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Abstract

The flexible modeling of an entire distribution as a function of covariates,
known as distributional regression, has seen growing interest over the past
decades in both the statistics and machine learning literature. This review
outlines selected state-of-the-art statistical approaches to distributional re-
gression, complemented with alternatives from machine learning. Topics
covered include the similarities and differences between these approaches,
extensions, properties and limitations, estimation procedures, and the avail-
ability of software. In view of the increasing complexity and availability
of large-scale data, this review also discusses the scalability of traditional
estimation methods, current trends, and open challenges. Illustrations are
provided using data on childhood malnutrition in Nigeria and Australian
electricity prices.
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GLM: generalized
linear model

GAM: generalized
additive model

GAMLSS: generalized
additive models for
location, scale and
shape

1. INTRODUCTION

Hothorn et al. (2014, p. 3) argue that “the ultimate goal of regression analysis is to obtain in-
formation about the conditional distribution of a response given a set of explanatory variables.”
While classical regression models focus on modeling the conditional mean of a response vari-
able as a function of covariates, distributional regression aims at modeling the entire conditional
distribution.

For instance, parametric approaches to distributional regression assume a specific parametric
distribution. In that vein, generalized additive models for location, scale and shape (GAMLSS;
Rigby & Stasinopoulos 2005), also called structured additive distributional regression models
(Klein et al. 2015b), allow to relate each distributional parameter of an arbitrary parametric den-
sity to be a function of the covariate effects by following the general idea of generalized additive
models (GAMs; Hastie & Tibshirani 1990). In fact, GAMLSS can be seen as a generalization of
early attempts at distributional regression with specific distributions, such as double exponential
family regression (Efron 1986), or the Box–Cox (Box & Cox 1964) and LMS methods (where
L stands for the Box–Cox power λ, M for the mean µ, and S for the coefficient of variation σ ;
Cole 1988). Conditional transformation models (Hothorn et al. 2014) and distribution regression
(Foresi & Peracchi 1995, Firpo et al. 2009, Chernozhukov et al. 2013) use flexible transformation
functions to map the conditional distribution to a reference distribution, thereby exploiting
distributional regression fully without requiring a parametric distribution assumption as with
GAMLSS, for instance. Another branch of semiparametric distributional regression models is
regression copulas, which rely on an implicit copula construction (Nelsen 2006, Klein & Smith
2019) combined with nonparametric marginals to arrive at a calibrated model. Nonparametric
approaches to distributional regression include kernel methods, (finite) mixture models, and
dependent Dirichlet process priors, often derived in a Bayesian framework (e.g., Escobar &West
1995, Dunson et al. 2007, Villani et al. 2012).

Quantile and expectile regression (Newey & Powell 1987, Koenker 2005) are alternative func-
tionals to the mean that have been suggested in the literature. However, as pointed out by Henzi
et al. (2021), the reduction to a single quantile or expectile can result in a considerable loss of
information.

1.1. Distributional Regression: Why and When?

While in some situations it may be sufficient to consider the mean of a response variable—e.g.,
when the primary interest is in determining the relationship between a covariate and the expected
outcome—there are many real examples in which the analyst is more concerned with quan-
tiles, tails of the distribution, or prediction intervals. The following two are used as illustrations
throughout this review article (see also the sidebar titled Illustrative Examples for more details).

Consider, for example, childhood malnutrition in developing countries. As described in Fenske
et al. (2011), the use of a mean regression model implies that the estimated effects describe the
nutritional status of an average child. However, it is of much greater interest to analyze the 5% or
10% quantiles of the response distribution, which relate to the risk of extreme malnutrition.

Another example is that of the relationship between intraday electricity prices and demand.
Here, successful bidding on the markets requires accurate prediction of extreme events. As can
be seen from Figure 1, price distributions are highly skewed (left panel of Figure 1) and vary
in a complex manner over the day, by time of day, and with respect to demand (right panel of
Figure 1). As a result, classical Gaussian regression is likely to provide a poor fit and to suffer
from low predictive accuracy.

When investigating phenomena such as wage gaps, species diversity, the efficiency of markets,
or risks in medicine, accuracy in modeling the entire distribution rather than just the mean
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ILLUSTRATIVE EXAMPLES

■ Childhood malnutrition: According to UNICEF (1998), childhood malnutrition is one of the most urgent pub-
lic health problems in developing and transition countries, not only affecting child growth directly but also
having severe long-term consequences. Illustrations in this review use data from the Nigeria Demographic
and Health Survey, conducted in the 36 states and the capital of Nigeria in 2013, with wasting, an indicator
of acute malnutrition (measured as insufficient weight for height), as response. Figure 2 depicts the average
wasting score (top left panel of Figure 2) and its empirical standard deviation (top right panel of Figure 2).
The state of Kano comprises about 1,500 observations. A specific district was selected to keep the illustration
simple and to avoid confounding with unobserved spatial effects. The covariates are gender and age of the child
in months, and empirical variation across these covariates in the state of Kano is summarized in the bottom
right and left panels of Figure 2.

■ Electricity spot prices: For modeling the distribution of electricity spot prices, hourly data from January 1,
2018, to December 31, 2018, from the Australian National Electricity Market are used (available on https://
www.aemo.com.au). The response is y = log(price + 101), where price is the market-wide price measured
in Australian dollars per MWh; 101 was added because prices can be negative on the wholesale Australian
National Electricity Market; and time of day, day, and demand are the covariates.Figure 1 depicts the skewness
of the price distribution (left panel of Figure 1) and variation over time of day from 1 a.m. (=1) to 12 midnight
(=24) (right panel of Figure 1).

not only allows for much more realistic modeling assumptions but may also enable a much more
comprehensive understanding of the relationship between response and covariates.

1.2. Article Outline

This review provides a selective overview of state-of-the-art methods in distributional regression
with a focus on univariate real-valued responses. The field is so broad that the review cannot
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Figure 1

Electricity spot prices: (Left) Histogram of log (price + 101). (Right) Boxplots across time of day.
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Cumulative
distribution function
(CDF): defined as the
function F, where
F (y) = P(Y ≤ y)

Conditional CDF:
the CDF F (Y |X =
x) = P[Y ≤ y |X = x]
of a response Y as a
function of observed
covariates X = x

E (wasting) var (wasting)
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Figure 2

Childhood malnutrition: (top left) average and (top right) standard deviation of wasting. (Bottom right) Scatterplots and (bottom left)
histogram of wasting for boys/girls (blue/red) in Kano, Nigeria.

appropriately acknowledge all the literature, but the aim is to provide a balanced article that com-
plements the existing material. In Section 2, selected approaches to distributional regression and
their developments are reviewed, also touching on inferential schemes, software and extensions,
and the benefits and limitations of each approach. Section 3 draws connections to recent devel-
opments of density regression at the intersection with machine learning. Selective solutions for
scalability of distributional approaches for large-scale data and highly parameterized models are
covered in Section 4. The review closes with recent developments and trends for further thought
and reading.

2. DISTRIBUTIONAL APPROACHES

Assume that a real-valued responseY ∈ R depends on explanatory variables X = x ∈ Rp and that
a data set of n realizations from the pairs (Y,X = x), denoted {(yi, xi )}ni=1, is available.Twomodeling
decisions have to be made.The first one determines the observation model, which specifies how to
estimate the conditional cumulative distribution function (CDF) directly, indirectly, or functionals
thereof, from the data:

L(Y | X = x). 1.

Specific choices for L are discussed in the remainder of this section. The second decision deter-
mines how x enters the distributional model L. Throughout this section, it is assumed that this is
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Probability density
function (PDF): the
density pY = p(y)

Conditional PDF:
pY |X=x = p(y | x)

done through predictor(s) η(x) of the following form:

η(x) = β0 +
J∑
j=1

f j (x j ). 2.

In the simple Gaussian mean model, the predictor models the conditional mean E(Y | x) =
µ = η(x), and Equation 1 is defined through a Gaussian distribution with mean µ and variance
σ 2, denoted by N(µ(x), σ 2 ). In Equation 2, β0 is the overall level of the predictor and the fj are
smooth functions of subvectors x j ∈ Rq j , qj ≤ p, of x that are modeled through basis function
expansions

f j (x j ) =
L j∑
l=1

β j,lB j,l (x j ) = B j (x j )⊤β j ,

where B j (x j ) = (B j,1(x j ), . . . ,B j,L j (x j ))
⊤ and β j = (β j,1, . . . ,β j,L j )

⊤. The basis functions may cor-
respond to the original covariates for linear effects, or to spline evaluations for nonlinear effects,
though random effects, spatial effects, and others are also possible. Each effect may be reg-
ularized by a quadratic term of the form β⊤

j P jβ j , where P j is a penalty matrix enforcing a
data-driven amount of smoothness for the jth effect. Such predictors—also called structured ad-
ditive predictors—are used in GAMs to model the conditional mean of the response. In Section 3,
unstructured extensions of η allowing for even more flexible relationships between x and Y are
considered.

2.1. Generalized Additive Models for Location, Scale, and Shape

GAMLSS were introduced by Rigby & Stasinopoulos (2005) and take a parametric approach to
Equation 1.

2.1.1. Model specification. These models assume that the conditional CDF stems from a
parametric density p(y | x)—the conditional probability density function (PDF)—with distribu-
tional parameters ϑ = (ϑ1, . . . ,ϑK )⊤. Each ϑk is modeled using a predictor ηk; that is, ϑk ≡
ϑk(x) = hk[ηk(x)]. The functions hk : R → 2k ⊂ R are strictly monotonically increasing response
functions mapping the predictors into the parameter spaces 21, . . . , 2K.

The basic idea is similar to that in generalized linear models (GLMs) or GAMs, which can also
be interpreted as distributional models, where the distribution is assumed to be an exponential
family distribution and only a transformation of the conditional mean is related to covariates. In
that vein, consider the malnutrition example with response wasting and gender and age of child as
covariates along with a Gaussian varying-coefficient model. Then, the predictor is

µ(gender, age) = h1[η1(gender, age)] = β1,0 + β1,1gender + f1,1(age) + gender × f1,2(age),

where h1(a) = a is the identity response function and σ 2 = const is a nuisance parameter, implying
homoscedastic errors. A more realistic extension that is supported by a lower Akaike information
criterion (AIC) value would allow for heteroscedasticity by assuming

σ (gender, age) = h2[η2(gender, age)] = exp[β2,0 + β2,1gender + f2,1(age) + gender × f2,2(age)],

where h2(·) = exp(·) ensures positivity of σ , making the model a GAMLS (where L stands for
location and S for scale).

The impact of the covariates and the modeling assumption for σ on the estimated probabil-
ities of suffering from wasting and severe wasting, i.e., −3 < wasting < −2 and wasting < −3,
respectively, is depicted in Figure 3. The figure shows that the risk of suffering from wasting

www.annualreviews.org • Distributional Regression for Data Analysis 325
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MLE: maximum
likelihood estimation

PMLE: penalized
MLE

MCMC: Markov
chain Monte Carlo
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Figure 3

Childhood malnutrition: probabilities of suffering from wasting/severe wasting (left/right) for boys/girls (blue/red) using
heteroscedastic/homoscedastic Gaussian models (solid/dashed lines) are shown. The Akaike information criterion supports the
heteroscedastic model (5,428 versus 5,462).

is higher for boys than for girls. This difference can be seen as significant for ages between 30
and 40 months, as 95% equal-tailed posterior credible intervals for boys/girls (not shown; see
Section 2.1.2 below for details) do not contain the posterior mean estimates of girls/boys. In
addition, based on the AIC, the risk of severe wasting is underestimated, particularly for chil-
dren younger than 10 months, and overestimated in children older than 40 months, when
homoscedasticity is assumed.

2.1.2. Estimation and software. Penalized maximum likelihood estimation (PMLE) (Rigby &
Stasinopoulos 2005) for GAMLSS uses first- and second-order derivatives for iterative backfitting
(Breiman & Friedman 1985) and provides three algorithms in the R package gamlss. Each step of
the basic algorithm involves an outer loop over the K distributional parameters and an inner loop
over the Jk effects for each ϑk. If less generality is needed with respect to Equation 1 or Equation 2,
it may be better to use other PMLE-based packages. For instance, Lee &Nelder (2006) proposed
a stable and efficient approach to fitting double hierarchical GLMs with random effects. Depend-
ing on the needs of analysts, it may be worth looking into the corresponding R packages dhglm,
which can handle outliers through robust estimation, or mgcv. The latter offers numerically sta-
ble and convergent computational methods for selected GAMLSS-type distributions along with
well-conceived options for smoothing parameter estimation. Numerical and convergence issues
can occur with gamlss depending on the model and predictor complexities. It may be useful in
such cases to review the options in the package manual or to simplify the models.

A Bayesian implementation usingMarkov chainMonte Carlo (MCMC) simulations with itera-
tively weighted least squares proposals (Klein et al. 2015b) has been implemented in the standalone
software BayesX, as well as in the more user-friendly R package bamlss. An advantage of this
Bayesian treatment is the direct access to uncertainty quantification through equal-tailed posterior
credible intervals using the MCMC samples. Functional gradient boosting (Mayr et al. 2012) for
GAMLSS is available in theR package gamboostLSS.Boosting can easily handle high-dimensional
data settings with p k n but does not provide standard errors.
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2.1.3. Properties and extensions. Whether asymptotic results for GAMs or heteroscedastic
regression (e.g., those of Kauermann et al. 2009, Wang 2013) generalize to GAMLSS has not
yet been investigated. Empirical evidence (e.g., Klein et al. 2015b) indicates that the coverage
of confidence intervals is often below the nominal level, though this may be connected to the
software. However, Klein et al. (2015b) demonstrate with simulations that credible intervals from
the MCMC output yield accurate coverage and give sufficient conditions for the propriety of
posterior distributions.

GAMLSS are closely related to vector generalized additive models (Yee 2015). Special cases
of GAMLSS include the nonlinear heteroscedastic regression (Yau & Kohn 2003). The double
exponential family regression with predictors for mean and variance was introduced by Efron
(1986) and extended to the smoothing context by Gijbels et al. (2010). The popular LMS method
followed shortly after that (see Carroll & Ruppert 1988).

Considerable research in the GAMLSSmodel class extends the predictors η. Examples include
LASSO regularization, functional covariates, and censoring.

2.1.4. Final remarks. On the one hand, GAMLSS make a fully parametric assumption for the
conditional CDF, implying a fixed type of response distribution for all observations, which may be
too restrictive in some applications.On the other hand, the availability of the parametric likelihood
makes it straightforward to implement GAMLSS for noncontinuous data as well.

While GAMLSS can be favorable in applications in which a reasonable parametric choice for
the response distribution can be made [e.g., in the context of ensemble methods in meteorol-
ogy (Gneiting et al. 2005)], the analyst should be aware of the following challenges. First, for
many parametric distributions, parameters do not correspond to central moments. Instead, they
are often general location, scale, or shape parameters determining the conditional CDF/PDF and
functionals thereof, which makes interpretation more difficult. Second, the parameterization of
the conditional PDF affects the interpretation of estimated effects [for the Gaussian case, one
could model either σ (x) or σ 2(x) through a predictor].

Third, model and variable selection are challenging, and it is not feasible to compare all can-
didate models. Klein et al. (2015b) thus suggest a pragmatic strategy to select a model based on
three tools: (a) Randomized quantile residuals of fitted models can be used for visual comparison
of response distributions with fixed predictor specifications. (b) Different predictor specifications
can be compared using information criteria. (c) Proper scoring rules (Gneiting & Raftery 2007)
can be used to evaluate the predictive ability of the models. In gamlss, further graphical tools such
as worm plots for outlier detection are also available. Klein et al. (2021) extended the use of spike
and slab priors to enable automatic Bayesian effect selection for GAMLSS.

2.2. Conditional Transformation Models

Transformation models aim to make the data follow certain modeling assumptions, such as nor-
mality or homoscedasticity, through transformation of the response. This idea is exemplified for
conditional transformation models (Hothorn et al. 2014) in the following.

2.2.1. Model specification. By specifying a monotonically increasing and covariate-dependent
transformation function h(y | x) : S → R and a reference distribution FZ : R → [0, 1] that is inde-
pendent of x and does not contain any parameters to be estimated, a conditional transformation
model relies on the model formulation

FY |X=x(y) = P
[
Y ≤ y | X = x

] = P
[
h(Y | x) ≤ h(y | x)] = FZ

[
h(y | x)].

www.annualreviews.org • Distributional Regression for Data Analysis 327
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Following Hothorn et al. (2014), an additive decomposition on the scale of h into J par-
tial transformation functions is assumed—i.e., h(y | x) = β0 + ∑J

j=1 h j (y | x) that takes the role
of the predictor (Equation 2). The partial transformations h j (y | x) can be understood as
response-covariate interactions. This is similar to the regression structure of GAMs, but rather
than modeling the conditional mean of the response, h acts on the transformed response
scale.

To apply conditional transformationmodels, onemust choose the reference distribution FZ and
the transformation function h. Reference distributions with log-concave densities ensure concave
likelihoods and thus give unique MLEs under mild regularity conditions. A common choice is the
standard Gaussian distribution, but other options can be useful, such as the maximum extreme
value distribution to arrive at a Cox-type model.

The transformation function h(y | x) must be a monotonic function of y. This is particularly
easy to implement in so-called shift conditional transformation models, in which only the loca-
tion varies with x, and of which the Gaussian linear model Y |X = x ∼ N(β0 + β1x, σ 2) is a
special case, with FZ the standard Gaussian distribution function and the transformation func-
tion h(y | x) = y/σ − (β0 − β1x)/σ . The covariate-dependent shift (β0 − β1x)/σ can be estimated
without monotonicity constraints. It is easy to see how more complex models can be built. For
instance, adding the term β2yx/σ to h allows the scale of the response to vary with x, while
higher-order interactions enable the modification of other distribution shape features. If h in-
creases strictly monotonically with derivative h′, and with pZ the PDF of Z, the implied conditional
PDF is

p(y | x) = pZ[h(y | x)]
∣∣∣∣∂h(y | x)

∂y

∣∣∣∣ = pZ[h(y | x)]h′(y | x). 3.

Conditional transformation models are compared with quantile regression in Section 2.5.

2.2.2. Estimation and software. The original proposal of conditional transformation mod-
els by Hothorn et al. (2014) was developed from a sequence of binary indicator regressions for
E[1(Y ≤ υ ) |X = x], similar to the work of Foresi & Peracchi (1995). However, rather than
estimating a sequence of models for a grid of υ values, Hothorn et al. (2014) perform joint
optimization through scoring rules with estimation using a variant of componentwise gradient
boosting. Boosting does not allow for estimation of standard errors without computationally
costly resampling-based methods, and the implementation of Hothorn et al. (2014) works for
continuous responses only. However, based on the implied conditional PDF in Equation 3,
likelihood-based estimation can easily be developed and can allow for discrete or censored re-
sponses (Hothorn et al. 2018). These models are implemented in the R package tram, which
provides formula-based user interfaces to specific likelihood-based transformation models im-
plemented in mlt. It is supplemented with a website containing references, a list of available
models, and numerous vignettes.Carlan et al. (2023) proposed a Bayesian approach for likelihood-
based conditional transformation models using MCMC, for which code is available on GitHub
(https://github.com/manucarl/BCTM).

2.2.3. Properties and extensions. Hothorn et al. (2014) prove the consistency of boosted con-
ditional transformation models, whereas they practically ignore the monotonicity constraints.
Hothorn et al. (2018) prove consistency and asymptotic normality of theMLE estimator.Posterior
consistency in the Bayesian approach has not yet been investigated.

Traditionally, transformation models were used for ordered categorical or censored responses.
A closely related approach in the context of counterfactual distributions is distribution regression
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Copula C:
multivariate CDF with
standard uniform
margins

Marginal calibration:
can be interpreted as
equality of forecast
and reality; Gneiting
et al. (2007) provide a
formal definition

(Chernozhukov et al. 2013). These models use P(Y ≤ y |X = x) = E[1(Y ≤ y) |X = x] to esti-
mate response-varying effects with transformation functions of the form h(y | x) = hY (y) − x⊤β(y)
(Foresi & Peracchi 1995) and are used particularly in econometrics (Rothe &Wied 2013,Delgado
et al. 2022). Since the popular parametric transformation model, the so-called Box–Cox model
(Box & Cox 1964) was proposed, transformation models have been extended and further devel-
oped in several directions (for comprehensive literature overviews, see, e.g., Hothorn et al. 2014,
Carlan et al. 2023).

2.2.4. Final remarks. Conditional transformation models are a semiparametric approach to
distributional regression due to the semiparametric structure of h. Thus, however, interpretation
is different to that in Gaussian mean regression models, where signal and noise are decomposed
additively directly on the response level.

Each partial transformation function hj is commonly assumed to increase monotonically, which
is sufficient but not necessary for h to be monotone, and Bernstein polynomials or B-splines have
been used with appropriate constraints to model h.

Finally, as stated by Hothorn (2018) in the most general form of h, conditional transformation
models subsume several simpler models, which can be particularly useful in the context of model
choice.

2.3. Regression Copulas

A second very recent semiparametric approach that has potential but is far less well understood is
that of regression copulas.

2.3.1. Model specification. Copulas can be used to capture nonlinear dependence structures
between multivariate random variables (Nelsen 2006). Sklar’s theorem states that every multi-
variate CDF can be represented by a copula evaluated at the marginal CDFs. Copula regression
models use this property and have been implemented widely (Pitt et al. 2006, Song et al. 2009,
Craiu & Sabeti 2012, Krämer et al. 2013). Regression copulas proposed by Smith & Klein (2021),
however, capture the dependence betweenmultiple observations on a single dependent variableY ,
conditional on x. Their model defines a copula process (Wilson & Ghahramani 2010) on the co-
variate space. It is the implicit copulaC extracted from the joint distribution of a regression model
with latent response Z̃ (for a recent review on implicit copulas, see Smith 2023). The model of
Smith & Klein (2021) furthermore assumes invariant marginals for Y to arrive at a distributional
regression model that is approximately marginally calibrated.

For data y = (y1, . . . , yn )⊤ with covariate matrix X = (x⊤
1 , . . . , x

⊤
n )

⊤, Smith & Klein (2021)
model the joint distribution of Y through the density

p(y | X ) = c[FY (y1 ), . . . ,FY (yn );X , θ]
n∏
i=1

pY (yi ), 4.

where c is the implicit copula density derived from the model Z̃i = η(xi ) + εi, Z̃i is a latent re-
sponse, and εi ∼ N(0, σ 2) for i = 1, . . . , n. The parameter vector θ denotes the copula parameters
specified below.The density pY is themarginal PDF of Yi, which is assumed to be invariant with re-
spect to i and X and which can be estimated nonparametrically. Let FY be the respective marginal
CDF.

The key question is the construction of c(·;X , θ). To derive c, the regression coefficients, say
β, in η(X ) = Bβ are supplemented with Gaussian prior distributions β | σ 2, θ ∼ N[0, σ 2P(θ)−1],
whereB is a designmatrix with row-wise basis function evaluationsB(i) = (B1(xi ), . . . ,BL(xi ))⊤ and
P(θ) is a prior precision matrix with parameters θ. If P(θ) is of full rank, the distribution of Z̃ |X , θ
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Figure 4

Electricity spot prices: predictive densities on (left) January 15 and (right) July 15, 2018, at 7 a.m. for three demand quantiles: 2.5%
(blue), 50% (red), and 97.5% (gray).

is Gaussian with zero mean vector and covariance matrix 6(B, θ, σ 2 ) = σ 2(I + BP(θ)B⊤ ). It is
easy to show that Z̃ |X , θ has a Gaussian copula with correlation matrix R ≡ R(B, θ) = σ−2S6S,
which is obtained by standardizing Z̃i to have unit variance as follows. Let S = diag(s1, . . . , sn ),
be the diagonal matrix with si = (1 + B⊤

(i)P(θ)B(i) )−1/2 and Zi = siZ̃i/σ . Then, with ui = FY(yi) and
zi = 8−1(ui), the copula PDF in Equation 4 is

c[FY (y1 ), . . . ,FY (yn );X , θ] = ϕn(z;0,R)∏n
i=1 ϕ(zi )

,

where ϕ and 8−1 are the standard Gaussian PDF and quantile function and ϕn(·;0,R) is the n-
dimensionalGaussian PDFwith zeromean and correlationmatrixR,which is a function of x and θ.

To see how Equation 4 defines a distributional model, consider the predictive density for a new
response yn+1 with covariate vector xn+1,

p(yn+1 | xn+1 ) = p
[
FY (Yn+1 ) | FY (y1 ), . . . ,FY (yn );X , xn+1, θ

]
pY (yn+1 ),

which is a function of X and xn+1. Moreover, the entire distribution is a function of xn+1. This is
illustrated in Figure 4, which depicts predictive densities of log(price + 101) at 7 a.m. on a day in
summer (left panel of Figure 4) and winter (right panel of Figure 4) in Australia for three demand
quantiles. Increases in demand accentuate the upper tail of the distribution. For the chosen days
and time, the densities in the summer are sharper than those in the winter. Results were obtained
by fitting the heteroscedastic regression copula of Smith&Klein (2021) using a three-dimensional
thin plate spline with covariates day, time of day, and demand and a horseshoe prior (Carvalho &
Polson 2010), where βl | λl ∼ N(0, λ2

l ), λl | τ ∼ Half-Cauchy(0, τ ), τ ∼ Half-Cauchy(0, 1), l =
1, . . . , L, and θ = {λ1, . . . , λL, τ }.
2.3.2. Estimation and software. Although the likelihood derived from Equation 4 is available
in closed form, evaluating and inverting the n × n matrix R(B, θ) is computationally demanding
for large n. Instead, it is more efficient to use the likelihood conditional on β and integrate out
β using an MCMC scheme. Better scalable approximate Bayesian methods, namely variational
Bayes (Blei et al. 2017; see also Section 4), have been developed by Smith & Klein (2021).
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Unfortunately, no R or other package is available to apply this approach yet, though the models
can be used through existing Matlab code. The use and visibility of these models in applied re-
search would certainly be helped by the development of a user-friendly package including tutorials
and guidelines on when and why to use regression copulas.

2.3.3. Properties and extensions. In Equation 4, the marginals are assumed to be independent
of the covariates, while the copula is not. This approach defines a copula process for a univari-
ate response and guarantees the efficacy of regression copulas. However, theoretical results like
posterior consistency have not been investigated so far.

The model is semiparametric because the implicit copula c is constructed from the model for
the pseudo response Z̃, which has a conditional mean parameterized through the semiparametric
predictor η(x). Due to the invariance assumption, the marginal distribution pY can be estimated
nonparametrically.

Klein & Smith (2019) suggest forming the regression copula of smoothing models with a large
number of basis functions, such as radial or P-spline bases,which they call a copula smoother.Klein
& Smith (2021) derive the implicit copula of a linear Bayesian variable selection model, thereby
extending the popular Bayesian variable selection approach for linear regression to non-Gaussian
responses.

The inherited calibration property has recently been demonstrated to be advantageous for
likelihood-free inference (Sisson et al. 2018) and for probabilistic forecasting in time series, when
the dependent variable is highly non-Gaussian and skewed (Klein et al. 2023). A comprehensive
review on regression copulas is provided by Smith (2023).

2.3.4. Final remarks. This model class is not well understood theoretically, and further in-
vestigation is required to determine when regression copulas should be preferred over other
distributional approaches. Like conditional transformation models, regression copulas define a
semiparametric approach that does not require a parametric distribution. Regression coefficients
enter the auxiliary model for Z̃ and are then mapped nonlinearly through the marginal distribu-
tion pY. This complicates the direct interpretation of covariate effects, even though any quantity
of interest can be derived from the global model in Equation 4.

As mentioned above, it is more common to employ copula regression models for multivariate
response variables, where the regression margins are specified separately and depend on the co-
variates (see also Section 2.6). A different approach is copula-based regression (Noh et al. 2013),
in which the conditional distribution of Y given X is derived from assumptions on the joint
distribution of Y and a random vector X .

2.4. Density Regression

Similar to GAMLSS and regression copulas, density regression involves the formulation of a
direct model for the conditional PDF. The focus here is on density regression based on mixture
models (dating back to Newcomb 1886), with some alternative approaches presented at the end
of this section.

2.4.1. Model specification. Because mixtures of a sufficiently large number of Gaussian
densities can approximate any smooth density, consider a mixture of regression models formed
of Gaussian densities p(y | x,ϑ) = N[y; µ(x), σ (x)2]. The conditional PDF is then specified as

p(y | x) =
∫

2

p(y | x,ϑ)dG(x,ϑ),
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whereG is a mixture distribution that can vary with x and ϑ = (µ(x), σ (x)2 )⊤. Gaussian regression
models and finite mixtures of Gaussian regression models (Frühwirth-Schnatter 2006), given by

p(y | x) =
H∑
h=1

πh(x)N(y; µh(x), σh(x)2 ), 5.

also referred to as latent class regression, with weights πh(x) characterized parametrically, are
special cases thereof. An elegant way to avoid having to choose the number of components H
is to resort to an infinite-dimensional Bayesian model with H = ∞ and G a random measure
following a Dirichlet process,G ∼ DP(αG0), with base measure G0 and precision α. MacEachern
& Müller (1998) use a dependent Dirichlet process, which relies on the stick-breaking form
G = ∑∞

h=1 πh(x)δϑh , with degenerate distribution δϑh with all its mass on ϑh.

2.4.2. Estimation and software. Empirical Bayesian density regression has been developed
by Dunson (2007), while Dunson et al. (2007) present a comprehensive overview of Bayesian
density regression and develop efficient MCMC-based posterior inference using a generalized
Pólya urn scheme.This results in aGibbs sampling algorithm that allows for weights depending on
the distance between observed covariates. Generic MCMC algorithms with Metropolis–Hastings
updates have been developed by Villani et al. (2012) to allow for covariate-dependent weights,
nonlinear regression specifications, and automatic variable selection.

Finite mixture regression models have also been treated in a frequentist framework using the
expectation–maximization algorithm (Grün & Leisch 2008). In this approach, the weights are
covariate-independent, because parameters need to be optimized under constraints. In addition,
it is more difficult to derive measures of uncertainty.

Various software packages are available for density regression with mixture models. For in-
stance, the R packages BNPmix and DPpackage (no longer available on CRAN, the Comprehensive
R Archive Network) implement functions to perform inference via simulation from the posterior
distributions for Bayesian nonparametric and semiparametric mixture models, and the R packages
flexmix and mixtools provide point estimates for likelihood-based estimation of finite mixtures
of GLMs using the expectation–maximization algorithm.

Figure 5 illustrates predictive densities obtained from a three-component mixture model at
two selected ages for boys/girls using flexmix. The models have linear specifications in the local
means and scales and mixture weights not depending on the covariates; H = 3 was selected using
the Bayesian information criterion.

2.4.3. Properties and extensions. Aragam & Yang (2022) prove uniform consistency in non-
parametric mixture models and provide a detailed review of further consistency results in the
context of density regression through mixture models. References to available consistency results
in the Bayesian framework are provided by Frühwirth-Schnatter et al. (2019).

Estimating the number of components H in the finite mixture model has been an ongoing
research problem in the literature. In practice, it is common to compare performance under a set
of distinct H values or to use a sufficiently large H, arguing that redundant components should
empty out (for a recent theoretical investigation and further references, see also Manole & Khalili
2021).

The models can be thought of as infinite mixtures of Gaussian regression models, where
both the weights associated to the mixture components and the parameters of each component
are covariate dependent. However, such flexibility comes at a computational cost; moreover,
there is limited availability of algorithms for posterior inference (Griffin & Steel 2006). As a
consequence, the single-weights-dependent Dirichlet process mixture of normals model with
covariate-independent weights is very popular in practice.Often, σ h is assumed to be independent
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Quantile function:
Q(τ ) = inf{y: τ ≤ F(y)}

Conditional quantile
function: Q(τ | x)

Boys
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Predictive densities for age = 16 months
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Figure 5

Childhood malnutrition: predictive densities from a finite mixture model with H = 3 components for two selected age values for
boys/girls (blue/red).

of x, and the specification of µh is linear (Escobar & West 1995), despite the resulting lack of
flexibility (MacEachern & Müller 1998). In addition, Orlandi et al. (2021) state that empirical
results suggest that allowing the variance to depend on x can reduce the required number of
components.

As a trade-off enabling computationally efficient estimation and flexibility, de Carvalho et al.
(2019) propose replacing the linear specification of µh by penalized splines and demonstrate that
this has considerable advantages over using covariate-dependent weights. This idea could also be
extended to σ h. Further uses of the dependent Dirichlet process include analysis-of-variance type
dependence structures (Iorio et al. 2004) or spatial analyses (Gelfand et al. 2005); Quintana et al.
(2020) provide a review on dependent Dirichlet processes.

2.4.4. Final remarks. Density regression based on mixture models can be used with many data
types, particularly with data that cannot be approximated by simple parametric distributions.How-
ever, the regression coefficients of such models are generally harder to interpret. Yet, in some
special cases, such as Gaussian mixture regression models with constant weights, the linear re-
gression effects on the means have interpretations as localized means. Although mostly derived
for continuous responses and Gaussian densities, extensions to discrete, bounded, or mixed re-
sponses are possible. Beyond that, finite mixture models can of course also be used for clustering,
e.g., using the R package mclust.

Alternatives to mixture models include n-nearest-neighbor methods combined with a suitable
notion of distance to similarities (e.g., Stone 1977), or kernel smoothing methods (Hyndman et al.
1996, Hall et al. 1999).

2.5. Quantile Regression

Compared with the approaches presented so far that rely on a global model by imposing struc-
ture on the conditional CDF or PDF, quantile regression specifies a local model through the
conditional quantile function Q(τ | x) at quantile level τ � (0, 1).
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2.5.1. Model specification. Consider the model y = ητ (x) + ετ , where both the predictor ητ (x)
and the error term ετ depend on the quantile τ . Rather than specifying a global CDF for all τ ,
one assumes that the CDF of the error term at zero is equal to τ ; in other words, Qετ

(τ ) = 0.
Consequently, the predictor ητ determines the conditional quantile function of y at τ , Q(τ | x) =
ητ (x). The idea is similar to mean regression where E(ε) = 0 is assumed.

2.5.2. Estimation and software. As proposed by Koenker & Bassett (1978) for linear
predictors, estimates for Q(τ | x) are obtainable by minimizing the weighted L1 loss

n∑
i=1

wi,τ |yi −Q(τ | xi )|,

wi,τ =
{
1 − τ , yi < Q(τ | xi ),
τ , yi ≥ Q(τ | xi ),

6.

by linear programming.
A Bayesian approach to quantile regression requires a working likelihood, and the asymmetric

Laplace distribution, as suggested by Yu & Moyeed (2001) and further developed by Kozumi &
Kobayashi (2011) and Yue & Rue (2011), has become popular. However, plenty of alternatives
have been considered as well (see, e.g., Yang et al. 2016). A further alternative to estimate quantile
regression is boosting, which requires only the gradients of Equation 6, which are easy to derive
(Fenske et al. 2011). The R package quantreg includes an implementation of linear quantile re-
gression and extensions such as quantile smoothing splines. The general framework of Fasiolo
et al. (2021) is implemented in the R package qgam. Bayesian and boosting options are available
in BayesX, the R package bamlss, and the mboost package.

2.5.3. Properties and extensions. The asymptotic theory for linear quantile regression has
been developed under both a fixed and an increasing number of regressors, including the high-
dimensional case (e.g., Koenker 2005, Belloni & Chernozhukov 2011, and references therein).
Some asymptotic results are also available for longitudinal data (Lamarche & Parker 2023) and
special classes of nonparametric quantile regression (Takeuchi et al. 2006). However, these sit-
uations are less well understood. Posterior consistency for Bayesian linear quantile regression
with asymmetric Laplace density is developed by Sriram et al. (2013), with posterior variance
adjustments for small samples and censored data developed by Yang et al. (2016). Consistency
results for boosting are currently limited, and existing results in the literature on gradient
boosting assume convexity of the objective function (e.g., Biau & Cadre 2021, Vethoen et al.
2023).

It is worth noting that one has to estimate different models for a possibly dense grid of τ values
and combine them numerically to arrive at a smoothed estimate of the CDF. Doing so separately
does not ensure the natural ordering across quantiles, so quantile crossings can cause incon-
sistent global models. This issue has generated long-standing interest; for example, He (1997),
Bondell et al. (2010), and Rodrigues & Fan (2017) provide solutions in the different estimation
frameworks.

The error terms are not assumed to be independent and identically distributed, only condi-
tionally independent. Hence, quantile regression can, in principle, recover any covariate-specific
changes in the shape of the conditional CDF on a specific quantile. Of course, misspecifying the
regression predictors can still be a concern to be considered.

The Bayesian treatment of Yue & Rue (2011) and Waldmann (2018) allows flexible structured
additive predictor specifications and Dirichlet process mixture priors for random effects models
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Figure 6

Childhood malnutrition: predicted conditional quantiles Q(τ | x) with gender and age of child (in months; x-axis) as covariates x via (left)
a conditional transformation model and (right) quantile regression. The quantile levels are τ = {0.05, 0.1, 0.2, 0.5}.

Flexible non-Bayesian alternatives have also been developed using, for example, refinements of
the penalty term or manual tuning of smoothing parameters (for details and further references,
see, e.g., Koenker et al. 2017). Fasiolo et al. (2021) developed fast additive quantile regression that
offers a flexibility similar to that of GAMs (including estimation of smoothing parameters) using
a smoothed version of the quantile loss in Equation 6.

2.5.4. Final remarks. Quantile regression has been used in many applications (particularly in
economics; e.g., Rossi &Harvey 2009) and can be appealing when the primary interest is in deriv-
ing prediction intervals or in the presence of outliers. The choice between quantile regression and
a global model may also be based on other more practical aspects, such as interpretability. When
and why to opt for quantile regression are discussed by Waldmann (2018).

To illustrate quantile regression and its close relation to conditional transformation mod-
els, Figure 6 depicts predicted conditional quantiles at levels τ = {0.05, 0.1, 0.2, 0.5} of the
wasting score for both approaches. Quantiles obtained by fitting separate nonlinear varying co-
efficient quantile regressions using gender and age of child as covariates are shown in the right
panel of Figure 6. Quantile crossing is not an issue here. Quantiles derived from a conditional
transformation model with a flexible response-interacting transformation function (left panel of
Figure 6) yield conceptually similar results, and by construction, quantiles do not cross.

Finally, an alternative to quantile regression is to replace the L1 distance in Equation 6 by
the L2 loss, which leads to minimizers called expectiles (Newey & Powell 1987). A one-to-one
transformation exists between quantiles and expectiles (Waltrup et al. 2015).

2.6. Multivariate Response Models

Recent advances in distributional regression include those for multivariate responses. For
GAMLSS with low-dimensional Y ∈ RD, D ≤ 3, using either parametric distributions (Klein
et al. 2015a) or one-parameter copulas (e.g., Craiu & Sabeti 2012,Marra & Radice 2013, Vatter &
Chavez-Demoulin 2015, Filippou et al. 2019, Hans et al. 2023) has been proposed, with only few
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BART: Bayesian
additive regression
tree

UNCERTAINTIES IN MACHINE LEARNING

In machine learning, a distinction is made between aleatoric and epistemic uncertainties, that is, uncertainties com-
ing from the data-generating process and model or parameter uncertainties, respectively. The distinction between
aleatoric and epistemic uncertainty is less common in statistics but relevant in certain machine learning applica-
tions (e.g., extrapolating predictions to regions of the covariate space outside the training data; Kendall & Gal
2017).

In statistical regression, distributional modeling approaches provide a way to model the aleatoric uncertainty,
whereas statistical inference allows to derive parameter uncertainties. In contrast, deep learning often focuses on
modeling the epistemic uncertainty. In addition to distributional approaches toward addressing accurate uncertainty
quantification, postprocessing techniques have become popular in the machine learning literature (e.g., Song et al.
2019).

special distributions beyondD= 3 (Gioia et al. 2022, Kock & Klein 2023,Muschinski et al. 2022).
Multivariate conditional transformation models were proposed by Klein et al. (2022). However,
I am unaware of fully distributional versions that extend the approaches in Sections 2.3–2.4 to
multivariate responses. To generalize quantile regression to D > 1, one has to define a reasonable
ordering (Serfling 2002), so multivariate quantile regression cannot easily be developed. Koenker
et al. (2017) review possible solutions to this.

3. PROBABILISTIC LEARNING

There is increasing interest in distributional models, not only in statistics but also in machine
learning. This section briefly introduces three selected probabilistic approaches that have a strong
connection to themethods of Section 2,but which try tomakeEquation 2more flexible using algo-
rithms originating from machine learning. The sidebar titled Uncertainties in Machine Learning
can be found on top of this page.

3.1. Mixtures of Experts

Hierarchical mixtures-of-experts models ( Jordan & Jacobs 1994) are closely related to the mix-
ture model from Section 2.4 but try to increase flexibility through advanced modeling options
for µh and σ 2

h , ph, and/or π h. Bishop (1994) explicitly models all components of a mixture dis-
tribution using multi-layer perceptrons, which are vanilla deep neural networks consisting of a
fully connected input layer, at least one hidden layer, and the output layer. These models have
also been developed with non-Gaussian mixture components for ph and for noncontinuous data.
Estimation uses the expectation–maximization algorithm or other nonlinear optimization rou-
tines, such as conjugate gradient or quasi-Newton methods. The R package CaDENCE provides a
comprehensive framework for fitting such models.

3.2. Distributional Bayesian Additive Regression Trees

The Bayesian additive regression tree (BART; Chipman et al. 2010) consists of the following
parts: a sum-of-trees model that can capture complex interactions of a high-dimensional x, and
a regularization prior on the model parameters that avoids overfitting and enables posterior
sampling.

Using the Gaussian model Y | x ∼ N(η(x), σ 2 ), the original BART models the conditional
mean E(Y | x) = ∑J

j=1 f j (x,M j ,Tj ) as a finite sum of J step functions f j (x,M j ,Tj ) = µ jl , if

336 Klein



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (

gu
es

t)
 IP

:  
14

1.
52

.9
6.

10
3 

O
n:

 T
ue

, 1
5 

O
ct

 2
02

4 
09

:3
5:

26

ST11_Art14_Klein ARjats.cls March 28, 2024 9:41

x ∈ A jl , which are parameterized through the pairs {Mj, Tj} that consist of the terminal node
parameters M j = {µ j1, . . . ,µ jL j } and the binary trees Tj, for j = 1, . . . , J, l = 1, . . . , Lj. The tree
partitions the covariate space into Lj regionsAjl. Eachµjl can capture interaction effects of possibly
varying orders, which makes a BART highly flexible (see Chipman et al. 2010 for details).

In the BART model, the parameters of the sum-of-trees model {M j ,Tj}J
j=1 and the variance

σ 2 have prior distributions. The general idea of these priors is to regularize and to encourage
small trees. Hill et al. (2020) give a deeper exposition of the original BART prior, extensions, and
a recent review with current developments.

Summing over sequential weak learners, BARTs have similarities to gradient boosting tree
methods (Bartlett et al. 1998). However, the Bayesian approach uses a prior, and yields complete
posterior distributions rather than adding small portions of the sequential weak learners and giving
point estimates only. Furthermore, the Bayesian framework does not need the tuning of, e.g., the
maximum depth tree via cross-validation.

Density regression BART (Orlandi et al. 2021) extends BART to distributional regression via
a continuous latent variable representation. The conditional PDF is modeled as

p(y | x) =
∫ 1

0

1
σ (x, u)

ϕ

(
y− f (x, u)

σ (x, u)

)
du. 7.

This defines a flexible location-scale mixture model—again an extension of finite mixtures from
Section 2, where η1 = f and η2 = σ are modeled as BART.

As stated by Orlandi et al. (2021), Equation 7 has the equivalent formulation U ∼ U(0, 1),
Y = f (x,U ) + ϵ, ϵ ∼ N(0, σ 2(x,U )), such that posterior sampling in density regression BART is
straightforward. Conditional on u, Gibbs sampling for the trees can be performed, and u can be
generated using efficient slice-sampling.

Fast implementations of BART for regression and classification are given by the R packages
dbarts and bartMachine, which extend the BayesTree package. Another option for survival
models is the BART package. Finally, drbart collects code for fitting density regression BART on
GitHub (https://github.com/vittorioorlandi/drbart).

Figure 7 illustrates posterior mean predictive densities obtained from BART and density re-
gression BART for two selected ages for girls, together with 95% equal-tailed credible intervals
for the predictive densities. Density regression BART fits a bimodal density for young girls at
age = 6 months and is favored by the log-score for both girls (1,330 vs. 1,422) and boys (1,277 vs.
1,317). Log-scores are based on 10-fold cross-validation, and lower values indicate better predic-
tive performance.Owing to the Gaussian assumption, this flexibility cannot be captured by BART
or heteroscedastic BART. The estimated posterior means resemble those obtained for girls with
a finite mixture model (see Figure 5), yet the latter estimates a bimodal predictive density for
age = 54 months.

While density regression BART seems to provide a very general framework when interest
lies in prediction and prediction intervals for data with high-dimensional covariates or complex
interactions, the interpretability of some of the approaches in Section 2 is lost. In addition, more
empirical investigation may be helpful to better understand the impact of priors. However, it will
be interesting to see how density regression BART will be extended further, such as for causal
inference (see Hill et al. 2020).

3.3. Quantile Regression Forests

Quantile regression forests (Meinshausen 2006) model conditional quantiles in high-dimensional
predictor situations based on random forests. Random forests grow an ensemble of trees, each
using a bagged version of the training data. To select the splitting points, only a random subset
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Density regression BART
BART

Predictive densities for girls age = 6 months
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Figure 7

Childhood malnutrition: predictive densities from a Bayesian additive regression tree (BART) and density regression BART for two
selected age values for girls, showing the posterior mean estimates (solid lines) together with 95% equal-tailed credible intervals. 10-Fold
cross-validated log-scores favor the density regression BART model for girls.

of the covariates is employed. The size of that random subset is a main tuning parameter, which
is often fine-tuned using out-of-bag samples (Breiman 2001). In traditional random forests, the
conditional mean is approximated by

∑n
i=1 wi(x)Yi, where the weights wi(x) = J−1 ∑J

j=1 wi(x, θ j )
are the averages of the weights of the single trees Tj that depend on parameters θ j . These weight
vectors sum to unity and are given by a positive constant if xi is part of the corresponding leaf and
0 otherwise.

Quantile random forests can easily be created using the relation F (υ |X = x) = E[1(Y ≤
υ ) |X = x] to arrive at an estimator

∑n
i=1 wi(x)1(Yi ≤ υ ) based on the same weights as for tra-

ditional random forests (for further details, see Meinshausen 2006). Software is available through
the R package quantregForest, which builds on the original randomForest package.

4. SCALABLE ESTIMATION FOR DISTRIBUTIONAL REGRESSION

Traditional estimation techniques to distributional regression based on (P)MLE or MCMC can
be infeasible when using very large data sets and rather complex models with many parameters.

4.1. Efficient Matrix Operations and Batchwise Backfitting

The mgcv package has integrated a number of advances toward scalable PMLE estimation with
of the order of 104 coefficients and over 107 data points. These are mostly based on Wood et al.
(2017) and Li & Wood (2020). When n and/or p is large, setting up the full covariate matrix X
and repeated computation and decompositions ofX⊤WX , whereW is diagonal or tri-diagonal, is
computationally costly. Wood et al. (2017) circumvent this using a pivoted Cholesky decomposi-
tion, which can be accumulated blockwise and parallelized. In addition, the effective dimension of
X can be drastically reduced by discretization in the covariate space (similar to Lang et al. 2014).
Li & Wood (2020) extend the latter to multivariate covariate spaces, thereby further reducing
computing time. To the best of my knowledge, these approaches have not yet been used for the
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VI: variational
inference

generalization to GAMLSS, but the hope is that they will become available in the corresponding
software.

Umlauf et al. (2023) propose a batchwise backfitting algorithm for GAMLSS-type models that
combines backfitting optimization and stochastic gradient descent. The algorithm provides au-
tomatic selection of variables and estimation of smoothing parameters, while maintaining low
computational cost and time. Rather than evaluating first- and second-order derivatives

∑K
k=1 Jk

times in each step of the backfitting algorithm, batchwise backfitting does so on a random subset of
the data. The updating steps are then stochastic, involving a step length (or learning rate), similar
to classical stochastic gradient descent. Umlauf et al. (2023) provide guidelines on choosing batch
size and learning rate and demonstrate that, depending on the latter, the convergence behavior is
similar to stochastic gradient descent, boosting, or resampling. For a data set with 107 observations
and a fairly complex location-scale model, estimation with batchwise backfitting takes less than an
hour, whereas MCMC would be infeasible for such numbers of observations. The routines can be
tested using bb_optfit in the bamlss package. In addition to efficient handling of large matrices
similar to mgcv, bamlss now supports flat file formats using the ff package.

4.2. Variational Inference

Variational inference (VI; Blei et al. 2017) has become popular as a scalable technique for approxi-
mate Bayesian inference whenMCMC is infeasible. The general idea is to turn estimation into an
optimization problem, where commonly the variational parameters λ are tailored toward a mem-
ber qλ(θ) that is close to p(θ | y). Let θ denote the set of all unknown model parameters. Proximity
between qλ(θ) and p(θ | y) is assessed by a divergence measure. The Kullback–Leibler divergence
KL[qλ(θ)||p(θ | y)] is commonly employed, and it is straightforward to check that minimizing this
is equivalent to maximizing the variational lower bound, also called the evidence lower bound
(ELBO; Ormerod & Wand 2010, Blei et al. 2017),

L(λ) =
∫
qλ(θ) log

(
p(y | θ)p(θ)
qλ(θ)

)
dθ.

This integral is generally intractable, but it can be optimized using stochastic gradient descent
methods. Given an initial value λ(0), such methods optimize the ELBO through the updates

λ(t+1) = λ(t ) + ρ(t )
+ ∇λL̂(λ(t ) ), t = 1, . . . ,

where ρ(t ) is a vector of step sizes, + denotes the elementwise product of two vectors, and ∇λL̂(λ(t ) )
is an unbiased estimate of the gradient of L(λ) at λ = λ(t ). For appropriate step sizes, convergence
to a local optimum of L(λ) is guaranteed.

In addition, variance reduction methods, such as the reparameterization trick, have become
popular for gradient estimation to achieve fast convergence and stability (for details and further
references, see Kingma & Welling 2014). However, VI algorithms for distributional regression
require tedious model-specific calculations and carefully chosen variational approximations in
particular.Kucukelbir et al. (2015) propose an automatic VI algorithm called advi, which is imple-
mented in Stan and R. The only required input is a well-defined Bayesian model and the data set.
In particular, no conjugacy assumptions are made. The general idea of this approach is to trans-
form all model parameters to the real line and approximate the posterior on that transformed
model space by a Gaussian variational approximation.

The latter are popular and often provide very accurate approximations to posterior
means/modes. However, a big limitation of the Stan implementation of advi is that the Gaussian
variational approximation assumes a diagonal covariance matrix, which implies that no posterior
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CURRENT TRENDS

The literature on distributional regression is currently developing. Examples of current areas of active research
include the following:

■ Hybrid models are being developed that try to leverage the power of statistics and machine learning simul-
taneously for distributional regression. The general aim is to combine structured predictors for tabular data
with other data modalities to obtain both modeling flexibility through the unstructured deep architecture and
interpretability for the structured part. Rügamer et al. (2023) provide a review and a proposal toward so-called
semistructured distributional regression within the framework of GAMLSS.

■ Progress has been made towards learning causal relations in distributional regression using instrumental vari-
ables (Briseño Sanchez et al. 2020), treatment effects (Park et al. 2021), anchor regression (Kook et al. 2022),
and distributional random forests (Cévid et al. 2022).

■ Automatic visualization tools, such as Shiny apps, have been developed to guide the extraction of results,
enhance interpretability, and highlight the merits of distributional regression (e.g., Stadlmann & Kneib
2022).

dependence between parameters exists. This is unlikely to be true in distributional regression
models, as argued by Kleinemeier & Klein (2023).

Despite their tractability, Gaussian distributions can be computationally expensive when the
dimension of θ is high. Another challenge is the estimation of the covariance matrix, because when
being unrestricted, the number of elements grows quadratically with the parameter dimension. A
fruitful way to solve this for Bayesian GAMLSS is to follow Ong et al. (2018) and employ a factor
covariance structure, where the covariance is decomposed into a matrix of the formA⊤A+D2, for
a diagonal matrixD and a factor matrixAwith far fewer columns than rows, considerably reducing
the number of variational parameters. Kleinemeier & Klein (2023) illustrate in simulations using
GAMLSS that typically only a small number of factors are needed to yield high accuracy of the
variational approximation.

To improve the approximation quality of the variational family,An& Jeon (2023) propose a new
learning method with a nonparametric distributional assumption for the decoder of a so-called
variational auto-encoder (Kingma &Welling 2014). Estimation is made computationally efficient
and tractable through a loss function based on the continuous ranked probability score.This could
prove a fruitful route to follow in statistical use of VI, not only for distributional regression. For
more detail on recent developments in distributional regression, see the sidebar titled Current
Trends.

SUMMARY POINTS

1. Transitioning from mean regression to probabilistic learning/distributional regression
allows analysts to study the entire distribution of the response in terms of covariates
rather than just the mean. Studies may benefit considerably from carefully comparing
and selecting an appropriate distributional model.

2. Both in statistics and in machine learning, there is increasing interest in modeling
aleatoric uncertainty more realistically.
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3. While this review focused on univariate real-valued responses, many distributional
approaches have also been extended to univariate discrete or mixed outcomes.

FUTURE ISSUES

1. Tractable yet accurate distributional regression models beyond two dimensions and
Gaussianity or linear dependence should be further developed.

2. For some of the approaches, theoretical properties (such as asymptotic theory) need
to be investigated to ensure reliability of standard tools, such as the AIC, and to pro-
vide uncertainty measures, before the approaches can be recommended to applied
researchers.

3. Increased flexibility comes with increased complexity of distributional models and thus
requires deeper knowledge of the methodology. Further work should be done to com-
municate, review, and explain such methods to the applied analyst, along with further
tools for model and variable selection.

4. Vignettes and tutorials contrasting the different approaches, along with their disadvan-
tages and advantages and which approach to use for what types of data situation, could
help to disseminate the use of distributional regression in general.This would contribute
to a better understanding and trust in such methods.

5. As highlighted by Gneiting & Katzfuss (2014, p. 146), “Strong methodological ties
between probabilistic forecasting, regression, and the emerging field of uncertainty
quantification can be fruitfully explored and utilized.” Here, the role of statistics in arti-
ficial intelligence (Friedrich et al. 2022) needs more attention, similar to research at the
intersection of machine learning approaches with high predictive power and statistics
with its inferential machinery (as stated in an interview with Silvia Chiappa of Google
DeepMind; Curtis 2017):

I would suggest to develop a solid background in machine learning, through learning about
the main disciplines underlying it, namely linear algebra, probabilistic reasoning, statistics,
and optimization. A solid background makes it easy to understand recent AI advances and
make contributions. A big mistake would be, for example, to study deep learning without
developing such a background, as this would give a very myopic view about it.
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