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Figure 1: Our lossless compression technique for segmentation volumes achieves strong compression rates by decoupling labels from voxel
occupancy. The 1920×1080 images show path tracing (32 bounces with Russian roulette) of our compressed volumes rendered with interac-
tive frame rates at 1 sample per pixel (here accumulated over 1024 frames). Path tracing with physically based BRDFs enables a wide range
of photorealistic effects (insets). Our technique supports rendering at different levels of detail (LOD). For each dataset, we report average
render times per frame as well as required memory for the coarsest LOD and additional memory for fine LODs with compression rates in %.

Abstract
Many visualization techniques exist for interactive exploration of segmentation volumes, however, photorealistic renderings are
usually computed using slow offline techniques. We present a novel compression technique for segmentation volumes which
enables interactive path tracing-based visualization for datasets up to hundreds of gigabytes: For every label, we create a grid
of fixed-size axis aligned bounding boxes (AABBs) which covers the occupied voxels. For each AABB we first construct a sparse
voxel octree (SVO) representing the contained voxels of the respective label, and then build a sparse voxel directed acyclic
graph (SVDAG) identifying identical sub-trees across all SVOs; the lowest tree levels are stored as an occupancy bit-field. As
a last step, we build a bounding volume hierarchy for the AABBs as a spatial indexing structure. Our representation solves a
compression rate limitation of related SVDAG works as labels only need to be stored along with each AABB and not in the
graph encoding of their shape. Our compression is GPU-friendly as hardware raytracing efficiently finds AABB intersections
which we then traverse using a custom accelerated SVDAG traversal. Our method is able to path-trace a 113 GB volume on a
consumer-grade GPU with 1 sample per pixel with up to 32 bounces at 108 FPS in a lossless representation, or at up to 1017
FPS when using dynamic level of detail.

CCS Concepts
• Human-centered computing → Scientific visualization; • Computing methodologies → Ray tracing;
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1. Introduction

Segmentation volumes store labels per voxel to encode object re-
gions (colored in Fig. 1). These volumes are used in a wide range of
domains [GZGZ23; WAL*14; BTB*22; MBB*19] in which visual
analysis is essential for explorative analysis. Suitable interactive vi-
sualization software for segmentation volumes rarely supports pho-
torealistic renderings. Current workflows to create high-quality ren-
dering, e.g. for science communication, are slow [WPB*23]: First,
data is visually explored in an interactive, non-photorealistic frame-
work. Second, a scene configuration is exported to an offline path
tracing renderer for high-quality rendering. Rendering can take
hours and is usually CPU-based as large-scale volumes do not fit
into GPU memory.

GPU path tracing is increasingly used for visual analysis
of qualitative voxel data storing continuous signals [WBDM23;
HMES20]. We propose a path tracing framework for segmenta-
tion volumes: Volumes are compressed with a new variant of sparse
voxel directed acyclic graphs (SVDAGs) [KSA13]. Our three-level
data structure decouples labels and voxel occupancy enabling a
strong compression (Section 3). We show how the representation
can be efficiently traversed during path tracing (Section 4). To sum-
marize, our main contributions are:

• a hardware-accelerated path tracing framework for interactive
rendering of segmentation volumes,

• a lossless SVDAG-based compression technique for segmenta-
tion volumes that decouples labels and voxel occupancy,

• a configurable level of detail scheme and occupancy field encod-
ing to increase rendering performance.

2. Related Work

Visualization and compression of segmentation volumes is an ac-
tive research topic [BTB*22; PD24]. We summarize related works:

Segmentation Volume Compression Compressing qualitative
voxel data where each voxel directly stores attributes is well stud-
ied [BGI*14]. Minnen et al. compress raw images before the seg-
mentation [MJB*21]. Few specialized solutions for the actual seg-
mentation volumes exist, including brick-wise paletting [Goo16],
bit-encoding of region boundaries through connected component
analysis [MHL*17], graph-compression of hierarchical label dis-
tributions [AAS21], and operation-based brick encodings [PD24].

SVDAG Compression As introduced by Kämpe et al. [KSA13],
sparse voxel directed acyclic graphs (SVDAGs) can effectively
compress sparse voxel scenes. While SVDAGs originally oper-
ate on binary data, extensions enable compression of attributed
data as well [Wil15; DKB*16; DSKA17]. Other works improve
the compression rates by utilizing pointerless DAGs [VMB20],
spatial [VMG16] or temporal [KRB*16] correlation, or lossy
schemes [vdLSE20]. To the best of our knowledge, we are the first
to apply SVDAG compression to segmentation volumes.

Segmentation Volume Visualization Segmentation volume ren-
dering is commonly used for segmentation annotation or proofread-
ing [BBB*17]. Displaying 2D slices [Goo16; AGL05; BSG*09;
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Figure 2: Our three-level compression technique decouples label
information from voxel occupancy by grouping voxels with the
same label in AABBs of size 163. The voxel positions are com-
pressed in an SVDAG that is shared between all AABBs. Leaf
nodes are either entirely solid, empty, or contain an occupancy bit-
field that encodes voxel positions in a 43 region. SVDAG nodes that
are unreachable from the green AABB are omitted for clarity.

Figure 3: SVOs (flat) per AABB are compacted into one SVDAG
by redirecting their child pointers. The AABBs (colored) track their
own SVDAG entry node. Pointers to empty nodes are omitted.

BBB*17] is fast but limited in conveying spatial layouts. Mesh-
ing label regions [QDB11; LC87] allows subsequent rasterization
but is time-consuming. Recent works for direct, voxel-based ren-
dering handle opacity management for dense volumes [LAB*24],
semi-automatic transfer function design [AAA*22] or color filter-
ing for coarse levels of detail [AAS21]. Voxel renderers capable of
displaying large-scale volumes use culling [BMA*18], out-of-core
methods [BAK*13], and compression [PD24].

Path Tracing for Volume Visualization Interactive path trac-
ing is commonly used for non-segmented volumes. Hofmann
et al. [HMES20; HHCM21] introduce denoising for semi-
transparent volume visualization. Iglesias-Guitian et al. [IMM22]
handle noisy guiding buffers. Compression can increase path
tracing performance which is usually memory-bound [WHW22;
WBDM23]. Recent works apply path tracing to unstructured vol-
umes [ZWMW23; MSG*23]. Path tracing segmentation volumes
is commonly handled in offline renderers [WPB*23; RBS20], e.g.
Blender Cycles [Ble18]. We introduce an interactive path tracer
for segmentation volumes that leverages hardware-accelerated ray
tracing and a tailored SVDAG-based compression.

© 2024 The Authors.
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3. Compressed Segmentation Volumes

Segmentation volumes store one integer label per voxel. In the fol-
lowing sections, we explain the three levels of our compression
method for such volumes and the resulting data structure (Fig. 2).
Our method starts by covering each label region in the dataset with
axis aligned bounding boxes (AABBs). As we use a fixed AABB
size of 163 voxels, larger regions are split into a grid of AABBs
(Fig. 4). The first level of our data structure contains these AABBs,
each containing voxels that have the same label only (Section 3.1).
The AABBs are stored in a bounding volume hierarchy (BVH) for
fast spatial access. In the second level, the actual voxel occupancy
of all AABBs is compacted into one shared sparse voxel directed
acyclic graph (SVDAG) to reuse duplicate voxel occupancy pat-
terns (Section 3.2). We define regions of 43 as leaf nodes in the
SVDAG and encode empty and solid voxels in the form of an oc-
cupancy bitfield for faster rendering (Section 3.3).

3.1. Level 1: BVH with Label Region AABBs

The first level of our data structure separates labels from voxel oc-
cupancy. Segmentation volumes contain large uniform areas where
each voxel is assigned to the same label (colored in Fig. 1). We ex-
ploit this property by subdividing the volume into AABBs of fixed
size (163) that contain voxels with the same label only (Fig. 4).
Regions that are larger than 163 are covered by a grid of AABBs.
To create this grid, a label region is recursively subdivided using
techniques similar to BVH construction [MOB*21]. The place-
ment of the AABB grid could be optimized to improve compres-
sion in the later stages. As this is time-consuming, we simply sub-
divide regions recursively along their longest axis until they are
small enough. A voxel may only be assigned to a maximum of one
AABB. AABBs belonging to different labels can overlap (Fig. 4).
An AABB is defined by its position, its label, and its contained
voxel occupancy. With this subdivision, the label information of
each of the up to 163 voxels in an AABB becomes redundant and
is no longer stored per voxel. We build a BVH over all AABBs for
fast spatial access which is used as an acceleration structure during
rendering.

3.2. Level 2: Sparse Voxel Directed Acyclic Graphs

The second level of our data structure encodes the voxels inside the
AABBs. Since we previously separated the labels, our goal here
is to compress the voxel occupancy in a lossless fashion as much
as possible while ensuring efficient rendering. To that end, we first
construct sparse voxel octrees (SVOs) [LK10] in each AABB (Sec-
tion 3.2.1). The SVOs are then converted to SVDAGs which again
can be compressed to a single SVDAG that is shared between all
AABBs to achieve high compression rates (Section 3.2.2).

3.2.1. SVOs

Each SVO has log2(16)+ 1 = 5 levels. A single node of an SVO
can be encoded in 2 bytes, where we use 12 bits to store a pointer
to the first of the eight child nodes. The children of a node are
stored consecutively in memory. SVOs achieve high compression
when there is a lot of empty space [LK10]. In our case, however, all
voxels have the same label, so it is possible to compress large solid

Figure 4: Slice of a segmentation volume. Each label region is cov-
ered by a grid of fixed-size 163 AABBs (dashed). The AABBs
serve as entry points for the following SVDAG voxel occupancy
encoding.

areas as well. Therefore, we mark nodes as leaves by assigning
them an invalid value as their child pointer to terminate traversal on
a (potentially) higher level and exploit one unused bit to distinguish
between solid (1) and empty (0) regions. The pointer to the root
node of each SVO is stored in its corresponding AABB.

3.2.2. SVDAGs

The structures of the voxels in the AABBs often contain identical
subregions. Therefore, we compress the SVOs to an SVDAG by
redirecting all pointers that reference topologically identical sub-
trees to reference the same node (Fig. 3). Since our SVOs do not
store any label information, it is not only possible to compress each
SVO of an AABB to an SVDAG individually, but we can apply
this compression across all SVOs. As the SVDAG compression
reorders and merges individual nodes, child nodes are no longer
stored consecutively in memory, so eight explicit child pointers
(each 32 bits) per node are required. SVO nodes have to be tran-
sitioned to the new layout before applying SVDAG compression.
The number of bytes per node increases from 2 to 32. However,
this is more than compensated by the strong reduction in the num-
ber of nodes. To denote leaf nodes, we set their first child pointer to
an invalid value. Another bit is used to distinguish solid and empty
regions.

For SVDAG compression, we follow the in-place bottom-up ap-
proach of Kämpe et al. [KSA13]. It is possible to compress all
SVOs simultaneously to an SVDAG or to work incrementally. For
the latter, a few SVOs are first compressed to smaller SVDAGs
which are compacted to a single shared SVDAG afterward. This
way, large volumes can be handled piecewise when all SVOs re-
quire too much memory simultaneously. The SVDAG compression
can be implemented on the GPU to improve performance.

Commonly, there are certain groups of labels, which we call
types, that are always visualized together, e.g. individual cells in
the CELLS dataset belong to tumor or healthy tissue types. Using
this property, we can build separate SVDAGs per type during pre-
processing. SVDAGs of types requested during visualization can
then be quickly merged on the GPU at runtime which is faster than
constructing the full shared SVDAG from scratch. Note that this
type grouping only streamlines transfer function editing and does
not limit or change the number of unique labels in the visualization.

© 2024 The Authors.
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Figure 5: Our SVDAG memory layout of an inner node (left) and
leaf node with stored occupancy field (right). Both are 32 bytes in
total each. No additional attributes need to be stored per node.

3.3. Level 3: Occupancy Fields

Our last optimization does not change the compression rate but in-
creases the rendering performance. As discussed in detail in Sec-
tion 5, loading large (32 bytes) SVDAG nodes that are incoherently
distributed in memory during ray traversal decreases performance.
Hence, the number of nodes visited and consequently the number
of memory accesses during the traversal should be minimized. To
that end, we redefine SVDAG leaf nodes as a 43 region and encode
the voxel occupancy in the 43 region directly in the leaf node using
a bitfield. We refer to these bitfields as occupancy fields. The final
memory layout of inner SVDAG nodes and leaves containing the
encoded 64-bit occupancy field is visualized in Fig. 5. We choose
43 = 64 voxels since 83 = 512 bit entries would not fit into the 256
total bits of a node’s child pointers. We encode the occupancy fields
when transitioning the SVOs from the implicit (2 bytes) to the ex-
plicit (32 bytes) node layout. Since nodes that encode larger regions
(83 or 163) can be leaves as well, we set all bits of the occupancy
field to either 1 or 0 in this case to distinguish completely solid or
empty regions, respectively.

4. Rendering of Compressed Segmentation Volumes

In this section, we describe how our compressed segmentation vol-
ume (Section 3) is traversed during path tracing. We use mod-
ern hardware ray tracing as well as a custom accelerated SVDAG
traversal to determine ray intersections with our data structure. Ac-
cessing the volume information on the GPU requires uploading
three buffers containing the AABBs, the SVDAG nodes, and the
shading materials.

4.1. AABB Traversal

We pass a list of AABB positions to the GPU BVH builder to con-
struct a BVH for the volume. When we trace a ray, the GPU tra-
verses the BVH and invokes a custom intersection shader to deter-
mine whether an intersection with the SVDAG inside the AABB
occurs. We query the index of the AABB to load the corresponding
pointer to the SVDAG root node and the label information.

4.2. SVDAG and Occupancy Field Traversal

Once the custom intersection is invoked, we manually traverse the
SVDAG with a multi-level version of 3D-DDA [AW87]. When
reaching a leaf node, the 43 region encoded in the occupancy field
is traversed using standard 3D-DDA. When an intersection with a
solid voxel is found, the corresponding distance is committed, so
that the GPU can determine the closest hit.

4.3. Level of Detail

Our data structure allows switching between different levels of de-
tail (LODs) during rendering. In the coarsest LOD, the traversal is
terminated after an intersection with an AABB is determined. Dif-
ferent LODs can be rendered by traversing to deeper levels of the
SVDAG before terminating. Renderings with three different LODs
corresponding to terminating at 163, 43, and 13 voxels are shown
in Fig. 2. It is possible to make a per-AABB decision for the LOD
by calculating the minimum distance between the camera and the
AABB. In contrast to using the distance to the current ray’s AABB
intersection for the LOD decision, this avoids rendering artifacts for
neighboring pixels that hit the same AABB but at slightly different
distances, resulting in potentially different LOD decisions.

5. Evaluation

We implemented our compression and rendering technique in
Vulkan and provide its source code [Wer24].We evaluate our tech-
nique on three datasets using an NVIDIA RTX 4070 Ti SUPER
GPU and an AMD Ryzen 5 2600 CPU. As our compression pro-
cedure works in stages and SVDAGs can be merged piecewise, we
report numbers for different modes to show the effects on the com-
pression rate and rendering performance:

• In SVOS (AABB), each AABB contains its own SVO.
• In SVDAGS (TYPE), all AABBs for labels that were grouped

into a specific type share one SVDAG each (Section 3.2.2).
• In SVDAG (SHARED), one single SVDAG contains the shared

voxel occupancy of all AABBs in the dataset.

In practice, we recommend always using a single shared SVDAG
(SVDAG (SHARED)) during rendering. It is created by uploading
and merging requested SVDAGs per type (SVDAGS (TYPE)) on
the GPU given the visibility configuration from the transfer func-
tion.

5.1. Datasets

CELLS [RBS20] is a tumor growth simulation with a high number
of labels. We visualize 118251 tumor cells and the blood vessels
and treat other regions as empty. We group the 118251 uniquely la-
beled cells into 22 types and the blood vessels into one type, i.e. the
mode SVDAGS (TYPE) contains 23 SVDAGs. For visualization
purposes, we assign each of the cell types a color and add a slight
color offset for different cells of a type. C.ELEGANS [WMM*21]
is a segmentation of C. Elegans brains from eight development
stages. We use the last stage containing 234 neurons. The 234 neu-
rons map directly to 234 different types. MOUSE [MBB*19] is a
segmented mouse cortex. We visualize all its 96 neuron regions and
treat other label regions as empty. Again, the 96 neuron regions map
directly to 96 different types. Note that as our data structure uses
163 voxel regions as a basis and decouples labels from occupancy,
higher label numbers would not alter the compression rates signifi-
cantly.

As MOUSE and C.ELEGANS contain empty space at their bor-
ders, we treat the bounding box around solid voxels as the raw vol-
ume. The raw memory requirements are calculated assuming the
volume is stored in a three-dimensional texture with 32-bit labels

© 2024 The Authors.
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dimensions # ·109 solid mem. [MB] # labels

CELLS 1000×1000×1000 1.0 15.39% 4000.0 118251
C.ELEGANS 661×11044×15448 112.77 5.45% 112771.7 234
MOUSE 5446×8381×3286 149.98 15.57% 149982.65 96

Table 1: Datasets’ dimension in voxels, total number of voxels, fraction of solid voxels, raw
memory requirements as 32 / 8 / 8 bit volumes. As the original C.ELEGANS and MOUSE

datasets contain plenty of empty space, the evaluated dimensions are sub-volumes of the
original data containing all solid voxels. The number of labels is reported for completeness
but does not significantly alter compression rates in our method.

CSGV mem. [MB] CSGV CR

15.46 (+544) 0.39% (13.99%)
736.981 (+768) 0.65% (1.33%)
1910.17 (+768) 1.27% (1.79%)

Table 2: Memory and compression rate of
CSGV [PD24]. Theoretical compression rate
when including a GPU cache size to decom-
press visible regions to fitting levels of detail
during rendering in ().

AABBs + BVH + SVOS (AABB) SVDAGS (TYPE) SVDAG (SHARED)
mem. [MB] mem. [MB] CR mem. [MB] CR mem. [MB] CR

CELLS 5.63+4.42 +243.92 6.35% +90.47 2.51% +76.29 2.16%
C.ELEGANS 248.13+186.24 +13888.0 12.7% +3724.4 3.69% +2099.91 2.25%
MOUSE 1032.11+786.44 +61092.74 41.95% +15598.79 11.61% +10276.93 8.06%

Table 3: Memory (mem) and compression rate (CR, final CR in bold) reported for different modes. Total memory consists of the AABBs,
the BVH during runtime, and either the SVOs or SVDAG(s). The CR compares the total memory in a specific mode with the raw memory of
the volume as reported in Table 1.

without occupancy field with occupancy field
SVOS (AABB) SVDAGS (T) SVDAG (S) SVDAGS (T) SVDAG (S) CSGV

1
bo

un
ce CELLS 8.19 (0.4) 5.81 (0.42) 5.87 (0.42) 2.95 (0.51) 2.95 (0.51) 23.21 (2.28)

C.ELEGANS − 12.76 (0.47) 12.75 (0.47) 5.33 (0.55) 5.61 (0.55) 87.18 (16.56)
MOUSE − − 134.72 (0.78) − 126.73 (0.98) 124.89 (8.47)

32
bn

c. CELLS 11.42 (0.81) 8.6 (0.84) 8.66 (0.85) 5.32 (1.01) 5.31 (1.02) 25.64 (2.29)
C.ELEGANS − 35.06 (0.83) 18.72 (0.83) 9.01 (0.98) 9.25 (0.98) 97.63 (17.06)
MOUSE − − 203.65 (1.67) − 189.54 (2.0) 136.16 (10.55)

Table 4: Render times [ms] per frame of the scenes shown in Fig. 1. Averaged over 1024 frames when always using the finest or (coarsest)
LOD. Last column shows timings for voxel grid traversal of cached CSGV bricks, again, either using always the finest or (coarsest) LOD.
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Figure 6: SVDAG node reuse and number of nodes in relation to merging steps for MOUSE. Most reuse of nodes occurs on the 43 leaf node
level (left). A small number of nodes is reused extremely often (middle). Compressing the voxel occupancy information into an SVDAG
shared between AABBs theoretically has logarithmic growth as only 264 reusable possibilities for the 43 occupancy field exist. However, we
initially observe almost linear memory growth when incrementally merging AABBs into the SVDAG (SHARED), but at a much slower rate
than for the non-merged SVOS (AABB) or partially merged SVDAGS (TYPE) (right). This is due to the fact that a constant portion of leaf
nodes is never reused and introduces a small additional memory footprint per new AABB (middle).
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CELLS C.ELEGANS MOUSE

SVOS (AABB)
CPU [s] 5.97 905.26 4127.16

SVDAGS (TYPE)
CPU [s] 2.24 117.92 683.45

SVDAG (SHARED)
CPU [ms]
GPU [ms]

408.49
101.96

33089.85
2865.33

147721.0
−

Table 5: Timings for each step to compress segmentation volumes:
Computing AABBs and their SVOs from lists of solid voxel po-
sitions per label, merging them to SVDAGS (TYPE), and subse-
quently merging these partial SVDAGs to one SVDAG (SHARED).
We provide a GPU implementation of the last step for fast merging
of visualized types during rendering start-up or runtime.

for CELLS and 8-bit labels for C.ELEGANS and MOUSE. We report
the dimensions, number of voxels, the fraction of solid voxels, and
the raw memory requirements in Table 1.

5.2. Memory Consumption and Compression Rate

The memory consumption and compression rates are listed in Ta-
ble 3. The total memory is composed of the AABBs, the BVH,
and either the SVOs or SVDAG(s). By decoupling labels from
voxel occupancy, we achieve strong compression rates. Although
the SVDAG has an increased node size of 32 bytes compared to
the SVO with 2 bytes per node, its compression rate is significantly
better due to the reuse of node subtrees.

Merging smaller SVDAGs belonging to subsets of AABBs
(SVDAGS (TYPE)) into a single large SVDAG (SVDAG
(SHARED)) improves the compression rate further. We analyze this
behavior in Fig. 6, where we visualize the required number of nodes
for all modes depending on the number of AABBs for MOUSE.
The other two datasets show similar behavior. Our technique can
effectively compress empty space by building AABBs only around
non-empty regions. Our SVDAG compression of non-empty space
yields best results for volumes with label regions that are non-
overlapping, have a size that is approximately equal to or a multiple
of the AABB size, or share regions with a highly similar structure.

5.3. Rendering Performance

Fig. 1 shows converged path-traced renderings of the three datasets
using our compression scheme and a path length of up to 32
bounces (paths may terminate earlier due to throughput-based Rus-
sian roulette). In Table 4, we report render times of a single frame
for each of the camera positions seen in Fig. 1 with either 1 or 32
bounces, a constant coarsest or finest LOD, and across all modes.
C.ELEGANS and MOUSE can only be rendered using SVDAGS

(TYPE) as the SVOS (AABB) (and even SVDAGS (TYPE) for
MOUSE) exceed GPU memory limitations.

Due to large volume sizes and incoherent access to nodes which
minimizes cache hits, our technique is currently limited by VRAM

throughput. For this reason, we gain a significant performance im-
provement by employing occupancy fields since fewer distributed
SVDAG nodes have to be loaded from memory. Additionally, we
observe thread divergence when threads of a workgroup traverse
the SVDAG to different levels. Although MOUSE has only roughly
four times as many solid voxels as C.ELEGANS, the render times
are about 20 times higher. While C.ELEGANS has a rather closed
surface and its neuron label regions are tightly packed, MOUSE

contains a lot of free space between neurons, which is computa-
tionally much more expensive to traverse and prone to thread di-
vergence.

For certain visualization purposes, a non-photorealistic render-
ing without indirect illumination is desired. Direct illumination or
ambient occlusion corresponds to one-bounce path tracing which
is significantly cheaper than full path tracing as can be seen in Ta-
ble 4. We show a comparison between one bounce and full path
tracing in Fig. 7a. Path tracing introduces image noise that quickly
vanishes with diffuse materials and a constant environment map
(Fig. 7b). To ensure interactive exploration, even in the case of
the MOUSE dataset, we visualize only the coarsest LOD, i.e. the
AABBs, while the camera is moving. When accumulating multiple
frames, the fine LOD is used after the first frame, hence the first
frame has to be discarded to avoid biased renderings. Reducing the
LOD allows us to use more samples per pixel in the first frame to
show a largely noise-free path-traced image in real time.

5.4. Compression Time

Table 5 shows timings for converting segmentation volumes into
our compression scheme. Given lists of voxels per label, we re-
port times for converting them to SVOS (AABB), and the SVOS

(AABB) to SVDAGS (TYPE) as offline pre-processing steps on
the CPU. Our implementation is single-threaded and processes
one type after another. Since types share no dependencies in these
steps, this process can be trivially parallelized. Merging SVDAGS

(TYPE) to SVDAG (SHARED) can be performed as CPU offline
pre-processing as well. Alternatively, only those types visible given
the current transfer function can be merged using a GPU SVDAG
builder on startup or during runtime.

5.5. Comparative Results

We compare our compression with the state-of-the-art compressed
segmentation volumes (CSGV) from [PD24] using a brick size of
323. Volume dimensions and labels as in Table 1 are compressed
with voxels containing empty space set to zero. While CSGV com-
pression rates are initially better by factors of 5 to 6 compared to
our method (Table 2), compression domain traversal is not possi-
ble and additional memory for a cache of visible bricks is needed
during rendering. For smaller volumes with many visible surfaces
(CELLS), our method thus requires less overall GPU memory.

We compare our rendering performance with grid-based voxel
traversal using the CSGV brick caching in Table 4. For always ren-
dering the finest CSGV LOD, a 4 GB cache is allocated for de-
compressing CSGV bricks while our method requires no additional
memory for volume traversal. CSGV rendering uses path tracing at
1 sample per pixel with Russian roulette, multi-level DDA [AW87],

© 2024 The Authors.
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Figure 7: (a) Single bounce (left) and up to 32 bounces (right). (b) Increasing number of samples per pixel. (c) MOUSE rendered with only a
subset of neurons. The transfer function can be updated during runtime by rebuilding the BVH to enable or disable certain types.

and empty brick skipping. Except for MOUSE at the finest LOD,
our SVDAG raytracing method outperforms the voxel grid traver-
sal rendering by factors of 2 to 15. This is mostly due to better
handling of empty space and the missing overhead that the separate
brick decompression stages introduce for CSGV.

5.6. Discussion

AABB Size We choose a fixed AABB size of 163 as a compromise
between compression rate and rendering performance: Smaller
AABBs result in a larger BVH but smaller SVDAG depths. This
increases performance as BVH traversal is hardware-accelerated.
Larger AABBs result in a smaller BVH but deeper SVDAGs with
better compression. In theory, it is possible to use arbitrary AABB
sizes, e.g. by building AABBs for label regions without any sub-
division. However, as this leads to arbitrary SVDAG depths, more
thread divergence occurs, and SVDAG compression is reduced.

Adjusting the Transfer Function We can adjust the transfer func-
tion to enable or disable types (or labels) during runtime. For
best rendering performance, we rebuild the BVH with the adjusted
AABBs sets when a type is en- or disabled. Although it is possi-
ble to discard intersections with disabled types in the intersection
shader, it introduces shader invocation and traversal overhead. Fig-
ure 7c shows the MOUSE dataset with only a subset of neurons
enabled. Using the transfer function to change the appearance of
a type neither requires adjusting the AABBs nor the SVDAG, but
only an update of the buffer containing the shading materials.

6. Conclusion and Future Work

We have introduced a novel lossless SVDAG compression method
and a hardware-accelerated path tracing framework for interac-
tive rendering of segmentation volumes. Our technique achieves
strong compression and rendering performance that outperforms
voxel-based traversal. Future work may further improve compres-
sion rates by optimizing AABB placement or leveraging symme-
try [VMG16]. As discussed in Section 5.3, the rendering perfor-
mance of our technique is currently limited due to thread diver-
gence, which may be solved by wavefront path tracing [LKA13].
Caching and freeing SVDAG nodes based on visibility could re-
duce memory demands during rendering. Finally, for more complex
lighting configurations, storing learned light information inside the
AABBs for path guiding [VHH*19] could be investigated.

Funding

This work has been supported by the Helmholtz Association (HGF)
under the joint research school “HIDSS4Health – Helmholtz Infor-
mation and Data Science School for Health” and through the Pilot
Program Core Informatics.

References
[AAA*22] AGUS, M., ABOULHASSAN, A., AL THELAYA, K., et al. “Vol-

ume Puzzle: visual analysis of segmented volume data with multivariate
attributes”. Proc. IEEE Visualization and Visual Analytics. 2022, 130–
134. DOI: 10.1109/VIS54862.2022.00035 2.

[AAS21] AL-THELAYA, K., AGUS, M., and SCHNEIDER, J. “The Mix-
ture Graph – A Data Structure for Compressing, Rendering, and Query-
ing Segmentation Histograms”. IEEE Trans. on Vis. and Comp. Graph.
27.2 (2021), 645–655. DOI: 10.1109/TVCG.2020.3030451 2.

[AGL05] AHRENS, J., GEVECI, B., and LAW, C. “ParaView: An End-
User Tool for Large Data Visualization”. Visualization Handbook (Jan.
2005). DOI: 10.1016/B978-012387582-2/50038-1 2.

[AW87] AMANATIDES, JOHN and WOO, ANDREW. “A Fast Voxel Traver-
sal Algorithm for Ray Tracing”. Proc. Eurograph. - Technical Papers.
1987. DOI: 10.2312/egtp.19871000 4, 6.

[BAK*13] BEYER, J., AL-AWAMI, A., KASTHURI, N., et al. “Con-
nectomeExplorer: Query-Guided Visual Analysis of Large Volumetric
Neuroscience Data”. IEEE Trans. on Vis. and Comp. Graph. 19.12
(2013), 2868–2877. DOI: 10.1109/TVCG.2013.142 2.

[BBB*17] BOERGENS, K. M, BERNING, M., BOCKLISCH, T., et al. “we-
bKnossos: efficient online 3D data annotation for connectomics”. Nature
Methods 14.7 (2017), 691–694. DOI: 10.1038/nmeth.4331 2.

[BGI*14] BALSA RODRÍGUEZ, M., GOBBETTI, E., IGLESIAS GUITIÁN,
J.A., et al. “State-of-the-Art in Compressed GPU-Based Direct Volume
Rendering”. Computer Graphics Forum 33.6 (2014), 77–100. DOI: 10.
1111/cgf.12280 2.

[Ble18] BLENDER, ONLINE COMMUNITY. Blender - a 3D modelling and
rendering package. Blender Foundation. Stichting Blender Foundation,
Amsterdam, 2018. URL: http://www.blender.org 2.

[BMA*18] BEYER, J., MOHAMMED, H., AGUS, M., et al. “Culling
for Extreme-Scale Segmentation Volumes: A Hybrid Deterministic and
Probabilistic Approach”. IEEE Trans. on Vis. and Comp. Graph. (Proc.
IEEE Sci. Vis.) 25.1 (2018). DOI: 10 . 1109 / TVCG . 2018 .
2864847 2.

[BSG*09] BRUCKNER, S., SOLTESZOVA, V., GRÖLLER, E., et al.
“BrainGazer - Visual Queries for Neurobiology Research”. IEEE Trans.
on Vis. and Comp. Graph. 15.6 (2009), 1497–1504. DOI: 10.1109/
TVCG.2009.121 2.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1109/VIS54862.2022.00035
https://doi.org/10.1109/TVCG.2020.3030451
https://doi.org/10.1016/B978-012387582-2/50038-1
https://doi.org/10.2312/egtp.19871000
https://doi.org/10.1109/TVCG.2013.142
https://doi.org/10.1038/nmeth.4331
https://doi.org/10.1111/cgf.12280
https://doi.org/10.1111/cgf.12280
http://www.blender.org
https://doi.org/10.1109/TVCG.2018.2864847
https://doi.org/10.1109/TVCG.2018.2864847
https://doi.org/10.1109/TVCG.2009.121
https://doi.org/10.1109/TVCG.2009.121


8 of 8 Mirco Werner, Max Piochowiak, & Carsten Dachsbacher / SVDAG Compression for Segmentation Volume Path Tracing

[BTB*22] BEYER, J., TROIDL, J., BOORBOOR, S., et al. “A Survey of
Visualization and Analysis in High-Resolution Connectomics”. Com-
puter Graphics Forum 41.3 (2022), 573–607. DOI: 10.1111/cgf.
14574 2.

[DKB*16] DADO, B., KOL, T. R., BAUSZAT, P., et al. “Geometry and
Attribute Compression for Voxel Scenes”. Computer Graphics Forum
35.2 (2016), 397–407. DOI: 10.1111/cgf.12841 2.

[DSKA17] DOLONIUS, D., SINTORN, E., KÄMPE, V., and ASSARS-
SON, U. “Compressing color data for voxelized surface geometry”.
Proc. ACM SIGGRAPH Symposium on Interact. 3D Graph. and Games.
San Francisco, California: ACM, 2017. DOI: 10.1145/3023368.
3023381 2.

[Goo16] GOOGLE INC. Neuroglancer. https : / / github . com /
google/neuroglancer. 2016 2.

[GZGZ23] GAO, S., ZHOU, H., GAO, Y., and ZHUANG, X. “BayeSeg:
Bayesian modeling for medical image segmentation with interpretable
generalizability”. Medical Image Analysis 89 (2023), 102889. DOI: 10.
1016/j.media.2023.102889 2.

[HHCM21] HOFMANN, N., HASSELGREN, J., CLARBERG, P., and
MUNKBERG, J. “Interactive Path Tracing and Reconstruction of Sparse
Volumes”. Proc. ACM Comput. Graph. Interact. Tech 4.1 (2021). DOI:
10.1145/3451256 2.

[HMES20] HOFMANN, N., MARTSCHINKE, J., ENGEL, K., and STAM-
MINGER, M. “Neural Denoising for Path Tracing of Medical Volumetric
Data”. Proc. ACM Comput. Graph. Interact. Tech 3.2 (Aug. 2020). DOI:
10.1145/3406181 2.

[IMM22] IGLESIAS-GUITIAN, J. A., MANE, P., and MOON, B. “Real-
Time Denoising of Volumetric Path Tracing for Direct Volume Render-
ing”. IEEE Trans. on Vis. and Comp. Graph. 28.7 (2022), 2734–2747.
DOI: 10.1109/TVCG.2020.3037680 2.

[KRB*16] KÄMPE, V., RASMUSON, S., BILLETER, M., et al. “Exploiting
coherence in time-varying voxel data”. Proc. ACM SIGGRAPH Sympo-
sium on Interact. 3D Graph. and Games. Redmond, Washington: ACM,
2016, 15–21. DOI: 10.1145/2856400.2856413 2.

[KSA13] KÄMPE, V., SINTORN, E., and ASSARSSON, U. “High reso-
lution sparse voxel DAGs”. ACM Transactions on Graphics 32.4 (July
2013). DOI: 10.1145/2461912.2462024 2, 3.

[LAB*24] LESAR, Ž., ALHARBI, R., BOHAK, C., et al. “Volume conduc-
tor: interactive visibility management for crowded volumes”. The Visual
Computer 40.2 (2024), 1005–1020. DOI: 10.1007/s00371-023-
02828-8 2.

[LC87] LORENSEN, W. E. and CLINE, H. E. “Marching cubes: A high
resolution 3D surface construction algorithm”. Proc. ACM SIGGRAPH
21.4 (1987), 163–169. DOI: 10.1145/37402.37422 2.

[LK10] LAINE, S. and KARRAS, T. “Efficient sparse voxel octrees”. Proc.
ACM SIGGRAPH Symposium on Interact. 3D Graph. and Games. New
York, NY, USA: ACM, 2010, 55–63. DOI: 10 . 1145 / 1730804 .
1730814 3.

[LKA13] LAINE, S., KARRAS, T., and AILA, T. “Megakernels con-
sidered harmful: wavefront path tracing on GPUs”. Proc. of the
High-Performance Graphics Conference. New York, NY, USA: ACM,
2013, 137–143. DOI: 10.1145/2492045.2492060 7.

[MBB*19] MOTTA, A., BERNING, M., BOERGENS, K. M., et al. “Dense
connectomic reconstruction in layer 4 of the somatosensory cortex”.
Science 366.6469 (2019), eaay3134. DOI: 10 . 1126 / science .
aay3134 2, 4.

[MHL*17] MATEJEK, B., HAEHN, D., LEKSCHAS, F., et al. “Compresso:
Efficient Compression of Segmentation Data For Connectomics”. Med-
ical Image Computing and Computer-Assisted Intervention. Cham:
Springer, 2017, 781–788. DOI: 10.1007/978-3-319-66182-
7_89 2.

[MJB*21] MINNEN, DAVID, JANUSZEWSKI, MICHAŁ, BLAKELY, TIM,
et al. “Denoising-based Image Compression for Connectomics”. bioRxiv
(2021). DOI: 10.1101/2021.05.29.445828 2.

[MOB*21] MEISTER, DANIEL, OGAKI, SHINJI, BENTHIN, CARSTEN, et
al. “A Survey on Bounding Volume Hierarchies for Ray Tracing”. Com-
puter Graphics Forum 40.2 (2021), 683–712. DOI: 10.1111/cgf.
142662 3.

[MSG*23] MORRICAL, N., SAHISTAN, A., GÜDÜKBAY, U., et al. “Quick
Clusters: A GPU-Parallel Partitioning for Efficient Path Tracing of Un-
structured Volumetric Grids”. IEEE Trans. on Vis. and Comp. Graph.
29.1 (2023), 537–547. DOI: 10.1109/TVCG.2022.3209418 2.

[PD24] PIOCHOWIAK, M. and DACHSBACHER, C. “Fast Compressed
Segmentation Volumes for Scientific Visualization”. IEEE Trans. on Vis.
and Comp. Graph. 30.1 (2024), 12–22. DOI: 10.1109/TVCG.2023.
3326573 2, 5, 6.

[QDB11] QUEY, R., DAWSON, P., and BARBE, F. “Large-scale 3D ran-
dom polycrystals for the finite element method: Generation, meshing and
remeshing”. Computer Methods in Applied Mechanics and Engineering
200 (Apr. 2011), 1729–1745. DOI: 10.1016/j.cma.2011.01.
002 2.

[RBS20] ROSENBAUER, J., BERGHOFF, M., and SCHUG, A. “Emerging
Tumor Development by Simulating Single-cell Events”. bioRxiv (2020).
DOI: 10.1101/2020.08.24.264150 2, 4.

[vdLSE20] Van der LAAN, R., SCANDOLO, L., and EISEMANN, E.
“Lossy Geometry Compression for High Resolution Voxel Scenes”.
Proc. ACM Comput. Graph. Interact. Tech 3.1 (May 2020). DOI: 10.
1145/3384541 2.

[VHH*19] VORBA, J., HANIKA, J., HERHOLZ, S., et al. “Path guiding in
production”. Proc. ACM SIGGRAPH Courses. Los Angeles, California:
ACM, 2019. DOI: 10.1145/3305366.3328091 7.

[VMB20] VOKOROKOS, L., MADOŠ, B., and BILANOVÁ, Z. “PSVDAG:
Compact Voxelized Representation of 3D Scenes Using Pointerless
Sparse Voxel Directed Acyclic Graphs”. Computing and Informatics
39.3 (2020), 587–616. DOI: 10.31577/cai_2020_3_587 2.

[VMG16] VILLANUEVA, A. J., MARTON, F., and GOBBETTI, E.
“SSVDAGs: symmetry-aware sparse voxel DAGs”. Proc. ACM SIG-
GRAPH Symposium on Interact. 3D Graph. and Games. New York, NY,
USA: ACM, 2016, 7–14. DOI: 10.1145/2856400.2856420 2, 7.

[WAL*14] WEISSENBÖCK, J., AMIRKHANOV, A., LI, W., et al. “Fiber-
Scout: An Interactive Tool for Exploring and Analyzing Fiber Re-
inforced Polymers”. 2014 IEEE Pacific Visualization Symposium.
2014, 153–160. DOI: 10.1109/PacificVis.2014.52 2.

[WBDM23] WU, Q., BAUER, D., DOYLE, M. J., and MA, K. “Interactive
Volume Visualization Via Multi-Resolution Hash Encoding Based Neu-
ral Representation”. IEEE Trans. on Vis. and Comp. Graph. (2023), 1–
14. DOI: 10.1109/TVCG.2023.3293121 2.

[Wer24] WERNER, M. https://github.com/MircoWerner/
SegmentationVolumeCompression. 2024 4.

[WHW22] WEISS, S., HERMÜLLER, P., and WESTERMANN, R. “Fast
Neural Representations for Direct Volume Rendering”. Computer
Graphics Forum 41.6 (2022), 196–211. DOI: 10 . 1111 / cgf .
14578 2.

[Wil15] WILLIAMS, B. “Moxel DAGs: Connecting material information
to high resolution sparse voxel DAGs”. California Polytechnic State Uni-
versity. 2015. DOI: 10.15368/theses.2015.112 2.

[WMM*21] WITVLIET, D., MULCAHY, B., MITCHELL, J. K., et al.
“Connectomes across development reveal principles of brain matura-
tion”. Nature 596.7871 (2021), 257–261. DOI: 10.1038/s41586-
021-03778-8 4.

[WPB*23] WINDING, M., PEDIGO, B. D., BARNES, C. L., et al. “The
connectome of an insect brain”. Science 379.6636 (2023), eadd9330.
DOI: 10.1126/science.add9330 2.

[ZWMW23] ZELLMANN, S., WU, Q., MA, K., and WALD, I. “Memory-
Efficient GPU Volume Path Tracing of AMR Data Using the Dual
Mesh”. Computer Graphics Forum 42.3 (2023), 51–62. DOI: 10.1111/
cgf.14811 2.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1111/cgf.14574
https://doi.org/10.1111/cgf.14574
https://doi.org/10.1111/cgf.12841
https://doi.org/10.1145/3023368.3023381
https://doi.org/10.1145/3023368.3023381
https://github.com/google/neuroglancer
https://github.com/google/neuroglancer
https://doi.org/10.1016/j.media.2023.102889
https://doi.org/10.1016/j.media.2023.102889
https://doi.org/10.1145/3451256
https://doi.org/10.1145/3406181
https://doi.org/10.1109/TVCG.2020.3037680
https://doi.org/10.1145/2856400.2856413
https://doi.org/10.1145/2461912.2462024
https://doi.org/10.1007/s00371-023-02828-8
https://doi.org/10.1007/s00371-023-02828-8
https://doi.org/10.1145/37402.37422
https://doi.org/10.1145/1730804.1730814
https://doi.org/10.1145/1730804.1730814
https://doi.org/10.1145/2492045.2492060
https://doi.org/10.1126/science.aay3134
https://doi.org/10.1126/science.aay3134
https://doi.org/10.1007/978-3-319-66182-7_89
https://doi.org/10.1007/978-3-319-66182-7_89
https://doi.org/10.1101/2021.05.29.445828
https://doi.org/10.1111/cgf.142662
https://doi.org/10.1111/cgf.142662
https://doi.org/10.1109/TVCG.2022.3209418
https://doi.org/10.1109/TVCG.2023.3326573
https://doi.org/10.1109/TVCG.2023.3326573
https://doi.org/10.1016/j.cma.2011.01.002
https://doi.org/10.1016/j.cma.2011.01.002
https://doi.org/10.1101/2020.08.24.264150
https://doi.org/10.1145/3384541
https://doi.org/10.1145/3384541
https://doi.org/10.1145/3305366.3328091
https://doi.org/10.31577/cai_2020_3_587
https://doi.org/10.1145/2856400.2856420
https://doi.org/10.1109/PacificVis.2014.52
https://doi.org/10.1109/TVCG.2023.3293121
https://github.com/MircoWerner/SegmentationVolumeCompression
https://github.com/MircoWerner/SegmentationVolumeCompression
https://doi.org/10.1111/cgf.14578
https://doi.org/10.1111/cgf.14578
https://doi.org/10.15368/theses.2015.112
https://doi.org/10.1038/s41586-021-03778-8
https://doi.org/10.1038/s41586-021-03778-8
https://doi.org/10.1126/science.add9330
https://doi.org/10.1111/cgf.14811
https://doi.org/10.1111/cgf.14811

