scaling for large fa, ∆Neff ∝ (mℓ/f2

a )−4/3, cf. appendix C.3.
To summarize, figure 1 demonstrates that sizable contributions to ∆Neff from axion

production in the reach of near-future experiments are possible in models where i) flavor-
violating axion-tau couplings are sizable and ii) axion couplings to nucleons and electrons,
as well as all other flavor-violating axion couplings, are sufficiently suppressed in order to
allow for fa ≲ 108 GeV. The above requirements can be fulfilled in the “astrophobic” models
proposed in ref. [29], which we analyze in the next sections.

4 ∆Neff in astrophobic 2HDMs

We now discuss explicit models that realize astrophobic axions, i.e., axions with suppressed
nucleon and electron couplings. In the previous section we have shown that a significant
contribution to ∆Neff can arise from sizable LFV axion couplings that are not in conflict
with astrophysical and rare-decay constraints. Interestingly, astrophobic axions obtained
in DFSZ-like models with two Higgs doublets necessarily imply PQ charges that are flavor
non-universal [29]. In the following we discuss the structure of these models and calculate
the resulting axion contribution to ∆Neff.

There are four different models with two Higgs doublets (2HDM) that feature potentially
nucleophobic QCD axions [29, 32]. The definition and the details of these scenarios, dubbed
Q1-Q4, are given in appendix D and summarized in table 5. These models depend on the choice
of a single vacuum angle tβ ≡ tanβ (bounded by perturbativity), and the unitary rotations
describing the transition between interaction and mass basis. They can be conveniently
parametrized introducing

ξfP
ij ≡ (VfP )∗3i(VfP )3j , (4.1)

with f = u, d, e, P = L, R, which depend on the unitary rotations (VfP )ij that diagonalize
quark and charged lepton mass matrices. These parameters satisfy

0 ≤ ξfP
ii ≤ 1 ,

∑
i

ξfP
ii = 1 , |ξfP

ij | =
√

ξfP
ii ξfP

jj , (4.2)

so that there are only two independent parameters in each fermion sector fP (ignoring complex
phases). This also implies that there is no flavor violation if ξfP

ii = 1 for some i = 1, 2, 3.
After imposing the condition for nucleophobia, Cu = 2/3 and Cd = 1/3, the resulting

predictions for the remaining axion-quark couplings differ between the scenarios and we show
representative models in tables 1 that have been selected as follows. While for models Q1
and Q4 nucleophobia fixes all couplings, there is still some freedom in models Q2 and Q3,
corresponding to the choice of quark flavor rotations. To avoid stringent bounds from flavor-
violating meson decays, we only consider the case that flavor-violation in the quark sector
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Model EQ/N Cc Cs Ct Cb

Q1 14/3 2/3 −2/3 2/3 −2/3
Q2 8/3 2/3 1/3 −1/3 −2/3
Q3 8/3 −1/3 −2/3 2/3 1/3
Q4 2/3 −1/3 1/3 −1/3 1/3

Q5 (3HDM) 2 0 0 0 0

Table 1. Quark sectors in astrophobic 2HDM and 3HDM axion models after imposing conditions for
nucleophobia, Cu = 2/3 and Cd = 1/3. For Q2 and Q3 additional choices has been made for quark
flavor rotations, as explained in the text. Q5 can be realized only in 3HDMs.

Model EL/N Cµ Cτ Cτe

E1 −2 −2/3 −1/3 2/3
E2 0 1/3 −1/3 2/3

Table 2. Lepton sectors in astrophobic 2HDM axion models after imposing conditions for nucleophobia,
Cu = 2/3 and Cd = 1/3, electrophobia Ce = 0 and requiring Cµe = 0 in order to avoid stringent
constraints from µ → ea decays.

is absent,5 which leaves four models in each class (Q2 or Q3), only differing in predictions
for 2nd and 3rd generation quark couplings. As these choices do not have much impact
on our analysis, we simply choose two representative models for each class that we denote
as Q2 and Q3 in table 1 (this choice corresponds to ξuL

33 = ξdL
33 = 1 for model Q2, and

ξuR
22 = ξdR

22 = 1 for model Q3).
In order to satisfy the astrophysical bounds on the axion-electron coupling for fa ≲

108 GeV as needed for sizable ∆Neff, the axion must also be electrophobic to good approx-
imation. As discussed in appendix D, within 2HDM there are essentially two potentially
electrophobic scenarios,6 dubbed E1 and E2, which are summarized in table 7. Electropho-
bia (Ce = 0) is achieved through a tuning of flavor rotations, ξeL

11 ≈ c2
β(s2

β) for E1 (E2),
and since nucleophobia requires c2

β = 2/3, there is necessarily lepton-flavor violation since
ξeL

11 ̸= 0, ξeL
11 ̸= 1. In order to avoid strong constraints from µ → ea decays, flavor violation

cannot be present in the µ − e sector, which implies ξeL
22 ≈ 0 and thus large flavor-violating

coupling in the τ − e sector, Cτe ≈ 2/3. All non-zero axion-lepton couplings of the models
E1 and E2, after imposing Ce = Cµe = 0, are summarized in table 2. While both models
predict the same value of Cτe = 2/3 and Cτ = −1/3, the axion-muon coupling Cµ can be
either −1/3 or 2/3 depending on the model.

An astrophobic model is then obtained by combining any model in table 1 with any model
in table 2, so in total there are eight such models, which we denote as e.g. Q1E1 with obvious
notation. In tables 1 and 2 we also list the contributions from each sector to the electromagnetic

5This is a conservative assumption as far as ∆Neff is concerned, since the presence of flavor-violating
couplings can only increase ∆Neff.

6There are four different models, but they differ only pairwise by the chiral structure of LFV couplings,
which is irrelevant for our analysis.
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Figure 2. Additional effective number of neutrinos ∆Neff as a function of fa for astrophobic 2HDMs.
Shown is total prediction for E1 (dark magenta) and E2 (light blue) models, without axion-kaon
scatterings (solid lines) and with axion-kaon scatterings for Cs = −2/3 for z = 0.49 (dash-dotted lines).
The difference in ∆Neff between E1 and E2 models is entirely due to the different axion coupling
to muons, which for E1 (E2) is Cµ = −2/3 (1/3). Also shown are the predictions separately from
τ → e decays (blue), τ -scatterings (violet) and µ-scatterings, which differ between E1 (red) and E2
(orange). Vertical lines exclude the region to their left, and show constraints on the muon coupling
from SN1987A [48] (grey), the Belle-II limit on Cτe [55] (cyan) and the bound on Cγ from Horizontal
Branch stars (HB) [50] (brown, dashed).

anomaly coefficient for each model, denoted by EQ/N and EL/N . The total contribution
to the electromagnetic anomaly coefficient is given by the sum E/N = EQ/N + EL/N , for
example model Q1E1 predicts E/N = 8/3. Simultaneous suppression of nucleon and electron
couplings in the eight astrophobic 2HDMs then essentially fixes the flavor-violating axion
coupling Cτe ≈ 2/3, which dominates the contribution to ∆Neff in all these models. We show
the resulting prediction for ∆Neff as a function of fa in figure 2, where we also display the
separate contributions to ∆Neff from flavor-violating τ -decays and flavor-diagonal τ - and
µ-scattering. Note that these contributions differ only between the two possible choices for
the lepton sector, E1 and E2, giving the total lepton contribution to ∆Neff that is denoted by
solid lines (“total E1/E2”). There is also a small contribution from kaon scattering, giving
the total contribution to ∆Neff denoted by dash-dotted lines. Also shown is the Belle-II limit
on flavor-violating τe couplings, which requires fa ≳ 2 × 106 GeV.

Although constraints on axion couplings to nucleons and electrons are avoided in these
astrophobic models by construction, they are also subject to constraints on axion couplings
to muons (from SN1987A) and photons (from HB stars7), shown as vertical lines in figure 2.

7Note that the CAST bound [59] is significantly weakened below fa ∼ 108 GeV.
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The SN1987A bound only depends on the chosen lepton scenario, and allows for fa as low as
about 8× 106 GeV (4× 106 GeV) in E1 (E2). The constraint from HB stars is more stringent,
and is controlled by the photon coupling, which can take only four different values (among the
eight models) determined by E/N ∈ {14/3, 8/3, 2/3,−4/3}. In figure 2 we show the resulting
bound on fa for these four representative scenarios as vertical dashed brown lines, which
varies from about 107 GeV (e.g. Q1E1) to 6× 107 GeV (Q4E1). These limits are even more
constraining than future Belle II searches for τ → ea that will probe up to fa ∼ 8× 106 GeV.
This implies that current constraints on fa allow for ∆Neff as large as 0.20 (0.22) for E2 (E1)
models with E/N = 8/3, only considering leptonic production. However, for fa = O(107)GeV
contributions to ∆Neff from axion-kaon scattering cannot be neglected, which arise from
non-zero axion couplings to strange quarks. The maximal contribution from such scatterings
is obtained for Cs = 2/3, which increases the total prediction for ∆Neff for E2 (E1) models
with E/N = 8/3 up to about 0.23 (0.25). For fa ≳ 5× 107 GeV all models give essentially
the same prediction for ∆Neff, because only τ -decays are relevant for such large fa. CMB-S4
will probe the parameter space up to fa ≃ 108 GeV, which translates to ma ≃ 0.06 eV, where
the axion can indeed be considered relativistic at recombination to good approximation.

It is interesting to compare these expectations with complementary probes by future
helioscopes such as BabyIAXO and IAXO. In figure 3 we show these prospects in the usual
(ma, gaγγ) plane, for the relevant fa-window between 107 GeV and 109 GeV. The four scenarios
representing the predictions of astrophobic 2HDMs are denoted by black lines, and we show
in brown the excluded region from HB star cooling comstraints, the future projections for
BabyIAXO (red) and IAXO (green) lines, and the contour lines for ∆Neff in magenta (E1)
and cyan (E2). BabyIAXO will constrain only models with E/N = 14/3 or E/N = −4/3, up
to fa ≃ 108 GeV, which roughly matches the reach expected from CMB-S4. IAXO instead
will probe the same models down to fa ≃ 109 GeV, way below the Neff sensitivity. The other
two scenarios with E/N = 2/3 and E/N = 8/3 have smaller photon couplings, and will be
complementarily probed by IAXO and CMB-S4, reaching scales of fa ≃ 2 × 108 GeV and
fa ≃ 8× 107 GeV, respectively. Note, however, that for ma ≳ 0.2 eV IAXO substantially loses
its sensitivity to models with E/N = 8/3, and a small range of ma up to about 0.5 eV will
only be probed by future CMB surveys. Interestingly, also assuming that axions make up all
dark matter in the Universe (which is possible even for fa ≈ 107 GeV in various cosmological
scenarios with non-trivial evolution of the axion field [60–71]), the region inaccessible to
IAXO will be covered by JWST [37] (see also refs. [72–74]).

We close this section with a more detailed discussion of the various contributions to ∆Neff
in figure 2. Even though in 2HDM τ -decays dominate thermal axion production, the total
∆Neff exceeds the value predicted when considering only such decays below fa = 3× 107 GeV.
Indeed there is a sub-leading contribution to axion production from µ-scatterings, which
freeze-in axions after inverse τ -decays have frozen out. Axion production from τ -decays and
µ-scatterings take place at different temperatures, affecting the abundance in a non-trivial
way. In the left panel of figure 4 we show the leptonic rates in E1 models compared to the
Hubble rate for a representative value of fa = 2×107 GeV. As anticipated, the τ -decay rate is
large enough to keep axions in thermal equilibrium for 1 ≲ x ≲ 10. The µ-scatterings instead
are never effective enough to bring axions into thermal equilibrium, but still produce axions
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Figure 3. Predictions for the axion-photon coupling gaγγ for the astrophobic models listed in tables 1
and 2, characterised by the four indicated values of E/N . Magenta and cyan vertical lines indicate
the total prediction for ∆Neff (including axion-kaon scattering for z = 0.49) for E1 and E2 models,
respectively. We denote in brown the region excluded by HB stars constraints, while the expected
sensitivities of BabyIAXO and IAXO [36] will extend this region down to the contours plotted in
dashed light red and green, respectively.

via freeze-in. On the right panel of figure 4 we show the evolution of the axion co-moving
number density for the same benchmark value of fa = 2 × 107 GeV. The rapid change in
Yeq is a result of the sudden changes in the number of relativistic degrees of freedom around
the QCD phase transition at xQCDPT ≈ 11. As expected, the equilibrium yield is reached
due to (inverse) τ -decays and ∆Neff is determined by the freeze-out temperature x ∼ 15.
However, for x > 15 µ-scatterings become the main production channel, adding on top of
the axion yield produced from τ -decays. Note however that the subsequent freeze-in is less
effective than without τe-couplings, because the collision term is proportional to Y eq − Y ,
and thus reduced as compared to the pure µ-scattering scenario due to the non-zero initial
axion abundance. Hence, while axion freeze-in production solely from µ-scattering gives
∆Y ∼ 1.5× 10−3, the same production subsequent to freeze-out production from τ -decays
gives only ∆Y ∼ 0.5 × 10−3.
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Figure 4. Left panel: axion production rates from µ-scatterings (orange) and τ -decays (blue)
as a function of x = mτ /T compared to the Hubble rate (red) for E1 models (Cµ = −2/3) at
fa = 2× 107 GeV. Right panel: axion yield obtained by numerically solving the Boltzmann equation
taking into account scattering and decays simultaneously (black) and separately (orange/green),
compared to the equilibrium yield (red).

5 ∆Neff in astrophobic 3HDMs

In the previous section we have discussed non-universal DFSZ models with two Higgs doublets,
which do not allow for suppressed axion couplings to muons or photons, in addition to nucleons
and electrons. This is the reason why in those models fa cannot be smaller than few times
107 GeV. As we will show now, this restriction can be avoided on the price of adding a third
Higgs doublet, which admits fa ≲ 107 GeV without violating any astrophysical constraints.
Most of these models can be probed by improved measurements of ∆Neff, and require only a
mild tuning to simultaneously suppress axion couplings to nucleons, electron and photons,
in contrast to 2HDMs.

There are many 3HDMs giving astrophobic axions, and we refer for a detailed discussion
to appendix D. In this section we classify them according to the suppressed couplings relevant
for avoiding astrophysical constraints: i) |Cµ| ≪ 1 ii) |Cγ | ≪ 1, and iii) |Cµ|, |Cγ | ≪ 1
with LFV. The case of |Cµ|, |Cγ | ≪ 1 without LFV will be discussed in section 6 in the
context of the naturally astrophobic axion model. For each model we will compute the axion
contribution to ∆Neff as a function of fa. All models are obtained by combining a quark sector
model in table 6 with a lepton sector model in table 8, and require a single small PQ charge
X0 ≪ 1 in order to be astrophobic. This can be achieved by choosing appropriate Higgs
vacuum angles, X0 = (1− 3c2

1)c2
2 (cf. eq. (D.35) and the discussion below), and the possible

degree of suppression is only bounded by perturbativity of Yukawa couplings. Predictions
for axion couplings in lepton sectors of astrophobic 3HDMs after imposing conditions for
astrophobia are presented in table 3. Note that E1 and E2 models in the context of 3HDMs
give different predictions for axion couplings to leptons than E1 and E2 in the context of
2HDMs (cf. table 2). The predictions for axion couplings to quarks are given in table 1
and for Q1-Q4 are the same within 2HDMs and 3HDMs. There is a single new model in
the context of 3HDMs, dubbed Q5.
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Model EL/N Cµ Cτ Cτµ

E1 −4/3 0 −2/3 0
E2 2/3 0 1/3 0
E3 0 0 0 0
E4 −8/3 −2/3 −2/3 0
E5 4/3 1/3 1/3 0

E6 −2/3 0 1/3 2/3

Table 3. Lepton sectors in astrophobic 3HDM axion models after imposing conditions for nucleophobia,
Cu = 2/3 and Cd = 1/3 and electrophobia Ce = 0. In models E1 and E2, conditions for muonphobia
Cµ = 0 were additionally imposed. In models E1-E5, the conditions for nucleophobia, electrophobia
and muonphobia (where possible) imply no LFV couplings. The E6 model is special as all three
leptons carry different PQ charges.

5.1 Models with |Cµ| ≪ 1

We start with a discussion of models in which the axion coupling to muons is small, |Cµ| ≪ 1,
but the axion-photon coupling is unsuppressed. In these models the PQ charges of leptons
can have a 2 + 1 flavor structure. There are 14 models of this type that are obtained by
combining any of the 5 potentially nucleophobic models in the quark sector, summarized in
table 6, with either model E1, E2 or E3 in the charged lepton sector,8 defined in table 8, and
taking X0 ≪ 1 and ξeL

33 = 1, so that there is no LFV. Models involving E3 are special because
all axion-lepton couplings vanish. The model Q5E3, in which also the axion-photon coupling
is suppressed, will be discussed separately in section 6. Nucleophobia and electrophobia
can thus be obtained without flavor-violation, upon making appropriate choices for quark
flavor rotations. Therefore the only leptonic contribution to ∆Neff comes from the axion-tau
coupling, which is fixed to be Cτ = −2/3 in E1 and Cτ = 1/3 in E2 models, respectively,
and for E3 model even this contribution is absent.

The main difference between the five possible choices of quark sector models is the
value of the axion-photon coupling. Taking into account all possible combinations with
the three lepton sector models, this coupling is determined by seven representative values,
E/N ∈ {16/3, 14/3, 10/3, 8/3, 4/3, 2/3,−2/3}. These translate into a lower bound on fa

from HB constraints, which varies from about 107 GeV for the least constrained models with
E/N = 8/3 (Q2E3, Q3E3, Q5E2) and E/N = 4/3 (Q2E1, Q3E1, Q4E2) to about 6×107 GeV
for the most constrained model (Q1E2) with E/N = 16/3.

Since electron, muon, and LFV couplings are suppressed, the only leptonic contribution
to ∆Neff arises from scattering processes of τ -leptons, differing only between models E1
(Cτ = −2/3), E2 (Cτ = 1/3) and E3 (Cτ = 0), and the resulting predictions are shown in
figure 5. Taking into account the lower bounds on fa from HB constraints as discussed above,
this contribution is always below the sensitivity of CMB-S4. However, because there are no
LFV couplings, the largest contribution to ∆Neff in these models are actually due to kaon
scattering, which is controlled by the value of the axion couplings to s-quarks. The value of

8Model E6 instead has a 1+1+1 flavor structure and will be discussed below.
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Figure 5. Additional effective number of neutrinos ∆Neff as a function of fa for astrophobic 3HDMs
with |Cµ| ≪ 1. These models are obtained by combining E1, E2 and E3 with any model of the quark
sector (Q1-Q5), and differ in their contributions to ∆Neff only through the different values of Cτ and
Cs. We only show the largest possible contribution represented by model Q3E1. The most important
lower bound on fa comes from HB star cooling bounds on the axion-photon coupling [50], which is
strongest (weakest) for E/N = 16/3(8/3).

this coupling can take just three different values, Cs = 1/3 or Cs = −2/3 in models Q1-Q4,
while it vanishes in Q5. In figure 5 we show separately the predictions for ∆Neff from tau
and kaon scattering for two selected models in order to avoid clutter, which correspond to
the smallest (Cs = 0 in Q5E1) and largest contributions from kaon scattering (Cs = −2/3 in
e.g. Q3E1). The maximal contribution to ∆Neff in these models, after taking into account
the constraints on the axion-photon coupling, is 0.13 and within the reach of the Simons
Observatory. However, the potential for improvement of the lower bound on fa by future
CMB experiments is quite limited and CMB-S4 will improve it up to 2× 107 GeV (for models
with maximal ∆Neff), which is better than the astrophysical bound only for models with
E/N = 8/3 or 4/3. The other models will be probed more efficiently by IAXO or JWST
than by CMB observations.

5.2 Models with |Cγ| ≪ 1

Assuming a 2 + 1 flavor structure of the (non-universal) PQ lepton charges, it is also possible
to suppress the axion-photon coupling in 3HDMs. Indeed there are two models with E/N = 2
(Q1E4 and Q4E5), which allow for fa ∼ O(106)GeV without being in conflict with HB
star cooling constraints. However, in these models axion-electron and axion-muon couplings
cannot be suppressed simultaneously, as electrophobia implies Cµ = Cτ = −2/3 (1/3) in
Q1E4 (Q4E5) model, which in turn requires fa ≳ 8(4)×106 GeV from the SN1987A constraint
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Figure 6. Additional effective number of neutrinos ∆Neff as a function of fa for astrophobic 3HDMs
with |Cγ | ≪ 1, which is realized in Q1E4 and Q4E5 models. The vertical grey line denotes the limit
on the muon coupling from SN1987A [48], while red, brown and orange lines denote the contributions
from scattering off muons, kaons and taus, respectively.

on the axion-muon coupling. There is no LFV in these models, so that the only sizable
contribution to ∆Neff comes from axion-kaon, axion-muon, and axion-tau scatterings, and
we show these contributions and the total prediction for ∆Neff in figure 6. The predicted
value of ∆Neff in the Q1E4 model is larger than in the Q4E5 model, since the absolute values
of axion couplings to muon, tau, and strange are twice as large in Q1E4 as compared to
Q4E5. We see that the combined effect of these three channels leads to ∆Neff as large as
0.23 without violating the SN1987A constraint, which exceeds the maximal value that can
be obtained in the models with |Cµ| ≪ 1 as discussed above, cf. figure 5. Interestingly, the
current cosmological data set lower bounds on fa in these models that are comparable to those
from astrophysics. In Q4E5 the lower bound on fa from thermal axion production is about
5× 106 GeV so even slightly stronger than the SN1987A constraint. This is because for such
small fa the axion mass is around 1 eV, so the axion is not relativistic around recombination,
which strenghens the upper bound on ∆Neff. Due to relatively weak astrophysical constraints
there are good prospects for testing both models in future CMB surveys. Model Q1E4 can be
within the reach of the Simons Observatory (CMB-S4) for values of fa up to 107 (2×107) GeV,
while the reach for fa in Q4E5 is weaker by about a factor two. Both models cannot be
probed by IAXO due to the suppressed axion-photon coupling.

On the other hand, these models may still be probed by JWST, which for fa < 107 GeV
will be sensitive to the axion-photon couplings gaγγ ≡ α(2πfa)−1Cγ as small as O(10−11) [37].
However, whether JWST can really observe such axions depends on the contribution to Cγ

from axion-pion mixing, which has rather large uncertainties. For the central value of this
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contribution gaγγ ≈ 10−11 for fa = 8×106 GeV, which is on the verge of the JWST sensitivity,
but gaγγ could be a factor of two larger when taking into account theoretical errors. Still,
for E/N = 2 theoretical uncertainties allow for vanishing gaγγ so definite conclusions cannot
be made until the theory prediction has improved.

5.3 Models with |Cµ| ≪ 1 and |Cγ| ≪ 1 and LFV

We finally discuss proper astrophobic models, where on top of nucleophobia and electrophobia
also axion couplings to muons and photons are suppressed, so that all stellar cooling constraints
are weakened. In such models, the dominant lower bound on fa originates from the usual
SN1987A constraint on axion-nucleon couplings, which are induced by higher-order corrections.
Taking into account these corrections, the resulting lower bound on fa can be as weak as
106 GeV, although the exact numerical value depends on the details of the axion model and
is also sensitive to the uncertainties in the lattice determination of the ratio mu/md [34].

As discussed in appendix D, astrophobic models with |Cµ| ≪ 1 and |Cγ | ≪ 1 can be
constructed within the framework of DFSZ-like models with 3 Higgs doublets. There are
three such models, depending on the PQ charge structure of charged leptons. Either the
charges are universal, so that there is no LFV, or they are different for each generation, i.e.,
have a 1+1+1 flavor structure, indicating possibly large LFV. Here we focus first on the
two proper astrophobic axion models with LFV, which have the best prospects to be probed
by CMB observations in the near future, since flavor-violating τ -decays give the dominant
contribution to ∆Neff, in the absence of the axion-pion coupling. We will discuss the model
with universal lepton charges (Q5E3) in the next section.

The two models are obtained by combining E6 in table 8 with models Q2 or Q3 in
table 6 (dubbed Q2E6 and Q3E6, respectively), giving E/N = 2 and thus a suppressed axion
coupling to photons. Proper astrophobia is obtained for X0 ≪ 1, giving for both models
Ce = Cµ = 0, Cτ = 1/3, and the LFV coupling Cτµ = 2/3. The largest contribution to ∆Neff
is due to axion production from τ -decays, but a sub-leading contribution is due to kaon
scattering, which depends on the value of Cs that is controlled by quark flavor rotations,
and can vary between −2/3 and 1/3. In figure 7 we show the minimal total prediction for
Cs = 1/3, as well as the contributions from kaon scattering and τ -decays alone. In contrast
to the models discussed above, the constraint on fa provided by cosmology, i.e., CMB and
BAO data, is much stronger than limits from astrophysics or direct searches for LFV decays.
Interestingly, despite the suppression of the axion-muon and axion-photon couplings, this
only excludes values fa ≲ 8× 106 GeV. This is mainly due to the rather large production rate
of thermal axions from τ → µa decays, as well as the fact that for fa ≲ 107 GeV axions act as
a warm/hot dark matter and the upper bound on ∆Neff rapidly tightens when decreasing fa.

These models can be complementary probed by searches for τ → µa at Belle-II [55].
While current bounds are not competitive with the constraints from cosmology, future runs of
Belle-II are expected to probe fa up to the level of 107 GeV, which corresponds to ∆Neff ≃ 0.2
for the models under consideration, and thus allow for complementarity to future CMB
searches. Similarly to the models Q1E4 and Q4E5 with |Cγ | ≪ 1 and unsuppressed axion-
muon couplings discussed above (cf. figure 6), the JWST sensitivity strongly depends on the
uncertainty of the theoretical prediction for the axion-photon coupling.
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Figure 7. Additional effective number of neutrinos ∆Neff as a function of fa for proper astrophobic
3HDM with LFV, realized by the Q2E6 and Q3E6 models. The plot shows the prediction in the
model with the smallest kaon contribution (Cs = 1/3) and z = 0.49. The maximal contribution for
Cs = −2/3 to ∆Neff is slightly larger, but the resulting current bound on fa from cosmology is very
similar. The vertical cyan line marks the lower bound on fa from searches for flavor-violating τ → µa

decays at Belle-II [55].

6 ∆Neff from the naturally astrophobic QCD axion

In this section, we discuss the naturally astrophobic axion model [34]. In this model, the SM
Higgs is a nearly PQ charge eigenstate with a vanishing PQ charge, and the axion coupling
to SM fermions is entirely controlled by their PQ charge assignments, so that no tuning of
the parameters of the theory is required to achieve astrophobia.

In particular, a proper astrophobic model without LFV can be achieved by assigning
the PQ charges of 2, 1, 0, and 0 to u, d, e, and µ, respectively, and assuming that the QCD
and electromagnetic anomaly comes only from u and d. In the minimal scenario, the PQ
charges of other SM fermions are zero. In the UV completion by 3HDM, this can be obtained
by combining the flavor-universal model E3 in the charged lepton sector (see table 8) with
model Q5 in the quark sector, (see table 6), upon taking X0 ≪ 1 and ξuR

11 = ξdR
11 = 1. This

model, dubbed Q5E3, has a very interesting feature that the axion couples exclusively to u-
and d-quarks, so that X0 ≪ 1 can be realized by strongly suppressing the vevs of the two
non-SM Higgs fields consistent with perturbative unitarity, as these only give rise to up- and
down-quark masses. This is in contrast to all other 3HDM models, where perturbativity of
Yukawa couplings prevents this possibility, and instead require some (mild) tuning, see e.g.
ref. [31]. This model was proposed in ref. [34], and it was shown that it can be UV-completed
not only within the 3HDM scenarios but also by adding new vector-like quarks.
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Figure 8. Additional effective number of neutrinos ∆Neff as a function of fa for the naturally
astrophobic axion, realized e.g. by the E3Q5 model. Dotted lines indicate uncertainties due to the
non-perturbative freeze-in. Dashed part of the lines correspond to the range of fa for which axion never
reaches thermal equilibrium with the SM plasma. The axion-kaon scattering has been computed for z =
0.49 for which fa down to few ×106 GeV is consistent with astrophysical constraints. Axion decoupling
temperatures Td assuming prior equilibrium above the QCDPT are shown on right vertical axis.

Both astrophysical constraints on fa and the predictions for ∆Neff somewhat depend on
the particular UV completion. We show the prediction of ∆Neff for the naturally astrophobic
axion in various scenarios in figure 8. In the minimal model only up- and down-quarks
couple to the axion and the corresponding couplings are Cu = 2/3 and Cd = 1/3. In the
minimal model the astrophysical constraints on the axion-nucleon couplings allow for fa as
small as 106 GeV if z ≈ 0.49 [34]. In this scenario axion couplings to pions, leptons and
kaons are strongly suppressed, so the axion cannot be in thermal equilibrium below the
QCD phase transition. Therefore, non-negligible contribution to ∆Neff may only arise in the
deconfined phase when the axion may be kept in thermal equilibrium by scattering with up-
and down-quarks. The production rates of axions in these scattering processes with quarks are
proportional to temperature, so the dominant production of axions occurs at low temperatures
(since the Hubble scale scales as T 2). Hence, we expect that axions will be mostly produced
for temperatures not far above the QCD phase transition. Unfortunately, the scattering rates
for these processes cannot be reliably computed for such temperatures using perturbative
methods [16] (see also refs. [75, 76]). On the other hand, we know that astrophobic axions
are not thermally produced in the regime when chiral perturbation theory correctly describes
axion interactions. Thus, it is possible to estimate the maximal contribution to ∆Neff that
occurs if the axion decouples from SM plasma for temperatures around 150 MeV. However,
if the production rate of axions is smooth it may well be that axions decouple at some
higher temperature. For this reason in figure 8 we also show the relation between ∆Neff
and axion decoupling temperature using an instantaneous decoupling approximation. We
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see that if the strong interactions keep the axion in thermal equilibrium for temperatures
down to the QCD phase transition, ∆Neff can be as large as about 0.15, while if it decouples
around 1 GeV, ∆Neff is around 0.05.

In figure 8 we also show the maximal value of ∆Neff obtained by estimating the non-
perturbative effects on axion production using the leading order up- and down-quark scattering
rates above the QCD phase transition [17], setting the strong coupling gs to 4π. We see
that in the minimal scenario (corresponding to Cs = 0 in the plot), such scatterings are
not able to thermalize axion unless fa is below few ×106 GeV. Nevertheless, freeze-in axion
production via such scatterings may give non-negligible contribution to ∆Neff resulting in
the current lower bound from Planck around 5 × 106 GeV, which should be considered as
an aggressive limit for the minimal model.

Given the uncertainty in the prediction of ∆Neff one cannot use future CMB data to
set robust bounds on the naturally astrophobic axion scenario. On the other hand, in case
some deviation from ΛCDM model is found it may still be explained by the minimal model
with fa = O(107)GeV, but to reliable extract information about the axion from such data
one would require a lattice determination of the axion temperature evolution.

The minimal model, where Cd = 1/3 and Cs = 0, requires additional model building (see
ref. [34]) to naturally suppress rare kaon decays induced by flavor-violating axion couplings
in the s-d sector. Instead such decays are naturally suppressed without model building if
Cs = Cd. For Cs = 1/3, the axion contribution to ∆Neff is larger than in the minimal model
for two reasons. First, the axion-kaon scattering is no longer suppressed and results in a
lower bound on fa from Planck around 4 × 106 GeV, as seen from figure 8. Second, axion
production from strange-quark scattering is expected to be bigger than that from up- and
down-quark scattering due to much larger strange-quark mass. Using the same estimate
for the non-perturbative contribution as above, we found that strange-quark scattering can
keep the axion in thermal equilibrium for temperatures down to the QCD phase transition
for fa exceeding even 107 GeV. This results in a lower bound on fa from Planck about
7 × 106 GeV, as seen in figure 8.

We have also checked that the lower bound of fa ≳ 7×106 GeV from Planck is independent
of the choice for estimating the non-perturbative axion production. For example, the bound
stays the same if one takes gs =

√
4π instead of 4π. Also the estimate proposed in ref. [16]

with the thermally averaged rate parameterized as Γ̄ = κT 3/f2 for temperatures between
2GeV and the QCD phase transition with κ = 0.1 or 0.01 gives the same lower bound on
fa. In all these estimates the axion is thermalized down to the QCD phase transition for
fa = O(107)GeV, which is the reason why the exact value of the rate has no impact on
the predicted value of ∆Neff. On the other hand, the estimates for the sensitivity of future
experiments are much less robust. For example, the reach of the Simons Observatory for
fa varies between 107 and 108 GeV if one changes gs from

√
4π to 4π in our estimate for

strange-quark scattering.
Let us also comment on the fact that for Cs = 1/3 the astrophysical bounds on the

axion-nucleon couplings can allow for fa much below 107 GeV only if axion couplings to
charm and/or bottom are also O(1) [34]. We have checked that turning on these couplings
does not affect the current lower bound on fa. This is because axion production from charm-

– 22 –



J
H
E
P
0
9
(
2
0
2
4
)
1
3
6

and bottom-quark scattering is Boltzmann suppressed around the QCD phase transition,
and also because strange-quark scattering alone is sufficient to thermalize axions down to
the QCD phase transition.

We emphasize that the naturally astrophobic axion is the model that is least constrained
by the CMB, and fa much below 107 GeV may be consistent with all available data. Such
values of fa imply an axion mass O(1) eV, so it is not ultra-relativistic at recombination.
Thus, in this scenario ∆Neff is just a useful parametrization of the energy density of thermal
axions and axions act like warm/hot dark matter rather than constituting extra relativistic
degree of freedom, which is yet another feature that could help to distinguish the naturally
astrophobic axion from other axion models using future CMB data.

Our results also have implications to minimal axiogenesis [77]. In the minimal axiogenesis
scenario, the PQ symmetry-breaking field rotates in field space in the early universe, which
corresponds to a non-zero PQ charge. The PQ charge is transferred to baryon asymmetry via
axion-SM couplings and electroweak sphaleron processes. For fa ≫ 107 GeV, however, the
produced baryon asymmetry is smaller than the observed one after imposing the constraint
from overproduction of axion dark matter by the kinetic misalignment mechanism [68],
unless some of the axion-SM couplings are much larger than the 1/fa-suppressed one. For
fa ≲ 107 GeV, on the other hand, the observed baryon asymmetry can be explained without
introducing large couplings. Even with the maximal possible scattering rate of the axion
with u- and d-quarks or Cs = 1/3, the current constraints from the CMB and BAO can be
satisfied. If the scattering rates with quarks become as large as those with gs ∼ 4π before
the QCD phase transition, CMB-S4 can probe the parameter space of the successful minimal
axiogenesis without large couplings.

Even though axion-photon coupling in this scenario is smaller by at least one order of
magnitude than in models with E/N ̸= 2, it may be still possible for JWST to discover a
DM axion with mass of O(1) eV. Thus, using complementarity of future CMB and JWST
observations, it will be viable to pin down axions that are responsible both for DM and
baryogenesis.

7 Conclusions

We have investigated thermal production of QCD axions in so-called astrophobic models in
which astrophysical constraints on the axion decay constant are relaxed. A model-independent
feature of such models is that the axion-pion coupling is so small that the impact of axion-pion
scattering on the production of thermal axions is negligible. However, we found that a large
abundance of hot axions, parameterised by the extra effective number of neutrinos ∆Neff, can
be sizable in the presence of other axion couplings, such as couplings to muons, strange-quarks
or LFV couplings leading to axion production from τ → ℓa decays, see figure 1.

The simplest astrophobic axion models are generalized DFSZ models with two Higgs
doublets with flavor non-universal PQ charges [29]. In this class of models, suppression of
axion couplings to nucleons and electrons fixes the size of LFV couplings, which directly
control τ → ea decays and give a sharp prediction for ∆Neff as a function of fa. However,
axion-photon couplings are unsuppressed and a lower bound on fa arises from HB star cooling
constraints, which varies between (1÷ 6)× 107 GeV, depending on the model. This in turn
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limits the predicted ∆Neff to be below about (0.1 ÷ 0.25) (see figure 2), which are within
the reach of the Simons Observatory. This is in sharp contrast to the predictions of the
minimal DFSZ and KSVZ axion models, where ∆Neff is at most 0.03 in the region of fa

consistent with astrophysical constraints, and it is difficult to observe such small ∆Neff in
the foreseeable future. The range of fa leading to large ∆Neff in astrophobic 2HDM will be
also probed by axion helioscopes. Two of the models are within the reach of BabyIAXO,
while the remaining ones can only be probed by IAXO. A small range of fa ≲ 3× 107 GeV
will not be covered by IAXO, but it is within reach of JWST, if one assumes that axions
make up all dark matter in the Universe.

We have also constructed generalized DFSZ models with three Higgs doublets. In such
models there is more flexibility in the structure of axion couplings as compared to 2HDMs. In
particular, it is possible to suppress nucleon and electron couplings without additional tuning.
In such models ∆Neff is typically much smaller than in 2HDMs, because flavor-conserving
axion-lepton scatterings are not as efficient in producing thermal axions. However, we found
that in such models axion-kaon scatterings may still lead to large ∆Neff. This effect is
particularly important in models with axion-photon couplings small enough to allow for
fa down to 107 GeV, and the resulting ∆Neff can even be above 0.1, within the reach of
the Simons Observatory (see figure 5).

In order to allow for fa below 107 GeV consistent with astrophysical constraints, it is
necessary to not only arrange for E/N = 2, which accidentally relaxes the lower bound on
fa from HB stars to about 106 GeV, but also to suppress the axion-muon coupling in order
to avoid constraints from SN1987A. In such models, ∆Neff sets a lower bound on fa much
stronger than the astrophysical constraints, if efficient axion production from flavor-violating
τ -decays or axion-kaon scattering is possible. We constructed such models and found a lower
bound on fa given by 8 × 106 GeV (see figure 7).

We also have investigated the recently proposed naturally astrophobic QCD axion model.
We found that in the minimal model where the axion couples to the SM only via the up
and down quarks, the axion cannot be kept in thermal equilibrium with the SM plasma for
temperatures below the QCD phase transition, due to strongly suppressed axion couplings to
pions, kaons, and leptons. However, axions may still be produced thermally before the QCD
phase transition in scatterings with free quarks. The production rates for such processes
cannot be reliably computed using perturbative techniques, and the maximal value of ∆Neff
can only be estimated. If the axion decouples exactly at the QCD phase transition, current
cosmological constraints lead to a lower bound fa ≳ 6× 106 GeV, which can be even further
weakened using more conservative assumptions about the axion decoupling temperature. Thus,
in the naturally astrophobic axion model both astrophysical and cosmological constraints
allow minimal axiogenesis to explain both the observed DM and the baryon abundance.
Future CMB surveys may probe the parameter space relevant for this scenario, where the
axion mass can be as large as 1 eV. The axion-photon coupling may be large enough to lead
to a discovery of axion DM by JWST, and future CMB data could be used to cross-check
such an interpretation.
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A Axion couplings to pions and kaons

An anomalous axial rotation of light quarks q = (u, d, s)T parametrized by Qa

q → e
iγ5

a
2fa

Qaq , (A.1)

which for TrQa = 1 cancels the aGG̃ term, induces an axion dependence in the quark masses

Ma = eia(x)Qa/2faMqeia(x)Qa/2fa , (A.2)

where Mq = diag (mu, md, ms). The relevant Lagrangian involving axion and u, d, s quarks
is given by

L =
∑

q=u,d,s

(Cq − Qq
a)

2fa
(∂µa)qγµγ5q −

∑
q

qMaq . (A.3)

We can make the usual choice Qa = M−1
q /TrM−1

q , which avoids axion-pion mixing.
Explicitly, this results in the following form of the matrix

Qa =


1

1+z+w 0 0
0 z

1+z+w 0
0 0 w

1+z+w

 , (A.4)

with z = mu/md and w = mu/ms. On the other hand, the LO chiral lagrangian is given
by [5, 78]

L = f2
π

4

(
Tr
(
DµU †DµU

)
+ 2BTr

(
UM †

a + MaU †))+ ∂µa

2fa
caTr

(
if2

π

2 λa(U∂µU † − U †∂µU)
)

,

(A.5)
where

U = exp

 i

fπ

π0 + η/
√
3

√
2π+ √

2K+
√
2π− −π0 + η/

√
3

√
2K0

√
2K− √

2K
0 −2η/

√
3


 , (A.6)
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and

c =

Cu − Qa
u 0 0

0 Cd − Qa
d 0

0 0 Cs − Qa
s


= 1

3Tr(c)1 + 1
2Tr(cλ3)λ3 +

1
2Tr(cλ8)λ8 = caλa ,

(A.7)

is the shifted axial coupling matrix, which can be decomposed as a linear combination of
Gell-Mann matrices and the unit matrix. After choosing Qa according to eq. (A.4), the
whole axion dependence is moved to the axial current and the mass terms. One can find
the axion mass in 3-flavor ChPT in leading order in w as

m2
a = f2

πm2
π(4z(1 + z) + w(1− z)2)

4f2
a (1 + z)2(1 + z + w) . (A.8)

A.1 Coupling to pions

One can show that the trace argument of axial current for pions, keeping up to 3 fields,
is given by

U∂µU † − U †∂µU = 4i

3f3
π

(
∂µπb(ππ)− πb(π∂µπ)

)
λb , (A.9)

where now the index b is restricted to SU(3) generators contracted with pions, that is,
b = 1, 2, 3. Using Trλaλb = 2δab, axion-pion couplings are given by

Laxial = −2
3

∂µa

fafπ
ca

(
∂µπb(ππ)− πb(π∂µπ)

)
δab . (A.10)

Taking into account the Kronecker-δ with restricted index b and eq. (A.7), we have caδa3 = c3,
which can be further evaluated to Tr(cλ3)/2 = (Cu − Qa

u − Cd + Qa
d)/2. Note that these

terms are independent of Cs. After further simplifications we end up with

Laxial = −Cu − Cd − Qa
u + Qa

d

3fπfa

(
∂µa

)(
2∂µπ0π+π− − π0∂µπ+π− − π0π+∂µπ−

)
. (A.11)

Identifying the prefactor rescaled by fπfa as the axion-pion coupling and using the explicit
form of Qa from eq. (A.4), we obtain the known result [38]

Cπ = −1
3

(
Cu − Cd −

1− z

1 + z + w

)
. (A.12)

In astrophobic axion models Cu = 2/3, Cd = 1/3 and for approximate values z ≈ 1/2 and
w ≈ 0 the pion coupling vanishes. Since scatterings with pions are the leading contribution
to the abundance of thermal axions in generic models, z ̸= 1/2 and w ̸= 0 may play a role
in determination of ∆Neff. However, as we have checked for the parameter space consistent
with astrophysical constraints on the axion-nucleon, the production via scatterings with pions
always contributes to ∆Neff less than 0.01, far beyond the reach of future experiments.
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A.2 Coupling to kaons

In the physical basis, with the choice of Qa given by eq. (A.4), we move the axion interaction
(up to order 1/f2

a corrections) to the axial current. The only non-zero contribution to the
axion kaon coupling comes from the axial current in eq. (A.5) and for values z = 1/2,
w = 0 has the form

LaK = − ∂µa

36fafπ

(
− 3

(
Cu − Cd −

1
3

)(
3
√
2K+π−∂µK̄0 − 3

√
2K0π+∂µK− + K̄0π0∂µK0

− 3
√
2K̄0π−∂µK+ − 2K̄0K0∂µπ0 + 3

√
2K−π+∂µK0 + K−π0∂µK+

− 2K−K+∂µπ0 + π0K0∂µK̄0 + π0K+∂µK−
)

+ 3
(
Cu + Cd − 1− 2Cs

)(
K0π0∂µK̄0 −

√
2K+π−∂µK̄0 − K+π0∂µK−

+
√
2K0π+∂µK− + K̄0π0∂µK0 −

√
2K̄0π−∂µK+ − 2K̄0K0∂µπ0

+ 2
√
2K̄0K+∂µπ− −

√
2K−π+∂µK0 + K−π0∂µK+ − 2K−K+∂µπ0

− 2
√
2K−K0∂µπ+

))
. (A.13)

For astrophobic axions with charges Cu = 2/3, Cd = 1/3, Cs ̸= 0, for which the charge matrix
eq. (A.7) is c = diag(0, 0, Cs), only the contribution from strange quark coupling remains

LaK = Cs

6fafπ
∂µa

(
K

0 (
π0∂µK0 − 2K0∂µπ0 −

√
2π−∂µK+ + 2

√
2K+∂µπ−

)
−

− K−
(√

2π+∂µK0 − 2
√
2K0∂µπ+ + π0∂µK+ − 2K+∂µπ0

)
+

+ K0π0∂µK
0 −

√
2K0π+∂µK− −

√
2K+π−∂µK

0 − K+π0∂µK−
)

.

(A.14)

Note that those couplings are not suppressed in contrast to the axion-pion coupling. As a
result, the suppression of the kaon scattering rate comes solely from the Boltzmann factors
and is insufficient to completely remove the kaon contribution to axion thermalization. The
axion also couples to one η and two kaons, but the scattering rate is further suppressed
by Boltzmann factors.

B Axion production rates

In this appendix we collect useful expressions for calculating thermal axion production rates,
mainly following ref. [79].

B.1 Equilibrium number densities

The number density of particles in thermal equilibrium is given by

neq
i = gi

∫
d3k

(2π3)f eq
i ≃ gi

2π2 m2
i TK2

(
mi

T

)
, (B.1)

where gi denotes the number of internal degrees of freedom and f eq
i = 1/(e−Ei/T ± 1)

denotes the phase space distributions with Ei = (k⃗2 + m2
i )1/2. One can approximate the
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equilibrium distributions for both bosons and fermions by a Maxwell-Boltzmann distribution,
f eq

i ≃ exp (−Ei/T ). This allows to approximate the number densities by the last equality,
where K2(mi/T ) denotes the modified Bessel function of second kind with asymptotic
behaviour

K2(x) =

2/x2 x ≪ 1
e−x

√
π/2x x ≫ 1

. (B.2)

The axion mass is negligible while being thermally produced. We use the exact Bose-Einstein
distribution with equilibrium density

neq
a = ζ(3)

π2 T 3 . (B.3)

B.2 Collision operators and production rates

Axion production rates are related to the collision operator in the Boltzmann equation by
Γi(T ) = Ci/neq

a , where i collectively denotes scattering processes p1p2 ↔ p3a and decays
p1 ↔ p2a. For scatterings the collision operator given by (neglecting Pauli blocking)

Cp1p2↔p3a =
∫

dΠ1dΠ2dΠ3dΠaf eq
1 f eq

2 (2π)4δ4(p1 + p2 − p3 − pa)|Mp1p2→p3a|2 , (B.4)

where pi denotes to the momentum of the ith particle, dΠi = d3pi/2Ei(2π)3 is the Lorentz
invariant phase space measure, and |Mp1p2→p3a|2 denotes the squared matrix element of the
scattering process including sums over initial and final polarizations (no averaging). The
collision operator can be related to the cross section

σp1p2→p3a = 1
g1g2

1
4p1 · p2v12

∫
dΠ3dΠa(2π)4δ4(p1 + p2 − p3 − pa)|Mp1p2→p3a|2 , (B.5)

where g1, g2 are the internal degrees of freedom of the initial particles and v12 is their Lorentz
invariant relative velocity, given by

v12 =

√
(p1 · p2)2 − m2

1m2
2

2p1 · p2
= s

2p1 · p2
λ1/2

(
m1√

s
,
m2√

s

)
, (B.6)

with λ(x, y) = [1 − (x + y)2][1 − (x − y)2]. This gives

Cp1p2↔p3a = 2g1g2

∫
dΠ1dΠ2f eq

1 f eq
2 λ1/2(x1, x2)sσp1p2→p3a(s) , (B.7)

where xi = mi/
√

s and the dependence on initial state momenta is encoded in the center-
of-mass energy s. Changing integration variables and performing one integration in the
Boltzmannian limit f eq

i ≃ exp (−Ei/T ) leaves a single integral over the center-of-mass energy

Cp1p2↔p3a = g1g2
32π4 T

∫ ∞

smin
λ(x1, x2)s3/2σp1p2→p3a(s)K1

(√
s

T

)
ds , (B.8)

where smin = max{(m1 +m2)2, (m3 +ma)2}, and K1(x) denotes the modified Bessel function
of second kind with asymptotic behaviour

K1(x) =

1/x x ≪ 1
e−x

√
π/2x x ≫ 1

. (B.9)
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This collision term is conveniently rewritten in terms of the thermally averaged cross-section as

Cp1p2↔p3a = neq
1 neq

2 ⟨σp1p2→p3av⟩ , (B.10)

which defines the latter as (in the Boltzmannian limit)

⟨σp1p2→p3av⟩ = 1
8m2

1m2
2TK2(m1/T )K2(m2/T )

∫ ∞

smin
λ(x1, x2)s3/2σp1p2→p3a(s)K1

(√
s

T

)
ds .

(B.11)

If one of the initial particles (particle 2) can be considered massless to good approximation,
m2 → 0, this simplifies to

⟨σp1p2→p3av⟩|m2=0 = 1
16m2

1T 3K2(m1/T )

∫ ∞

smin

(
1− m2

1
s

)2

s3/2σp1p2→p3a(s)K1

(√
s

T

)
ds .

(B.12)
If the initial particles have the same mass, one has

⟨σp1p2→p3av⟩|m2=m1 = 1
8m4

1TK2(m1/T )2

∫ ∞

smin

(
1− 4m2

1
s

)
s3/2σp1p2→p3a(s)K1

(√
s

T

)
ds .

(B.13)
The axion production rate from scattering processes is finally given by

Γp1p2→p3a(T ) = neq
1 neq

2
neq

a
⟨σp1p2→p3av⟩ , (B.14)

and for the total production rate from scattering ΓS(T ) all processes have to be summed

ΓS(T ) =
∑

p1,p2

Γp1p2→p3a(T ) . (B.15)

In case of axion production from decays, the same steps yield for the collision term

Cp1→p2a =
∫

dΠ1dΠ2dΠaf eq
1 (2π)4δ4(p1 − p2 − pa)|Mp1→p2a|2

= g1Γp1→p2a

∫
d3p

(2π)3
m1
E1

f eq
1

= neq
1 Γp1→p2a

K1(m1/T )
K2(m1/T ) , (B.16)

where |Mp1→p2a|2 is the squared matrix element of the decay process including sums over
initial and final polarizations (no averaging), and Γp1→p2a denotes the decay rate in the
rest frame of particle 1, given by

Γp1→p2a = 1
16πg1m1

|Mp1→p2a|2λ1/2
(

m2
m1

,
ma

m1

)
. (B.17)

If the mass of the axion is neglected, this simplifies to

Γp1→p2a = 1
16πg1m1

|Mp1→p2a|2
(
1− m2

2
m2

1

)
. (B.18)
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The axion production rate from decays is finally given by

Γp1→p2a(T ) = neq
1

neq
a
Γp1→p2a

K1(m1/T )
K2(m1/T ) , (B.19)

and for the total production rate from decays all processes have to be summed

ΓD(T ) =
∑
p1

Γp1→p2a(T ) , (B.20)

including charge multiplicities, e.g. for a single charged lepton p1 = ℓ+, ℓ−.

B.3 Pion and kaon scatterings

Scattering with pions is usually the main channel of axion production. Given the cou-
pling eq. (A.11), the known amplitude for three processes π0π± → aπ±, π+π− → aπ0

evaluates to [80] ∑
processes

|M|2ππ→aπ = 9
4

(
Cπ

fπfa

)2 (
s2 + t2 + u2 − 3m4

π

)
. (B.21)

Neglecting the mass splitting between charged and neutral pions, we obtain a total thermally
averaged cross section for all three processes using eq. (B.11) and eq. (B.14). However,
because ChPT is only EFT the integral in eq. (B.11) should only be performed up to cut-off√

s = ΛChPT = 4πfπ. Otherwise, artificial contributions from divergent cross section would
alter high-temperature behaviour of scattering rate.

Since pions are present in the thermal bath only after the QCDPT, we include this
contribution in Boltzmann equation only for T < TQCD = 158MeV [81] by adding the
Heaviside theta function θ(TQCD − T ). It is worth mentioning that working in LO of ChPT
has been shown to be unreliable at temperature above T ≃ 70MeV [82, 83]. This contribution
has been recently calculated precisely using phenomenological cross section [16] and unitarized
ChPT [83], respectively, finding good agreement [18, 83]. However, the LO ChPT suffices to
show that in models considered in this work, pions give negligible contribution to the ∆Neff.

The scattering rate for processes involving kaons and pions πK → Ka have been
calculated in case of hadronic axions [16]. In nucleophobic models these scattering rates are
suppressed unless Cs ̸= 0, as explained above eq. (A.14). Given interactions eq. (A.13) we
used FeynRules [84] and FeynCalc [85, 86] to derive the scattering amplitude for 8 processes:
π0K±, K0π± → aπ±; π0K0, π−K+ → aK0; π+K−, π0K

0 → aK
0, which for w = 0, z = 1/2

is given by a simple formula

∑
processes

|M|2πK→aK =
(

Cs

2
√
3fafπ

)2 (
3t − m2

π

)2
. (B.22)

We neglect the mass splitting of kaons, and pions using formulas eq. (B.11) and eq. (B.14)
to obtain the rates. We take into account production from those scatterings below the QCDPT
by adding the Heaviside theta function to the rate. The suppression of this rate with respect
to the pion scatterings rate comes mostly from the Boltzmann factors.

Since LO of ChPT breaks down around T ∼ 70MeV, our results should be taken with
a grain of salt. The calculation of the scatterings rate in NLO ChPT is beyond the scope
of this paper, and we leave it for future work.
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B.4 Lepton flavor-conserving scatterings

There are two leptonic processes that thermalize axions and conserve flavor-lepton annihilation
ℓ+ℓ− → γa and Compton-like scattering with axions at the final state ℓ±γ → ℓ±a. The
resulting production rates are well-known, and for completeness we quote the results.

Two tree-level diagrams, u- and t-channel, contribute to process ℓ+ℓ− → γa. Upon phase
space integration, the cross section as a function of center of mass energy is given by [56]

σℓ+ℓ−→γa(s) =
e2C2

ℓ m2
ℓ

4πf2
a (s − 4m2

ℓ )
tanh−1

√1− 4m2
ℓ

s

 . (B.23)

Two diagrams (s- and u-channel) contribute to the cross section for Compton-like scattering
ℓ±γ → ℓ±a, which reads [56]

σℓ±γ→ℓ±a(s) =
C2

ℓ m2
ℓe2

32πf2
a

2s2 log(s/m2
ℓ )− 3s2 + 4m2

ℓs − m4
ℓ

s2(s − m2
ℓ )

. (B.24)

For large s both scattering processes have the same scaling σ ∼ m2
ℓ/f2

a log s/s. This gives
the scaling of the thermally averaged cross-sections in eq. (B.12) for large T as

⟨σv⟩ℓ+ℓ−→γa
T≫mℓ−−−−→ C2

ℓ m2
ℓe2

32πf2
a T 2 log 2T

mℓ
, (B.25)

⟨σv⟩ℓ±γ→ℓ±a
T≫mℓ−−−−→ C2

ℓ m2
ℓe2

64πf2
a T 2 log 2T

mℓ
, (B.26)

so that the production rates at high temperatures are

Γℓ+ℓ−→γa(T ) T≫mℓ−−−−→ C2
ℓ m2

ℓe2T

8π3ζ(3)f2
a

log 2T

mℓ
, (B.27)

Γℓ±γ→ℓ±a(T ) T≫mℓ−−−−→ C2
ℓ m2

ℓe2T

16π3ζ(3)f2
a

log 2T

mℓ
. (B.28)

The total axion production rate from scatterings at high temperatures is then given by

ΓS(T ) = Γℓ+ℓ−→γa(T ) + Γℓ+γ→ℓ+a(T ) + Γℓ−γ→ℓ−a(T )
T≫mℓ−−−−→ C2

ℓ αm2
ℓT

π2ζ(3)f2
a

log 2T

mℓ
. (B.29)

In the freeze-in regime axion production is dominated by temperatures slightly below mℓ,
and we approximate the scattering rate in this regime simply by taking the high-temperature
expression above without the log but with a Boltzmann suppression factor, i.e.

ΓS(T ) T≲mℓ−−−−→ C2
ℓ αm2

ℓT

π2ζ(3)f2
a

e−
mℓ
T . (B.30)

Instead for very low temperatures the scaling of the two processes with T is different

⟨σv⟩ℓ+ℓ−→γa
T≪mℓ−−−−→ C2

ℓ e2

8πf2
a

, (B.31)

⟨σv⟩ℓ±γ→ℓ±a
T≪mℓ−−−−→ C2

ℓ e2T 2

πm2
ℓf2

a

, (B.32)
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and the production rates at low temperatures are Boltzmann suppressed

Γℓ+ℓ−→γa(T ) T≪mℓ−−−−→ C2
ℓ e2m3

ℓ

16π2ζ(3)f2
a

e−
2mℓ

T , (B.33)

Γℓ±γ→ℓ±a(T ) T≪mℓ−−−−→
√

2T

πmℓ

C2
ℓ e2T 3

π2ζ(3)f2
a

e−
mℓ
T . (B.34)

B.5 Lepton flavor-violating decays

The decay rate for the process ℓ → ℓ′a is given by [56]

Γℓ±→ℓ′±a = C2
ℓℓ′

m3
ℓ

64πf2
a

(
1− m2

ℓ′

m2
ℓ

)3
≈ C2

ℓℓ′
m3

ℓ

64πf2
a

, (B.35)

where the last approximation holds to good approximation as lepton masses are strongly
hierarchical. The axion production rate from decays can be computed using eq. (B.20),
which gives9

ΓD(T ) = g1
2π2 m2

ℓTK1(mℓ/T ) (Γℓ+→ℓ′+a + Γℓ−→ℓ′−a) , (B.36)

with g1 = 2 for spin degrees of freedom. For large temperatures this becomes

ΓD(T ) T≫mℓ−−−−→ C2
ℓℓ′m

4
ℓ

32πζ(3)f2
a T

. (B.37)

When T drops below the lepton mass mℓ, the production rate becomes Boltzmann sup-
pressed, giving

ΓD(T ) T≲mℓ−−−−→ C2
ℓℓ′m

4
ℓ

32πζ(3)f2
a T

e−
mℓ
T , (B.38)

while for very low temperatures one obtains

ΓD(T ) T≪mℓ−−−−→
√

2T

πmℓ

C2
ℓℓ′m

5
ℓ

64ζ(3)f2
a T 2 e−

mℓ
T . (B.39)

C Boltzmann equation

The number density na of axions is governed by the integrated Boltzmann equation [88]

dna

dt
+ 3Hna =

(∑
i

Γi

)(
neq

a − na

)
, (C.1)

where neq
a is the number density of axions at equilibrium, H is the Hubble parameter

H = T 2

MPl
1.66

√
g∗(T ) , (C.2)

9Flavor-violating scatterings ℓγ → ℓ′a and ℓℓ′ → γa have infrared divergence, which should cancel against
real and virtual corrections to the tree-level decay rate. This has been demonstrated for the case of ℓγ → ℓ′a in
ref. [87], and we expect a similar behaviour for ℓℓ′ → γa, at least for small T ≲ mℓ. Therefore these processes
should only give sub-leading contribution to the axion production rate (peaked at T ≲ mℓ/3) and thus are
omitted here.
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with g∗(T ) denoting the total number of relativistic degrees of freedom and Γi are the
single axion production rates considered above. It is convenient to work with dimensionless
temperature variables x = m/T and the yields Ya = na/s, where m is chosen as the mass of
the heaviest particle involved in the production process (in our calculations we use m = mτ )
and s is the entropy density

s = 2π2T 3

45 g∗s(T ) , (C.3)

where g∗s(T ) is the effective number of relativistic entropy degrees of freedom10 It is clear
that Y eq

a remains constant as long as g∗s does not change. Since axions decouple around the
QCDPT, there is a rapid change in g∗s, and accordingly the equilibrium yield changes as well.

Using entropy conservation, d(sa3)/dt = 0, we can express the time-derivative as

dx

dt
= xH

(
T

3s

ds

dT

)−1
= xH

(
1− x

3g∗s

dg∗s

dx

)−1
. (C.4)

The Boltzmann equation in new variables reads

sHx
dYa

dx
=
(
1− x

3g∗s

dg∗s

dx

)
neq

a

∑
i

Γi

(
1− Ya

Y eq
a

)
. (C.5)

We solve this equation numerically on the interval x ∈ [0.01, 190] assuming vanishing initial
yield, Y i

a = Ya(x = 0.01) = 0. Note that axion production from electron scattering is active
at T ∼ me, in this case we solve the Boltzmann equation up to x = 4000. In order to improve
the computation time, we evaluate the rates Γi for logarithmically distributed points xi and
use the spline interpolation to recover continuous functions.

Thermal axions contribute to the total energy density of radiation, which is parametrized
by the additional effective number of neutrinos ∆Neff as

∆Neff = 8
7

(11
4

) 4
3 ρa

ργ

∣∣∣∣
TCMB

, (C.6)

where ργ and ρa are the energy densities of photons and axions, respectively. One can
estimate ρa in terms of the axion number density na, and ργ in terms of the entropy density
s, obtaining [17]

∆Neff = 4
7

(11
4

) 4
3
(

2π4

45 ζ(3)g∗s(TCMB)Ya(TCMB)
) 4

3

. (C.7)

Although ∆Neff is set by the axion yield at TCMB, we may identify it with the asymptotic yield
Ya

∣∣
TCMB

= Y ∞
a , which we numerically evaluate at the endpoint of the Boltzmann integration

interval since at late times all axion interactions are frozen. If the yield of axions is small we
can simply take g∗s(TCMB) ≃ gSM

∗s (TCMB) = 43/11 and the numerical formula reads

∆Neff = 74.85
(
Y ∞

a

) 4
3 . (C.8)

10We use the results from ref. [89] for both g∗s(T ) and g∗(T ), but our results are not very sensitive on the
exact values of g∗ we use, which has already been noted in ref. [56].
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However, if the abundance of axions is large, we cannot neglect their contribution to the
number of entropic degrees of freedom and a better estimate reads [17]

∆Neff = 4
7

(11
4

) 4
3

 2π4

45ζ(3)gSM
∗s (TCMB)Y ∞

a

1− 2π4

45ζ(3)Y ∞
a


4
3

. (C.9)

We use this expression throughout our analysis, although its effect is non-negligible only for
∆Neff ≳ 0.2, and even then is merely a few-percent correction compared to eq. (C.8).

We note that the estimate in eq. (C.9) gives a good approximation only when the
axion follows a thermal distribution, which is the case for freeze-out production. Instead
for freeze-in production eq. (C.9) underestimates ∆Neff. This is because eq. (C.7) is based
on the assumption that ρa = π2(π2na/ζ(3))4/3/30, for which the typical energy of axions
is ρa/na ∼ n

1/3
a . However, for freeze-in production n

1/3
a is smaller than the actual typical

energy (neq
a )1/3 ∼ T of thermally produced axions, so that the actual energy density of the

axions is larger than obtained from eq. (C.7).
Let us estimate how much we underestimate ∆Neff. A more precise estimate of ρa is

ρa,1 = ρeq
a

na

neq
a

(C.10)

at the temperature TFI where the freeze-in production is peaked at. This relation is justified
since typically ρ̇a/ρeq

a ≃ ṅa/neq
a . Taking the ratio with the energy density ρa,2 estimated

by ρa,2 = π2(π2na/ζ(3))4/3/30, we obtain

ρa,2
ρa,1

≃ 0.5
(∆Neff

0.05

)1/4 (g∗s(TFI)
10

)1/3
, (C.11)

where ∆Neff is obtained by eq. (C.8). One can see that the underestimation is more significant
when ∆Neff is smaller and the freeze-in production is peaked at lower temperatures. The
most underestimated channel is the scattering off muons, where g∗s(TFI) ≃ 10. For the
phenomenologically interesting range ∆Neff > 0.05, the underestimation is at most off by a
factor 2. This corresponds only to a 30% change in fa since ∆Neff ∝ f

−8/3
a . For freeze-in

production by other particles, where g∗s(TFI) is larger, the impact is even smaller.
Given that ∆Neff is appreciably underestimated only for the production off muons, we

use eq. (C.9) throughout the paper. Note that eq. (C.10) is also still approximate and
requires the determination of TFI. A more exact computation will require the derivation
of ρ̇a, which we leave for future work.

C.1 Approximate solution to Boltzmann equation

It is possible to obtain an approximate analytic solution of the Boltzmann equation if one
assumes approximately constant g∗s [23, 56], which allows to simplify g′∗s(x) = 0 and take
Y eq

a constant. Re-introducing the collision operators Ci = neq
a Γi with i denoting collectively

scattering and decays, the Boltzmann equation (C.5) simplifies to

dYa

1− Ya

Y eq
a

=
∑

i Ci(x)x4dx

H(m)s(m) , (C.12)
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where we used the temperature scaling of entropy density and Hubble rate scale H(x) =
H(m)x−2, s(x) = s(m)x−3 for constant g∗s. With the initial condition Y (x = 0) = 0 one can
integrate both sides to obtains the late-time yield Y ∞

a = Ya(x → ∞) as

Y ∞
a = Y eq

a (m)
(
1− exp

[
−
∑

i

∫∞
0 x4Ci(x)dx

H(m)s(m)Y eq
a (m)

])
, (C.13)

where we have evaluated for definiteness Y eq
a at T = m. We now perform the remaining

integral using the exact expressions in eq. (B.8) and (B.16). The latter gives (adding a
factor 2 for charge multiplicities)

Cp1→p2a(x) = C2
ℓℓ′

m6
ℓ

32π3f2
a

K1(x)
x

, (C.14)

and since ∫ ∞

0
x3K1(x)dx = 3π

2 , (C.15)

we obtain for decays ∫ ∞

0
x4Cp1→p2a(x) = C2

ℓℓ′
3m6

ℓ

64π2f2
a

. (C.16)

Instead for scattering the collision operators are (including a factor of 2 for charge multiplicity
in ℓ±γ → ℓ±a)

Cℓ+ℓ−→γa(x) =
mℓ

8π4x

∫ ∞

4m2
ℓ

(
1− 4m2

ℓ

s

)
s3/2σℓ+ℓ−→γa(s)K1

(
x
√

s

mℓ

)
ds ,

= 4m6
ℓ

π4x

∫ ∞

0
y
√
1 + y σℓ+ℓ−→γa(y)K1

(
2x
√
1 + y

)
dy , (C.17)

where we substituted s = 4m2
ℓ(1 + y), and

Cℓ±γ→ℓ±a(x) =
mℓ

4π4x

∫ ∞

m2
ℓ

(
1− m2

ℓ

s

)2

s3/2σℓ±γ→ℓ±a(s)K1

(
x
√

s

mℓ

)
ds ,

= m6
ℓ

4π4x

∫ ∞

0

y2
√
1 + y

σℓ±γ→ℓ±a(y)K1
(
x
√
1 + y

)
dy , (C.18)

where we substituted s = m2
ℓ (1 + y). While these integrals are difficult, we can perform first

the temperature (i.e. x) integration of the integrand, which leaves an expression that can be
easily integrated over y analytically, giving in total for scattering

∫ ∞

0
x4Cp1p2→p3a(x) = C2

ℓℓ

αm6
ℓ

π2f2
a


3
32 ℓ+ℓ− → γa

4
21π ℓ±γ → ℓ±a

. (C.19)

C.2 Thermal freeze-out

If interactions bring axions into thermal equilibrium at early times, i.e. Γi(m)/H(m) ≫ 1,
which can always be achieved for sufficiently small fa, the late-time abundance is dominated
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by the first term in eq. (C.13). This gives the yield as Y ∞
a = Y eq

a (Td), where Td is the
decoupling temperature defined by H(Td) = Γi(Td), which enters the yield only through
g∗s(Td). The latter decreases with fa, so for sufficiently small fa the late-time yield reaches a
plateau, and so does ∆Neff according to eq. (C.8), or better (C.9).

We now estimate the decoupling temperature and the corresponding yield using the
asymptotic forms of the scattering and decay rates. Since decoupling happens at moderately
late times x ≈ m/10, we use the asymptotic forms in the low-temperature regime eq. (B.30)
and eq. (B.38). The decoupling temperatures for scattering and decays are thus given
by solving

T d
S ≈ m log

 C2αm2MPl

1.66
√

g∗s(T d
S)π2ζ(3)f2

a T d
S

 , (C.20)

T d
D ≈ m log

 C2m4MPl

1.66
√

g∗s(T d
D)32πζ(3)f2

a (T d
D)3

 . (C.21)

C.3 Thermal freeze-in

When the interactions are too weak to bring axions to equilibrium, Γi(m)/H(m) ≪ 1, which
happens for sufficiently large fa, one can expand the exponential n eq. (C.13) to leading
order obtaining

Y ∞
a ≃ Y eq

a (m)
∑

i

∫∞
0 x4Ci(x)dx

H(m)s(m)Y eq
a (m) = m6

ℓ

π2f2
a H(m)s(m)


C2

ℓℓ
3α
32 ℓ+ℓ− → γa

C2
ℓℓ

4α
21π ℓ±γ → ℓ±a

C2
ℓℓ′

3
64 ℓ± → ℓ′±a

= 1.4× 10−3 mℓMPl

f2
a g∗s(mℓ)

√
g∗(mℓ)


9.4α C2

ℓℓ ℓ+ℓ− → γa

6.1α C2
ℓℓ ℓ±γ → ℓ±a

4.7C2
ℓℓ′ ℓ± → ℓ′±a

, (C.22)

so apart from the α-suppression scattering and decays give similar contributions (see also
refs. [90, 91]). The yields scale as mℓ/f2

a , so that one obtains with eq. (C.8) the scaling
∆Neff ∝ f

−8/3
a . These analytic formulas agree quite well with the numerical results (less

so for muon scattering and decays, since the number of SM relativistic degrees of freedom
changes rapidly around the muon mass).

C.4 Transition region

We now estimate the temperature T eq at which scatterings or decays bring axions into thermal
equilibrium in the very early universe at T ≫ m, which happens only for sufficiently small
fa. For this we evaluate the defining equations H(T eq

i ) = Γi(T eq
i ) in the high-temperature
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qL3 qLa uR3 uRa dR3 dRa ℓL3 ℓLa eR3 eRa hi ϕ

U(1)PQ Xq3 Xqa Xu3 Xua Xd3 Xda Xℓ3 Xℓa Xe3 Xea Xi Xϕ

Table 4. PQ charge assignments, a = 1, 2 denotes the first two fermion generations, while i =
0, . . . , n − 1 runs over Higgs doublets.

regime for the rates, using eq. (B.29) and (B.37). This leads to

T eq
S ≈ C2

ℓℓαm2
ℓMPl

π21.66ζ(3)
√

gUV
∗s f2

a

log 2C2
ℓℓαmℓMPl

π21.66ζ(3)
√

gUV
∗s f2

a

, (C.23)

T eq
D ≈

 C2
ℓℓ′m

4
ℓMPl

32π1.66ζ(3)
√

gUV
∗s f2

a

1/3

, (C.24)

where we worked at logarithmic accuracy in T eq
S and approximated in both cases g∗s(T eq

i ) ≈
gUV
∗s ≈ 104, since T eq

i ≫ TeV. The point T eq
i ≈ mℓ marks the transition regime between

freeze-out and freeze-in, which we can estimate extrapolating the high-temperature expressions
above. It corresponds to the axion decay constant (fa/Ci)eq

i given by

(fa/Cℓℓ)eq
S ≈

 αmℓMPl

π21.66ζ(3)
√

gUV
∗s

log 2

1/2

= 2× 107 GeV
√

mℓ

GeV ,

(fa/Cℓℓ′)eq
D ≈

 mℓMPl

32π1.66ζ(3)
√

gUV
∗s

1/2

= 8× 107 GeV
√

mℓ

GeV . (C.25)

D Astrophobic DFSZ models

In this appendix we describe in detail the construction of astrophobic DFSZ models as
SM extensions with two or three Higgs doublets. We begin with the general description
of the quark Yukawa sector and the resulting axion couplings, which are determined by
the PQ charges of Higgs doublets and flavor rotations. The form of the scalar potential
then fixes all charges in terms of the discrete choices for the Yukawa sector, the vacuum
angles and flavor rotations. By scanning over these possibilities, we systematically identify all
nucleophobic models, for models with two and three Higgs doublets. We finally include the
charged lepton Yukawa sector and construct models with suppressed couplings to electrons,
muons and/or photons.

D.1 Quark Yukawa sector

To the SM fermion fields we add n scalar Higgs doublets hi with hypercharge Y = −1/2
and a complex singlet scalar ϕ. The quark Lagrangian is taken to be invariant under a
U(1)PQ symmetry, with the most general charge assignment consistent with a 2 + 1 flavor
structure, as shown in table 4.
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The general quark Yukawa Lagrangian reads

L = −yu
33qL3uR3hu

33 − yu
3aqL3uRahu

3a − yu
a3qLauR3hu

a3 − yu
abqLauRbh

u
ab

+ yd
33qL3dR3h̃d

33 + yd
3aqL3dRah̃d

3a + yd
a3qLadR3h̃d

a3 + yd
abqLadRbh̃

d
ab + h.c., (D.1)

where h̃i = iσ2h∗
i , a, b = 1, 2 and each Higgs is chosen from the set of n Higgs fields hi,

i = 0 . . . n − 1, e.g., hu
3a = h2, hd

33 = h0, etc. Schematically, one has

yu ∼
(

hu
ab hu

a3
hu

3a hu
33

)
, yd ∼

(
hd

ab hd
a3

hd
3a hd

33

)
, (D.2)

where we indicate in 2 +1 flavor space to which Higgs field the respective quark bilinears
couple to. Note that we require that all Yukawa couplings are allowed by the PQ symmetry,
i.e., there are no Yukawa textures (for models where this assumption is relaxed see e.g.,
ref. [30]). This gives five constraints, which determines fermion charges in terms of Higgs
charges, up to a single quark charge Xq3 ,11

Xua = −Xhu
3a

+ Xq3 , Xda = Xhd
3a

+ Xq3 , Xqa = −Xhu
33
+ Xhu

a3
+ Xq3 (D.3)

Xu3 = −Xhu
33
+ Xq3 , Xd3 = Xhd

33
+ Xq3 . (D.4)

Moreover, there are three consistency conditions relating Higgs charges as

Xhu
33
− Xhu

a3
= Xhu

3a
− Xhu

ab
= Xhd

a3
− Xhd

33
= Xhd

ab
− Xhd

3a
. (D.5)

D.2 Axion couplings

The scalar potential is constructed with a single global U(1)PQ symmetry, and suitable to
generate vacuum expectation values for ϕ and all Higgs doublets hi. The vacuum configuration
breaks the global PQ symmetry spontaneously, and the corresponding Goldstone boson is the
axion, which enters the Lagrangian as the phase of ϕ and Higgs fields. Since Yukawas are PQ
invariant, the axion couplings can be removed by performing the following flavor-diagonal
fermion field redefinitions (which is just a local PQ transformation acting only on fermions)

f → f eiXf a(x)/vPQ . (D.6)

Since this transformation is anomalous, it generates axion couplings to gauge field strengths,
and since it is local it modifies the fermion kinetic terms. Here vPQ denotes the PQ breaking
scale, which for vϕ ≫ vi is set by the singlet vev, vPQ ≈ Xϕvϕ.

The axion couplings to gluons and photons are given by

Lanom = N
a

vPQ

αs

4π
GµνG̃µν + E

a

vPQ

αem
4π

FµνF̃ µν , (D.7)

11This follows from conserved baryon number, which could be used to redefine U(1)PQ such that Xq3 = 0.
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with the dual field strength F̃µν = 1
2ξµνρσF ρσ, ξ0123 = −1 and the anomaly coefficients

2N = 4Xqa − Xu3 − 2Xua − Xd3 − 2Xda

= 2Xhu
ab
+ Xhu

33
− 2Xhd

ab
− Xhd

33
, (D.8)

E = EQ + EL

= 5
3 (2Xqa + Xq3)−

4
3 (2Xua + Xu3)−

1
3 (2Xd + Xd3) + EL

= 8
3Xhu

ab
+ 4

3Xhu
33
− 2

3Xhd
ab
− 1

3Xhd
33
+ EL , (D.9)

where we included also a generic contribution from the charged lepton sector EL, to be
discussed below.

From the kinetic terms one obtains axion-fermion couplings in the flavor interaction basis

L = ∂µa

vPQ

[
uiγ

µ
(
C̃q

ijPL + C̃u
ijPR

)
uj + diγ

µ
(
C̃q

ijPL + C̃d
ijPR

)
dj

]
, (D.10)

with

C̃q
ij =

(
Xhu

33
− Xhu

a3
− Xq3

)
δij + diag(0, 0, Xhu

a3
− Xhu

33
) ,

C̃u
ij =

(
Xhu

3a
− Xq3

)
δij + diag(0, 0, Xhu

33
− Xhu

3a
) ,

C̃d
ij =

(
−Xhd

3a
− Xq3

)
δij + diag(0, 0, Xhd

3a
− Xhd

33
) . (D.11)

In the mass basis we finally obtain

L = ∂µa

vPQ
uγµ (CuLPL + CuRPR)u + ∂µa

vPQ
dγµ

(
CdLPL + CdRPR

)
d , (D.12)

with

CuL
ij =

(
Xhu

33
− Xhu

a3
− Xq3

)
δij −

(
Xhu

33
− Xhu

a3

)
ξuL

ij ,

CdL
ij =

(
Xhu

33
− Xhu

a3
− Xq3

)
δij −

(
Xhu

33
− Xhu

a3

)
ξdL

ij ,

CuR
ij =

(
Xhu

3a
− Xq3

)
δij +

(
Xhu

33
− Xhu

3a

)
ξuR

ij ,

CdR
ij =

(
−Xhd

3a
− Xq3

)
δij +

(
Xhd

3a
− Xhd

33

)
ξdR

ij , (D.13)

where the flavor structure is controlled by the matrices

ξfP
ij ≡ (VfP )∗3i(VfP )3j , f = u, d , P = L, R , (D.14)

which depend on the unitary rotations (VfP )ij defined by (VUL)†muVUR = mdiag
u etc. They

satisfy

0 ≤ ξfP
ii ≤ 1 ,

∑
i

ξfP
ii = 1 , |ξfP

ij | =
√

ξfP
ii ξfP

jj , (D.15)

and therefore depend only on 2 independent real parameters in each sector uL, uR, dR.
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Finally we adopt the standard convention for the axion decay constant fa = vPQ/(2N),
and write the Lagrangian as

L = 1
2(∂µa)2 + a

fa

αs

8π
GµνG̃µν + E

N

a

fa

αem
8π

FµνF̃ µν + ∂µa

2fa
f iγ

µ
(
CV

ij + CA
ij γ5

)
fj , (D.16)

with

CV
uiuj

=
CuR

ij + CuL
ij

2N
, CA

uiuj
=

CuR
ij − CuL

ij

2N
, (D.17)

and analogous for the down-quark coupling.

D.3 Scalar potential

Compared to the SM the Yukawa Lagrangian has an extra U(1)n
h × U(1)ϕ global symmetry

that needs to be broken to a single U(1)PQ factor by adding n couplings in the scalar sector.
Since U(1)PQ ̸= U(1)ϕ, we need at least one coupling of ϕ. In general we can couple h†

i hj to
an operator Oij ∈ {ϕ, ϕ∗, ϕ2, ϕ∗2} at the renormalizable level. This determines the charge
difference of the Higgs fields in terms of a free parameter Aij that can take the values
Aij ∈ {±1,±2}. Without loss of generality, we can therefore add suitable couplings in the
scalar potential, which determine all Higgs charges in term of a charge X0 of h0 and n − 1
parameters Ai, which can take discrete values that increase with i

Xi = X0 + AiXϕ , Ai = ±1,±2, . . . , 2i , i = 0, 1, . . . , n − 1 , (D.18)

and A0 = 0. Finally the charge X0 is determined by requiring that the axion is orthogonal
to the Goldstone eaten up by the Z-boson, which gives the conditions

0 =
∑

i

Xi
v2

i

v2 , 1 =
∑

i

v2
i

v2 , (D.19)

where the sum is taken over all Higgs fields with vev vi and v = 246GeV denotes the
electroweak vev. This gives

X0 = −Xϕ

∑
i

Ai
v2

i

v2 , (D.20)

which makes all Higgs charges and thus fermion charges to depend on continuous parameters,
that is, the vacuum angles. As the anomaly coefficients are topological in nature, they have
to be integers nevertheless, and indeed it is obvious that 2N in eq. (D.8) only depends on
Higgs charge differences, so X0 drops out, and up to an overall charge normalization Xϕ

the color anomaly coefficient is solely determined by Ai. Similarly for the electromagnetic
anomaly the charged lepton contribution EL will provide a complete cancellation of the X0
dependence, and in the final ratio E/N the charge normalization Xϕ cancels out leaving
a rational number. Also in fermion couplings Xϕ cancels out, but these couplings depend
in general on X0. However, the combination CA

uiuj
+ CA

didj
only depends on Higgs charge

differences, so again does not depend on vacuum angles.
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D.4 Nucleophobic models

We now restrict for simplicity to at most 3 Higgs doublets. This implies that the consistency
conditions

Xhu
33
− Xhu

a3
= Xhu

3a
− Xhu

ab
= Xhd

a3
− Xhd

33
= Xhd

ab
− Xhd

3a
, (D.21)

can only be fulfilled if in each equation Higgses are pairwise identified, giving 2 possibilities
for each equation. Counting all distinct possibilities, one finds 7 distinct models, which are(

hbhb

haha

)(
haha

hbhb

)
,

(
haha

haha

)(
hbhc

hbhc

)
,

(
hbha

hbha

)(
hahc

hahc

)
,

(
hbha

hbha

)(
hcha

hcha

)
,(

hahb

hahb

)(
hcha

hcha

)
,

(
hahb

hahb

)(
hahc

hahc

)
,

(
hbhc

hbhc

)(
haha

haha

)
. (D.22)

We also restrict to models that potentially have suppressed couplings to nucleons, which
mainly depend on the valence quark couplings Cu and Cd, given by

Cu ≡ CA
u = 1

2N

[
Xhu

ab
+
(
Xhu

33
− Xhu

3a

)
ξuR

11 +
(
Xhu

3a
− Xhu

ab

)
ξuL

11

]
, (D.23)

Cd ≡ CA
d = 1

2N

[
−Xhd

ab
+
(
Xhd

3a
− Xhd

33

)
ξdR

11 +
(
Xhd

ab
− Xhd

3a

)
ξdL

11

]
. (D.24)

For simplicity we restrict in the following to models without quark flavor violating, meaning
either ξ11 = 0 or ξ11 = 1, which we take for the u− and d-sector uniformly. Couplings to
nucleons are suppressed for 1 = Cu + Cd, which implies for ξ11 = 0 models

Xhu
ab
+ Xhu

33
− Xhd

ab
− Xhd

33
= 0 , (ξuL

11 = ξuR
11 = ξdL

11 = ξdR
11 = 0) (D.25)

and for ξ11 = 1 models

Xhu
ab
− Xhd

ab
= 0 , (ξuL

11 = ξuR
11 = ξdL

11 = ξdR
11 = 1) . (D.26)

The condition for ξ11 = 0 can again only be satisfied if Higgses are pairwise identified. Since
we also want 2N = 2Xhu

ab
+Xhu

33
− 2Xhd

ab
−Xhd

33
to be non-zero for the QCD axion, we finally

arrive at the following necessary conditions for nucelophobia in models with n ≤ 3:

Xhu
ab

= Xhd
33

̸= Xhu
33

= Xhd
ab

, (ξuL
11 = ξuR

11 = ξdL
11 = ξdR

11 = 0) (D.27)

Xhu
ab

= Xhd
ab
∧ Xhu

33
̸= Xhd

33
, (ξuL

11 = ξuR
11 = ξdL

11 = ξdR
11 = 1) , (D.28)

so that the contribution to the color anomaly effectively comes only from a single family,
2N = Xhu

ab
− Xhd

ab
for ξ11 = 0 and 2N = Xhu

33
− Xhd

33
for ξ11 = 1 (cf. ref. [29]).

Comparing to the possible 3HDMs in eq. (D.4), we see that for ξ11 = 0 only two
structures allow for nucleophobia

Q2 : yu ∼
(

haha

hbhb

)
, yd ∼

(
hbhb

haha

)
,

Q3 : yu ∼
(

hahb

hahb

)
, yd ∼

(
hbha

hbha

)
, (D.29)
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Model EQ/N CA
uiui

CA
didi

CV,A
ui ̸=uj

CV,A
di ̸=dj

Q1 2/3 + 6c2
β c2

β ξdR
ii − c2

β 0 ξdR
ij

Q2 −4/3 + 6c2
β c2

β − ξuL
ii −ξdL

ii + s2
β ±ξuL

ij ±ξdL
ij

Q3 −4/3 + 6c2
β c2

β − ξuR
ii −ξdR

ii + s2
β −ξuR

ij −ξdR
ij

Q4 −10/3 + 6c2
β −s2

β + ξuR
ii s2

β ξuR
ij 0

Table 5. Axion couplings in the four nucleophobic 2HDMs Q1-Q4, as a function of the flavor
parameters ξqP

ij and the vacuum angle cβ ≡ cosβ, sβ ≡ sin β. Here EQ denotes the contribution of the
quark sector to the electromagnetic anomaly coefficient E, to be added to the contribution EL from
the charged lepton sector. In all models the domain wall number is trivial, 2N = 1. Nucleophobia is
achieved for Cu ≈ 2/3, Cd ≈ 1/3.

with a ̸= b, while for ξ11 = 1 there are also only two structures

Q1 : yu ∼
(

haha

haha

)
, yd ∼

(
hahb

hahb

)
,

Q4 : yu ∼
(

hcha

hcha

)
, yd ∼

(
hchb

hchb

)
, (D.30)

where a ̸= b and c ̸= a (otherwise Q4 = Q1). The notation is chosen such that in all models

2N =Xa − Xb , Cu = Xa

Xa − Xb
, Cd = −Xb

Xa − Xb
. (D.31)

This makes manifest that indeed Cu + Cd = 1, while the other condition for nucleophobia,
Cu − Cd = 1

3 , requires for all models

1
3 = Xa + Xb

Xa − Xb
. (D.32)

For 2HDMs, without loss of generality ha = h1 and hb = hc = h0, so that nucleophobia
fixes the value of X0 as

X0 = −XϕA1
v2

1
v2

!= −1
3A1Xϕ , (D.33)

with v1 ≡ sβv, v0 ≡ cβv, and thus nucleophobia is achieved for s2
β ≈ 1/3. Note that

the numerical value of A1 is unphysical as it is equivalent to re-defining the PQ charge
normalization. Choosing e.g. A1 = 1 (corresponding to the operator h†

1h2ϕ) and Xϕ = 1,
one obtains X1 = c2

β and X0 = −s2
β , and we recover the four nucleophobic models proposed

in ref. [29], although we follow the notation in ref. [32]. The resulting predictions are
summarized in table 5.

In 3HDMs one has the possibility to enforce nucleophobia by making X0 ≪ 1 (instead
of X0 ≈ −1/3), so that fermion couplings can be made small by coupling them to h0. This
is because one can choose ha = h1, hb = h2 with A1 = 2, A2 = −1 (corresponding to the
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Model EQ/N CA
uiui

CA
didi

CV,A
ui ̸=uj

CV,A
di ̸=dj

Q1 14/3 + 2X0 2/3 + X0/3 −2/3− X0/3 + ξdR
ii 0 ξdR

ij

Q2 8/3 + 2X0 2/3 + X0/3− ξuL
ii 1/3− X0/3− ξdL

ii ±ξuL
ij ±ξdL

ij

Q3 8/3 + 2X0 2/3 + X0/3− ξuR
ii 1/3− X0/3 + ξdR

ii −ξuR
ij −ξdR

ij

Q4 2/3 + 2X0 −1/3 + X0/3 + ξuR
ii 1/3− X0/3 ξuR

ij 0

Q5 2 + 2X0 X0/3 + 2/3ξuR
ii −X0/3 + 1/3ξdR

ii 2/3ξuR
ij 1/3ξdR

ij

Table 6. Axion couplings in the five potentially nucleophobic 3HDM models Q1-Q5, as a function of the
parameters ξqP

ij and X0. Here EQ denotes the contribution of the quark sector to the electromagnetic
anomaly coefficient E, to be added to the contribution from the charged lepton sector. In all models
the domain wall number is 2N = 3 and X0 ≪ 1. Nucleophobia is achieved for Cu ≈ 2/3, Cd ≈ 1/3.

operators h†
1h0ϕ2, h†

2h0ϕ†)

Xa + Xb

Xa − Xb
= 2X0/Xϕ + A1 + A2

A1 − A2
= 1

3 + 2
3

X0
Xϕ

. (D.34)

With

X0
Xϕ

= −
∑

i

Ai
v2

i

v2 = v2
2

v2 − 2v2
1

v2 , (D.35)

and parametrizing the vevs as v0 = s2v, v1 = c1c2v, v2 = s1c2v, one can choose vacuum angles
such that X0/Xϕ = (1 − 3c2

1)c2
2 ≪ 1. How small X0 can be only depends on constraints

from perturbativity of Yukawa couplings. In models Q1-Q4 the strongest bounds come from
SM top and bottom Yukawas, which are given by yt = y3HDM

t c1c2, yb = y3HDM
b s1c2, where

y3HDM
b,t denote the couplings in the 3HDM, which neglecting running effects are bounded by

y3HDM
b,t <

√
16π/3 ≈ 4.1. For more details and the resulting constraints on nucleophobia see

ref. [31]. The constraints from perturbativity are relaxed in model Q5, which is obtained
from the Q4 structure in eq. (D.30) by choosing hc = h0 (while the 3HDM model Q4 is
obtained from setting hc = hb = h2). This is because only yu and yd are proportional to c2,
while all other Yukawas are controlled by s2, so that c2 can be chosen much smaller than
in Q1-Q4 without being in colnflict with perturbative unitarity. The resulting predictions
for all models are summarized in table 6, upon choosing Xϕ = 1.

D.5 Lepton Yukawa sector

The general charged lepton Yukawa Lagrangian is given by

L = ye
33ℓL3eR3h̃e

33 + ye
3aℓL3eRah̃e

3a + ye
a3ℓLaeR3h̃e

a3 + ye
abℓLaeRbh̃

e
ab + h.c. , (D.36)

in the same notation as eq. (D.1). We begin by restricting to a 2+1 flavor structure, denoting
general Higgs couplings as

ye ∼
(

he
abh

e
a3

he
3ahe

33

)
, (D.37)

– 43 –



J
H
E
P
0
9
(
2
0
2
4
)
1
3
6

which fixes charged lepton charges in terms of Higgs charges as

Xℓa = Xhe
33
− Xhe

a3
+ Xℓ3 , Xea = Xhe

3a
+ Xℓ3 , Xe3 = Xhe

33
+ Xℓ3 , (D.38)

and gives a single consistency condition

Xhe
a3

− Xhe
33

= Xhe
ab
− Xhe

3a
. (D.39)

The contribution to the electromagnetic anomaly coefficient EL is given by

EL = −2Xhe
ab
− Xhe

33
, (D.40)

and axion couplings to charged leptons in the mass basis read

CeL
ij =

(
Xhe

a3
− Xhe

33
− Xℓ3

)
δij −

(
Xhe

a3
− Xhe

33

)
ξeL

ij ,

CeR
ij =

(
−Xhe

3a
− Xℓ3

)
δij +

(
Xhe

3a
− Xhe

33

)
ξeR

ij . (D.41)

Restricting to at most 3HDMs, again the consistency condition can only be pairwise satisfied,
giving 2 possible structures, which are universal LH or RH charged lepton charges

ye ∼
(

hdhe

hdhe

)
[ER] or ye ∼

(
hdhd

hehe

)
[EL] (D.42)

We are interested in suppressed electron couplings, which read

Ce ≡ CA
e = 1

2N

−Xdδij + (Xd − Xe)

ξeR
11 ER

ξeL
11 EL

 (D.43)

In 2HDM, where both Higgs charges are large, the only way to suppress Ce is by tuning ξ11.
There are 2 possibilities for identifying hd and he with h0 and h1, giving

E1 : ye ∼
(

h1h1
h0h0

)
,

E2 : ye ∼
(

h0h0
h1h1

)
, (D.44)

where we restricted to EL for simplicity, which gives identical predictions for axion couplings
as ER, upon replacing ξeL

ij ↔ ξeR
ij . One finally obtains for 2HDMs the predictions in table 7.

Note that these models cannot be simultaneously electro- and muon- phobic if the conditions
for nucleophobia and suppressed LFV couplings in the µ-e sector are imposed.

In 3HDMs, one can suppress the electron coupling simply by choosing hd = h0 (ξ11 = 0)
or he = h0 (ξ11 = 1), since X0 has small PQ charge. Then there are in total 5 distinct
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Model EL/N CA
eiei

CV,A
ei ̸=ej

E1 2− 6c2
β −c2

β + ξeL
ii ∓ξeL

ij

E2 4− 6c2
β s2

β − ξeL
ii ±ξeL

ij

Table 7. Axion couplings in the two potentially electrophobic 2HDM models EL1 and EL2, as
a function of the parameters ξeL

ij and cβ ≡ cosβ, sβ ≡ sin β. Predictions for ER1 and ER2 are
identical, upon ξeL

ij → ξeR
ij and in the last column ∓ξeL

ij → ξeR
ij ,±ξeL

ij → −ξeR
ij . Here EL denotes the

contribution of the charged lepton sector to the electromagnetic anomaly coefficient E, to be added to
the contribution from the quark sector. Electrophobia is achieved for ξeL

11 ≈ c2
β (E1) or ξeL

11 ≈ s2
β (E2).

choices (upon L ↔ R)

E1 : ye ∼
(

h0h0
h1h1

)
,

E2 : ye ∼
(

h0h0
h2h2

)
,

E3 : ye ∼
(

h0h0
h0h0

)
,

E4 : ye ∼
(

h1h1
h0h0

)
,

E5 : ye ∼
(

h2h2
h0h0

)
. (D.45)

They gives rise to the models in table 8. Note that E1 and E2 can be simultaneously electro-
and muonphobic in the absence of lepton flavor violation (ξ33 = 1), while in E3 there is
no LFV and all lepton couplings are small. Interestingly, for the 3HDM there are three
combinations that are also photo-phobic, since they have E/N = 2, namely Q1E4, Q4E5,
and Q5E3. In particular in model Q5E3 also all lepton couplings are small, so that there
are sizable couplings only to first generation quarks, and couplings to nucleons and pions
are also suppressed. This avoids essentially all phenomenological constraints, apart from
mild SN1987A constraints from nucleon couplings. As discussed above, this also implies
that constraints on vacuum angles from perturbative unitarity are very mild, thus allowing
to achieve X0 ≪ 1 through c2 ≪ 1.

Finally we relax the assumption of a 2+1 flavor structure and consider the possibility that
in the charged lepton sector each lepton carries different PQ charge. We however still restrict
to flavor universal charges for either LH or RH leptons, needed to satisfy the consistency
constraints. Thus we consider two scenarios:

ye ∼

hdhehf

hdhehf

hdhehf

 [ER] or ye ∼

hdhdhd

hehehe

hf hf hf

 [EL] (D.46)

This gives only models different than those discussed previously, if all three Higgses are
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Model EL/N CA
eiei

CV,A
ei ̸=ej

E1 −4/3− 2X0 −X0/3− 2/3ξeL
ii ±2/3ξeL

ij

E2 2/3− 2X0 −X0/3 + 1/3ξeL
ii ∓1/3ξeL

ij

E3 −2X0 −X0/3 0
E4 −8/3− 2X0 −2/3− X0/3 + 2/3ξeL

ii ∓2/3ξeL
ij

E5 4/3− 2X0 1/3− X0/3− 1/3ξeL
ii ±1/3ξeL

ij

E6 −2/3− 2X0 −X0/3− δi3/3 ±
√
2/3 (δi2δj3 + δi3δj2)

Table 8. Axion couplings in the six potentially electrophobic 3HDM models EL1-EL6, as a function
of the parameters ξeL

ij and X0. Predictions for ER1-ER6 are identical, upon ξeL
ij → ξeR

ij and in
the last column ∓ξeL

ij → ξeR
ij ,±ξeL

ij → −ξeR
ij and ±

√
2/3 → −

√
2/3 for ER6. Here EL denotes the

contribution of the charged lepton sector to the electromagnetic anomaly coefficient E, to be added
to the contribution from the quark sector. One can check that EL/N = 2

∑
i CA

eiei
Electrophobia is

achieved for X0 ≪ 1 in E3 and additionally ξeL
11 ≈ 0 (E1,E2) or ξeL

11 ≈ 1 (E4,E5). The model E6 is
special as all three leptons carry different PQ charges.

different. Therefore the contribution EL is fixed, and given by

EL = −Xd − Xe − Xf = −(3X0 + A1 + A2) = −3X0 − 1 , (D.47)

and

EL/N = −2
3 (3X0 + 1) = −2X0 − 2/3 . (D.48)

Combining this model with Q2 or Q3 therefore gives a model with suppressed photon
couplings. In addition we can simultaneously suppress electron and muon couplings. The
charged lepton couplings read

(CA
e )ij = − 1

2N
(V ∗

EP )ki(VEP )kjXk , (D.49)

where P = L/R for EL/ER and Xk = {Xd, Xe, Xf}. We now want to get suppression of
the Ce, Cµ and Ceµ in order to avoid stringent constraints from WDs, SN1987A and LFV
searches. This can indeed be achieved for choosing hd = h0, he = h1, hf = h2, so

E6 : ye ∼

h0h0h0
h1h1h1
h2h2h2

 (D.50)

for the LH model, the RH model is analogous. This gives

(CA
e )ij = −1

3 [X0δij − (V ∗
EL)3i(VEL)3j + 2(V ∗

EL)2i(VEL)2j ] . (D.51)

Now choosing VEL to be just a rotation in the 2-3 sector,

VEL =

1 ce se

−se ce

 , (D.52)
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with se =
√
2/3, ce =

√
1/3, one finds

(CA
e )ij = −1

3X0δij −
1
3

0 0 0
0 0

√
2

0
√
2 1

 , (D.53)

so that diagonal and off-diagonal couplings in the E6 model read

(CA
e )ii = −1

3X0 −
1
3δi3 , (CV,A

e )i ̸=j = ±
√
2
3 (δi2δj3 + δi3δj2) , (D.54)

and for X0 ≪ 1 only Cτ and Cτµ are non-vanishing.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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