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Abstract
We propose three novel consistent specification tests for
quantile regression models which generalize former tests
in three ways. First, we allow the covariate effects to
be quantile-dependent and nonlinear. Second, we allow
parameterizing the conditional quantile functions by
appropriate basis functions, rather than parametrically. We
are thereby able to test for general functional forms, while
retaining linear effects as special cases. In both cases, the
induced class of conditional distribution functions is tested
with a Cramér–von Mises type test statistic for which we
derive the theoretical limit distribution and propose a boot-
strap method. Third, a modified test statistic is derived to
increase the power of the tests. We highlight the merits of
our tests in a detailed MC study and two real data examples.
Our first application to conditional income distributions
in Germany indicates that there are not only still signif-
icant differences between East and West but also across
the quantiles of the conditional income distributions, when
conditioning on age and year. The second application to
data from the Australian national electricity market reveals
the importance of using interaction effects for modeling
the highly skewed and heavy-tailed distributions of energy
prices conditional on day, time of day and demand.
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1 INTRODUCTION

Hypothesis testing plays a central role in many research areas. A necessary prerequisite for the
statistical validity of the decisions to be made is the correct specification of the underlying model.
Specification tests can be used to validate the correctness of theoretical assumptions. For linear
regression, a whole range of specification tests are available for both, parametric and nonparamet-
ric approaches. In general, testing misspecification in linear ordinary least squares (OLS) models
is well understood and developed.

In parametric models, for example, Bierens (1990) showed that any conditional moment test
of functional form of nonlinear regression models can be converted into a consistent chi-squared
test that is consistent against all deviations from the null hypothesis. Härdle and Mammen (1993)
suggested a wild bootstrap procedure for regression fits in order to decide whether a paramet-
ric model could be justified, while Stute (1997) proposed a more general method for testing the
goodness of fit of a parametric regression model. For the nonparametric case, among others,
Gozalo (1993) proposed a general framework for specification testing of the regression function
in a nonparametric smoothing estimation context and Stute et al. (1998) suggested a goodness of
fit test using a wild bootstrap procedure that checks whether a function belongs to a certain class.

However, OLS estimates are sensitive to outliers and draw only a part of the whole pic-
ture since they only model the mean. In contrast, quantile regression provides more robust
estimates and allows a more comprehensive picture of the entire conditional distribution.
Due to these advantages, quantile regression has become increasingly popular since the sem-
inal article by Koenker and Bassett (1978). However, post-estimation inference procedures for
quantile regression models essentially depend on the validity of the underlying parametric
functional form for the quantiles considered (Angrist et al., 2006). For example, assuming the
same fixed linear relationship between covariates for all quantiles is the connecting element of
the Machado–Mata (M–M) decomposition in order to describe wage inequalities (Machado &
Mata, 2005) and the Khmaladze transformation (Koenker & Xiao, 2002). Thus, testing the validity
of the imposed structure remains one of the key taks associated with challenges for valid posterior
inference.

In a parametric framework, one of the first specification tests for linear location shift and
location-scale shift quantile models with i.i.d. data is the test by Koenker and Xiao (2002). Shortly
thereafter, Chernozhukov (2002) proposes a resampling test procedure that avoids the estimation
of additional objects, such as the score function, while building on the principles stated in Koenker
and Xiao (2002). However, these two tests do not test the validity of the quantile regression model
itself, they only test for restrictions on the parameters. Escanciano and Velasco (2010) and Escan-
ciano and Goh (2014) both tested the validity of the null hypothesis that a conditional quantile
restriction is valid over a range of quantiles. Rothe and Wied (2013) proposed a specification test
for a larger class of models, including quantile regression models. They consider classes of con-
ditional distribution functions with function-valued parameters and test whether the underlying
cdf of the sample lies in one of these classes. This principle was extended to dynamic models by
Troster and Wied (2021).

In case of nonparametric instrumental quantile regression, Breunig (2019) develops a method-
ology for testing the hypothesis whether the instrumental quantile regression model is correctly
specified. Hallin et al. (2009) suggests an estimator for local linear spatial quantile regression and
Guerre and Sabbah (2012) investigating the Bahadur representation of a local polynomial esti-
mator of the conditional quantile function (qf) and its derivatives. Li and Racine (2008) propose

 14679469, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12671 by K

arlsruher Institut F., W
iley O

nline L
ibrary on [15/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



KUTZKER et al. 357

a nonparametric conditional cumulative distribution function (cdf) kernel estimator along with
an associated nonparametric conditional quantile estimator. Belloni et al. (2019) develop non-
parametric quantile regression for performing inference on the entire conditional qf and its linear
functionals and Qu and Yoon (2015) presented estimators for nonparametrically specified condi-
tional quantile processes that are based on local linear regressions. Li et al. (2020) investigated the
problem of nonparametrically estimating a conditional qf with discrete and continuous covariates
suggesting a kernel based approach.

But regardless of whether parametric or nonparametric approaches are chosen, the theory
concerning the validity of the correct model choice seems to keep up with the rapid development
of new estimation methods only to a limited extent. For example, to the best of our knowledge,
there does not exist a testing procedure that allows to test for general quantile-specific functional
(such as nonlinear) covariate effects. While nonlinear regressors can be considered in a standard
parametric quantile regression framework, testing for presence of such nonlinear effects at certain
quantiles usually requires estimating them for all quantiles. We propose a method that does not
require this. Moreover, we incorporate spline-based estimation approaches in order to allow for
more flexible nonlinear effects than in a parametric setting. On the one hand, we are able to test
if a particular spline approximation is appropriate, on the other hand, we show that the spline
approach can be used to obtain more powerful tests.

Our contributions are as follows. First, we suggest a general procedure for quantile regression
models, where the regressors can explicitly depend on quantiles. This allows to test for the correct
specification of large number of parametric models. Second, due to our general model set-up, our
proposed methodology also allows to test for finite semi-parametric models. One of such examples
are B-splines for quantile regressions, where the finite number of covariates have a general func-
tional form depending on the quantile (Cardot et al., 2005). Additionally, our second test allows
to test for the order and the correct number of knots of the B-spline specifications. Third, a test is
developed in the framework of quantile regression models with an increasing number of knots.
This third test can also be applied to (semi-)parametric quantile regression models which turns
out to be a more powerful testing procedure. Last, we derive a valid bootstrap procedure is a practi-
cal easy-to-implement algorithm to calculate critical values of the limiting distributions. Overall,
our framework therefore extends the literature on quantile regression specification tests to sit-
uations where specific regressors may have a complex functional impact and/or the respective
effects may vary over quantiles.

The key idea of our framework is based on the principle characterized by Rothe and
Wied (2013): We compare an unrestricted estimate of the joint distribution function of the ran-
dom variable Y and the vector X with a restricted estimate that imposes the structure implied
by the null hypothesis model. Based on a Cramér–von Mises type measure of distances, the
restricted estimate of the joint distribution can then be compared with the unrestricted one. We
derive the nonpivotal limiting distribution of our test statistic and show the validity of our sug-
gested parametric bootstrap procedure for the approximation of the critical values. To increase
the power of our test, we replace the unrestricted model estimate with a quadratic B-spline. Due
to the generality of our test procedure we can subsume previous specification tests for quan-
tile regression models with i.i.d. data as special cases of our procedure. Our extensive Monte
Carlo (MC) simulation study in the Supplement shows that our testing procedures are consistent
and have superior power properties than existing benchmark methods, where comparisons are
possible.

Finally, to illustrate the power and potential of our tests, we consider two real data appli-
cations. First, the case of income inequality is treated, with a focus on differences in the
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358 KUTZKER et al.

conditional income quantiles between East and West Germany in a balanced panel data set. Such
disparities have received considerable attention in the economic literature (e.g., Biewen, 2000),
and also consistently played a major role in the domestic political debate. Our empirical analy-
sis uses the German Socio-Economic Panel (SOEP) and shows that age has a predominant linear
influence on income development in Germany, but for the upper 90% quantile the influence of age
is solely quadratic. Importantly, and in line with other studies on this topic, we find through an ini-
tial M–M decomposition that there are still income differences between East and West Germany,
which can be confirmed by our proposed testing procedure. The second application arises from
energy economics. Following recent work in Smith and Klein (2021), we consider spot prices from
the Australian national electricity market from 2019 and analyze in which sense its conditional
quantiles can be explained by different covariates. These authors have shown that the distribu-
tion is heavily skewed and far from Gaussian with complex interactions of the three covariates
day of the year, the time of day and the demand. We statistically confirm that interaction effects
have a substantial impact on the electricity price, especially for the lower quantiles.

The paper is organized as follows. Section 2 formulates the test problem for the
finite-dimensional parametric and semi-parametric models. In Section 3, we provide the the-
oretical properties of the testing procedures and derive their limiting distributions. Section 4
describes a practical and easy-to-implement bootstrap procedure, which provides valid coverage.
In Section 6 we present the two empirical applications. The last Section 7 concludes. Supple-
ment contains all proofs of our theoretical results, as well as an extensive MC study including
comparisons to existing tests and further results on the second application.

2 QUANTILE REGRESSION TESTING

In this section, we introduce three specification tests for (semi-)parametric quantile regression
models comparing the empirical conditional cumulative distribution function (ecdf) with the
(semi-)parametric joint cdf that is based on the estimated conditional qf. We denote these tests
by SCM

n , SCM,S
n and SCM∗

n . In Section 2.1, we derive the general test principle along the lines of
parametric models. In contrast to existing approaches, the test for parametric quantile regression
models SCM

n allows the covariates X to be quantile-dependent. This feature is important in many
applications as we illustrate in our first application where the effect of age has distinct functional
forms depending on the quantile of interest of the conditional income distribution. For the case of
quantile-independent covariates, the test reduces to the test statistic from Rothe and Wied (2013).
Section 2.2 applies the general test principle to finite-dimensional semi-parametric models with
the specification test denoted by SCM,S

n . As an illustrative example, we consider B-splines, where
the degree of the spline and the dimension of the vector of knots is known and finite. We choose
the wording “semi-parametric” because we consider a (possibly penalized) spline with a fixed
dimension, whereas the total number of parameters is (possibly much) higher than in the first
test of Section 2.1. Similar to the first test, it is of high relevance in practice, as we show in our
second application on electricity price distributions. It should be stated, however, that the com-
putational complexity increases in the degree of the spline and in the dimension of the vector
of knots, compare Toraichi et al. (1987) for precise results for splines. In Section 2.3, we intro-
duce a more powerful model specification testing procedure SCM∗

n , which is illustrated on the class
of parametric quantile regression models. To do so, we replace the empirical conditional cdf in
the test statistic SCM

n with an appropriate spline representation that approximates the true joint
cdf faster. The price of the higher power is that the class of true cdfs is restricted more strongly.
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KUTZKER et al. 359

For the approach, we need (in contrast to the case in Section 2.2) splines whose dimension
grows as a function of the number of observations, that is, the degree of the spline is fixed while
the dimension of the knot vector (and that the dimension of the vector of regression coeffi-
cients) diverges at an appropriate rate. This of course increases the computational complexity
even more. Finally, we note that it would in principle also be possible to do this extension
for SCM,S

n with some additional assumptions but doing so in detail is beyond the scope of this
paper.

2.1 Quantile regression and the general test principle

Let Yi ∈ R denote the outcome variable and Xi ∈ RK the vector of explanatory variables of
i.i.d. data points for i = 1,…,n and K ∈ N. Our aim is to test the validity of certain model
specifications for quantile regression. Specifically, we consider models of the form

F−1
Y |X (𝜏 | x) = P(x, 𝜏)⊤𝜃(𝜏), (1)

where F−1
Y |X (𝜏 | x) denotes the qf of Y conditional on X = x ∈ RK at quantile 𝜏, P(x, 𝜏) ∈ Rp

𝜏 is a
transformation vector of x with p

𝜏
∈ N and 𝜃(𝜏) ∈ Rp

𝜏 is the parameter vector depending on 𝜏 for
all 𝜏 ∈  ⊂ (0, 1). Naturally, models in which the vector of transformations does not depend on 𝜏

are captured by our approach as a special case (P(x, 𝜏) ≡ x is the familiar case of linear quantile
regression). As noted by Belloni et al. (2019) for P(x, 𝜏) ≡ P(x), the above framework incorporates a
variety of models such as parametric (Koenker, 2005) and semi-parametric (He & Shi, 1998) ones.
However, since we allow the transformation vector P(x, 𝜏) to depend on the quantile 𝜏, models
of the form (1) are generalizations. In parametric quantile regression models, P(x, 𝜏) could for
instance represent a linear covariate in the lower 50% quantile and a highly nonlinear functional
form in the upper 50% quantile, for example, P(x, 𝜏) = x if 𝜏 ≤ 0.5 and P(x, 𝜏) = sin(x)x2 otherwise.
In semi-parametric models, P(x, 𝜏) could represent the knot vector for cubic B-splines that differs
for distinct quantiles as in our second application in Section 6.2. For ease of notation and without
loss of generality, we assume p

𝜏
=∶ p ∈ N for all 𝜏 ∈  . In the remainder of this subsection we

assume the qf according to (1) to be specified by a parametric model, while generalizations are
treated thereafter.

Our test principle is designed for the comparison of the nonparametric with the paramet-
ric joint cdf, where the latter can be expressed by means of the parametric conditional cdf. In
general, the conditional cdf F of Y conditioned on X , denoted as FY |X , in turn is induced by its
corresponding (generalized) conditional qf F−1

Y |X through the following equation

FY |X (y | x) =
∫

1

0
1{

F−1
Y |X (𝜏 | x)≤y

}d𝜏 ∀ y ∈ R. (2)

In the following, we consider the set of all conditional distribution functions satisfying (2) given
the model specification (1), which we denote by  , that is

 ∶= {FY |X (y | x, 𝜃) |F−1
Y |X (𝜏 | x) = P(x, 𝜏)⊤𝜃(𝜏) for some 𝜃 ∈ ( ,Θ), (y, x) ∈ }, (3)

where  denotes the support of (y, x) ∈ RK+1 and ( ,Θ) the class of functions 𝜏 → 𝜃(𝜏) ∈ Θ ⊂

Rp. The specification testing problem of whether our model (1) is correctly specified for all 𝜏 ∈ 
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360 KUTZKER et al.

transfers by means of (3) to hypotheses of the form

H0 ∶ FY |X ∈  vs. H1 ∶ FY |X ∉  . (4)

Thus, we want to test if the conditional cdf FY |X coincides with an element of  from (3). For this
testing problem, we assume a unique 𝜃0 ∈ ( ,Θ) under the null hypothesis, such that 𝜃(𝜏) =
𝜃0(𝜏) for all 𝜏 ∈  . This yields 0 ∶= {FY |X (y | x, 𝜃0) | F−1

Y |X (𝜏 | x) = P(x, 𝜏)⊤𝜃0(𝜏) for some 𝜃0 ∈
( ,Θ)∀(y, x) ∈ }. Hence, we can reformulate (4) as

H0 ∶ FY |X (y | x) = FY |X (y | x, 𝜃0) for some 𝜃0 ∈ ( ,Θ) for all (y, x) ∈  (5)

vs. H1 ∶ FY |X (y | x) ≠ FY |X (y | x, 𝜃) for all 𝜃 ∈ ( ,Θ) for some (y, x) ∈  . (6)

Additionally we assume that 𝜃0 is identified under the null hypothesis through a moment con-
dition. Specifically, let g ∶  × Θ ×  → Rp be a uniformly integrable function whose exact form
depends on 0, and suppose that for every 𝜏 ∈ 

G(𝜃, 𝜏) ∶= E[g(Y ,X , 𝜃, 𝜏)] = 0 ∈ R
p (7)

has a unique solution 𝜃0(𝜏). Furthermore, under the alternative H1, we assume 𝜃0(𝜏) to be
uniquely defined as the solution to inf

𝜃∈Θ ‖G(𝜃, 𝜏)‖ from (7) for all 𝜏 ∈  and thus can be regarded
as a pseudo-true value of the functional parameter in this case. Incorporating the moment
condition, we can now rewrite the null hypothesis of (4) as

FY |X (y | x) = FY |X (y | x, 𝜃0) for all (y, x) ∈ R
K+1

,

with 𝜃0(𝜏) as the unique solution to (7) for all 𝜏 ∈  . This holds true since 0 is a single-
ton containing F⋅ | ⋅(⋅ | ⋅, 𝜃0). Since FY |X (y |X) = E[1{Y≤y} |X], we can write the joint cdf F of Y
and X as

F(y, x) =
∫

RK
FY |X (y | x∗)1{x∗≤x}dFX (x∗)

F(y, x, 𝜃0) =
∫

RK
FY |X (y | x∗, 𝜃0)1{x∗≤x}dFX (x∗),

where FX denotes the marginal cdf of X . From Theorem 16.10(iii) of Billingsley (1995) it follows
that the testing problem (5) can be restated as

H0 ∶ F(y, x) = F(y, x, 𝜃0) for all (y, x) ∈ R
K+1

vs. H1 ∶ F(y, x) ≠ F(y, x, 𝜃0) for some (y, x) ∈ R
K+1

. (8)

Furthermore, let S ∶ RK+1 × Θ → R be a function that measures the difference of the nonpara-
metric F(y, x) and the parametrized cdf F(y, x, 𝜃) defined as

S(y, x, 𝜃) ∶= F(y, x) − F(y, x, 𝜃). (9)

The null hypothesis is true if S(y, x, 𝜃0) = 0 for all (y, x) ∈  , whereas S(y, x, 𝜃) ≠ 0 for all 𝜃 ≠ 𝜃0 ∈
( ,Θ) and for some (y, x) ∈  . The sample analog is
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KUTZKER et al. 361

Sn(y, x, ̂𝜃n) ∶= ̂Fn(y, x) − ̂Fn(y, x, ̂𝜃n), (10)

where ̂Fn(y, x) is the empirical cdf and ̂Fn(y, x, ̂𝜃) a parametric estimate of F based on
a consistent estimate ̂

𝜃n(𝜏) of 𝜃0(𝜏) for all 𝜏 ∈  corresponding to the underlying model
assumption (1). Under the null hypothesis, ̂Fn(y, x, ̂𝜃n) is a consistent estimator for F(y, x, 𝜃0),
whereas ̂Fn(y, x) consistently estimates F(y, x). In that case, Sn(y, x, ̂𝜃n) should be close to
zero for all (y, x) ∈  . If, however, the alternative holds true, then there is a vector (y, x) ∈
 for each 𝜃 ∈ ( ,Θ) such that the absolute value of the function Sn from (10) is greater
than zero.

To obtain an estimate for the parametrized empirical cdf ̂Fn(y, x, ̂𝜃n)we follow Chernozhukov
et al. (2013) and take the function ̂

𝜃n to be an approximate Z-estimator satisfying

‖
‖
‖
̂Gn( ̂𝜃n, 𝜏)

‖
‖
‖
= inf

𝜃∈Θ
‖
‖
‖
̂Gn(𝜃, 𝜏)

‖
‖
‖
+ 𝜂n, (11)

where the function ̂Gn( ̂𝜃n, 𝜏) ∶= n−1∑n
i=1g(Yi,Xi, 𝜃, 𝜏) is the sample analog of the moment condi-

tion (7) for every 𝜏 ∈  and for some possibly random variable 𝜂n = op(n−1∕2). For every 𝜏 ∈ 
and every (y, x) ∈  , the estimator based on the testing problem (5) is

̂Fn(y | x, ̂𝜃n) =
∫


1{P(x,𝜏)⊤ ̂
𝜃n(𝜏)≤y}d𝜏 + ∫(0,1)⧵

1{ ̂F−1
Y |X (𝜏 |X)≤y}d𝜏,

̂
𝜃n(𝜏) = argmin

𝜃∈Θ

n∑

i=1

(
𝜏 − 1{yi≤P(xi,𝜏)⊤𝜃}

)(
yi − P(xi, 𝜏)⊤𝜃

)
. (12)

For 𝜏 ∉ T, the conditional qf ̂F−1
Y |X (𝜏 |X) is some estimator for the conditional qf which is con-

sistent both under the null and the alternative hypothesis (e.g., Soni et al., 2012; Takeuchi
et al., 2006). If  = [𝜖, 1 − 𝜖] for a small 𝜖 > 0, this term is negligible in practice. The integral
in (12) can be computed by means of standard numerical integration techniques (i.e., averaging
over a fine equidistant grid of 𝜏 with 49 supporting points starting at 0.02 using the trape-
zoidal rule) and corresponds to the canonical quantile regression approach, that is, the loss
function g from (7) is given by g(Y ,X , 𝜃, 𝜏) = (𝜏 − 1{Y ≤ P(X , 𝜏)⊤𝜃(𝜏)})P(X , 𝜏) (cf. Lemma 14
of Chernozhukov et al., 2013). Additionally, (12) and other typical estimation methods fit the
estimated conditional qf ̂F−1

n (𝜏 | x) pointwise in 𝜏 ∈  , which might induce the problem that
the estimated quantile curve 𝜏 → ̂F−1

n (𝜏 | x) violates the monotonicity constraint. This in turn
may cause crossing quantile curves. However, a violation of the monotonicity constraint does
not affect the validity of the test statistic, since it is based on transformations of ̂Fn(y | x, ̂𝜃n)
which is monotone in y by construction for every x. Hence, a valid test statistic can be based
on the differences of the nonparametric and parametric ecdfs ̂Fn(y, x) and ̂Fn(y, x, ̂𝜃n) and thus
expressed as

Sn(y, x, ̂𝜃n) = ̂Fn(y, x) − ̂Fn(y, x, ̂𝜃n)

= 1
n

n∑

i=1

(
1{Yi≤y}1{Xi≤x}

)
−
∫

RK
1{x∗≤x} ̂Fn(y | x, ̂𝜃n) d ̂FX (x∗)

= 1
n

n∑

i=1

(
1{Yi≤y}1{Xi≤x} − 1{Xi≤x} ̂Fn(y | x, ̂𝜃n)

)
, (13)
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362 KUTZKER et al.

where the third line exploits the definition of the integral with respect to the ecdf ̂FX . We propose
a Cramér–von Mises type (CM) test statistic SCM

n defined as

SCM
n ∶=

∫

(√
nSn(y, x, ̂𝜃n)

)2
d ̂Fn(y, x), (14)

which is due to the quantile dependence of the covariates a generalization of existing quantile
regression tests. However, if the vector of transformations P(x, 𝜏) in (1) is independent of 𝜏 then
the test statistic coincides with test statistic proposed in Rothe and Wied (2013). It is also possible
to consider a Kolmogorov–Smirnov-type test statistic

SKS
n ∶=

√
n sup
(y,x)∈

|
|
|
Sn(y, x, ̂𝜃n)

|
|
|
,

but the CM test yields better (power) results (Chernozhukov, 2002; Rothe & Wied, 2013).

2.2 Specification test for semi-parametric quantile regression

Since we introduced the general testing principle of (1) by means of the parametric model, this
subsection briefly demonstrates that the general test principle is also applicable to finite dimen-
sional semi-parametric models. This particularly addresses the fact that parametric models are
often too restrictive and implausible from an applied perspective, since, among others, the con-
stantly increasing complexity of data sets also makes modeling by simple functional relationships
more difficult.

In the following, we identify the vector of transformations P(x, 𝜏) as basis functions (often
referred to as series terms; Belloni et al., 2019; Chao et al., 2017; Chernozhukov et al., 2013).
To distinguish such basis functions from the vector of transformations in the previous sub-
section, we use the notation B⋅ instead. Due to their widespread use, we will derive the
semi-parametric test for B-splines bases, although our general test principle also allows for other
semi-parametric forms such as penalized splines, Fourier series or compactly supported wavelets
(Chao et al., 2017). For ease of well-defined expression and readability, we assume w.l.o.g. that
the vector of covariates X ∈ RK is properly scaled and centered and that M ∈ N uniformly spaced
knots 0 = t1 < · · · < tM = 1 in the interval [0, 1] are given. For x = (x1,…, xK)⊤ ∈ [0, 1]K with
K ∈ N, we identify the B-spline quantile regression model in the spirit of (1) as

F−1
Y |X (𝜏 |X = x) =

K∑

j=1
B(xj | d

𝜏
)⊤𝜃j(𝜏) (15)

with B(xj | d
𝜏
) ∶=

(
B1(xj | d

𝜏
),…,BM+d

𝜏

−1(xj | d
𝜏
)
)
⊤ being the vector of M + d

𝜏
− 1 basis functions

of degree d
𝜏

that are defined recursively on the vector of knots on [0, 1] and evaluated at xj for
j = 1,…,K (cf. De Boor, 1978, for the recursive Definition). For every 𝜏 ∈  and j = 1,…,K, 𝜃j(𝜏) =
(𝜃j,1(𝜏),…, 𝜃j,M+d

𝜏

−1(𝜏))⊤ defines the corresponding functional coefficient vectors. Although both
M and d

𝜏
can be conceived to depend on j for j = 1,…,K and additionally M on 𝜏, we suppress

these dependencies at this point due to readability and clearness. Note that for distinct quan-
tiles 𝜏 the degree of the B-spline might differ. If d

𝜏
≡ d ∈ N we refer to (15) as B-spline quantile

regression model of degree d. Since our general quantile regression model in (1) conceptually
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KUTZKER et al. 363

allows for multivariate covariates, we make (15) more flexible by adding q∗ ∈ N arbitrary product
interaction effects of the form 𝜋i(x) =

∏
j∈Ji

fj(xj), where Ji is an arbitrary subset of {1,…,K} for
i = 1,…, q∗ and fj an arbitrary continuous function for j ∈ Ji. Thus, (15) generalizes to

F−1
Y |X (𝜏 |X = x) =

q∑

j=1
B(𝜋j(x) | d

𝜏
)⊤𝜃j(𝜏) (16)

with q = K + q∗. For 𝜋j(x) = xj and Ji singletons for j = 1,…, q with q = K we receive our initial
B-spline model (15). The estimator for models of the form (16) is given by

̂
𝜃n(𝜏) = argmin

𝜃∈Rq⋅M

{ n∑

i=1
𝜌
𝜏

(

yi −
q∑

j=1
B(𝜋j(x) | d

𝜏
)⊤𝜃j

)}

(17)

where 𝜌
𝜏
(u) = u(𝜏 − 1(u < 0)) is the check function (Koenker & Bassett, 1978) for 𝜏 ∈  , u ∈ R.

In case of no misspecification, Bondell et al. (2010) have shown that the unconstrained estimator
(17) has the same limiting distribution as the classical constrained quantile regression estimator.
Hence, in accordance with the discussion on monotonicity in Section 2.1, 𝜃0 can be estimated
consistently based on unconstrained methods, noting that possible quantile curves crossing of the
conditional qf estimator does not affect the validity of the CM test statistic. In our MC simulation
II.1 and empirical application 6.2, we will also consider penalized splines, which can be captured
by (15) with an additional penalty term, but are omitted at this point for ease of notation (com-
pare the discussion after Corollary 1). Besides the well-known estimation method (17), there are
other consistent approaches. A prominent and easy to implement algorithm is the divide and con-
quer algorithm at fixed 𝜏. The quantile projection algorithm, in contrast, is used to construct an
estimator for the quantile process (cf. Volgushev et al., 2019, for further details).

To develop a CM test for null hypotheses of the form (5), we replace the estimator of the con-
ditional qf in (12) with our estimator (17). This yields a new conditional distribution function
̂FS

n(y | x, ̂𝜃n). Integrating over x leads to the function SS
n(y, x, ̂𝜃n) ∶= ̂Fn(y, x) − ̂FS

n(y, x, ̂𝜃n), where
̂FS

n(y, x, ̂𝜃n) is the spline based estimate of the cdf in the spirit of (13) for fixed and finite q and M.
We then define the CM test statistic for finite-dimensional semi-parametric quantile regression
models

SCM,S
n ∶=

∫

(√
nSS

n(y, x, ̂𝜃n)
)2

d ̂Fn(y, x). (18)

The second test SCM,S
n is thus able to test, for instance, whether a spline is correctly specified

with respect to its predefined fixed degree d. In contrast to SCM
n , the semi-parametric test SCM,S

n
also allows for possible penalization. Consequently, questions of the form whether linear splines
characterize a data set similarly well as cubic splines (with possible penalization) can be addressed
by means of SCM,S

n .

2.3 A more powerful testing procedure using splines

The underlying principle of the test SCM
n is to compare the parametric cdf induced by (5) with

the nonparametric cdf. As the class of alternative hypotheses in (4) gets smaller, the power
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364 KUTZKER et al.

of SCM
n can be improved if a spline is used for the nonparametric part of the test, that is,

modeling the conditional qf with an appropriate spline function used to estimate the ecdf ̂Fn.
Xue and Wang (2010) have shown, for instance, that the estimate of the cdf with a smooth
monotone polynomial spline has better finite sample properties than the empirical distribu-
tional estimate. Cardot et al. (2005) have generalized limiting results for quantile regression
models with quantile-dependent covariates. However, the goodness and convergence rate of the
spline approximation depends, in general, in a complex fashion on the degree of the spline,
the number of knots and the position of the knots which may change for increasing n. For a
quantile regression model with quantile-independent covariates He and Shi (1998) have pointed
out that if the number of knots kn ∼ (n∕ log n)2∕5 and under some mild assumptions (cf. He &
Shi, 1998, assumptions C1–C3), the order of approximation of a quadratic monotone B-spline
is (log n∕n)2∕5.

However, in order to approximate the theoretical cdf sufficiently well, it is necessary that
M grows as a function of n, that is, M diverges at a proper rate. This is known as nonpara-
metric quantile regression, that is, a linear model with increasing dimension in the regres-
sion coefficients. Note that in this framework the true functional parameter vector 𝜃0 also
depends on n (Belloni et al., 2019). Consequently, for nonparametric quantile regression, (1)
expands to

F−1
Y |X (𝜏 | x) = Pn(xn, 𝜏)⊤𝜃0n(𝜏). (19)

We discuss the theoretical framework of (19) in Section 3.2. Let ̂FSM
n be the spline based esti-

mate of the cdf via the nonparametric conditional qf according to (19). Thus in these mod-
els, the test statistic that is based on the difference of the parametric and semi-parametric
ecdf reads

S∗n(y, x, ̂𝜃n) =
1

a∗n
̂FSM

n (y, x, ̂𝜃n) −
1

an
̂Fn(y, x, ̂𝜃n),

where an, a∗n are scaling factors defined in Section 3.2. This yields the new test statistic

SCM∗

n ∶=
∫

(√
nS∗n(y, x, ̂𝜃n)

)2
d ̂Fn(y, x). (20)

In comparison to SCM
n , the test statistic SCM∗

n replaces the estimate of the ecdf ̂Fn(y, x) in (13) by an
appropriate spline estimate of the conditional qf via (19), which is then transformed to estimate
̂FSM

n (y, x, ̂𝜃n). Note that finite-dimensional parametric models can also be tested with SCM∗

n . In our
MC simulation study, we will therefore compare the two tests SCM

n and SCM∗

n , as they address
questions of similar kind. It turns out that SCM∗

n is a more powerful testing procedure than SCM
n ,

particularly in small samples.

3 ASYMPTOTICS

In this section, we first derive theoretical properties of the parametric test statistic SCM
n in

Section 3.1 before generalizing the statements to the semi-parametric test statistic SCM,S
n and the

more powerful test statistic SCM∗

n in Section 3.2.
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KUTZKER et al. 365

3.1 Theoretical properties for testing (semi-)parametric quantile
regression models

In Theorem 1 below we show that the test statistic SCM
n has correct asymptotic size. To be able to

derive large sample properties of SCM
n , we make and discuss the following mild assumptions. Since

our proposed test statistic is a generalization of existing tests, these assumptions modify those
previously made (Chernozhukov et al., 2013; Rothe & Wied, 2013). For this purpose, we restate
the assumptions on compact subsets on  . Let Θ be an arbitrary subset of Rp and  ∶= [𝜀, 1 − 𝜀]
with 𝜀 ∈ (0, 0.5).

Assumption 1.

(i) P(X , 𝜏) is L2-bounded in [0, 1] and continuous in X .
(ii) Let

⋃L
l=1Il =  , L ∈ N, Il compact for l = 1,…,L and Il1 ∩ Il2 a singleton

for l1 ≠ l2.
(iii) For each 𝜏 ∈ Il with l = 1,…,L, G(⋅, 𝜏) ∶ Θ→ Rp possesses a unique zero at

𝜃0 ∈ interior(Θ) such that G(𝜃0, 𝜏) = 0 for all 𝜏 ∈  and for some 𝛿 > 0,  ∶=
⋃

𝜏∈l
B
𝛿
(𝜃0) is a compact subset of Rp contained in Θ for l = 1,…,L.

(iv) Furthermore, G(⋅, 𝜏) has an inverse G−1(x, 𝜏) ∶= {𝜃 ∈ Θ |G(𝜃, 𝜏) = x} that is
continuous at x = 0 uniformly in 𝜏 ∈ Il for all l = 1,…,L with respect to the
Hausdorff distance.

(v) The mapping (𝜃, 𝜏) → g(⋅, 𝜃, 𝜏) is continuous at each (𝜃(𝜏), 𝜏) ∈ Θ × Il for all l =
1,…,L with probability one and (𝜃, 𝜏) → G(𝜃, 𝜏) is continuously differentiable
at (𝜃0(𝜏), 𝜏) with uniformly bounded derivative on  .

(vi) The function ̇G(𝜃, 𝜏) ∶= 𝜕
𝜃
G(𝜃, 𝜏) is nonsingular at 𝜃0(⋅) uniformly over 𝜏 ∈ Il

with l = 1,…,L.
(vii) The function set l = {g(Y ,X , 𝜃, 𝜏) | (𝜃, 𝜏) ∈ Θ × Il)} is FYX -Donsker for all l =

1,…,L with a square integrable envelope ̃G for
⋃L

l=1l.

(viii) The mapping 𝜃 → F(⋅ | ⋅, 𝜃) is Hadamard differentiable for all 𝜃 ∈ ( ,Θ)with
derivative h → ̇F(⋅ | ⋅, 𝜃)[h]

Due to quantile dependence of the regressors X , we further require continuity of the func-
tion P(X , 𝜏) in X , which is provided by Assumption 1(i). Assumption 1ii ensures that there
is a finite and compact decomposition of the unit interval. This is required since we consider
Donsker classes in the proof of Theorem 1. We are using the fact that the union of Donsker
classes is also Donsker (see Dudley, 2014, sec. 3.8). Assumptions 1(ii)–(vii) guarantee the regu-
larity of our estimator ̂

𝜃n and ensure that a functional central limit theorem can be applied to
Z-estimator processes (see Corollary 2 in Supplement I.1). Assumption 1 viii is a smoothness
condition. Together with the functional delta method it implies that the restricted cdf estimator
process

(y, x) →
√

n
(
̂Fn(y, x, ̂𝜃n) − F(y, x, 𝜃)

)
(21)

is FYX -Donsker. This convergence can be shown to be jointly with that of the ecdf process
(y, x) →

√
n
(
̂Fn(y, x) − F(y, x)

)
to a Brownian bridge by some standard arguments given in

Lemma 2 in Supplement I.1. Applying the continuous mapping theorem yields the following
proposition.
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366 KUTZKER et al.

Theorem 1. If Assumption 1 is satisfied, then the following statements hold:
(i) Under the null hypothesis H0 in (8),

SCM
n

d
−−→
∫
(G1(y, x) −G2(y, x))2dFYX (y, x),

where (G1,G2) is a bivariate zero mean Gaussian processes with

G2(y, x) ∶=
∫

G
+
2 (y, x∗)1{x∗≤x}dFX (x∗) +

∫
F(y | x∗)1{x∗≤x}dG1(∞, x∗),

where G
+
2 (y, x) is the limiting Gaussian process of

√
n
(
̂Fn(y | x, ̂𝜃n) − F(y | x, 𝜃)

)
∈ 𝓁∞() defined in Lemma 2. Moreover,

Cov(G1(y1, x1),G2(y2, x2))

= lim
n→∞

n Cov
(
̂Fn(y1, x1) − F(y1, x1), ̂Fn(y2, x2, ̂𝜃n) − F(y2, x2, 𝜃)

)
.

(ii) Under any fixed alternative, that is, when the data are distributed according to
some F that satisfies the alternative hypothesis H1 in (8),

lim
n→∞

P
(

SCM
n > 𝜀

)
= 1 for all constants 𝜀 > 0.

Theorem 1 ensures distributional convergence of the test statistic SCM
n and further shows that

the nonparametric ecdf ̂Fn(y, x) and the parametric ecdf ̂Fn(y, x, ̂𝜃n) differ with probability one
under the alternative hypothesis. Hence in case of misspecification, the power of the test statis-
tic SCM

n converges to one as n approaches infinity. Based on the generality of Assumption 1 and
the proof structure in Supplement I.1, the statements from Theorem 1 can also be extended to
semi-parametric quantile regressions models with fixed q, M as discussed in Section 2.2. Thus,
we have

Corollary 1. If Assumption 1 is satisfied, then the following statements hold:

(i) Under the null hypothesis H0 in (8),

SCM,S
n

d
−−→
∫

(
G1(y, x) −G

S
2(y, x)

)2dFYX (y, x),

where (G1,G
S
2) is a bivariate zero mean Gaussian processes with

G
S
2(y, x) ∶=

∫
G

S+
2 (y, x∗)1{x∗≤x}dFX (x∗) +

∫
F(y | x∗)1{x∗≤x}dG1(∞, x∗),

where G
S+
2 (y, x) is the limiting Gaussian process of

√
n
(
̂FS

n(y | x, ̂𝜃n) − F(y | x, 𝜃)
)

∈ 𝓁∞(). Moreover,

Cov(G1(y1, x1),GS
2(y2, x2)) =

lim
n→∞

n Cov
(
̂Fn(y1, x1) − F(y1, x1), ̂F

S
n
(

y2, x2, ̂𝜃n
)
− F(y2, x2, 𝜃)

)

.
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KUTZKER et al. 367

(ii) Under any fixed alternative, that is, when the data are distributed according to
some cdf F that satisfies the alternative hypothesis H1 in (8),

lim
n→∞

P
(

SCM,S
n > 𝜀

)

= 1 for all constants 𝜀 > 0.

In empirical applications, however, it is often common to estimate series terms with smooth-
ing penalty parameters 𝜆j for j = 1,…, p, since this avoids overfitting the data. Imposing the
assumption that the penalty parameters are 𝜆j = o

(
n1∕2) for j = 1,…, p the penalties can be

asymptotically ignored. This indicates that Corollary 1 is also valid in case of penalized quantile
regression (Lian et al., 2015).

3.2 Theoretical properties for the more powerful test

In the context of nonparametric quantile regression, that is, the number of knots diverges at
a proper rate, we need to introduce some additional notation: Since the dimension K and the
true distribution F of i.i.d. samples (Xi,Yi) ∈ RK+1 for i = 1,…,n can depend on n, we consider
triangular arrays. For brevity of notation, we omit the index n in the following and we write
Pi = P(Xi, 𝜏) and P = P(X , 𝜏). Let 𝜆min(A) and 𝜆max(A) be the smallest and largest eigenvalue of a
matrix A. By ||b|| we denote the L2-norm of a vector b. Moreover, we set an ∶=

√
n∕||P(x)|| and

a∗n ∶=
√

n∕||B(x)||, respectively.
Imposing the assumptions from Chao et al. (2017) adapted to quantile regression with

quantile-dependent series terms enables us to replace the conditional qf by an appropriate (spline)
estimator and thus to derive large sample properties for our third test statistic SCM∗

n :

Assumption 2.

(i) For p ∶= qM, assume that ‖Pi‖ ≤ 𝜉p = O(na) almost surely with a > 0, and that
1

M∗ ≤ 𝜆min(E[PP⊤]) ≤ 𝜆max(E[PP⊤]) ≤ M∗ holds uniformly in n and 𝜏 ∈  for
some fixed M∗

> 0.
(ii) The conditional distribution FY |X (y | x) is twice differentiable w.r.t. y. We denote

the corresponding derivatives by fY |X (y | x) and f ⊤Y |X (y | x). Assume that f ∶=
|
|
|
supy,x fY |X (y | x)||

|
< ∞ and f ⊤ ∶= supy,x

|
|
|
f ⊤Y |X (y | x)||

|
< ∞ uniformly in n.

(iii) Assume there exists a constant fmin > 0 such that inf
𝜏∈

inf
x

fY |X (F−1
Y |X (𝜏 | x) | x) ≥

fmin.
(iv) For each x, the basis vector P has zeroes in all but at most r consecutive entries,

where r is fixed. Moreover, sup
𝜏,x E[ |P⊤

̃Jm(𝜏)−1P | ] = O(1), where ̃Jm(𝜏) ∶=
E[PP⊤fY |X (F−1

Y |X (𝜏 | x) |X)].

(v) Assume that 𝜉

4
p(log n)6 = o(n) and letting cn ∶= sup

𝜏,x
|
|
|
F−1

Y |X (𝜏 |X) − P⊤
̂
𝜃n(𝜏)

|
|
|

with c2
n = o(n−1∕2).

As mentioned in Chao et al. (2017), Assumption 2(i) claims rescaling in case of B-splines and for
linear models with increasing dimension P(X , 𝜏) to be bounded for all 𝜏. Assumption 2(ii) and
(iii) is fairly standard. Assumption 2(iv) and (v) implies that for any sequence satisfying cn = o(1)
and that the smallest eigenvalues of the matrix Jm(𝜏) are bounded away from zero uniformly in
𝜏 for all n. Using Theorem 2.4 of Chao et al. (2017) showing that a standardized version of the
quantile series terms process converges to a centered Gaussian process we have
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368 KUTZKER et al.

Theorem 2. If Assumptions 1 and 2 are satisfied, then the following statements hold:

(i) Under the null hypothesis H0 in (8),

SCM∗

n
d
−−→
∫

(

G2(y, x) −G
SM
2 (y, x)

)2
dFYX (y, x),

where (G2,G
SM
2 ) are Gaussian processes with zero mean given in Supplement I.2.

(ii) Under any fixed alternative, that is, when the data are distributed according to
some cdf F that satisfies the alternative hypothesis H1 in (8),

lim
n→∞

P
(

SCM∗

n > 𝜀

)
= 1 for all constants 𝜀 > 0.

Theorem 2 ensures that the test SCM∗

n is asymptotically normal and has power in case of misspeci-
fication. The convergence statements from Corollary 1 and Theorem 2 hold for additive univariate
series terms, including, for instance, univariate B-splines with product interacting covariates. In
line with Chao et al. (2017), we further conjecture that such arguments as those given in the
proofs (cf. Supplement 1.1) can also be applied to multivariate splines and thus in particular to
tensor product B-splines considered later in Section 6.2. Therefore, convergence statements from
Corollary 1 and Theorem 2 can be extended to a more general class of (multivariate) splines.
Inspired by this observation and our second application, we show empirically that the test statis-
tic SCM∗

n based on tensor product B-splines also yields a reasonable sized testing procedure with
large power (cf. Tables I and II, Supplement III). However, a detailed theoretical investigation of
this interesting topic is beyond the scope of this paper and left for future research.

4 BOOTSTRAP

To obtain critical values for our test SCM
n , we therefore propose a semi-parametric bootstrap pro-

cedure. This procedure is reasonable from a practical point of view, since it avoids to estimate the
null distribution directly, including a complex covariance structure.

4.1 Semi-parametric bootstrap procedure

The idea of our semi-parametric bootstrap is to generate synthetic data that is consistent with
the assumptions under the null hypothesis. Since the conditional qf is already known according
to our null hypothesis, our bootstrap procedure is based on the principle of inverse sampling
transformation, which provides a method to generate samples from arbitrary distributions. Thus,
the bootstrap mimics the distribution of the data under the null hypothesis, even though the data
might be generated by an alternative distribution. The procedure works as follows. Let B be the
number of bootstrap samples. Then

(i) Draw B independent bootstrap samples of covariates {Xb,i | 1 ≤ i ≤ n}b=1,…,B of size n with
replacement from {Xi | 1 ≤ i ≤ n}.

(ii) For every i = 1,…,n put Yb,i = ̂F−1
n (Ub,i |Xb,i, ̂𝜃n), where {Ub,i | 1 ≤ i ≤ n} is a simulated i.i.d.

sequence of standard uniformly distributed random variables.
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KUTZKER et al. 369

(iii) Use the bootstrap data {(Yb,i,Xb,i) | 1 ≤ i ≤ n}b=1,…,B to calculate B bootstrap versions of the
test statistic SCM

n from (14), that is, for b = 1,…,B compute

SCM
n,b ∶= ∫

(√
nSn,b(yb, xb, ̂𝜃n)

)2
d ̂Fn(yb, xb).

(iv) For q ∈ (0, 1), determine the critical value ĉn(q) such that

1
B

B∑

b=1
1{SCM

n,b >ĉn(q)} = q.

With the bootstrap procedure described above, we can calculate critical values ĉn(q) for (14)
and the null hypothesis is rejected on the level of significance q if SCM

n > ĉn(q). Critical values
for (18) and (20) can be obtained in the same manner if the test statistic SCM

n,B is replaced by its
counterparts, that is, SCM,S

n,B or SCM∗

n,B .

4.2 Validity of the bootstrap procedure

Finally, according to Rothe and Wied (2013), we show that the proposed bootstrap procedure
computes the correct critical value for our test statistic (14). This does not require any further
assumptions. Assumption 1 ensures that the bootstrap consistently estimates the limiting dis-
tribution for (14). Under the null hypothesis and any fixed alternative (5), the bootstrap critical
values can be shown to be bounded in probability. Thus,

Theorem 3. Under Assumption 1, the following statements hold true for every
𝛼 ∈ (0, 1):

(i) Under the null hypothesis H0 in (8), we have that

lim
n→∞

P
(

SCM
n > ĉn(𝛼)

)
= 𝛼

(ii) Under any fixed alternative H1 in (8), we have that

lim
n→∞

P
(

SCM
n > ĉn(𝛼)

)
= 1.

In order to study the behavior of the Cramér–von Mises type test statistics SCM
n , SCM,S

n and
SCM∗

n in finite samples, we conducted an extensive MC study, whose results are reported in
Supplement II. Overall, the MC study has shown that our proposed testing procedures are also
consistent based on critical values obtained via the bootstrap procedure described in Section 4.1
and have superior power properties compared with three benchmark tests (cf. Supplement 5.1),
even in small samples. The testing procedures works for both, univariate and multivariate DGPs
(including product interacting or more complex tensor product covariates) and can also test
models with quantile-dependent regressors. Even weakly misspecified models are detected in
sufficiently large sample sizes.
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370 KUTZKER et al.

5 MONTE CARLO SIMULATION STUDY

This contains a comprehensive MC simulation study for the test statistics SCM
n and SCM∗

n , where the
spline part in the latter test statistic is modeled by a penalized B-spline. Wherever it is possible, we
also compare our results with existing benchmark tests, for instance, those given in Koenker and
Xiao (2002) (KX), Chernozhukov (2002) (CH) and Rothe and Wied (2013) (RW). Note, in case of
quantile-independent covariates, RW is a special case of our proposed test SCM

n . In Section II.1 in
the Appendix, we examine power and size properties for the semi-parametric model specification
test SCM,S

n where possible interacting covariates are modeled by a tensor product. In Section II.2 in
the Appendix, we examine power and size properties for the semi-parametric model specification
test SCM,S

n with univariate product interacting covariates.

5.1 MC simulation study for SCM∗

n

In this subsection, we show that our test SCM∗

n holds the size level and has superior power proper-
ties compared with SCM

n by means of the twelve different data generating processes (DGPs) based
on i.i.d. data {(yi, xi) | 1 ≤ i ≤ n} for n ∈ {30, 50,100, 300,500, 1000, 2000}. The different DGPs
cover location shift models (LS) and location-scale shift models (LSS) including heteroscedastic
errors, both, in a univariate and multivariate setting. In order to assess the quality and validity
of our proposed test against existing procedures, we benchmark against the tests of Koenker and
Xiao (2002), Chernozhukov (2002) and Rothe and Wied (2013) where comparisons are possible
(DGPs 1–9). Finally, we also consider linear models and show that our test detects even weakly
misspecified models well.

For the definition of the twelve DGPs we introduce the following variables: Let x0 ∈ U(0, 2𝜋),
x1 ∼ Bin(1, 0.5), x2 ∼ N(0, 1), x3 ∈ U(0, 1), x4 ∈ 𝜒

2(1), u ∼ N(0, 1), w ∼ N(0, 0.1), v = (1 − 2x1) ⋅
v∗2 ⋅ 8−0.5 with v∗2 ∼ 𝜒

2(2), where Bin(⋅, ⋅), N(⋅, ⋅), U(⋅, ⋅) and 𝜒

2(⋅) are Binomial, Gaussian, uniform
and chi-square distributions, respectively.

Data generating processes

DGPs 1–3 represent the univariate case with one covariate and additive noise. Hereby, DGP 1
describes a simple LS model, DGP 2 a more complex LSS model with a linear regressor and,
finally, DPG 3 generates a quadratic LSS model. The multivariate case is specified by the DGPs
4–8 that are from Rothe and Wied (2013) and DGP 9 from Chernozhukov (2002). Here, DGP
4 is a simple multivariate LS model with normally distributed errors. DGP 2 is again a simple
LS model, but now the errors follow a mixture of a “positive” and “negative” 𝜒

2 distribution
with two degrees of freedom (normalized to have unit variance). DGPs 6–8 are multivariate LSS
models where the level of heteroscedasticity increases. DGP 9 is considered in order to compare
our proposed testing procedure with those provided in Chernozhukov (2002) and Koenker and
Xiao (2002). When 𝛾1 = 0 DGP 9 is a LS model, otherwise it is a LSS model. DGPs 10–12 are pro-
cesses in which the functional form appears predominantly nonlinear. DGP 10 is implemented by
modeling different functional forms for quantiles below and and above the 0.5 threshold. Due to
the quantile dependence of the regressors, DGP 10 cannot be correctly tested with previous tests
but with our test SCM∗

n it can. DGPs 11–12 are appearing mainly linear in the interval [0, 1] and
exhibit nonlinear growth only at values close to 1. Both DGPs require flexible modeling beyond the
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KUTZKER et al. 371

parametric framework of simple polynomials. Assuming a linear model, DGPs of the form 10–12
often impede the detection of misspecification.

Estimation and further settings

Computations have been carried out using the R package cobs (Ng & Maechler, 2007, 2020).
In what follows, ̂FS

n is modeled by a B-spline of second order with penalty term 𝜆 = 1 and
√

n
knots evaluated for 𝜏 ∈ {0.1, 0.2,…, 0.9}, meeting monotonicity assumptions. The number of MC
repetitions is equal to 701 with 500 bootstrap replications. The significance level is 0.05.

DGP 1: y1(x0) ∶=
x0

4
+ 1 + u, DGP 2: y2(x0) ∶=

x0

4
+ 1 + u ⋅ x0

DGP 3: y3(x0) ∶=
x2

0

4
+ 1 + u ⋅ x2

0 , DGP 4: y4(x1, x2) ∶= x1 + x2 + u

DGP 5: y5(x1, x2) ∶= x1 + x2 + v, DGP 6: y6(x1, x2) ∶= x1 + x2 +
(1

2
+ x1

)

u

DGP 7: y7(x1, x2) ∶= x1 + x2 +
(1

2
+ x1 + x2

2

)0.5
u (22)

DGP 8: y8(x1, x2) ∶= x1 + x2 +
1
5

(1
2
+ x1 + x2

2

)1.5
u

DGP 9: y9(x3) ∶= x3 + (1 + 𝛾1 ⋅ x2)u

DGP 10: y10(x3) ∶=

{ x2
3

4
+ 1 + u⋅x2

3

2
, if 𝜏 ≥ 0.5

−x2
3

4
+ 1 + u ⋅ x3, otherwise

DGP 11: y11(x3) ∶= sin
(

−𝜋

2
+ x3

3

)

+ w, DGP 12: y12(x3) ∶= ey5(x3)

Benchmark tests

In order to illustrate the performance of our test, we draw comparisons to common test procedures
in the scope of quantile regression. The test proposed in Koenker and Xiao (2002) (KX), which is
based on the Khmaladze transformation, which in turn refers to the Doob-Mayer decomposition
of martingales, provides the starting point for quantile regression specification tests. We also con-
sider the enhancement proposed in Chernozhukov (2002) (CH) and compare our test with RW .
The aforementioned tests are characterized as follows:

• The KX-test models the conditional qf parametrically by assuming a LS or a LSS model. The
regressors are fixed for all quantiles considered and the estimation of nonparameteric sparsity
and score functions are required (Chernozhukov, 2002).

• In order to avoid the latter, CH employs a resampling testing procedure based on KX that results
in better power and accurate size. However, this tests still assumes a fully parametrized model
under the null hypothesis with quantile-independent regressors.

• RW propose a testing procedure for a wide range of parametric models that is based on a
Cramér–von Mises distance between an unrestricted estimate of the joint cdf and the esti-
mate of the joint cdf under the null hypothesis. However, the regressors are assumed to be
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372 KUTZKER et al.

constant for all quantiles. Thus, the RW test approach equals SCM
n in case that the vector of

transformations P(X , 𝜏) is constant for all 𝜏.

Results

Table 1 shows the comparison with RW for all n in the univariate DGPs 1–3 in terms of size and
power of the statistics at 10%, 5% levels and a 5% level, respectively. We make three observations.
First, compared with RW∕SCM

n our proposed testing procedure SCM∗

n consistently has better size
properties. For example, in DGP 3, RW∕SCM

n is way too conservative, which is not true for SCM∗

n .
Second, the test SCM∗

n manages to maintain the size level when the structure of the error terms is
highly heteroscedastic (cf. 5% column of DGP 3 in Table 1). Last, the rejection rate for misspecified
models (for DGP 3 we are assuming a linear LSS model in the last column of Table 1) in small
samples (n ≤ 300) is approximately three times higher than for the RW test.

Table 2 illustrates the comparison with KX for the DGPs 4–8 for n = 100,300, whereby a LS
model is assumed under the null hypothesis. Thus, the results of DGPs 4 and 5 reflect size prop-
erties, while DGPs 6–8 illustrate the power of SCM∗

n compared with the benchmark tests RW∕SCM
n

and KX at significance levels 10% and 5% each. We again make three observations. First, our test
SCM∗

n holds the size for multivariate models (cf. DGPs 4 and 5 in Table 2). Second, KX has dif-
ficulties to detect misspecification when heteroscedasticity is present (cf. DGP 6–8 in Table 2).

T A B L E 1 Size and power for RW/SCM
n and SCM∗

n .

DGP 1 DGP 2 DGP 3

RW∕SCM
n 10% 5% 10% 5% 5% Power

n = 30 0.077 0.019 0.093 0.039 0.005 0.032

n = 50 0.061 0.016 0.095 0.038 0.016 0.045

n = 100 0.056 0.024 0.087 0.033 0.024 0.075

n = 300 0.055 0.028 0.078 0.032 0.026 0.312

n = 500 0.056 0.016 0.069 0.029 0.010 0.486

n = 1000 0.043 0.016 0.069 0.030 0.014 0.883

n = 2000 0.064 0.020 0.066 0.030 0.014 1.000

SCM∗

n 10% 5% 10% 5% 5% Power

n = 30 0.101 0.035 0.089 0.037 0.028 0.095

n = 50 0.103 0.046 0.074 0.027 0.037 0.147

n = 100 0.094 0.043 0.112 0.061 0.064 0.407

n = 300 0.090 0.043 0.159 0.084 0.047 0.988

n = 500 0.086 0.043 0.111 0.058 0.050 1.000

n = 1000 0.095 0.048 0.095 0.038 0.056 1.000

n = 2000 0.098 0.049 0.092 0.042 0.044 1.000

Note: MC Study. The table compares the test statistics SCM∗

n and SCM
n in terms of size (significance levels 10% and 5%) and power

(at a 5% level), where the latter coincides with test statistic of Rothe and Wied (2013) (RW) in case of quantile-independent
covariates. The last column named Power shows the power analysis while the qf is assumed to follow a linear LSS model under
the null hypothesis.
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KUTZKER et al. 373

T A B L E 2 Size and power for DGPs 4–8.

RW∕SCM
n KX SCM∗

n

n = 100 10% 5% 10% 5% 10% 5%
DGP 4 0.093 0.048 0.067 0.035 0.122 0.068

DGP 5 0.085 0.033 0.069 0.037 0.114 0.065

DGP 6 0.829 0.669 0.082 0.047 0.870 0.838

DGP 7 0.404 0.239 0.097 0.049 0.669 0.565

DGP 8 0.874 0.746 0.055 0.027 0.970 0.944

n = 300 10% 5% 10% 5% 10% 5%

DGP 4 0.109 0.056 0.107 0.039 0.125 0.068

DGP 5 0.096 0.043 0.066 0.024 0.120 0.056

DGP 6 1.000 0.997 0.336 0.231 1.000 1.000

DGP 7 0.847 0.679 0.147 0.076 0.950 0.908

DGP 8 1.000 0.997 0.099 0.050 1.000 1.000

Note: MC Study. The table compares size and power (at significance level 10% and 5%) of the test statistics RW∕SCM
n , KX and

SCM∗

n . All results are one-to-one transferred from Rothe and Wied (2013). The results of DGPs 4 and 5 reflect size properties,
while DGPs 6–8 illustrate the power of SCM∗

n compared with the benchmark tests RW∕SCM
n and KX .

T A B L E 3 Size and power for DGP 9.

KX CH SCM∗

n

Size Power Size Power Size Power

𝜸1 = 0 0.2 0.5 0 0.2 0.5 0 0.2 0.5
n = 100 0.101 0.264 0.898 0.014 0.348 0.980 0.050 0.396 0.990

n = 200 0.070 0.480 0.988 0.052 0.752 1.000 0.063 0.772 1.000

n = 300 0.062 0.622 0.998 0.058 0.910 1.000 0.068 0.930 1.000

Note: MC Study. The table compares size and power (at significance level 5%) of the test statistics KX , CH and SCM∗

n . KX refers
to the specification test suggested by Koenker and Xiao (2002). The more powerful test of Chernozhukov (2002) is abbreviated
by CH. All results are one-to-one transferred from Chernozhukov (2002). The null hypothesis assumes a LS quantile regression
model, i.e. 𝛾1 = 0.

Third, RW∕SCM
n usually detects misspecification. However, the rejection rates of the test SCM∗

n are
clearly higher compared with those from RW even in small samples (cf. n = 100 DGP 7 of Table 2).
Table 3 provides a comparison with the standard testing procedure proposed in Koenker and
Xiao (2002) and the enhancement from Chernozhukov (2002) using n = 100,200, 300 and DGP
9. Results of Table 3 of the benchmark tests KX and CH are taken from Chernozhukov (2002).
This table indicates that the test SCM∗

n has consistently better size and power properties compared
with the benchmarks KX and CH for small sample sizes. Finally, Table 4 examines size and power
properties for the DGPSs 10–12. Here, in each of the DGPs 10–12, the test SCM∗

n holds the signif-
icance level. Assuming a linear model, misspecification is detected even in small sample sizes.
DGP 10 cannot be tested with previous approaches due to the quantile-dependent regressors. The
slightly lower power for DGP 10 is due to the fact that half of the observations actually follow a
linear relationship and are thus in line with the null hypothesis.
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374 KUTZKER et al.

T A B L E 4 Size and power for DGPs 10–12.

DGP 10 DGP 11 DGP 12

SCM∗

n 5% Power 5% Power 5% Power
n = 30 0.068 0.177 0.014 0.055 0.009 0.069

n = 50 0.057 0.189 0.018 0.285 0.013 0.318

n = 100 0.051 0.192 0.033 0.979 0.023 0.989

n = 300 0.039 0.469 0.040 1.000 0.031 1.000

n = 500 0.042 0.519 0.039 1.000 0.029 1.000

n = 1000 0.046 0.658 0.034 1.000 0.035 1.000

n = 2000 0.042 0.743 0.041 1.000 0.049 1.000

Note: MC Study. The table reports size and power of the test statistic SCM∗

n at a significance level 5%.

6 EMPIRICAL ILLUSTRATIONS

6.1 Income disparities between East and West Germany

In this section, we apply the bootstrap version of the specification test SCM∗

n to conditional income
distributions in Germany. We utilize information from the German Socio-Economic Panel (SOEP;
Wagner et al., 2007). More specifically, we consider real gross annual personal labor income in
Germany as defined in Bach et al. (2009) from 2001 to 2010 as our response Y . We deflate the
incomes by the consumer price index (Statistisches Bundesamt, 2012), setting 2010 as our base
year. Thus, all incomes are expressed in real-valued 2010 Euros from here on. Following the stan-
dard literature, we focus on incomes of males in full-time employment (see, among others, Card
et al., 2013; Dustmann et al., 2009) in the age range 20–60. This yielded 7220 individuals and is the
data set that was also used in Klein et al. (2015). The variables age, origin (dummy for East/West
Germany) and year are available as covariates, see Table 5 for a full description of the data.

To obtain an estimate of the qf, we first regress income on the dummy coded variable year and
then performed a linear quantile regression using the variables age or age2 on the residuals. We
consider this approach justified since four out of six tests did not reject the null hypothesis that
there is no correlation between age and year dummies and age2 and year dummies, respectively.
This approach takes into account that income increases at the beginning of employment, peaks in
middle age and finally decreases (Creedy & Hart, 1979; Klein et al., 2015; Luong & Hébert, 2009).
We next conduct a M–M decomposition (Landmesser et al., 2016; Machado & Mata, 2005), of
the year-adjusted dataset conditional on origin. For the decomposition we assume that the condi-
tional qf of the income Y can be represented as a function of the form F−1

Y |X (𝜏 |X) = P(X , 𝜏)⊤𝜃(𝜏)
with X consisting of the variables age or age2. Specifically, we consider here three different lin-
ear quantile regression models: The first model describes an entirely linear effect of the regressor
age on income for all quantiles 𝜏 ∈ (0, 1), that is, P(X , 𝜏) = age for all 𝜏 ∈ (0, 1). The second
models a quadratic influence of age on income for all quantiles 𝜏 ∈ (0, 1), that is, P(X , 𝜏) = age2

for all 𝜏 ∈ (0, 1). And finally, the third model considers the sum of the regressors age and age2

that are constant for all quantiles 𝜏 ∈ (0, 1), i.e. P(X , 𝜏) = age + age2 for all 𝜏 ∈ (0, 1). Due to the
probability integral transform theorem the sequence P(X , 𝜏i)⊤ ̂𝜃n(𝜏i) for 𝜏i

i.i.d.∼ U(0, 1), i = 1,…,n
constitutes a random sample from the estimated conditional distribution of Y given the covari-
ates X (Machado & Mata, 2005). In order to obtain the difference between East and West, first,
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KUTZKER et al. 375

T A B L E 5 Description of the German labor income data from 2001 to 2010.

Description
Y Gross market labor income (in €)

(continuous 1257 ≤ Y ≤ 280,092, average = 46,641)

origin indicator for East or West (binary, −1=West (73.8%), 1=East [26.2%])

age age of the male in year (continuous, 20 ≤ age ≤ 60, average = 38)

years time in years (categorical, 2001 ≤ year ≤ 2010, 10 years)

Sample Description Average (std.) income Observations

Ger Complete sample 51,026€ (30,569€) n = 7220

West Subsample (origin = −1) 55,141€ (31,494€) n = 5325

East Subsample (origin = 1) 39,463€ (24,336€) n = 1895

Note: Incomes. The table summarizes the descriptive statistics of the German labor income data.

the coefficients for East ( ̂𝜃E(𝜏)) and West ( ̂𝜃W (𝜏)) for 𝜏 ∈ {0.1, 0.2,…, 0.9} are estimated on the
basis of the disjoint subsets of the covariates for East (XE) and West (XW ) and the corresponding
income in the East (YE) and West (YW ). Second, we draw B ∈ N random samples Xi

E and Xi
W for

i = 1,…,B with replacement from the corresponding covariate subsets XE and XW , respectively to
obtain a random sample via the probability integral transform for the distribution of the income
Y i

l , i = 1,…,B, l = E,W . Thus, the estimated income difference ̂Δy for incomes in the East YE/West
YW can be decomposed according to M–M into

̂ΔY =
1
B

B∑

b=1

((
P
(

Xb
E, 𝜏

)
− P

(
Xb

W , 𝜏

))
̂
𝜃E(𝜏) +

(
̂
𝜃E(𝜏) − ̂

𝜃W (𝜏)
)

P
(

Xb
W , 𝜏

))

≈ F−1
YE |XE

(𝜏 |XE) − F−1
YW |XW

(𝜏 |XW ), (23)

where the first summand of (23) is the explained, while the second summand depicts the
unexplained difference.

Table 6 summarizes results from the counterfactual analysis described above. The covariates
used for the quantile regressions are age (rows 4–9), age2 (rows 11–16) and the sum of these two
variables (rows 18–23). The results suggest that there is a significant income gap between East and
West Germany over the period considered, which is particularly striking in the first line, where
the observed income differences ranges from 26.21% to 35.49%. However, the income difference
between the smallest quantile 𝜏 = 0.1 and the largest 𝜏 = 0.9 decreases by about eight percent. It
cannot be assumed that the model is sufficiently well specified by a single covariate age or age2 for
all quantiles due to high residuals (4.37 for 𝜏 = 0.1 and 7.33 for 𝜏 = 0.9), indicating misspecifica-
tion. However, the covariate age2 seems to be appropriate for the smallest quantile 0.1 (residual of
0.92 in Table 6), while a linear effect of age to income seems to prevail in higher quantiles (−1.49
in Table 6). In contrast, the additive model age + age2 seems to capture the income effect for all
quantiles quite well due to moderate residuals (cf. last row Residuals in Table 6). For all decompo-
sitions it holds, that age and age2 contribute a maximum of 16% to the explanation of the income
difference between East and West Germany (except highest quantile in age2, i.e., 25.41). Due to
the different residuals and the different explanatory power of the income gap between East and
West for the quantile regressions based on age or age2, it seems reasonable to assume that age and
age2 have different effects for different quantiles. For example, the residual of the 30% quantile
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376 KUTZKER et al.

T A B L E 6 Decomposition of the West/East income differential.

Quantile 𝝉 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rawgap −35.49 −32.4 −33.28 −29.06 −28.38 −26.44 −26.21 −26.93 −27.38

age

M–M gap −39.87 −36.64 −33.52 −31.62 −31.45 −29.37 −29.68 −28.83 −25.89

Explained −1.84 −3.65 −2.06 −2.99 −2.35 −2.19 −0.85 −0.31 −0.1

Unexplained −38.02 −32.98 −31.47 −28.63 −29.1 −27.18 −28.83 −28.52 −25.8

%Explained 4.63 9.97 6.13 9.45 7.46 7.46 2.87 1.07 0.38

%Unexplained 95.37 90.03 93.87 90.55 92.54 92.54 97.13 98.93 99.62

Residuals 4.37 4.23 0.24 2.56 3.07 2.93 3.46 1.9 −1.49

age2

M–M gap −36.41 −38.13 −37.52 −35.49 −31.21 −31.96 −32.26 −31.55 −34.72

Explained −3.07 −6.08 −4.49 −6.43 −2.81 −2.6 −3.92 −4.35 −8.82

Unexplained −33.35 −32.05 −33.04 −29.06 −28.4 −29.36 −28.34 −27.2 −25.89

%Explained 8.42 15.94 11.96 18.12 8.99 8.13 12.15 13.8 25.41

%Unexplained 91.58 84.06 88.04 81.88 91.01 91.87 87.85 86.2 74.59

Residuals 0.92 5.73 4.24 6.44 2.83 5.51 6.05 4.62 7.33

age + age2

M–M gap −33.39 −31.80 −33.16 −30.28 −28.49 −28.90 −27.61 −28.25 −25.69

Explained 2.03 1.55 −1.44 −1.5 0.13 0.31 0.33 −3.09 1.67

Unexplained −35.42 −33.35 −31.72 −28.78 −28.62 −29.21 −27.94 −25.16 −27.36

%Explained 6.09 4.89 4.34 4.94 0.45 1.09 1.19 10.95 6.49

%Unexplained 93.91 95.11 95.66 95.06 99.55 98.91 98.81 89.05 93.51

Residuals −2.10 −0.61 −0.12 1.22 0.11 2.45 1.40 1.32 −1.69

Note: Incomes. The covariates used for the quantile regressions are age (rows 4–9), age2 (rows 11–16) and the sum of these two
variables (rows 18–23). The second row raw gap depicts the observed income gap between East and West. Remaining rows
show three different M–M decompositions using age, age2 and age + age2 as covariates for the quantile regression models. The
rows M–M gap are the estimated gap of the income difference. The quantiles 𝜏 range from 0.1 to 0.9. The number of bootstrap
replications is equal to 2500. All numbers are in percent. Totals may not sum exactly to 100% due to rounding.

of age (0.24 in Table 6) is about 18 times smaller than the residual of the corresponding quantile
regression using age2 as explanatory variable (4.24 in Table 6). It is therefore reasonable that the
a linear effect of age dominates in the 𝜏 = 0.3 quantile. The emerging, more general question is
at which quantiles age has a linear or quadratic effect on incomes. This can be answered with the
help of our proposed test SCM∗

n .

S1 ∶ F−1
Y |X (𝜏 | x) =

{
x⊤𝜃0, if 0.1 ≤ 𝜏 ≤ 0.9
(x2)⊤𝜃0, otherwise

S3 ∶ F−1
Y |X (𝜏 | x) =

{
x⊤𝜃0, if 0 ≤ 𝜏 ≤ 0.9
(x2)⊤𝜃0, otherwise

S2 ∶ F−1
Y |X (𝜏 | x) =

{
(x2)⊤𝜃0, if 0 ≤ 𝜏 ≤ 0.1 S4 ∶ F−1

Y |X (𝜏 | x) = x⊤𝜃0

x⊤𝜃0, otherwise S5 ∶ F−1
Y |X (𝜏 | x) = (x2)⊤𝜃0
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KUTZKER et al. 377

For this purpose, we have defined five different model specifications S1–S5, which should take
into account the observations made in Table 6. Specifications S1–S3 describe quadratic depen-
dencies in the upper or lower quantiles. Specification S4 and S5 model a completely linear and
quadratic dependence structure in the covariate, respectively.

The testing procedure is applied to the subsamples East and West as well as to the com-
plete data set. We estimate the function ̂FS

n(y, x, 𝜃) in (20) by a cubic spline with second order
difference penalty, setting the basis dimension to 20 using the R package qgam. The smoothing
parameter 𝜆 is estimated using the restricted maximum likelihood (REML) procedure within the
package. We then reestimate the models with optimized smoothing parameter and compute our
test statistic SCM∗

n for 𝜏 ∈ {0.1, 0.2,…, 0.9}. Since the sample sizes for East, West and All differ
and in order to make the results comparable, we computed the rejection rates of subsamples of
East, West and All of size n = 500, 1000, 1500. The reason for considering different samples is,
similarly to Rothe and Wied (2013), that consistent specification tests detect also small deviations
from the null hypothesis in large samples, so that smaller samples are more appropriate for model
comparisons. We repeated this procedure for every subsample a total of 501 times and refer to
it as subsamplings in the following. Table 7 summarizes the resulting rejection rates of the test
statistic SCM∗

n .
From this table we make two observations: First, it can be observed that the model in which

age has a completely quadratic influence on income (S5) provides the worst fit. Also the models
with either a completely linear influence or a linear influence in the upper quantiles (S2 and S4)
are worse than the models in which the influence is quadratic in the upper quantiles and linear
in the lower ones (S1 and S3). Second, the model fits are in general much better for East Germany
than for West Germany and for the whole country, whose rejection rates can be interpreted as
the weighted average of the two rejection rates. For example, for n = 1500, the rejection rate of
S1 and S3 are even lower than 5% for East Germany, whereas they are larger than 50% for West
Germany. This indicates that the conditional income distributions differ significantly between
East and West Germany.

Finally, Figure 1 visualizes the estimated quantiles at 𝜏 = 0.1, 0.5, 0.9 (from left to the right)
and provides further indications of when age might have a quadratic or linear effect. Shown are
the results for West (red), East (green) and entire Germany (blue). Overall, our results are in
line with the findings of other studies. Based on the different structure of the conditional qfs
and rejections rates for different specifications significant structural differences between East and
West Germany can still be assumed (Kluge & Weber, 2018).

T A B L E 7 Rejection frequencies of the test statistic SCM∗

n .

n = 500 n = 1000 n = 1500

East West Ger East West Ger East West Ger
S1 0.034 0.134 0.132 0.038 0.329 0.303 0.026 0.553 0.535

S2 0.063 0.204 0.164 0.090 0.517 0.479 0.099 0.755 0.673

S3 0.050 0.136 0.094 0.026 0.353 0.339 0.030 0.551 0.529

S4 0.092 0.198 0.158 0.086 0.449 0.461 0.104 0.745 0.661

S5 0.089 0.429 0.387 0.276 0.880 0.775 0.507 0.966 0.948

Note: Incomes. Shown are the rejection rates of size n of the specification S1–S5. The number of subsamplings is 501 and the
critical values are calculated at a significance level of 5% and for 𝜏 ∈ {0.1, 0.2,…, 0.9}.
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378 KUTZKER et al.

F I G U R E 1 Income quantiles for East/West and entire Germany as functions of age Incomes. Figures show
the penalized conditional quantile estimates for West (red), East (green) and entire Germany (blue) at
𝜏 = 0.1, 0.5, 0.9. The lines shown in lighter colors represent the 95% confidence intervals.

6.2 Interaction effects in modeling Australian electricity prices

In this section, we apply the specification test SCM,S
n to electricity data from the Australian national

electricity market (NEM) in 2019. The NEM is a wholesale market, where generators, distributors
and third party participants bid for sale and purchase of electricity one day ahead of transmission
(Ignatieva & Trück, 2016; Shively & Smith, 2018). We consider hourly market-wide price Pi from
January 1, 2019 to December, 31, 2019, which yields n = 8760 observations. The market-wide
price Pi is the demand-weighted average price across the five regions (http://www.aemo.com.au).
We correct for the three main drivers of the electricity spot price distribution, namely day of the
year x1, time of day x2 and total market demand x3, which is the sum of demand across the five
regions in the NEM. Following Smith and Klein (2021) we thus choose a regression approach for
the electricity data from the Australian NEM even if the problem could be addressed by a time
series approach. For convenience, we scale each covariate to the unit interval.

Our main purposes are to identify (i) potential interactions between the covariates on different
quantiles of the electricity spot price distributions (ii) to statistically investigate if the impact of
the covariates x1, x2 and x3 varies for distinct quantiles and (iii) to test which (interaction) effects
are statistically significant. In contrast to the previous application in Section 6.1, it is not clear a
priori how to optimally determine a functional relationship between the three covariates x1, x2 and
x3 for distinct quantiles 𝜏 ∈ (0, 1). Therefore, the functional relationship for different quantiles
is modeled very flexibly by a spline approach. We employ trivariate P-splines (tensor product
B-splines) as proposed by Eilers et al. (1996) which combine a multivariate B-spline basis, with a
discrete penalty on the basis coefficients.

In order to investigate our main purposes (i)-(-iii), we assume that the data generating process
can be represented by one of the eight different specifications S6–S13. To increase the readabil-
ity, the notation is geared to the implementation in R, that is, s(⋅, 𝜏)models the marginal P-spline
and ti(⋅, 𝜏) solely the interaction effect at the quantile 𝜏. For example, S6 describes a P-spline for
the three covariates x1, x2, x3 represented by the marginal main effects s(x1, ⋅), s(x2, ⋅), s(x3, ⋅), their
mutual bivariate interactions ti(x1, x2, ⋅), ti(x1, x3, ⋅), ti(x2, x3, ⋅) and their mutual trivariate inter-
action ti(x1, x2, x3, ⋅). In contrast, specification S7 does not incorporate any interactions between
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KUTZKER et al. 379

the covariates and thus models the marginals effects only. Specification S12 describes a P-spline
that models the marginals and bivariate interaction effects within the 0.25 and 0.75-quantile.
Specifically, we define

S6: F−1
Y |X (𝜏 | x1, x2, x3) ∶= s(x1, 𝜏) + s(x2, 𝜏) + s(x3, 𝜏)

+ ti(x1, x2, 𝜏) + ti(x1, x3, 𝜏) + ti(x2, x3, 𝜏) + ti(x1, x2, x3, 𝜏)
S7: F−1

Y |X (𝜏 | x1, x2, x3) ∶= s(x1, 𝜏) + s(x2, 𝜏) + s(x3, 𝜏)

S8: F−1
Y |X (𝜏 | x1, x2, x3) ∶= s(x1, 𝜏) + s(x2, 𝜏) + s(x3, 𝜏) + ti(x1, x3, 𝜏) + ti(x2, x3, 𝜏)

S9: F−1
Y |X (𝜏 | x1, x2, x3) ∶=

{
S6, if 0.25 < 𝜏 < 0.75
S7, otherwise

S10: F−1
Y |X (𝜏 | x1, x2, x3) ∶=

{
S6, if 𝜏 ≤ 0.25
S7, otherwise

S11: F−1
Y |X (𝜏 | x1, x2, x3) ∶=

{
s(x, 𝜏), if 0.25 < 𝜏

s(x, 𝜏) + ti(x1, x2, 𝜏) + ti(x2, x3, 𝜏), otherwise

S12: F−1
Y |X (𝜏 | x1, x2, x3) ∶=

{
S6 − ti(x1, x2, x3, 𝜏), if 0.25 < 𝜏 < 0.75
S7, otherwise

S13: F−1
Y |X (𝜏 | x1, x2, x3) ∶=

{
S6 − ti(x1, x2, 𝜏) − ti(x1, x2, x3, 𝜏), if 0.25 < 𝜏 < 0.75
S7, otherwise

Similar to the previous section, all estimations are carried out using theqgam package in R. As
before we use REML to optimize the smoothing parameters. Due to the extreme skew in electricity
prices, we follow previous authors and set Yi = log(Pi + 17). This avoids a negative dependent
variable Yi since the minimum observed price in our data is −$15.78. For the application of our
test, we set n ∈ {500, 1000, 2000} and 𝜏 ∈ {0.02, 0.04,…, 0.98}. The number of subsamples is 501
and the critical values are calculated at a significance level of 5%. To ensure comparability of
rejection rates for different n and since we include multivariate interaction effects (cf. S6 and
S8–S13), we set the number of knots to 5. The rejection rates of the specification test SCM∗

n are listed
in Table 8. From this table we make four observations. First, it can be observed that the rejection
rates increase as n increases, which is plausible as our specification test is consistent and also small
deviations from the null hypothesis are detected for large sample sizes. In addition, an increase
in the rejection rates as n increases could be due to possible structural breaks. Second, based on
the rejection rates for S8–S13 at n = 500, interaction effects seem to have a significant impact,
especially in the lower quantile, i.e. at 𝜏 ≤ 0.25. This is particularly reflected in the comparison
of the specifications S9 and S10, which differ in the modeling of the upper quantile (𝜏 ≥ 0.75) but
show similar rejection rates. Third, we can conclude from the specifications S12 and S13 that the
interaction between the day of the year (x1) and the daytime (x2) has no significant impact to the
log electricity prices. Fourth, specification S7, however, which does not incorporate interaction
effects, is rejected at all sample sizes.

Figure 2 shows the decomposition of the main and interaction effects at the 90% quantile at
6:00 p.m. using S6. Since the contour lines in the second and third panel show the presence of
interactions between demand and day, we conclude that the relation between the three covariates
cannot be fully captured by product interactions based on univariate splines. In addition, different

 14679469, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12671 by K

arlsruher Institut F., W
iley O

nline L
ibrary on [15/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



380 KUTZKER et al.

T A B L E 8 Rejection rates of the test statistic SCM∗

n .

S6 S7 S8 S9 S10 S11 S12 S13
n = 500 0.050 0.115 0.065 0.086 0.043 0.086 0.058 0.079

n = 1000 0.089 0.338 0.300 0.178 0.185 0.135 0.218 0.224

n = 2000 0.228 0.811 0.748 0.256 0.237 0.445 0.713 0.764

Note: Electricity prices. The table shows the subsample rejection rates of size n of the specification S6–S13.

F I G U R E 2 Estimated main and interaction effects at the 90% quantile at 6:00 p.m. Electricity prices.
Figures depict the estimated effects of the three covariates on the 90% quantile of the Australian NEM hourly
electricity price distribution for 2019, where the time of the day (x2) is set to 06:00 p.m. The estimation is based
on the model specification S6. The first panel (upper left) shows the sum of the univariate main effects of days
(x1), x2 and total market demand (x3). The second and third panel illustrate the bivariate and trivariate
interaction effects. The overall effect is depicted in the last panel.

day-demand combinations have a different impact on the market wide price Pi. A similar graph-
ical analysis additionally reveals this behavior for the 10% quantile (see Supplement III). This
observation is also confirmed by the higher rejection rates of our specification test when using
univariate splines rather than bivariate tensor product B-splines (cf. Tables 8 and IV in Supple-
ment III). Overall, we conclude that for a thorough specification of the Australian NEM mutual
interaction effects are important. Particularly, there seems to be a complex dependence struc-
ture in the lower quantile (𝜏 ≤ 0.25) of log electricity prices, which can be captured by means of
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KUTZKER et al. 381

the mutual interaction effects. However, the interaction between day of the year and daytime is
negligible here. This might be important for risk management purposes.

7 CONCLUSION

In this paper, we derive and test new specification tests for parametric and semi-parametric quan-
tile regression models, which allow the covariates to vary over quantiles in a flexible nonlinear
way. To improve finite sample properties in the parametric model framework, we replace the
nonparametric ecdf by an estimator based on an estimate of the conditional qf using penalized
splines. Our MC study illustrates that the proposed method has superior test properties compared
to several existing benchmarks from the literature. We illustrate this in two relevant examples on
income inequality and electricity spot prices. In the former, the (nonlinear) effect of age on the
income distribution is known in the literature. A detailed investigation of the conditional income
distributions between East and West Germany using the M–M decomposition reveals that still
income differences between the regions in Germany are present, even more than two decades
after the reunification. Similarly, modeling and predicting electricity spot prices is a common
issue in economics. We treat the problem in a semi-parametric framework and reveal the impor-
tance of interaction effects between demand and time variables, particularly for lower quantiles
of the price distributions.

We believe our test statistics make an important contribution in the specification testing lit-
erature since nonlinear or even more complex functional forms of covariates are omnipresent in
many applications.
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