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Abstract
In the present work, we propose an alternative approach for deriving the free energy formulation
of a non-uniform system. Compared with the work of Cahn and Hilliard (1958 J. Chem. Phys.
28 258–67), our approach provides a more comprehensive explanation for the individual energy
contribution in a non-uniform system, including entropy, interaction energy, and internal energy.
By employing a fundamental mathematical calculus, we reformulate the local composition
within the interface region. Utilizing the reformulated local composition as well as classic
thermodynamic principles, we establish formal expressions for entropy, interaction energy, and
the internal energy, which are functions of both composition and composition gradients. We
obtain a comprehensive free energy expression for a non-uniform system by integrating these
energy density formulations. The obtained free energy expression is consistent with the formula
type of Cahn and Hilliard and prodives more deeper physical interpretation. Moreover, using the
same approach, we derive formulations for elastic energy and electric potential energy in a
non-uniform system. However, the proposed approach encounters a limitation in the special
case of a non-uniform fluid contacting a solid substrate. Due to the significant difference in the
length scales between the solid–fluid and fluid–fluid interfaces, the wall free energy formulation
based on the aforementioned concept is unsuitable for this multi-scale system. To address this
limitation, we reformulate the wall free energy as a function of the average composition over the
solid–fluid interface. Additionally, the previous derivation relies on an artificial treatment of
describing the composition variation across the interface by a smooth monotone function, while
the true nature of this variation remains unclear. By utilizing the concept of average
composition, we circumvent the open question of how the composition varies across the
interface region. Our work provides a thorough understanding for the construction of free
energy formulations for a non-uniform system in condensed matter physics.
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List of symbols

Notation Description
Ω Domain investigated
S Domain boundary
F Chemical free energy functional
ρ Density
h Distance between the separation layer and the

middle of the liquid
ω Successive factor
θ Orientation angle
R Anisotropic interfacial energy
ψ Inclination of the normal to the liquid–solid

interface with respect to the growth direction
α Gradient energy coefficient
φ Phase parameter
z Coefficient controlling the coupling strength

between φ and ∇θ
e Coefficient controlling the coupling strength

between φ and ∇θ
m Local magnetization variable
K̃ Coefficient proportional to the interaction

energy and to the number of lattice bonds
f 0 Free energy density of uniform system
κ Coefficient of the gradient term in free energy

formulation
f Chemical free energy density
ci Volume fraction of the ith component
K Number of the components
NA Avogadro constant
Rg Gas constant
ni Mole numbers of the ith component
vi Molar volume of the ith component
v̄ Average molar volume of system
T Temperature
P Pressure
SB Configurational entropy functional
sB Configurational entropy density
kb Boltzmann constant
W Number of the configurations
λ Interfacial length
ℓi Characteristic length vector of ith component of

liquid
m Outer normal vector of the domain boundary
hB Interaction energy density
H Interaction energy functional
χij Interaction coefficients between ith and jth

components
u Internal energy density
Cv Heat capacity
U Internal energy
S Entropy functional
s Entropy density
Γ Diffuse-interface region that liquid interacts

with the solid substrate
Γ ′ Sharp-interface boundary that liquid interacts

with the solid substrate

FW Wall energy functional
cs Solid substrate composition
ℓs Characteristic length vector of solid substrate
c̄i average composition of ith component in

substrate–fluid interface
fE Elastic energy density
FE Elastic energy functional
ϵ Strain tensor
C Elasticity tensor
UE Electric potential energy
ε Permittivity
E Electric field strength

1. Introduction

Classical Newton’s laws of motion describe the relationship
between the motion of a mass object and the forces acting
on it. Newton applied these laws to investigate and to explain
the motion of many physical objects and systems. During
this period, the concept of energy emerged in the minds of
researchers, such as Leibniz, Bacon, and Newton, leading to
new insights that laid the foundation for classical mechanics.
However, Newton’s laws have limitationswhen applied to very
large systems consisting of many particles, such as one mole
of water, which is composed of approximately 6× 1023 water
molecules. With the development of thermodynamics, partic-
ularly statistical thermodynamics, researchers surpassed these
limitations. Statistical thermodynamics, based on atomic and
molecular theories, relates the microscopic properties of indi-
vidual atoms and molecules to the macroscopic properties of
materials. For instance, Gibbs described the energy of systems
with a uniform composition (see figures 1(a) and (b)) by integ-
rating the energy density over the whole domain Ω as

F =

ˆ
Ω

f(c) dΩ, (1)

where f (c) is the free energy density related to the compos-
ition c. However, non-uniform systems, such as multicom-
ponent alloys or water-oil mixtures, are more common in the
real world. In these non-uniform systems, physical quantit-
ies vary across separation layers, known as interfaces. The
study of interfacial phenomena in materials science has attrac-
ted great attention of researchers over the past two centuries.
Understanding and controlling interfacial phenomena is essen-
tial for optimizing material properties, designing advanced
materials, and developing innovative technologies across vari-
ous fields. Over time, the understanding of physical interfaces
has become deeper and clearer. In the early 19th century, some
researchers, such as Young and Laplace, conceptualized fluid
interfaces as surfaces of zero thickness. These foundational
studies, primarily rooted in static or mechanical equilibrium
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considerations, posited that key physical quantities like dens-
ity could exhibit discontinuities across the interface. Processes
like capillarity at fluid interfaces are characterized by spe-
cific boundary conditions, notably encapsulated in Young’s
equation [1] for the equilibrium contact angle or the Young–
Laplace equation linking pressure differences across an inter-
face to surface tension and curvature. Several decades later,
researchers such as Poisson, Maxwell, and Gibbs recognized
that physical quantities change rapidly but smoothly across the
interface between two bulk phases. Among them, Gibbs [2]
introduced the concept of dividing surface and surface excess
quantities, which facilitate in the development of equilibrium
thermodynamics principles for interfaces. Although Gibbs
recognized the existence of a dividing surface between differ-
ent phases, the description of the energy within this dividing
surface still has a gap. Motivated by these previous invest-
igations, Rayleigh and van der Waals further developed the
idea of interface with non-zero thickness in detail, proposing
gradient theories for the interface science based on thermody-
namic principles. In particular, van der Waals [3] proposed the
concept of ‘diffuse interface’ and gave a theory to predict its
thickness. In van der Waals’s theory, the thickness of this layer
increases with rising temperature and becomes infinite as the
critical temperature is approached.

In inhomogeneous systems, well-defined phases are sep-
arated by thin interfaces. The formation and movement of
the interface are often observed in physical processes, for
example, phase separation and solidification. Phase separation
and solidification are fundamental processes in materials sci-
ence and engineering, influencing the formation ofmicrostruc-
tures and properties of materials. Understanding these phe-
nomena requires accurate modeling approaches that capture
the evolution of interfaces between different phases. Advanced
analytical techniques enable detailed investigations of interfa-
cial behavior, leading to insights that drive material innova-
tion and technological progress. With the development of the
modern computer, computational modeling becomes an out-
standing research method in these investigations.

Today, the diffuse interface model serves as a powerful
computational tool for simulating interfacial phenomena at
the mesoscale, including phase separation [4–7], solidific-
ation [8–10], grain boundary grooving [11], wetting beha-
vior [12], to name a few. Unlike the sharp-interface model,
the diffuse interface model represents phase boundaries as
gradual transitions over a finite region, eliminating the need to
explicitly track the interface position. In cases where phases
deviate from equilibrium, one phase grows at the expense of
others. Specifically, the interface undergoes movement until
the non-equilibrium system reaches a state of thermodynamic
equilibrium. In this model, variable order parameters vary
smoothly across the interface between two distinct phases,
reflecting changes in physical properties. For example, van
der Waals considered the liquid–vapor interface and assumed
that the separation surface is horizontal. In this case, the
total energy of the system is formulated as a function of the
density [3]:

F =

ˆ
ρ

[
f(ρ)− ω

2
d2ρ
dh2

]
dh, (2)

where ρ indicates the density and exhibits a continuous vari-
ation through the boundary layer, h is the distance between
the separation layer and the middle of the liquid, ω represents
a successive factor, and f(ρ) depicts the free energy in sur-
roundings of homogeneous density. In the studies of the crystal
growth, Warren et al [13, 14] introduced the orientation angle
of the crystalline grain θ as a new order parameter to reflect the
degree of orientational order as well as the predominant local
orientation of the crystal. They described the free energy that
includes crystallographic orientation fields as:

F =

ˆ
Ω

[
f(φ,T)+

α2

2
R2 ( |∇φ|,θ−ψ)+ zg(φ) |∇θ|

+
e2

2
h(φ) |∇θ|2

]
dΩ, (3)

where z and e control the strength of the coupling between φ
and ∇θ, R depicts the anisotropic interfacial energy, and ψ is
the inclination of the normal to the liquid–solid interface with
respect to the growth direction. α is the gradient energy coeffi-
cient determining the magnitude of the penalty induced by the
presence of interfaces. The two functions, g(φ) and h(φ), both
are monotonic with respect to the phase parameter φ. Obeying
the basic law of thermodynamics, the minimization of the total
energy in the system yields the dynamic equations governing
the temporal and spatial evolution of the order parameters.
The Ginzburg–Landau equation [15] and the Cahn–Hilliard
equation [16] are the two most familiar examples, which are
widely applied in the studies of the interfacial phenomenon
with phase-field method. The standard derivation of these two
equations is based on the total energy formulation of a non-
uniform system proposed by Cahn and Hilliard [16]. Based
on the understanding of the diffuse interface, they derived
a general equation for the energy of a non-uniform system,
which has a spatial variation in composition. The chemical free
energy functional of the system over the domain Ω occupied
by the material is expressed as:

F =

ˆ
Ω

f(c,∇c, · · ·) dΩ. (4)

In this formulation, the chemical free energy density is a con-
tinuous function of composition and its gradient. It can be
expanded in a Taylor series referring to f 0, which represents
the free energy of a solution with a uniform composition c.
A general expression for a non-uniform system is obtained
without the terms in derivatives higher than the second:

F =

ˆ
Ω

[
f0 +κ(∇c)2

]
dΩ, (5)

where

κ=−
[
∂2f/

(
∂c∂∇2c

)]
0
+
[
∂2f/(∂|∇c|)2

]
0
.
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Here, the subscript zero indicates the value of the parameter
in a solution of uniform composition. This expression con-
sists of an integral comprising two components: the bulk
energy term, which describes the energy contribution from
the homogeneous part of the system and depends solely on
the local composition; and the gradient energy term, which
accounts for the energy contribution from the interface and
depends on the local composition gradient. This diffuse inter-
face model has been widely applied in researches over several
decades. Plapp [17] derived diffuse-interface equations for two
simple lattice models: the Ising model, which describes the
ferromagnetic to paramagnetic transition, and a binary lattice
alloy model. By using mean-field approximations in further
derivation, Plapp obtained the coarse-grained free energy in
Ginzburg–Landau form:

F =

ˆ
Ω

[
f(m)+

K̃
2
(∇m)2

]
dΩ, (6)

where the constant K̃ is proportional to the interaction energy
and to the number of lattice bonds between neighboring cells,
and f (m) represents the local free energy density for a single
coarse-grain cell related to the local magnetization variablem.
In this work, Plapp indicated that the origin of the gradient
term is due to the interactions between neighboring coarse-
grain cells in this context. The mathematical validity of this
derivation is well-established. However, the standard energy
formulation proposed by Cahn and Hilliard still has several
limitations:

• The Cahn–Hilliard model is primarily tailored for binary
systems, assuming a simplified form of the free energy.
This simplification may not adequately capture the complex
interactions in multi-component systems, thereby limiting
its predictive accuracy in a more general scenario.

• The derivation of the Cahn–Hilliard formulation relies on
a Taylor expansion of the total free energy around a spe-
cific composition. However, this approach does not expli-
citly account for the individual contributions of entropy,
interaction energy, and internal energy.

• The standard formulation predominantly considers the
chemical free energy contribution, neglecting other poten-
tial energy components, such as elastic energy or electro-
static potential energy. This omission constrains the model’s
applicability to systems, where these additional energy
terms play a significant role.

• The Cahn–Hilliard framework is inherently limited in
addressing multi-scale problems, particularly those that
require coupling between different physical phenomena
across varying length scales.

To better understand the diffuse interface model and address
the aforementioned limitations, a more comprehensive explor-
ation of the gradient term in the free energy formulation
for non-uniform systems is essential. In the present study,
we begin with the mixing entropy formulation of the sys-
tem and subsequently consider the interaction energy for

the system with immiscible phases. Through straightfor-
ward mathematical derivation, we obtain an energy formula-
tion for a ’non-uniform’ system that aligns with the expres-
sion of Cahn and Hilliard [16] and explain the physical
significance of the interfacial energy term in this formu-
lation. Furthermore, we derive formulations for other pos-
sible energy contributions in a non-uniform system, such as
elastic potential energy and electric potential energy. In the
special case of a non-uniform fluid contacting a solid sub-
strate, such as in wetting phenomena, we reformulate the
wall free energy as a function of the average composition
within the substrate–fluid interface, rather than relying on
the local composition and composition gradient. This refor-
mulated wall free energy can be applied to study the multi-
scale system, which arises due to the different length scales
of the substrate–fluid interface and the fluid–fluid interfaces.
This approach also avoids an open question of describing the
composition variation of one component across the interface
region.

2. An alternative concept

In the following discussion, our derivation is based on the lat-
tice model for a system consisting ofK components.We define
the volume fraction of the ith component as

ci =
nivi∑K
i=1 nivi

, (7)

where ni and vi are the moles and molar volume of the ith com-
ponent, respectively. According to definition, the constraint:∑K

i=1 ci = 1 must be satisfied.
As schematically illustrated in figures 1(a) and (b), a uni-

form system has a homogeneous composition and its free
energy density depends solely on compositions, namely f(ci).
In the non-uniform system, the composition changes from
one bulk value to another, as shown in figures 1(c) and
(d). Therefore, the formulation of its free energy should
differ from that of a uniform system. According to the
work of Cahn and Hilliard, as mentioned in introduction,
the free energy density of a non-uniform system is dir-
ectly expressed as the function of composition as well as
its derivative f(ci,∇ci). The final expression of the free
energy is obtained by expanding the free energy density in a
Taylor series without the terms in derivatives higher than the
second.

In the present work, we propose an alternative concept
for deriving the free energy formulation of non-uniform sys-
tems. Our derivation begins with the reformulation of the
local composition in the interface region. As illustrated by
the dashed rectangle in figure 1(d), the unit domain character-
ized by composition ci includes not only the bulk contribution
but also contributions from boundary layers. At the left and
right boundary layers, the compositions are denoted as c+i and
c−i , respectively. The composition at two boundary layers are
formulated as:
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Figure 1. (a) and (c) Schematic illustrations of random mixing of elements, marked by dark green and yellow circles, in a uniform and
non-uniform binary system, respectively. (b) and (d) The corresponding concentration profiles of uniform and non-uniform system along the
black dashed lines in (a) and (c). The gray region in (c) represents the interface region. The dashed rectangle in (d) indicates the unit domain
characterized by composition ci in the interface region. The compositions at two boundaries of this domain are denoted as c+i and c−i and ℓi
is the characteristic length.

c±i ≈ci ±∇ci · (ℓi)T +(ℓi) ·



∂2ci
∂x2

∂2ci
∂x∂y

∂2ci
∂x∂z

∂2ci
∂y∂x

∂2ci
∂y2

∂2ci
∂y∂z

∂2ci
∂z∂x

∂2ci
∂z∂y

∂2ci
∂z2


· (ℓi)T ,

(8)

considering the first- and second-order infinitesimal incre-
ments in composition. This expression is derived from a
second-order Taylor series expansion of the concentration pro-
file around a point within the interface. The first term indicates
the concentration at the reference point within the interface.
The second term describes the linear variation in concentra-
tion in the direction of ℓi, reflecting how concentration changes
along that vector. The third term accounts for the second-order
effects, capturing the curvature in the concentration profile
within the interface. Here, x,y,z represent the space coordinate

and ℓi indicates a characteristic length vector of ith component
describing the length and direction of its variation within the
interface region. Due to varying intermolecular interactions,
such as attraction and repulsion, the characteristic length scale
ℓi is different for distinct species. Since ℓi should be isotropic
for liquids,



∂2ci
∂x2

∂2ci
∂x∂y

∂2ci
∂x∂z

∂2ci
∂y∂x

∂2ci
∂y2

∂2ci
∂y∂z

∂2ci
∂z∂x

∂2ci
∂z∂y

∂2ci
∂z2


=



∂2ci
∂x2

0 0

0
∂2ci
∂y2

0

0 0
∂2ci
∂z2


(9)

is a diagonal matrix and equation (8) can be simplified as

c±i ≈ ci ±∇ci · ℓi+∇2ci (ℓi)
2
. (10)
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3. Entropy formulation of non-uniform system

For pure substance systems, the entropy density is a function
of the internal energy density, which depends solely on tem-
perature. When a system consists of more than one compon-
ent, the entropy density s has an additional dependence on the
composition c= (c1,c2, . . . ,cK). For a homogeneous system,
the components are fully miscible with each other, the con-
figuration entropy functional SB of the system is obtained by
integrating the entropy density sB over the domain Ω as

SB =
ˆ
Ω

sB (c) dΩ. (11)

The configuration entropy density at a constant temperature T
can be calculated by using the Boltzmann equation as

sB =−kbNA

v̄
lnW, (12)

where kb represents the Boltzmann constant, NA is the
Avogadro constant, and v̄ indicates the average molar volume
of the system. The number of configurations W for a mixture
is counted by using the formula for permutations:

W=
N!∏K
i=1 ni!

, (13)

where N=
∑K

i=1 ni (ni is the moles of component i) and N!
denotes factorial of N. In this case, the entropy density sB is
uniform across the domain Ω, when the temperature T and
pressure P exhibit uniformity. By considering a lattice model
and applying the Stirling’s formula, we have

sB (c) =−kbNA

v̄

K∑
i=1

ci lnci. (14)

However, for a system consisting of immiscible phases, there
exists a physical diffuse-interface characterized by an interfa-
cial length denoted as λ, typically on the nanometer scale [18,
19]. Across this interface, the composition ci is assumed to
change smoothly from one bulk equilibrium value to the other.
Typical examples include systems such as water-oil [20],
water-air [21], and immiscible alloy [22]. In this case, the
entropy formulation needs to be amended compared to the bulk
formulation given by equation (14). Substituting equation (10)
into the Boltzmann equation, the entropy density is
expressed as

sB =−1
2
kbNA

v̄

K∑
i=1

(
c−i lnc−i + c+i lnc+i

)
. (15)

The factor 1/2 accounts for the fact that the boundary is
also shared with a neighboring cell. By employing the Taylor
expansion for the infinitesimal increment of composition, we
obtain the following expression for the entropy density

sB (c) =−kbNA

v̄

K∑
i=1

[
ci lnci+

1
2ci

(ℓi)
2
(∇ci )2

+(1+ lnci)∇2ci (ℓi)
2
+O

(
∆c4i

)]
. (16)

Substituting equation (16) into equation (11) and applying the
divergence theorem
ˆ
Ω

(1+ lnci)∇2ci dΩ=−
ˆ
Ω

∇(1+ lnci) ·∇ci dΩ

+

ˆ
S
(1+ lnci)∇ci ·mdS (17)

and no-flux boundary condition ∇ci ·m= 0 (m indicates the
outer normal vector of the domain boundary S), SB is refor-
mulated as:

SB =
ˆ
Ω

−kbNA

v̄

K∑
i=1

ci lnci + 1
2ci

(ℓi)
2︸ ︷︷ ︸

=:κs1

(∇ci )2

− d(1+ lnci)
dci

(ℓi)
2︸ ︷︷ ︸

=:κs2

(∇ci )2

dΩ

=

ˆ
Ω

−kbNA

v̄

K∑
i=1

[
ci lnci −

1
2ci

(ℓi)
2
(∇ci )2

]
dΩ, (18)

where the cut-off terms are ignored. By using the defini-
tion of the gas constant Rg = NA kb, the equation (18) can be
expressed as

SB =
ˆ
Ω

−
Rg

v̄

K∑
i=1

[
ci lnci −

1
2ci

(ℓi)
2
(∇ci )2

]
dΩ. (19)

It is evident that the entropy for the immiscible phases
(equation (19)) is consistent with the entropy for the fully mis-
cible case, when there is no composition gradient, i.e.∇ci = 0,
∀i.

4. Interaction energy formulation of non-uniform
system

For the calculation of the entropy in the last section, the inter-
action potential between neighboring cells is overlooked. In
this section, we will derive the interaction energy for a non-
uniform system. As derived in [23], the interaction energy is
calculated as

hB =
K,K∑
i<j

χijci cj, (20)

where χij indicates the interaction coefficient between two
components. In the current work, we assume χij to be con-
stant for the sake of simplifying the model. This assump-
tion is commonly adopted in established theories, such as

6
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regular solution theory and Flory-Huggins theory [24–27].
When χij depends on the composition [28, 29], a similar
strategy based on the Taylor expansion can be applied by
using equation (10). For a non-uniform system, an infinites-
imal element at the interface has a composition ci and its
boundary layers with compositions of c−i and c+i , as pro-
posed in section 2. Following equation (20), we obtain the
expression for the interaction energy density of a non-uniform
system as

hB =
1
2

K,K∑
i<j

(
χijc

−
i c

−
j +χijc

+
i c

+
j

)
. (21)

By employing the Taylor expansion for the infinitesimal incre-
ment of composition, the interaction energy of a non-uniform
system is rewritten as

hB (c,∇c) =
K,K∑
i<j

[
χijci cj+χij (ℓj)

2 ci∇2cj+χij (ℓi)
2 cj∇2ci

+χij (ℓi · ℓj)(∇ci ·∇cj)
]
. (22)

When there is no composition gradient, the interaction energy
given by equation (22) is consistent with equation (20). By
integrating the interaction energy density over the domain Ω,
we obtain the interaction energy functional as

H=

ˆ
Ω

hB (c,∇c) dΩ. (23)

Similarly, with the aid of divergence theorem and no-flux
boundary condition, the final interaction energy functional is
rewritten as

H=

ˆ
Ω

K,K∑
i<j

[
χijci cj+χij (ℓi · ℓj)︸ ︷︷ ︸

=:κh1

(∇ci ·∇cj)

−


d
(
χijciℓj

2
)

dci
+

d
(
χijcjℓi

2
)

dcj︸ ︷︷ ︸
=:κh2

(∇ci ·∇cj)
]
dΩ

=

ˆ
Ω

K,K∑
i<j

[
χijci cj+χij

(
ℓi · ℓj− ℓj

2 − ℓi
2
)
(∇ci ·∇cj)

]
dΩ.

(24)

It should be noted that both entropy and interaction energy
exhibit non-local behavior due to their dependence on com-
position gradients. In the entropy density, only the term (∇ci)2
is present, as entropy considers the independence of each lat-
tice without interactions between adjacent lattices. In con-
trast, the cross term ∇ci ·∇cj appears in the formulation of
the interaction energy, reflecting the consideration of interac-
tions between adjacent lattices. For the case of i= j, the inter-
action energy indicates the self-energy [30, 31]; the aspect of

self-energy is not the focus of the current work and will not
be discussed here. By incorporating the higher order inter-
action energy term, a natural extension of equation (22) is
achieved through the utilization of the non-uniform composi-
tion ci ±∇ci · ℓi+∇2ci (ℓi)2.

Finally, we obtain the chemical free energy functional of a
non-uniform
system as

F =H− TSB =

ˆ
Ω


K,K∑
i<j

[
χijci cj+

(
κh1 −κh2

)
∇ci ·∇cj

]
+
RgT

v̄

K∑
i=1

[
ci lnci +(κs1 −κs2)(∇ci )

2
]}

dΩ

=

ˆ
Ω

{K,K∑
i<j

χijci cj+
RgT

v̄

K∑
i=1

ci lnci


+

K,K∑
i<j

(
κh1 −κh2

)
∇ci ·∇cj +

Rg T
v̄

K∑
i=1

(κs1 −κs2)(∇ci )
2

}dΩ.

(25)

This free energy formulation reveals that the free energy of
a non-uniform system can be expressed as the sum of two
terms: one is the bulk energy term related to the composi-
tion, and the other is the gradient energy term, which depends
on the composition gradient. In a binary system, the cross
term ∇ci ·∇cj can be replaced by the individual term (∇ci)2
based on the constraint: c1 + c2 = 1, indicating the consistency
between our free energy formulation and the one proposed
by Cahn and Hilliard (referencing the equation (2.6) in [16]).
This substitution simplifies the expression and aligns with
the symmetric nature of binary systems. However, in systems
with more than two components (ternary or higher), the con-
tribution from the cross terms ∇ci ·∇cj (where i ̸= j) should
be considered. These cross terms reflect the interactions and
correlations between different composition gradients, which
become increasingly important as the number of components
increases.

5. Internal energy

In this section, we analyze the internal energy of a non-
uniform system. When all components are fully miscible, the
internal energy of this homogeneous system is formulated
as

U =

ˆ
Ω

udΩ

=

ˆ
Ω

Cv (c) TdΩ, (26)

where c and T denote the uniform composition and uniform
temperature of this system within the domain Ω, respectively.
For a non-uniform system, the heat capacitance at the interface

7
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depends on the compositions c−i and c+i , and the internal
energy of the non-uniform system is expressed as

U =
1
2

ˆ
Ω

K∑
i=1

[
Cv

(
c−i

)
+Cv

(
c+i

)]
TdΩ.

With the Taylor expansion for the heat capacitance

Cv
(
c±i

)
= Cv

(
ci±∇ci · ℓi+∇2ci (ℓi)

2
)

= Cv (ci)+
∂Cv
∂ci

[
±∇ci · ℓi+∇2ci (ℓi)

2
]

+
1
2
∂2Cv
∂c2i

[
±∇ci · ℓi+∇2ci (ℓi)

2
]2

+
1
2
∂2Cv
∂ci∂cj

(
±∇ci · ℓi+∇2ci (ℓi)

2
)

×
(
±∇cj · ℓj+∇2cj (ℓj)

2
)
+ · · · , (27)

we obtain the following expression for the internal energy of
a non-uniform system

U =

ˆ
Ω

{
K∑
i=1

[
Cv (ci)+

∂Cv
∂ci

(ℓi)
2 ∇2ci +

1
2
∂2Cv
∂c2i

(ℓi)
2 (∇ci)2

]

+

K,K∑
i<j

1
2
∂2Cv
∂ci∂cj

(ℓi · ℓj)(∇ci ·∇cj)

 TdΩ. (28)

By applying the divergence theorem and no-flux boundary
condition, the internal energy of a non-uniform system can be
reformulated as

U =

ˆ
Ω

{
K∑
i=1

[
Cv (ci)−

1
2
∂2Cv
∂c2i

(ℓi)
2
(∇ci)2

]

+

K,K∑
i<j

1
2
∂2Cv
∂ci∂cj

(ℓi · ℓj)(∇ci ·∇cj)

 TdΩ. (29)

6. Elastic energy

For a uniform system, the classical theory of elasticity, such
as Hooke’s law, can be used to calculate the elastic energy.
However, in a non-uniform system, these conventional prin-
ciples cannot be directly applied due to the inhomogeneity of
physical properties. In this section, we develop the formulation
for the elastic energy in a non-uniform system.

The elastic energy for a unit volume is expressed as

fE =
1
2
ϵ : C(c) : ϵ, (30)

where C is the stiffness tensor related to the composition and
ϵ represents the strain tensor. By integrating over the whole
domain Ω, we obtain the elastic energy functional

FE =

ˆ
Ω

1
2
ϵ : C(c) : ϵdΩ. (31)

For a non-uniform system, in the similar manner, we substitute
the composition at interface c±i into equation (31) and obtain

FE =

ˆ
Ω

1
2

K∑
i=1

[
1
2
ϵ : C

(
c−i

)
: ϵ+

1
2
ϵ : C

(
c+i

)
: ϵ

]
dΩ.

(32)

Analogous to equation (27), with the Taylor expansion of the
elasticity tensor, the final expression of the elastic energy for
non-uniform system is written as

FE =

ˆ
Ω

1
2
ϵ :

{ K∑
i=1

[
C(ci)−

1
2
∂2C
∂c2i

(ℓi)
2
(∇ci)2

]

+

K,K∑
i<j

1
2
∂2C
∂ci∂cj

(ℓi · ℓj)(∇ci ·∇cj)
}
: ϵdΩ. (33)

7. Electric potential energy

Next, we scrutinize the cases where the system is placed in
an electric field. In this case, we consider the induced electric
potential energy functional UE, which is described as [32]

UE =

ˆ
Ω

1
2
ε(c) |E|2 dΩ, (34)

where E is the electric field strength vector and ε(c) denotes
the material permittivity. We substitute the composition at the
interface c±i into equation (34) and integrate over the whole
domain Ω, thereby obtaining electric energy formulation for a
non-uniform system as

UE =

ˆ
Ω

1
2

[
1
2

K∑
i=1

ε
(
c−i

)
|E|2 + 1

2

K∑
i=1

ε
(
c+i

)
|E|2

]
dΩ.

(35)

Analogously, we apply a Taylor expansion for thematerial per-
mittivity and equation (35) can be reformulated as

UE =

ˆ
Ω

1
2

{
K∑
i=1

[
ε(ci)−

1
2
∂2ε

∂c2i
(ℓi)

2
(∇ci)2

]

+

K,K∑
i<j

1
2
∂2ε

∂ci∂cj
ℓi · ℓj∇ci ·∇cj

 |E|2 dΩ. (36)

8. Wall free energy

In the preceding discussion, we derived a general formulation
of the energy functional for a non-uniform system, suitable
for cases with a fluid–fluid interface, such as liquid–liquid or
liquid–gas. However, in scenarios where the fluid phase con-
tacts a solid wall, such as in wetting phenomena, the interac-
tion energy between the solid substrate and the fluid remains
an open question and is nearly impossible to measure by using
traditional experimental methods. In our previous studies, we

8
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introduced a wall free energy to describe the energy contri-
bution in the interface region between the substrate and the
fluid, investigating the wetting phenomenon by incorporating
this wall free energy into the phase-field model [33–36]. In the
subsequent sections, we derive this wall free energy formula-
tion based on the concept proposed in section 2.

When the fluid contacts a solid wall, the symmetry of the
liquid near the solid substrate is disrupted. To address this, we
partition the liquid into two distinct regions: the bulk region
denoted as Ω(x) and an interface region that liquid directly
interacts with the solid substrate A, defined as Γ(x) = Ω∩A.
Because of the wall effect, i.e. the interaction between the solid
atom and the liquid molecules, the liquid composition on the
substrate is not necessary to be the same as the one in the bulk
away from the substrate. We denote the liquid composition
in the interface region near the substrate as c(x), ∀x ∈ Γ. The
entropy in this region is the same as equation (19)

S =

ˆ
Γ

−
Rg

v̄

K∑
i=1

[
ci lnci−

1
2ci

(ℓi)
2
(∇ci )2

]
dΓ. (37)

However, due to the asymmetry of the interaction, the interac-
tion energy differs from the formulation of the bulk. We for-
mulate the interaction energy as

H=

ˆ
Γ

{ K,K∑
i<j

[
χijci cj+χij

(
ℓi · ℓj− (ℓj)

2 − (ℓi)
2
)
(∇ci ·∇cj)

]

+
K∑
i=1

[
χi ci cs+χi

(
ℓi · ℓs− (ℓs)

2 − (ℓi)
2
)
(∇ci ·∇cs)

]}
dΓ,

(38)

where χi is the interaction coefficient between the ith compon-
ent in liquid and solid substrate, and ℓs indicates the charac-
teristic length vector of the solid substrate.

Finally, we obtain the energy functional

F =H− TS

=

ˆ
Γ

{ K,K∑
i<j

[
χijci cj+χij

(
ℓi · ℓj− (ℓj)

2 − (ℓi)
2
)
(∇ci ·∇cj)

]

+
K∑
i=1

[(
χi ci cs+χi

(
ℓi · ℓs− (ℓs)

2 − (ℓi)
2
)
(∇ci ·∇cs)

)
+
Rg T
v̄

(
ci lnci−

(ℓi)
2

2ci
(∇ci )2

)]}
dΓ. (39)

However, in general, the width of the solid–fluid interface
is very thin and not comparable to the width of the interface
for liquid–liquid or liquid–gas [37], i.e., ℓs << ℓi. Therefore,
a multi-scale system occurs, when a non-uniform liquid is
placed on a substrate. The mismatch of scales can lead to
several potential issues when applying this wall energy for-
mulation to study the wetting phenomenon in this multi-scale
system: (I) Multi-scale systems often require significant com-
putational resources to solve, especially when a fine-scale

phenomenon needs to be resolved over large-scale domains.
(II) Ensuring numerical stability and convergence can be dif-
ficult, particularly when dealing with disparate scales. (III)
Parameters used in the equations might be scale-dependent,
leading to inconsistencies when applying them across differ-
ent scales. Additionally, in the aforementioned derivation, the
variation of the composition across the interface is expressed
by a smooth monotone function. While this selection is math-
ematically elegant, it is somewhat artificial. The true nature of
how the composition varies across the interface region remains
an open question. For instance, as shown in figure 2(b), the yel-
low line corresponds to a non-monotonic composition profile,
such as that of a surfactant; the blue step-like curve depicts the
case with a very thin interface, where the composition vari-
ation exhibits non-continuum properties. To overcome these
limitations, an alternative method is used to formulate the wall
free energy. Wang and Nestler [38] express this energy as a
function of the average composition, also known as surface
composition, within the substrate–fluid interface region, rather
than relying on the local composition and composition gradi-
ent. Figure 2(a) illustrates a sketch for the composition concept
near the substrate, when a non-uniform liquid interacts with a
solid substrate. The blue circles represent elements of the solid
substrate, while the mixed elements of the liquid are marked
by yellow and blue particles. The dark-gray region denotes the
bulk region of the substrate, and the light-gray region indic-
ates the substrate–liquid interface. The composition profile of
an exemplary ith component ci is shown in figure 2(b) by a
green line. In this alternative method, we denote the width of
this substrate–liquid interface as, which is typically determ-
ined based on experimental measurements. The value of λ is
generally on the order of a few angstroms to a few nanomet-
ers [39, 40]. An average composition of ith component c̄i is
used to represent its composition within this area. The wall
free energy can thus be written as

FW =

ˆ
Γ ′
λ


K−1∑
i=1

[
u0i c̄i +

Rg T
v̄
c̄i ln c̄i

]
+

K−1,K−1∑
i<j

χijc̄ic̄j

 dΓ ′.

(40)

It should be noted that the diffuse-interface region Γ is treated
as a sharp-interface boundary Γ ′. u0i denotes the internal
energy of the pure substance of the ith component. The aver-
age composition c̄i is determined byminimizing the interfacial
energy FW. In this way, the wall energy density is defined as

γ = λ


K−1∑
i=1

[
u0i c̄i +

RgT

v̄
c̄i ln c̄i

]
+

K−1,K−1∑
i<j

χijc̄ic̄j

 . (41)

It should be noted that the solid composition within the inter-
face region is statistically constant and its variation within
this region can be neglected in this approach. By utilizing the
concept of average composition, we address the multi-scale
system by describing the energy contribution of interfaces at
different length scales with alternative approach differing from
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Figure 2. (a) Sketch for the composition concept near the substrate when the non-uniform system interacts with a solid substrate. The blue
circles represent the elements in solid substrate and the mixing elements in non-uniform system are marked by yellow and dark-green
circles. (b) The concentration profiles along the black dashed line in (a) are shown for three cases: (1) The green line represents a smooth
monotone composition variation. (2) The yellow line corresponds to a non-monotonic composition profile, such as that of a surfactant. (3)
The blue step-like curve depicts a very thin interface with non-continuum composition variation.

previous sections. This method circumvents the open question
of how the composition of one component varies across the
interface region.

9. Conclusion

In this study, we have proposed an alternative approach for
deriving the free energy formulation of a non-uniform sys-
tem. Our derivation begins with the reformulation of the
local composition within the interface. Unlike the homo-
geneous composition in a uniform system, a composition
gradient exists in the interface region of a non-uniform sys-
tem. Therefore, we consider that the composition of the
unit domain within the interface includes not only the bulk
contribution but also an additional contribution from the
boundaries of this unit domain. The composition is reformu-
lated by incorporating first- and second-order infinitesimal
increments.

By applying the reformulated local composition and
the principles of statistical thermodynamics, we estab-
lish a formal expression for entropy related to composi-
tion and composition gradients. The development of the
interaction energy formulation focuses on characterizing
the energy contributions arising from interactions between
different components in non-uniform systems. The integ-
ration of these entropy and interaction energy formula-
tions leads to the construction of a comprehensive free
energy expression that aligns with the work of Cahn and
Hilliard.

Our approach, based on the reformulated local com-
position, involves establishing the entropy, interaction, and
internal energy formulations to elucidate the physical signi-
ficance of the free energy framework. The final free energy
formulation for a non-uniform system is expressed as

F = U +H− TS=

ˆ
Ω

{ K∑
i=1

[
Cv (ci)T−

T
2
∂2Cv
∂c2i

(ℓi)
2
(∇ci)2

+
RgT

v̄

(
ci lnci −

1
2ci

(ℓi)
2
(∇ci )2

)]
+

K,K∑
i<j

[
T
2
∂2Cv
∂ci∂cj

(ℓi · ℓj)(∇ci ·∇cj)+χijci cj

+χij

(
ℓi · ℓj− ℓj

2 − ℓi
2
)
(∇ci ·∇cj)

]}
dΩ. (42)

Complementing the work of Cahn and Hilliard, our alternat-
ive concept provides a comprehensive understanding for the
construction of the free energy formulation, particularly in the
context of diffuse interface models.

Furthermore, our concept can be applied to cases where
other energy contributions exist in a non-uniform system.
For applications in these cases, we derive formulations for
two possible energy contributions in a non-uniform system,
namely elastic energy and electric potential energy. These
derivations are based on the concept of reformulating the local
composition and applying the Taylor expansion for the infin-
itesimal increment of composition.

In the context of non-uniform fluids contacting solid sub-
strates, as observed in wetting phenomena, we have reformu-
lated the wall free energy to depend on the average compos-
ition within the substrate–fluid interface. This approach con-
trasts with traditional methods that depend on local composi-
tion and composition gradient. As derived in the last section,
the wall free energy is reformulated as

FW =

ˆ
Γ ′
λ

K−1∑
i=1

(
u0i c̄i +

Rg T
v̄
c̄i ln c̄i

)
+

K−1,K−1∑
i<j

χijc̄ic̄j

 dΓ ′.

(43)
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By employing this reformulated wall free energy, we can
effectively address the multi-scale nature of a multicompon-
ent system, which results from the different length scales
between the substrate–fluid interface and the liquid–liquid or
liquid–gas interfaces. This method circumvents the challenge
of describing the composition variation of individual compon-
ents across the interface region.

The new formulation proposed in this study enhances
the modeling of non-uniform systems by offering a com-
prehensive representation of free energy that includes con-
tributions from entropy, interaction energy, and internal
energy. This approach is particularly advantageous for multi-
component systems and complex interfacial phenomena, as
it provides a more accurate and flexible framework. The
reformulation of wall free energy based on the concept
of average composition simplifies the treatment of multi-
scale systems, addressing challenges inherent in traditional
models. While the increased detail and flexibility improve
the accuracy of simulations, they also introduce greater
computational complexity and the need for careful para-
meter estimation. Despite these challenges, the proposed for-
mulation represents a significant improvement over exist-
ing diffuse interface models, particularly in its ability to
handle additional energy contributions and complex interface
geometries.

We stress that the current work focuses on two key points:
the introduction of an alternative concept for deriving the free
energy formulation differing from Cahn & Hilliad and the
reformulation of the wall free energy as a function of the aver-
age composition. By this way, we have proposed a novel and
comprehensive understanding of the free energy formulation
for non-uniform multicomponent systems.
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