

ADAPTIVE SCENARIO SELECTION FOR

SIMULATIVE TESTING OF PERCEPTION

FUNCTIONS IN AUTOMATED DRIVING

JOHANNES BERNHARD

DOCTORAL THESIS

Adaptive scenario selection for simulative
testing of perception functions in

automated driving

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von der KIT-Fakultät für
Elektrotechnik und Informationstechnik
des Karlsruher Instituts für Technologie

eingereichte

DISSERTATION

von

M. Sc. Johannes Bernhard
geb. in Friedrichshafen

Tag der mündlichen Prüfung: 12.06.2024

Hauptreferent: Prof. Dr.-Ing. Eric Sax
Korreferent: Prof. Dr.-Ing. Hans-Christian Reuss

Danksagung

Diese Dissertation entstand im Rahmen einer Industriepromotion mit dem
Karlsruhe Institut für Technologie und der ZF Friedrichshafen AG. Die let-
zten fünf Jahre waren spannend und zugleich herausfordernd, jedoch voller
wertvoller Erfahrungen und Erfolge. Ohne die Unterstützung meines privaten
und beruflichen Umfelds wäre diese Arbeit nicht möglich gewesen.

Zu Beginn möchte ich mich bei meinem Doktorvater, Prof. Dr.-Ing. Eric
Sax, für die erstklassige Betreuung bedanken. Seine wertvolle Unterstützung,
sowohl bei meinen Forschungsarbeiten als auch bei persönlichen Anliegen, hat
maßgeblich zum Erfolg meiner Dissertation beigetragen.

Mein herzlicher Dank gilt auch Prof. Dr.-Ing. Hans-Christian Reuss für
die Übernahme des Korreferats. Seine inhaltlichen Rückmeldungen und
wertvollen Anmerkungen haben maßgeblich zur Qualität dieser Dissertation
beigetragen und mich hervorragend auf die Prüfung vorbereitet. Ebenso
möchte ich mich bei Prof. Dr.-Ing. Thomas Zwick für den Vorsitz der Prü-
fungskommission sowie bei Prof. Dr. Ivan Peric und Prof. Dr.-Ing. Sander
Wahls für ihre Unterstützung als Beisitzer bedanken.

Darüber hinaus möchte ich allen Kolleginnen und Kollegen bei der ZF
Friedrichshafen AG meinen herzlichen Dank aussprechen. Besonders danke
ich meinen Betreuern Martin Sedlacek und Thomas Schulik, die mich während
der Promotionszeit mit wertvollen Ratschlägen begleitet haben. Ebenso danke
ich Lucas Fonseca, Lars Schories und Joachim Naas für die angenehme Zusam-
menarbeit und ihre Unterstützung im Laufe der Arbeit.

Ich möchte mich auch bei Mark Schutera und Jonas Schmid für die interessan-
ten Projekte bedanken, an denen wir gemeinsam gearbeitet haben.

i

Ein großer Dank geht an meine Doktorandengruppe für die gemeinsamen
Seminare und Klausuren. Die interessanten Diskussionen haben meine Ar-
beit bereichert. Zudem war der Austausch stets eine wertvolle Unterstützung
während meiner Promotionszeit.

Mein größter Dank gilt meiner Frau Rebecca, die mich bei jedem Schritt dieser
Dissertation unterstützt hat. Ohne ihre unermüdliche Hilfe und ihr Verständnis
wäre diese Arbeit nicht möglich gewesen. Ebenso danke ich meinen Eltern
und Geschwistern, die mir stets den Rücken gestärkt und mich in jeder Phase
ermutigt haben.

ii

Zusammenfassung
Die Integration von Low-Level-Fahrsystemen zur Fahrzeugsteuerung, wie z. B.
Notbremsassistenten oder Adaptive Cruise Control, haben das Potenzial, die
Sicherheit im Straßenverkehr signifikant zu verbessern. Allerding wird die
Einführung von vollautomatisierten Fahrsystemen aufgrund derzeit unbeant-
wortbarer Fragen im Bereich der automatisierten Umfeldperzeption gehemmt.
Innerhalb der letzten Dekade konnten jedoch Fortschritte in den Forschungs-
bereichen Machine Learning, High-Performance Computing, Robotik und Au-
tomobiltechnik erzielt werden. Durch die Nutzung künstlicher neuronaler
Netze konnten Ergebnisse generiert werden, die mit der Leistung des men-
schlichen Auges vergleichbar sind.

Obwohl die nicht-lineare Entscheidungsfindung ein zentraler Vorteil von KNNs
während des automatisierten Erlernens von Datenstrukturen ist, birgt sie auch
Schwierigkeiten. Diese betreffen sowohl die Interpretation des Outputs als
auch die Behebung eines eventuellen Fehlverhaltens. Dabei spielen die Qual-
ität und Diversität eine zentrale Rolle innerhalb des Lernprozesses eines Neu-
ronalen Netzes. Daher ist die Zusammenstellung eines umfassenden Daten-
satzes eine zentrale Aufgabe, insbesondere für das Testen eines Models. Die
Aussagekraft von Testprozessen sowie berechneter Key Performance Indica-
tors hängen stark vom Umfang und der Diversität des zusammengestellten
Testdatensatzes ab. Das Sammeln von Entwicklungsdaten im realen Verkehr
hat jedoch mehrere Nachteile. Zu diesen zählen die hohen Kosten für die
Durchführung der Datenaufzeichnung, die gegebenenfalls mangelhafte Qual-
ität von Daten Labels und eine eingeschränkte Skalierbarkeit. Des Weiteren
können die aufgezeichneten Daten bei zunehmender Datenmenge repetitiv
werden und gefährliche Verkehrsszenarien oder extreme Wetterereignisse un-
terrepräsentieren.

Diese Dissertation befasst sich mit der Nutzung von synthetischen Bilddaten,
mit dem Ziel die Schwächen eines KNNs systematisch aufzudecken. Hierfür
wird eine Pipeline zur Testung von KNNs eingeführt. Die Pipeline nutzt die
Aspekte des Szenario-basierten Testens und kombiniert diese mit Simulation-

iii

ssoftware zu Generierung von Bilddaten. Durch den Einsatz von adaptiven
Samplingstrategien werden iterativ Testfälle generiert, die bei einem zu tes-
tenden KNN ein Systemversagen auslösen. Dabei können Bestandteile von
Verkehrsszenarien identifiziert werden, die für das KNN besonders heraus-
fordernd sind.

Im Rahmen dieser Arbeit wurde eine umfangreiche Implementierung der
vorgestellten Pipeline durchgeführt und die Validität des Ansatzes nachgewiesen.
Mit Hilfe der Pipeline können kritische Szenarien für das KNN effizient gener-
iert werden. Durch die Verwendung der Bilddaten kritischer Szenarien im
Trainingsprozess kann die Leistung des Modells signifikant verbessert werden.
Dadurch wurde die Robustheit des Modells gegenüber kritischen Szenarien
erhöht.

Diese Dissertation trägt dazu bei, den Test- und Entwicklungsprozess von
neuronalen Netzen in der Umfeldperzeption von automatisierten Fahrsyste-
men zu verbessern. Dennoch können im Bereich des simulativen Testens
aufgrund noch fehlender Forschung einige Fragestellungen noch nicht ab-
schließend beantwortet werden.

iv

Abstract
Integrating low-level driving systems for vehicle control, such as emergency
brake assist or cruise control, has shown the potential to significant safety
improvements in traffic. The prospect of fully automated driving systems
has been questioned, among other things, due to limits in automated environ-
mental perception and scene understanding. Recently, advances have been
made in machine learning, high-performance computing, robotics, and auto-
motive engineering research areas. The accuracy of machine learning systems
has reached performances comparable to human capabilities. While machine
learning-driven perception can significantly outperform traditional perception
approaches, it is no silver bullet for solving all challenges in computer vision
simultaneously.

A key feature of neural networks, wildly dominating this area of machine
learning systems, is their non-linearity for decision-making, being boon and
bane alike. While being able to encode information from development data
into the network structure autonomously, this restricts the ability to debug and
interpret behavior. The quality and diversity of development data plays a main
role when training neural networks. Hence, assembling a comprehensive data
set is a key task, especially for model testing. Generally, the validity of tradi-
tional tests and performance metrics in perception depends on the volume and
variety of the assembled test data set. However, collecting image data from real
traffic has many drawbacks, including high labeling and data recording costs,
deficiencies in labeling quality, and poor scalability. Furthermore, recorded
data may get repetitive over time, with dangerous traffic scenarios or extreme
weather events being rare.

This thesis discusses the simulative generation of synthetic image data to reveal
the weaknesses of a (perception) system-under-test. This thesis introduces a
testing pipeline for perception function by utilizing and expanding on existing
test frameworks. The proposed pipeline leverages scenario-based testing and
synthetic data generation combined with adaptive testing strategies to itera-
tively test the perception system for scenarios where the performance does

v

not comply with the required behavior. In this context, adaptive strategies as-
sume that a perception function performance depends highly on the scenario’s
semantic features, such as early failure detection.

Extensive testing of the proposed pipeline demonstrates the validity of the
approach and sets it in the context of alternative approaches for testing neural
networks. Using the pipeline, neural network failures can be detected effi-
ciently, and neural network deficiencies can be identified. When using the
generated insights and failure data, the performance of the trained model can
be improved to be more robust and less prone to challenging driving scenarios.

While there are remaining questions that have to be the subject of further
research, this thesis contributes to improving the test and development process
of neural networks in the perception of automated driving systems.

vi

Table of Contents

Glossary and Math Symbols . xvii

1 Introduction . 1
1.1 Automated driving and its impact on public traffic 1
1.2 Deep learning as enabler of automated driving systems . . . 6
1.3 Scientific contribution . 12

2 Fundamental techniques of environmental perception in
automated driving . 17
2.1 Traditional programming vs. machine learning 17
2.2 Types of machine learning 18
2.3 Requirements for machine learning algorithms 22
2.4 Deep learning - origin and foundations 30
2.5 Object detection frameworks 35

3 Design and testing of deep neural network-based percep-
tion functions . 43
3.1 Basic terminologies . 43
3.2 Development process for object detection 45
3.3 Safety concerns regarding the use of DNN in automated driving

tasks . 48
3.4 Techniques for testing of perception functions 50

3.4.1 Benchmark testing 51
3.4.2 Coverage-guided testing 52
3.4.3 Adversarial testing 55

4 Adaptive test case sampling for DNN-based perception
functions . 59

vii

Table of Contents

4.1 Simulative testing - Advantages and weaknesses 59
4.2 Introducing pipeline for adaptive scenario selection for simu-

lative testing . 64
4.3 Defining quality metrics for an adaptive test case sampling . 75
4.4 Presentation of sampling strategies 83

4.4.1 Covering arrays and t-wise testing 83
4.4.2 Evolutionary sampling 84
4.4.3 Coupling the use of meta-model with fixed-sized-

candidate-set method 86

5 Implementing proposed pipeline for fault detection . . . 97
5.1 Overview . 97
5.2 Designing a scenario space for adaptive sampling 99
5.3 Autonomous emergency braking controller 107
5.4 System-under-Test: YOLOv5 107
5.5 Key performance indicator: adjusted Time-to-Collision . . . 111
5.6 Visualization of experimental process 112

6 Results of pipeline for fault detection 115
6.1 Process set-up and Scenario variable selection 115
6.2 Random sampling and pair-wise testing 119
6.3 Evaluation of adaptive testing 123

7 Active Learning using adaptive Testing 133
7.1 Process overview for active learning 133
7.2 Data selection and preparation 137
7.3 Active learning testing results 138

8 Conclusion and outlook . 143
8.1 Discussion . 143
8.2 Future Work . 147

Publications Johannes Bernhard 151

Bibliography . 153

viii

Table of Contents

Appendices . 173
A Convolutional Neural Network Architecture 173
B Gaussian Process Regression 179

ix

List of Figures
1.1 Different applications of deep learning technologies for perception

in automated vehicles. 7
1.2 Data distribution of the BDD100k data set. 9
1.3 Criteria "safe" and "known" for scenarios in SOTIF context. . . 10
1.4 Visualization of virtualization capabilities of simulative frame-

works. 12

2.1 Differences between the development processes of traditional soft-
ware and machine learning models. 18

2.2 The basic concept of reinforcement learning. 21
2.3 Classic confusion matrix for binary classifiers. 23
2.4 Example for adversarial attacks on a classifier for the MNIST. . . 25
2.5 Concept of heatmap approaches for visualization of computer vi-

sion algorithms. 27
2.6 Importance of interpretability in machine learning. 28
2.7 a) Binary Linear Threshold Unit. b) Single perceptron with three

inputs and one binary output. 31
2.8 a) Application of a single perceptron on the OR problem. b)

Application of two perceptrons on the XOR problem. 32
2.9 Network with one hidden layer to solve the XOR problem. . . . 33
2.10 Comparison between step function and sigmoid function. 33
2.11 Sample digits of the MNIST database of handwritten digits. . . . 34
2.12 Schematic representation of the YOLO framework. 36
2.13 Schematic representation of the SSD framework. 37
2.14 Multi-stage framework for R-CNN. 38
2.15 Schematic representation of the intersection over union (IoU). . 39
2.16 Receiver operating characteristic (ROC) curve for a given class. . 40

3.1 Best practice for collecting development data for perception func-
tions. 46

xi

List of Figures

3.2 Visualization of the importance of domain coverage. 48
3.3 Example of full-image attack on GoogLeNet on ImageNet data. . 57
3.4 Example of the patch-level DPATCH attack on YOLO object de-

tector. 57

4.1 Relation between increasing driven distance and unique scenarios
recorded. 60

4.2 Overview on synthetic image data and synthetic labels. 61
4.3 Simulative process for synthetic image generation. 63
4.4 Schematic representation of functional testing. 64
4.5 The six layers used to describe a traffic scenario as defined by the

PEGASUS project. 65
4.6 Overview of scenario-based testing process [5]. 67
4.7 Scenario description scheme from PEGASUS project [6]. 68
4.8 Schematic representation of the simulative testing process. . . . 74
4.9 Visualization of the sequences 𝜏𝑖 and Θ𝑖 as defined in Def. 4.15. 77
4.10 Visualization of failure region. 80
4.11 Visualization of 𝜔-measure. 82
4.12 Example of pair-wise testing with three scenario variables and two

characteristics per variable. 84
4.13 Schematic representation of evolutionary testing process. 86
4.14 Schematic representation of meta-model based testing process. . 87
4.15 Schematic representation of the relationship between performance

evaluation process and the meta-model. 88
4.16 Relationship between true underlying function and fitted model for

linear regression tasks. 92
4.17 Standard feed-forward neural network that can be used for regres-

sion tasks. 93
4.18 Posterior distribution of Gaussian process. 96

5.1 Experimental pipeline to evaluate the proposed testing strategies. 98
5.2 Defined functional scenarios, derived from the pedestrian-vehicle

interactions from the Euro-NCAP scenarios. 101
5.3 Functional scenarios as implemented in the experiments. 103
5.4 Different weather and daytime effects. 106

xii

List of Figures

5.5 Simulation framework for SuT evaluation. 108
5.6 Visualization of YOLO output. 110
5.7 YOLOv5 custom training process. 111
5.8 Visualization of execution run of concrete scenario. 114

6.1 Test results using random testing for F1 − F4. 120
6.2 Test results using random testing for F5 − F8. 121
6.3 Parallel coordinates plot for Random Testing and functional sce-

nario F2. 122
6.4 Visualization of two failures from random testing on F2. 123
6.5 a) Parallel coordinates plot for evolutionary testing on functional

scenario F6. b) Parallel coordinates plot for the failures detected
by meta-model based testing using GPR on functional scenario F6. 125

6.6 Visualization of extractions from two test executions during testing
on F6. 126

6.7 Visualization of non-failure test execution during evolutionary test-
ing. 128

6.8 Detected Failure from evolutionary testing on F5. 131

7.1 Process of re-training and testing the new YOLOv5 model weights. 134
7.2 Visualization of additional functional scenarios. 135
7.3 Extract from the process of ensuring data quality during re-training. 137
7.4 Histogram for functional scenarios F ∗

1 and F ∗
2 containing the test

results for each model. 139
7.5 Histogram for functional scenarios F ∗

3 and F ∗
4 containing the test

results for each model. 140
7.6 Visualization of testing improved YOLOv5 versions. 141

8.1 Placing the proposed testing process in context with SOTIF. . . 145
8.2 Validation of geometric precision of camera simulation using a

checkerboard pattern [7]. 147
8.3 Probability of failure calculation for scenario S. 148
8.4 Scenario clustering to generate functional scenarios from real-

world trajectory data [1]. 149
.1 Standard building blocks for convolutional neural networks. . . . 175
.2 AlexNet-architecture. 176

xiii

List of Figures

.3 Standard activation functions for convolutional neural networks. 177

.4 a) Covariance matrix using the radial basis function. b) Pair-wise
covariance 𝑘 (𝑥, 𝑥 ′). 180

.5 Five different function realizations sampled from a Gaussian pro-
cess. 181

.6 Posterior distribution of Gaussian process. 182

.7 Posterior distribution of Gaussian process. 184

xiv

List of Tables
5.1 Defined functional scenarios, derived from the pedestrian-vehicle

interactions from the Euro-NCAP scenarios for AEB systems [8]. 102

6.1 Implemented testing strategies. 116
6.2 Discretization of continuous variables. Including the categorical

variables Animation and Pedestrian Blueprint, there are 8102 2-
wise combinations. 118

6.3 Resulting number of detected failures Θ1,000 for 1,000 test execu-
tions using random sampling and pair-wise sampling. 119

6.4 Resulting number of detected failures Θ1,000 for 1,000 test execu-
tions using different sampling strategies. 124

6.5 𝐶-Measure for 1,000 test executions using different sampling
strategies. 129

6.6 Combinatorial coverage from different test strategies for total
tested concrete scenarios and the concrete scenarios that result
in failures. 132

7.1 Defined functional scenarios, derived from the pedestrian-vehicle
interactions from the Euro-NCAP scenarios for AEB systems [8]. 136

7.2 Resulting number of failures during pair-wise testing of new model
weights for all additional functional test scenarios. 138

xv

Glossary and Math Symbols
Glossary
ACC Adaptive cruise control

AEB Automated emergency brake system

AI Artificial intelligence

ADAS Automated driver assistance systems

CV Computer vision

DL Deep learning

FN False negative

FP False postive

GPR Gaussian process regression

LR Linear regression

mAP Mean average precision

ML Machine learning

NN/DNN Neural network/ Deep-neural network

NNR Neural network regression

ODD Operational domain design

SOTIF Safety of the intended functionality

SuT System under Test

TN True negative

TP True positive

xvii

Glossary and Math Symbols

TTC Time to collision

Math Symbols
𝔓(·) Power set operator

F Functional scenario (Def. 4.1)

𝑆 Scenario variable (Def. 4.2)

S Logical scenario (Def. 4.2)

𝔖 Space of logical scenarios (Def. 4.3)

𝔉 Space of functional scenarios (Def. 4.3)

𝐼 (·) Interpreter (Def. 4.3)

𝑠 Concrete scenario (Def. 4.4)

B Output space of perception function (Def. 4.5)

I Image space (Def. 4.5)

𝑇 (·) Ground truth function (Def. 4.5)

𝐷 (·) Perception system (Def. 4.6)

𝐺 (·) Simulation process (Def. 4.7)

𝐾 (·, ·) Key-performance-indicator (Def. 4.8)

𝜓(·) Simulative testing process (Def. 4.9)

T Space of observed concrete scenarios (Def. 4.13)

S̃ Observed test set (Def. 4.13)

𝜙(·) Sampling strategy (Def. 4.14)

(𝜏𝑖)𝑖∈N Failure sequence (Def. 4.15)

(𝑥𝑖)𝑖∈N Sequence defined as sampling order (Def. 4.15)

Θ(·) Accumulated failure sequence (Def. 4.15)

xviii

1 Introduction
1.1 Automated driving and its impact on public

traffic
The primary purpose of partly and fully automated transport sys-
tems is to improve safety for all road users. Another purpose is to
increase mobility opportunities and to make further benefits pos-
sible. Technological development obeys the principle of personal
autonomy, which means that individuals enjoy freedom of action
for which they themselves are responsible.

(Ethical rules for automated and connected vehicular traffic)

This quote was used by the Ethics Commission Automated and Connected
Driving - German Federal Ministry of Transport and Digital Infrastructure as
their first ethical rule regarding the use of automated driving technology in
public traffic [9]. The release and development of automated cars are directly
tied to their impact on the safety of all involved road users [10]. Although
the number of traffic fatalities in Germany has decreased significantly from
11,300 in 1991 to 2,788 in 2022, accidents on public roads remain the second
non-natural cause of death [11,12]. Due to the vulnerability of road users, the
unpredictability of environmental influences, and the behavior of people and
technology, automated vehicles have little to no margin of error.
While traffic incident statistics show the potential risks of malfunctions in the
vehicle’s technology, they also reveal the potential to increase public traffic
safety, often measured by casualties per driven kilometers [13]. According to
the German Federal Statistical Office (Statistisches Bundesamt), driver miscon-
duct is responsible for 88% of all 342,852 accidents with personal injuries on
German Roads in 2018. The remaining accidents can be attributed to technical
failure of vehicles (0.8%), misconduct of pedestrians (3%), and environmental
influences (7.2%).

1

1 Introduction

Studies on accident statistics highlight the ability of advanced driver assistance
systems (ADAS) to increase road safety, proving the decrease of collisions for
vehicles equipped with ADAS components such as emergency brake assistance
(EBA) or emergency lane keeping (ELK) [14,15]. For example, the Insurance
Institute for Highway Safety compared police-reported crashes and insurance
claims for vehicles equipped with and without different ADAS technologies,
such as emergency brake assistance with an automatic brake mechanism, show-
ing a reduction of front-to-rear crashes with injuries by up to 56%. This positive
impact on traffic safety was not lost on lawmakers, with the European Union
mandating every new vehicle from 2022 and later to be equipped with the
following ADAS systems with regulation 2019/2144 [16]: Intelligent speed
assistance, alcohol interlock installation facilitation, driver drowsiness and at-
tention warning, advanced driver distraction warning, emergency stop signal,
reversing detection, event data recorder.

While industry, legislation, and research emphasize the possible improvements
for road safety, the general public rather mistrusts the vision of fully automated
vehicles [17]. Surveys from the American Automobile Association for 2023
state that 68% of their 1,140 interviewed U.S. adults see safety issues as a
significant problem associated with automated driving and have a negative
attitude toward self-driving vehicles [18]. Notably, the negative attitude has
increased over the past three years.

Apart from the safety dimension, automated vehicles bear significant economic
opportunities with a focus on commercial traffic. A 2023 report for long-haul
trucking in the US has estimated the average labor cost per driven mile to
be $0.72, resulting in 31% of the overall $2.31/driven mile [19]. Apart from
profitability-driven reduction of costs, a general shortage of workforce and
drivers is plaguing the trucking industry that will only increase over time [20].
In Europe a mere 5% of truck drivers are aged bellow 25 years with 12%
overall worldwide, leading to a doubling of truck driver shortage within the
next five years [21]. The introduction of automated driving systems might be
able to mitigate these developments and keep vital supply chains operable.

2

1.1 Automated driving and its impact on public traffic

Automated vs. autonomous driving

Regarding self-driving cars, the two terminologies autonomous and automated
are often used synonymously. Despite the high dependence, the difference
between these two terms is significant when introducing the five level scheme of
automated driving in Sec. 1.1. The Cambridge Dictionary states the definitions
as follows:

Automated
Carried out by machines or computers without needing human control.

Autonomous
Independent and having the power to make its own decisions.

While automation is conveniently defined for engineering, the definition for
autonomy is more philosophic and used primarily to describe dependencies
between countries, organizations, and individuals. Wood et al. [22] stated that
despite the general public adopting the term autonomous driving to describe
self-driving cars, the term automated driving actually is more accurate. The
idea of automated driving can be derived quite easily from the automation
definition as a vehicle that moves from one place to another without human
control. Since most concepts for self-driving cars depend on prescribed desti-
nations and utilize communication with other road users, the term autonomous
becomes vague. Hence, the actual SAE J3016 norm [23] describes levels of
automation instead of autonomy, which often is misconceived.

The five levels of automated driving

To create a standard for the automotive industry and research, the Society of
Automotive Engineers (SAE International) designed a standard for the dif-
ferent stages of automated driving. The SAE standard J3016 was published
in 2014 and became widely regarded as the industry standard for classifying
driving automation levels. The automation level of a driving function can be
determined by assessing some of its key properties. The main questions that
have to be answered (Driver or system?) are:

• Who controls the vehicle (steering, acceleration and braking)?

3

1 Introduction

• Who monitors the driving environment?

• Who will be the fallback level in dynamic driving tasks?

The official definitions in the SAE J3016 [23] for the different levels of au-
tomation are as follows:

0. Level: No Automation
The full-time performance by the human driver of all aspects of the
dynamic driving task, even when enhanced by warning or intervention
systems.

1. Level: Driver Assistance
The driving mode-specific execution by a driver assistance system of
either steering or acceleration/deceleration using information about the
driving environment and with the expectation that the human driver
performs all remaining aspects of the dynamic driving task.

2. Level: Partial Automation
The driving mode-specific execution by one or more driver assistance
systems of both steering and acceleration/deceleration using information
about the driving environment and with the expectation that the human
driver performs all remaining aspects of the dynamic driving task.

3. Level: Conditional Automation
The driving mode-specific performance by an automated driving system
of all aspects of the dynamic driving task with the expectation that the
human driver will respond appropriately to a request to intervene.

4. Level: High Automation
The driving mode-specific performance by an automated driving system
of all aspects of the dynamic driving task, even if a human driver does
not respond appropriately to a request to intervene.

5. Level: Full Automation
The full-time performance by an automated driving system of all as-
pects of the dynamic driving task under all roadway and environmental
conditions that can be managed by a human driver.

A critical threshold in this schema is the transition from level 3 to level 4, due
to the absence of required human supervision.

4

1.1 Automated driving and its impact on public traffic

Assessing the safety of automated vehicles

Wachenfeld et.al. [24] pointed out that for an approval of fully-automated
driving on public roads it should be shown that the ratio

𝑉𝑎𝑐𝑐 =
𝑅𝑎𝑑𝑑

𝑅𝑎𝑣𝑜

(1.1)

between caused risk 𝑅𝑎𝑑𝑑 and avoided risk 𝑅𝑎𝑣𝑜 should be less than 1 to ensure
an overall positive impact on road safety. This idea is related to the so-called
GAMAB principle that states in French Globalement au moins aussi bon,
which translates to performing globally at least as good as [6]. The GAMAB
principle is also embedded in the ethics report of the German Federal Ministry
of Transport and Digital Infrastructure [9]:

The licensing of automated systems is not justifiable unless it
promises to produce at least a diminution in harm compared with
human driving, in other words, a positive balance of risks.

(German Federal Ministry of Transport and Digital
Infrastructure [9])

This concept of a positive risk balance is also highlighted in the norm ISO/TR
4804:2020 [25] on safety and cybersecurity for automated driving systems as
a central requirement for the release of automated vehicles.

However, to calculate𝑉𝑎𝑐𝑐 precisely, concrete measurements for 𝑅𝑎𝑑𝑑 and 𝑅𝑎𝑣𝑜

need to be provided. One approach could measure risk by the number of ac-
cidents caused and avoided per kilometers. Although the total number of
accidents in conventional traffic is available, it is not readily apparent to dissect
which accidents would have been prevented by automated vehicles. Further-
more, the number of new accidents is unknown, so this approach has to be
modified. This could be done by assuming that the number of "unavoidable"
accidents is equal for the average human driver and the tested automated
vehicle. Then 𝑉𝑎𝑐𝑐 could be approximated by dividing

#𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠average human driver

driven kilometers
by

#𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠automated vehicle
driven kilometers

. (1.2)

5

1 Introduction

The data for the first term can be retrieved from public traffic statistics. How-
ever, the second term cannot be observed straightforwardly. Since testing of
an automated vehicle is required before release, accident statistics per kilo-
meter cannot be obtained from customers. That leaves only statistics from
supervised testing, with safety personnel who can intervene in hazardous sit-
uations. However, apart from the considerable danger of testing vehicles on
public roads, reliable statistics require many test kilometers to be driven [26].
Based on data from the Federal Statistical Office of Germany, Wachenfeld [24]
estimates the driving distance between two fatal accidents to be about 210
million. However, testing this amount of kilometers via real-traffic tests in
real traffic is unrealistic [27, 28]. These and other concerns force the industry
to find further approaches to testing automated cars, where the importance of
simulated testing comes into play. Using virtual test environments that can pre-
dict the behavior of automated vehicles and other road users, test engineers can
examine whether their product can handle hazardous situations safely [29,30].

1.2 Deep learning as enabler of automated
driving systems

Computer vision for automated driving

The developments in automated driving during the last decade are tied to the
advances made in machine learning technologies [31], enabled by a rapid
increase in computing power [32], and their ability to achieve human-like
performance in tasks that are crucial for the safe behavior of the vehicle, such
as object detection [33] or image classification [34, 35]. Machine learning
algorithms are applied to various tasks in the architecture of automated vehicles
[36, 37], such as perception, behavior prediction, and motion planning. Over
the past years, models from the sub-discipline deep learning have shown to be
the best approaches in machine learning for this purpose. Deep learning refers
to machine learning models that are driven by deep neural networks. See Ch. 2
for a detailed definition of deep learning and the embedding in the field of
machine learning.

Although perception functions are developed to a wide range of sensors, such as
thermal imaging cameras [39] or acoustic sensors [40], the general consensus
in industry and research focusses on three sensor types [41]: Camera, Lidar

6

1.2 Deep learning as enabler of automated driving systems

Car

Car Car Car Car Car Car Car

Car

Car

Car Car Car Car
Car

Car

a)

c)

e)

b)

d)

f)

Figure 1.1: Different applications of deep learning technologies for perception in automated vehi-
cles: a) Original Image, b) Object Detection and Tracking: 2D/3D bounding boxes. c)
Semantic Segmentation: Pixel-wise classification. d) Instance Segmentation: Com-
bination of bounding box detection and semantic segmentation. e) Optical Flow
Estimation: Pixel-wise 3D motion in the scene relative to the vehicle. f) Depth Esti-
mation: Pixel-wise distance estimation. Images and ground truths are provided by the
KITTI benchmark data set [38].

and Radar. The sensors have advantages and disadvantages complementing
each other.

Camera: The majority of work that has been done in computer vision con-
cerns digital image data collected by cameras. A primary advantage of
camera data is detecting texture features benefiting object detection and
classification. Texture features allow distinction between objects with
the same physical dimensions. On the flip side, camera data lacks depth
information. The distance, dimension, and speed of an object is esti-
mated based on color contrasts, which can be misleading. Furthermore,
camera sensors are vulnerable to weather and lighting conditions such
as snow, fog, or dazzling light sources.

Light Detection and Ranging (Lidar): Object detection algorithms for lidar
sensors have seen a surge during the last years as lidar eradicates some
of the shortcomings of camera data. Lidar sensors actively emit laser
signals, usually in the 900nm wavelength range [41], to receive the sig-
nal’s reflection on objects. Based on the duration between emission
and reception, distance information about the object can be retrieved.

7

1 Introduction

Hence, lidar sensors create high-resolution point clouds used for object
detection. Compared to camera data, the availability of depth infor-
mation allows precise localization of objects. However, lidar sensors
are vulnerable to external light sources, and like camera sensors, they
create a high amount of data. Since automated vehicles need to perform
real-time perception, this represents a significant challenge.

Radio Detection and Ranging (Radar): Radar sensors are based on the same
principle as lidar sensors. The sensor can estimate an object’s distance
by sending out and receiving electromagnetic signals in the microwave
range. Furthermore, utilizing the Doppler effect, radar sensors can
retrieve objects’ speed. Depending on the signal wavelength, radar
sensors operate long range up to 200 meters or in the vehicle’s immediate
surroundings. Compared to lidar, point clouds from radar sensors have
a much lower resolution, making them more efficient to process [42].

To build up a representation of the vehicle’s surroundings, the perception
components gather information on the environment. Fig. 1.1 displays common
tasks that have to be performed by the perception components using on image
data [38].

Data as driving and limiting factor for perception

As deep learning algorithms are data-driven methods, they require vast amounts
of labeled data to provide an algorithm with example data. A more formal
definition of labels, as well as how deep learning algorithms use them for
training is shown in Sec. 2.2. For this purpose, new data sets are published
regularly, with some of the most critical benchmarks being the KITTI data
set [38] and BDD100k data set [43]. These data sets are generated by traffic
recordings being labeled manually. While this approach seems straightforward,
it bears significant drawbacks. The data set distribution of recorded objects,
weather artifacts, and road conditions will inevitably follow the real traffic
distribution. While this does not seem problematical, it implies an inherited
bias towards more common data fragments.

To highlight this point, Fig. 1.2 shows distribution information on the BDD100k
data set [43]. With 100,000 labeled images, the BDD100k represents one of the
most diverse development and benchmark data sets in camera-based percep-

8

1.2 Deep learning as enabler of automated driving systems

a) b)

Figure 1.2: Data distribution inside the BDD100k data set [43] for a) Weather data (~13% of
the 100,000 images do not have a weather label), b) Object bounding boxes. Note the
imbalance at the expense of challenging situations such as Foggy weather or vulnerable
road users such as Person or Rider.

tion. However, there are only 181 images in foggy weather, which is severely
underrepresented. While foggy weather indeed occurs with a low probability
in real traffic, it also negatively affects the performance of perception func-
tions, with [44] showing a dramatic drop off of object detection networks in
hazy conditions. Rare environmental conditions often pose additional risk to
a perception function [45, 46]. Hence, relying solely on recordings for test
data generation could require recording an immense amount of data that has
to be labeled. At the same time, the labeling process is mostly the finan-
cial bottleneck of data generation due to high recording, labeling, and storage
costs [47, 48].

The ISO 21448 norm Road vehicles — Safety of the intended functionality
(SOTIF) [49] highlights the issue of limited scenario knowledge during model
validation. ISO 21448 focuses on the critical aspect of scenario knowledge in
the context of model validation for autonomous vehicles. The norm introduces
the concepts of "safe" and "known" criteria, dividing the vast space of traffic
scenarios into distinct categories. Fig. 1.3 visually represents this division,
underscoring the importance of managing scenario knowledge for ensuring

9

1 Introduction

Figure 1.3: Criteria "safe" and "known" for scenarios in SOTIF context.

the safety of autonomous vehicles. In Sec 8.1, this theme gets addressed in
context of the proposed testing techniques. There are two main tasks to manage
during the development process:

• One key task involves expanding the size of known scenarios to observe
a system’s behavior comprehensively. This expansion serves a dual
purpose: providing evidence of reliable model performance and defining
the operational domain within which the system must operate. By
increasing the repertoire of known scenarios, developers can enhance
their understanding of how the autonomous vehicle responds to diverse
situations, thus bolstering the reliability of the model.

• The second crucial task focuses on improving the model’s performance
to enlarge the safe scenario space in which the vehicle can operate se-
curely. This entails refining the vehicle’s ability to navigate and respond
appropriately to a broader spectrum of scenarios, ultimately increasing
the overall safety of autonomous operations. Through advancements
in deep learning algorithms, sensor technologies, and decision-making
processes, developers can optimize the model to operate safely in a wider
array of scenarios.

10

1.2 Deep learning as enabler of automated driving systems

Applying this logic to the BDD100k example above, the space of traffic sce-
narios in foggy conditions has to be considered as unknown and unsafe, as
there is a significant drop-off in object detection performance.

11

1 Introduction

a) b)

Figure 1.4: Visualization of virtualization capabilities of simulative frameworks. a) Image of
Messe Friedrichshafen (exhibition center) in Google earth. b) Virtual representation
of Messe Friedrichshafen inside CARLA simulator [4].

1.3 Scientific contribution
In light of the presented challenges for industry and research when assessing the
safety of ADAS technology concerning environmental perception in Sec. 1.1
and Sec. 1.2, this dissertation focuses on the simulative testing of perception
functions. Due to the notorious struggle of obtaining labeled image data when
testing perception functions, simulation software generates desired synthetic
image data to complement the recorded image data set and stress the perception
function.

In contrast to expensive labeling, simulation software automatically generates
ground truth information, allowing the observation of whether the behavior
of the perception function complies with the functional requirements. The
virtual KITTI data set [50] is a prime example for the generation of unsafe and
unknown scenarios. By modeling scenarios from the original KITTI data set in
a virtual environment, the scenarios can be re-simulated in changing weather
conditions to address the issue of unbalanced data sets. The ability to generate a
proxy of the real world is highlighted in Fig. 1.4 with a complete virtualization
of the exhibition center in Friedrichshafen in the CARLA simulation. The
most significant advantages of synthetic image data can be summarized with:

Generate data "on-demand" Synthetic data generation allows the creation
of a wide range of scenarios, including rare or extreme cases that may
be challenging to encounter in the real world, hence helping in test-
ing the robustness of the perception function under diverse conditions.
Furthermore, synthetic environments offer precise control over various

12

1.3 Scientific contribution

simulation parameters, such as lighting, weather conditions, and traffic
density. This control is valuable for assessing specific variables and
understanding their impact on system performance.

Closed-loop testing and reduced risk for participants Closed-loop testing
of perception functions requires the functions’ output to influence the
next testing step. Especially for autonomous vehicles or other safety-
critical systems, simulation data eliminates the risk to real participants
or objects. This is particularly important when testing in potentially
dangerous or unpredictable scenarios, as perception failure would cause
dangerous vehicle behavior.

High label quality Many resources are poured into data labeling. Faulty or
imprecise labels compromise the perception function’s performance.
Synthetic data is generated with correct label quality as the simulation
software assigns correct label classes to each pixel.

"Cheap" data generation and scalability Unlike expensive data collection
campaigns in real-world traffic with subsequent labeling, simulation
tools generate low-cost sensor data with corresponding ground truth.
Google Cloud Services provides a watermark for the cost of data label-
ing of real-world data with up to 1$ per frame depending on the labeling
task [51], not including the cost for recording in real traffic. Meanwhile,
simulation software such as CARLA runs near real-time on mid-tier
GPUs like the NVIDIA Quadro P2000 used for this dissertation’s exper-
iments, allowing parallelization and up-scaling of the data generation
process.

Data generation early in the development process and rapid prototyping
Data collection and testing in real traffic or on dedicated test tracks re-
quires not only having the final camera sensor available but also the final
sensor outline, which may be subject to change during the development
process of the ADAS system. Such a change would require a new data
collection campaign. By changing the virtual sensor setup or the sensor
model, synthetic data generation can be triggered immediately without
having all final system components in place, increasing the development
speed and enabling rapid prototyping.

13

1 Introduction

However, while simulation tools resolve some key weaknesses of real-world
data collection, problems arise with the high variability of the space of traffic
scenarios. The simulation needs to be structured and guided systematically,
optimizing the use of all available resources. Randomly running a traffic
simulation would decrease cost and increase scalability and speed but not use
the "on-demand" advantage above. In practical terms, despite the powerful
simulation tools, the testing process must select a subset of traffic scenarios for
simulation and testing due to these constraints, which can be summarized by:

• Although simulation software can theoretically generate every possible
traffic scenario, the testing process cannot generate all scenarios together
due to simulation constraints.

Given a standardized description of traffic scenarios, a traffic scenario space
is spanned from which scenarios can be sampled. Hence, there is a need for a
test case generator as defined by:

Definition 1.1 (Test case generator [52]). A test case generator is a software
tool that accepts as input source code, test criteria, specifications, or data
structure definitions; it uses these inputs to generate test input data and,
sometimes, determines expected results.

For the sake of this dissertation, a sampling strategy is defined as the in-
ternal logic of the test case generator that guides the test case generation
(see Def. 4.14). Sampling strategies are vital to use the available simula-
tion resources most efficiently to address the problems arising from the traffic
scenarios’ vast combinatorial space. Assuming that the simulation tool can
generate every traffic scenario, the test process capacity is insufficient to test
and save all traffic scenarios. Hence, a scenario sampling strategy must be
conceived to prioritize traffic scenarios based on coverage and performance
metrics.

Provided the issues regarding the safety assurance of DL-driven perception
components in automated driving, the scientific contribution and research
questions of this dissertation can be summarized as follows:

14

Fundamental techniques of environmental perception in automated driving

• With the introduction of deep learning, established development pro-
cesses are subject to change and new concerns arise regarding the use in
safety critical applications. What are the key challenges and require-
ments for DL-driven perception functions in automated driving?

• The issue of testing deep learning models has been addressed by multiple
academic and industrial works. What are existing approaches to test
the performance and robustness of deep learning models?

• To ideally use simulation resources most efficiently, a parametrized and
machine-readable scenario space is required. How can simulation
software be used to build up a pipeline for systematic testing of
perception functions in a parametrized traffic scenario space?

• Using simulative software for data generation, how can parameters
in synthetic data of environmental images be identified that pose
risks to the perception?

• Using the generated image data from the testing process, DL-driven per-
ception functions can be re-trained to address insufficiencies. Testing on
additional scenarios, how significant is the improvement in performance
to a perception function compared to the original perception function.
Can adaptively generated synthetic image data be utilized to improve
the performance and maturity level of a perception function?

15

2 Fundamental techniques of
environmental perception in
automated driving

2.1 Traditional programming vs. machine
learning

The distinction to traditional programming should be examined to understand
the challenges that the safety assessment of machine learning algorithms poses.
While traditional programming usually utilizes hand-crafted rules for decision-
making, machine learning algorithms derive their decision-making from the
data with which they were trained.

Their real strength lies in this data-based concept of machine learning algo-
rithms: Some machine learning applications are intended to learn properties of
data sets where the correct answers are not already known to human users [53].
There would be no need for machine learning if these questions would already
be answered [54, 55]. Based on training examples, the model automatically
generates the rules to solve the task-at-hand. This rule generation is guided
by a fitness function that measures the models’ quality [56]. Hence, the train-
ing of machine learning models almost always comes down to a numerical
optimization problem.

However, this also adds another dimension of complexity, as three primary
sources can cause failures of machine learning models: The data it was trained
with, the framework that has been chosen for a specific task, and the code
that executes the chosen and trained model [55]. A representation of the de-
velopment processes of traditional software and machine learning models is
displayed in Fig. 2.1. While in traditional software engineering, the underlying
rationale is hard coded by the developer, the machine learning developer spec-
ifies a model architecture. Finally, specific decision-making is derived from
the concrete model trained with the collected training data.

17

2 Fundamental techniques of environmental perception in automated driving

Traditional

Software Developer

Machine Learning

Software Developer

Source
Code

Coding

TransformationCompilation

Executable
CodeInput Output Machine

Learning ModelInput Output

Training
Data

Model
Architecture

CodingCollection

Training

Figure 2.1: Differences between the development processes of traditional software and machine
learning models. Figure by Li et al. [57]

.

2.2 Types of machine learning
Machine learning models can be categorized into three main classes, depending
on the available training data and the scheme the model extracts information
with: Supervised learning, reinforcement learning and unsupervised learn-
ing [55].

Supervised learning

The main objective of supervised learning is to make predictions of a target
value of future data based on available training data [58]. Assume there is a
true underlying function

𝑓 : X → Y, (2.1)

for which no mathematical definition is available. Supervised algorithms aim
to find a way to imitate the behavior of the function, using a training set X̂ ⊂ X
for which the results Ŷ = 𝑓 (X̂) of the real underlying function are available. In
this context, the data set X̂ and Ŷ are referred to as ground truth. A schematic
representation for this task can be seen in Fig. 3.2, used to demonstrate the
importance of input space coverage. Referring to the introduction in Sec. 2.1,
if the value of the underlying function 𝑓 (𝑥) is available for all 𝑥 ∈ X, there

18

2.2 Types of machine learning

would be no need for fitting a machine learning model, as a simple look-up
table would be sufficient.

A key characteristic of supervised learning, especially when compared to
unsupervised learning, is that the nature of the target space Y is known,
meaning that we know of which elements Y consists. Depending on this
manner, there are two tasks of supervised learning [58]:

Classification: In classification tasks, the true underlying function 𝑓 (𝑥) maps
every element of X to some class-id Y = {𝑐1, .., 𝑐𝑛}, making the target
space Y discrete. The machine learning model is trained to make pre-
dictions on this class assignment for data point instances with the true
class being unknown. An intuitive example for this task is the calcula-
tion of class probabilities {𝑃(Y = 𝑐1 |𝑥), .., 𝑃(Y = 𝑐𝑛 |𝑥)}, where each
element of the vector denotes the calculated probability of 𝑥 belonging
to the corresponding class. The predicted class would be the class with
the highest probability. Such concepts are also applied if, rather than
probabilities, class scores are calculated. This example demonstrates
the importance of knowing the nature of Y: If there is a class 𝑐 of which
the model does not know, no elements 𝑥 ∈ X could be mapped to 𝑐.

Regression: Regression tasks can be interpreted as the continuous version
of classification tasks. Usually, the target space Y is some sub-set
of R𝑛, 𝑛 ∈ N. A typical regression model predicts the actual value
of 𝑓 (𝑥) for a given 𝑥 ∈ X and aims for a minimal prediction error. The
continuous manner of regression tasks often is ideal for typical numerical
optimization, such as gradient descent optimization. Hence, discrete
classification tasks are usually transformed to regression problems to
apply these optimization techniques. Afterward, the regression results
are discretized back to the target space of the classification task. This
concept will reappear in Sec. 2.4 when the training of neural networks
is presented.

Unsupervised learning

In contrast to supervised learning, unsupervised learning models are applied
if there is no information on an underlying function. Instead, the information
has to be extracted from the data structure by analyzing distances between

19

2 Fundamental techniques of environmental perception in automated driving

data points in the available data set. Hence, unsupervised learning methods
are highly dependent on distance metrics that measure the dissimilarity be-
tween data points. There are two main categories of tasks in unsupervised
learning [58]:

Clustering: Clustering tasks basically are a form of classification with noth-
ing known about target space Y. The model assumes that there is an
underlying grouping of the elements. However, the training data does
not provide explicit information on a possible target space Y, starting
with the number of groups. Instead of imitating the behavior of a true
underlying function, clustering models group the available training data
points so that the variance inside each group is minimized.

Dimension reduction: Dimension reduction is a method that is used to com-
press data, based on an example data set. An example notation of a
dimension reduction function is

𝑓 : R𝑛 → R𝑚, 𝑛 > 𝑚, (2.2)

where data from a high-dimensional space R𝑛 is embedded in a lower-
dimensional space R𝑚. The function should be chosen so that the loss
of information is minimized. This means that the structure of distances
between data points is preserved. A prominent example of dimension
reduction is the down-scaling of images if the original resolution is
unnecessarily high for a computer vision task. Dimension reduction
is a valuable tool in data visualization, as data from four-(or higher)
dimensional spaces are challenging to display in charts. Embedding the
data in a three-(or less) dimensional space allows for a more intuitive
visualization if there is no significant loss of information.

Reinforcement learning

Reinforcement learning models aim to find an optimal decision-making process
to perform a task. In reinforcement learning, the decision-making process is
called an agent. This agent performs so-called actions in an environment. The
past /current /future positions of the actor inside the environment are called
states. The main difference to supervised learning is that the agent does not

20

2.2 Types of machine learning

EnvironmentAgent

Action

Reward

State

Figure 2.2: The basic concept of reinforcement learning. Based on the current state and previously
observed rewards, an actor tries to choose the optimal action in its environment and
receives the following reward feedback and the future state of the actor.

make plain predictions for a given data point but rather executes a strategy of
decisions that aims to achieve a long-term objective. Decisions are good or
bad, instead of right or wrong. The actor evaluates each available decision for
expected reward or punishment and chooses its action accordingly. Based on
previously observed consequences for its actions, the actor learns to optimize
its actions. This concept is displayed in Fig. 2.2.

The most prominent example of a reinforcement task is the chess game. The
decision-making process (actor) performs actions on the chessboard (environ-
ment) in order to maximize the reward (winning the game). Here, the strategic
queen’s sacrifice is an excellent example of the differentiation between su-
pervised learning and reinforcement learning. While a supervised algorithm
would categorically reject the surrender of the most powerful piece as a wrong
decision, a reinforcement agent could swallow a short-time bad decision for
achieving long-term success.

21

2 Fundamental techniques of environmental perception in automated driving

2.3 Requirements for machine learning
algorithms

There is a range of quality requirements that a machine learning model must
comply with when applied for safety-critical tasks. Defining requirements has
been done in several academic contributions, noteworthy for this dissertation
Zhang et al. [55] and Cheng et al. [59], as well as governing and regulating
bodies, such as the European Commission with their Ethics guidelines for trust-
worthy AI [60] and the International Organization for Standardization with the
norms ISO 25010:2011 [61] and ISO/TR 4804:2020 [25]. The existing work
on requirements overlaps and complements each other. These requirements
address various aspects of the model’s functionality and properties. The fol-
lowing enumeration summarizes and details vital requirements that a machine
learning model must comply with. Although the requirements are universal
for machine learning applications, the focus is on applying machine learning
algorithms in perception tasks.

Correctness

Correctness refers to the degree to which the model can be relied on. The
generation of accurate results is one of the central requirements for a ma-
chine learning model. Correctness can be interpreted as the probability of
getting things right [55]. Since correctness is the essential requirement for this
dissertation, some key concepts are presented in the following.

Evaluating the correctness of machine learning models is usually done using
performance metrics. A well-known and intuitive system of evaluating classi-
fiers is the calculation of model accuracy derived from confusion matrices, as
shown in Fig. 2.3. Confusion matrices map the true class of an element against
the class predicted by a classification or clustering model. While Fig. 2.3
displays the standard confusion matrix for binary classifiers (true/false), the
underlying rational can be transferred to multi-class problems.

The accuracy of a model can then be calculated with the formula

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 , (2.3)

22

2.3 Requirements for machine learning algorithms

Decision

G
ro

un
d

Tr
ut

h

Positive Negative

Positive

Negative

True Positive (TP) False Negative (FN)

False Positive (FP) True Negative (TN)

Figure 2.3: Classic confusion matrix for binary classifiers.

where 𝑇𝑃,𝑇𝑁, 𝐹𝑃, 𝐹𝑁 is defined according to Fig. 2.3. For a binary clas-
sification task, a true positive (𝑇𝑃) is a data point labeled 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 that was
correctly predicted. Conversely, a false positive (𝐹𝑃) is a data point labeled
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 that was predicted as 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒. True negatives (𝑇𝑁) and false neg-
atives (𝐹𝑁) are defined inversely. Hence, accuracy measures the fraction of
data points that fall on the diagonal of the confusion matrix.

However, the number of 𝑇𝑁 is often not available or hard to calculate. For
example, imagine the task of object detection: While 𝑇𝑃s are all correctly
detected objects, 𝐹𝑁s are all objects that are not detected, and 𝐹𝑃s are all
false detections, the set of 𝑇𝑁s are all non-objects that has not been detected.
Hence, the 𝑇𝑁s are all possible false bounding boxes that the object detector
has not detected. The number of 𝑇𝑁s would be almost impossible to calculate
and hardly bears valuable information anyway. In this case, accuracy may be
misleading, as accuracy naturally converges to 1 if the number of 𝑇𝑁 increases
- as it is likely in unbalanced data sets.

In such cases, a machine learning model is evaluated by the two measurements
Precision and Recall that do not consider the amount of 𝑇𝑁s.

Precision evaluates how many of the positive decisions are truly positive:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 . (2.4)

Optimizing precision can be done using a more restrictive selection strategy.
For example, if the model assigns only elements as positive if there is high
confidence, the number of 𝐹𝑃s is minimized.

23

2 Fundamental techniques of environmental perception in automated driving

Recall evaluates how many of the truly positive elements have been selected
by the model:

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2.5)

Optimizing recall is somewhat trivial using an aggressive selection strategy.
By assigning every element to positive, all truly positive elements are selected.
Hence to ensure reliable behavior on the available data, a good balance between
precision and recall has to be found.

If the model generates continuous results, correctness is measured by so called
loss-functions. A loss evaluates how far the models’ predictions are from their
true values and - with other words - how bad the model is [62]. Loss functions
are usually derived from distance functions to measure dissimilarity. The most
common example for a loss function is the mean squared error

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑌𝑖 − 𝑌𝑖)2, (2.6)

with 𝑌𝑖 being the prediction for value 𝑌𝑖 .

Robustness

The IEEE Standard Glossary of Software Engineering Terminology defines
robustness as following.

Definition 2.1 (Robustness of a system). The degree to which a system or
component can function correctly in the presence of invalid inputs or stressful
environmental conditions" [52].

While correctness addresses general performance requirements of the model,
robustness addresses the models’ resilience towards adversarial perturba-
tions [55]. In computer vision tasks there are two main sources that are
related to perturbations:

Natural Distortions: A well-known source of challenges of neural networks
in computer vision is natural effects [63]. There is a significant drop

24

2.3 Requirements for machine learning algorithms

Figure 2.4: Example for adversarial attacks on a classifier for the MNIST (Modified National
Institute of Standards and Technology database) database of handwritten digits. Small
changes in form of random noise to the input image lead to a misclassification. Figure
by [66].

in performance if the perception function is confronted with adversarial
weather effects, such as rain or fog [46,64]. Complete resilience towards
environmental effects is unfeasible - if an object is fully covered by fog,
there is no visual information for reliable detection. However, certain
robustness in adversarial weather has to be assured. The use of adaptive
data generation using simulative data to increase robustness is a research
goal of this dissertation and will be presented later.

Adversarial Attacks: In contrast to natural distortions, adversarial attacks are
perturbations especially targeting the network’s performance. The idea
behind adversarial attacks is the assumption that small, for the human eye
not striking, artificial changes to an image may be able to fool a network
to make a misclassification [65]. An example can be seen in Fig. 2.4.
These attacks are mainly generated by adversarial models trained to
trick the perception function. For example, placing adversarial patches
in the real world could cause the miss-detection of pedestrians through
an ADAS vehicles’ perception function with fatal consequences.

Exploring a network’s vulnerability towards adversarial effects and using these
insights during the models’ development is vital to estimate and improve the
robustness.

25

2 Fundamental techniques of environmental perception in automated driving

Coverage

Coverage or completeness is a requirement that addresses various aspects of
the development process. Coverage requirements ensures that the test set of
the model covers a wide range of the states and conditions [59]. In machine
learning testing two main research areas deal with coverage issues:

Neuron Coverage: Neuron coverage arises from the well-known practice of
code coverage in traditional software development applied to the con-
necting structure of neural networks. In a nutshell, code coverage is
based on the assumption that a test suite for software should be able to
trigger the execution of each line and branch of the software’s code [66].
Simultaneously, neural networks should be tested by data sets that trig-
ger areas of the networks. Finally, the test data set’s information value
is measured by the share of nodes and branches of the network that are
executed at least once while running the data set [67]. If not all areas of
the network were triggered during testing, there is a risk of unexpected
behavior if these regions are triggered during deployment

Scenario-based Coverage: Scenario-based coverage is a black-box approach
to measure completeness of data. Intuitively, a machine learning method
should have been tested by a test set covering the different situations the
network may be confronted with during deployment [68]. Scenario-
based coverage is vital to prevent unexpected behavior for some envi-
ronmental corner cases. As presented in this dissertation, simulative
data generation techniques are a viable tool to increase coverage metrics
of existing test sets to meet the coverage requirements [69].

A more detailed review of techniques for optimizing coverage metrics is pro-
vided later in the dissertation.

Interpretability

Google’s machine learning glossary defines interpretability of machine learn-
ing models as "The ability to explain or to present an ML model’s reasoning in
understandable terms to a human" [62]. For social acceptance and public trust
in machine learning-driven systems, it is essential for humans to understand
the cause of decisions [55] and what the underlying machine learning model

26

2.3 Requirements for machine learning algorithms

Figure 2.5: Concept of heatmap approaches for visualization of computer vision algorithms. The
decision of the neural network is traced back to each pixel of the original image,
allowing to analyze which image components caused the decision. Figure by [71].

has learnt [59]. These insights can be used to avoid discrimination, identify
weaknesses and transfer knowledge to other situations [55, 70].

There are approaches to retrieve the reasoning of perception functions, such as
heatmap algorithms for object detection [71,72]. In general, heatmaps visualize
the parts of the image that triggered a decision, allowing for interpretation, as
displayed in Fig. 2.5. Ideally, the relevant image parts for a detection overlays
with the object’s position, assuring no overlooked influences to the neural
network [59].

Ribeiro et al. [73] visualized this aspect. While training a classifier to distin-
guish between the class husky and wolf, the training data for class wolf showed
the wolves in a snow environment and the huskies in a non-snow environment.
As a result, the classifier learned to distinguish based on the environment.
Hence, a husky in a snow environment may be misclassified as a wolf, as
shown in Fig. 2.6.

Efficiency

Efficiency relates to the amount of time that the system requires to perform
its designated function [52]. Especially in applications with high-dimensional
data, training and deployment of machine learning models may be too slow.
Especially in automated driving, this requirement is of particular interest due
to the catastrophic impact of delays in model performance [74].

27

2 Fundamental techniques of environmental perception in automated driving

Figure 2.6: Importance of interpretability in machine learning. Ribeiro et al. [73] trained a simple
classifier to distinguish between the classes husky and wolf, with the wolves in a snow
environment and the huskies in a non-snow environment. The model learns to make its
decision based on the background, which causes misclassifications if there is a husky
in a snow environment.

Huang et al. [75] examined the effect of increasing model complexity to dif-
ferent object detection frameworks, e.g., by varying the number of bounding
box proposals or using different feature extraction backbones, on model speed
and efficiency. They found a significant trade-off between model speed and
model accuracy that has to be managed. However, in some applications, the
relevance of efficiency requirements may even lead to preferring a model with
lower correctness measurements due to better efficiency [55, 76].

Fairness

The ISO norm ISO 25010:2011 Systems and Software Quality Requirements
and Evaluation defines fairness as freedom from discrimination and bias [61].
Discrimination may arise from an individual’s characteristics that should be
considered as protected [55, 77]. Protected characteristics include race, color,
sex, religion, national origin, citizenship, age, disabilities, or familial sta-
tus [55].

A perception function can only discriminate by characteristics that it can per-
ceive. An intuitive example of fairness in computer vision is the detection rate
of wheelchair users. Although there is a rare appearance rate for wheelchair
users in traffic, ignoring low detection rates on this traffic participant class is

28

2.3 Requirements for machine learning algorithms

unacceptable. Using standard methods for reliability analysis, there would be
a risk of this deficiency being "swept under the carpet" due to low appearance
rates. Transferring the requirement of fairness towards an object detection
algorithm, each road user should have "the same right to be detected".

In contrast to the other ethical requirements that are presented in the next
paragraph, fairness is a quantitatively measurable characteristic of a machine
learning model given a knowledge of the classes.

Requirements on ethical Framework

Additionally to the presented technical and measurable requirements, there are
ethical requirements on the development and application process framework.
The European Commission defines seven requirements of artificial intelligence
in their Ethics guidelines for trustworthy AI [60]: 1) Human agency and
oversight, 2) Technical robustness and safety, 3) Privacy and data governance,
4) Transparency, 5) Diversity, non-discrimination and fairness, 6) Societal
and environmental well-being, and 7) Accountability. While the report uses
the terminology of artificial intelligence rather than machine learning, the
reports’ definition of artificial resembles mostly the description of machine
learning in Sec. 2.1 and hence will be substituted with the term machine
learning. Requirements 2), 4), and 5) have been already discussed above as
correctness, robustness, interpretability, and fairness. The other requirements
are summarized as follows:

Human agency and oversight: A machine learning model should not inter-
fere with fundamental rights, such as the autonomy and decision-making
of humans [60]. The machine learning model should assist the users’
decision-making instead of patronizing the user in user-machine inter-
actions. This includes the users’ right to overrule the machine learning
models’ decisions.

Privacy and data governance: Apart from requirements towards data quality
related to scenario-based coverage, this requirement also addresses the
correctness of data and the accessibility of data. During all stages of
data collection, model development, and model deployment, private and
individual information must be protected from unauthorized access from
third parties. This includes the user’s initial data and data generated on

29

2 Fundamental techniques of environmental perception in automated driving

the user during deployment. Furthermore, the data should be free from
socially constructed biases, inaccuracies, errors, and mistakes.

Societal and environmental well-being: The European Commission sets the
principle that a machine learning model should benefit "all human beings
including future generations" and highlights the ecological responsibil-
ity of machine learning models. This also applies to machine learning
algorithms in situations relating to the democratic process and the ma-
nipulation of political decision-making and the electoral process.

Accountability: Before applying machine learning in critical applications,
a framework needs to be created that handles the responsibility and
accountability for the machine learning model. This includes the inde-
pendent auditing of models in safety-critical applications. Furthermore,
reporting negative impacts and weaknesses should be transparent, in-
cluding protection for whistle-blowers, NGOs, trade unions, or other
entities.

2.4 Deep learning - origin and foundations
The early development of artificial neural networks was inspired by biological
neurons’ functionality in the human brain. In simple terms, the human brain
consists of neurons that communicate by sending and receiving electrical
impulses. As soon as received signals’ totality exceeds a neuron’s threshold,
the neuron activates and sends a signal into the network.

In 1943, [78] formulated a logical model of a neuron. If the neuron cell’s
binary inputs exceed a threshold, the neuron’s output is set from zero to one.
Fig. 2.7 a shows a representation of this so-called Linear Threshold Unit or
LTU. However, the LTU did not include weights for the input, and the threshold
had to be set manually.

The first approach to introduce weighted connections between the nodes that
can be learned was inspired by a neurological theory of psychologist Donald
Hebb [79] in 1949. Hebb assumed that the connections between two neurons
strengthen when the receiving neuron activates after receiving a signal from the
transmitting neuron. Based on these findings, in 1953, Frank Rosenblatt [80]
introduced the perceptron. In contrast to the LTU, the binary inputs are

30

2.4 Deep learning - origin and foundations

y
=
∑

∗
x
i

w
i

x1

x2

x3

Input 1

Input 2

Input 3

w3

w1

w2

Threshold

t

0 y

Output Node

0 1Input 1

Input 2

Input 3

∑
I
n
p
u
ts

Threshold

t

0 1

Output Node

0 1

0 1

b)a)

Figure 2.7: a) Binary Linear Threshold Unit. If the totality of inputs reaches a threshold, the LTU
activates. b) Single perceptron with three inputs and one binary output. The output is
set to 𝑦 if the weighted sum of inputs exceeds a certain threshold and set to 0 otherwise.

weighted to represent the nodes’ connection strength. If the weighted sum
of inputs exceeds a threshold, the neuron is activated. Fig. 2.7 b shows a single
perceptron with three input and one output value.

The Hebbian learning algorithm, which is considered the first algorithm to
train weights, is based on the Hebbian theory. The rule is expressed by the
equation

𝑤𝑛𝑒𝑤
𝑖 = 𝑤𝑜𝑙𝑑

𝑖 + 𝜇 ∗ 𝑥𝑖 ∗ 𝑜, (2.7)

where 𝑤𝑖 is the weight between input 𝑖 and the output neuron, 𝑥𝑖 is the value
of the input, 𝑜 is the actual output of the perceptron, and 𝜇 is the learning rate
that indicates how much the weight has to be updated. Hence, after activating
the output neuron, the weight is updated. If either input or the output is zero,
the weight is not updated. However, this learning rule is not supervised.

A single perceptron with a linear activation function can only be applied
to linear separable sets, like the OR-function. An application of a linear
perceptron is displayed in Fig. 2.8 a. The perceptron activates for data points
that lie above the hyperplane, i.e., if 1 ∗ 𝑥1 + 1 ∗ 𝑥2 > 0.5. On the other hand,
non-linear separable sets like the XOR function cannot be solved by a single
linear perceptron.

A multi-layer neural network can be created using multiple perceptrons’ outputs
as inputs to a new perceptron. An application of two linear perceptrons to
solve the XOR problem is shown in Fig. 2.8 b. The neuron in the second
layer activates if both first layer neurons activate: The point {𝑥1, 𝑥2} has
to be above hyperplane 1 (1 ∗ 𝑥1 + 1 ∗ 𝑥2 > 0.5) and bellow hyperplane 2
(−1 ∗ 𝑥1 + −1 ∗ 𝑥2 > −1.5). Fig. 2.9 displays a graph for this multi-layer

31

2 Fundamental techniques of environmental perception in automated driving

network. The output layer has the weights {1, 1} and the threshold 1.5. Hence,
only if both hidden neurons activate the output layer activates. The hidden
neurons are often referred to as features. The activation of a neuron indicates
the presence of this feature.

b)

Activation
Activation

a)

Figure 2.8: a) Application of a single perceptron with weights 𝑤 = {1, 1} and threshold 𝑡 = 0.5
on the OR problem. The decision is cross for all data points with 1 ∗ 𝑥1 + 1 ∗ 𝑥2 > 0.5.
The hyperplane separates the two classes cross and circle. b) Application of two
perceptrons with weights 𝑤1 = {1, 1}, 𝑤2 = {−1, −1} and thresholds 𝑡1 = 0.5,
𝑡2 = −1.5 on the XOR problem. Data points that satisfy both conditions are assigned
to cross.

In 1986, Rumelhart et al. [81] introduced the backpropagation algorithm.
Backpropagation is a supervised method to adjust weights by calculating the
difference between a network’s actual output and the desired output, also
called ground truth. The error is propagated backward through the layers.
Hence, the weights between the next-to-last and last layers are updated first,
while the weights between the input and the first hidden layers are updated
last. Despite some changes during the last decades, this principle remains
a standard learning method for neural networks. Backpropagation depends
on differentiable activation functions to perform gradient descent methods.
Hence, using the traditional step function for optimization was unfeasible.
Today, there is a wide range of activation functions. Fig. 2.10 shows the
sigmoid function that is a continuously differentiable approximation of the step
function. However, the absence of sufficient computing capabilities and high
volume data sets has curbed the research in this area. Since the mid-2000s, the

32

2.4 Deep learning - origin and foundations

Hidden layer Output layerInput layer

= from neuron m in layer i to neuron n in layer i+1

Figure 2.9: Network with one hidden layer to solve the XOR problem (Weights are chosen accord-
ing to Fig. 2.8). Output of neurons are binary.

availability of resources and theoretical improvements has led to deep learning
in many disciplines, such as time-series analysis, computer vision, or natural
language processing [82].

1
step−function

1, if x > 0

0 otherwise

x

y

sigmoid−function
1

1 + e−t

=

=

Figure 2.10: Comparison between step function and sigmoid function. In contrast to the traditional
step function, the sigmoid function is continuously differentiable.

Fully connected networks, such as the network of Fig. 2.9, where each neuron
of layer 𝑖 is connected to each 𝑖 + 1, have shown difficulties in computer vision
tasks. Connecting all nodes of two layers results in a nearly unfeasible amount
of connections when working with high-dimension images. Furthermore,
every feature in hidden layers is globally connected to the input layer. Hence,

33

2 Fundamental techniques of environmental perception in automated driving

the network struggles to extract local features, such as edges or contrasts.
Convolutional structures have been introduced to counter these shortcomings.
Convolutional layers consist of multiple filter matrices that slide over the
image. Activation of a filter represents a local feature at this position. Fig. .1 a
and Fig. .1 b display the difference between a fully connected layer and a
convolutional layer. Applying concatenated convolutional layers returns more
global features and structures. For face recognition, local or low-level features
can be horizontal or vertical edges or specific contrasts. Global or high-level
features can be facial characteristics, such as the nose or the eyes.

Figure 2.11: Sample digits of the MNIST (Modified National Institute of Standards and Technology
database) database of handwritten digits.

Convolutional neural networks for computer vision tasks had a significant
breakthrough in 1998 by LeCun et al. [83] with the creation of LeNet-5. The
network significantly outperformed existing methods for recognition of 32×
32-pixel images of handwritten zip code digits. Fig. 2.11 shows a sample out
of the MNIST data set, which is famous for being an accessible database for
image classification algorithms.

In 2012 Krizhevsky et al. [84] published AlexNet, which achieved remark-
able results by winning the ImageNet challenge with an error rate of 16%,
outperforming the runner up by a considerable lead of 9%. Since then, deep
learning technologies have made big leaps, being competitive to human per-
ception [34].

34

2.5 Object detection frameworks

2.5 Object detection frameworks
Appx. A contains a detailed description of the main building blocks in deep
learning and how convolutional neural networks operate. Object detection is
based on a multilevel pipeline that has to perform object localization as well as
classification. Often, classification networks build the core of these pipelines.
They can be defined as a function that assigns images out of the image domain
to classes out of the class domain, formally defined by

𝐶 : [0, ..., 255]ℎ×𝑤×𝑑 → {𝑐1, ..., 𝑐𝑛}, (2.8)

where ℎ, 𝑤 are the dimensions of the image, 𝑑 is the number of color channels
(usually three channels for RGB) and 𝑐 = {𝑐1, ..., 𝑐𝑛} is a vector containing
all available classes. The values for each position of the image and each color
channel are discretized and can take on a value between 0 and 255. Such a
classification network is displayed in Fig. .2. With an object classification
network as a backbone, there are different processes to localize objects in im-
ages. Object detector pipelines extract a list of object bounding box detections.
There is a range of frameworks, of which three basic concepts are detailed in
the following.

You only look once (YOLO)

Its straight forward architecture and ability to run real-time has made the
YOLO framework [85] a popular tool. As the name suggests, a single network
processes an input image to get a fixed number of bounding box proposals.
For YOLO, images are divided in a 𝑆 × 𝑆 grid. For each field, the network
estimates 𝐵 proposals for bounding boxes for objects centered in this field
along with a confidence value representing the chance of the bounding box
containing an object. A bounding box proposal consists of a five-dimensional
vector (𝑥, 𝑦, ℎ, 𝑤, 𝑝). 𝑥 and 𝑦 represent the bounding box’s center, ℎ and 𝑤
represent the bounding box’s height and width, and 𝑝 represents the confidence.
Suppose no object in the image has its center in a given field. In that case,
the confidence values for the 𝐵 proposals are expected to be close to zero.
Furthermore, for each field, the network estimates a class probability for each
object class. Overall, with 𝑛 classes, the network estimates a 𝐵 ∗ 5 + 𝑛 values

35

2 Fundamental techniques of environmental perception in automated driving

for each field. Fig. 2.12 displays a schematic representation of the original
YOLO network with a 7× 7 grid, 𝐵 = 2 bounding box proposals per field, and
𝑛 = 20 classes.

However, the YOLO network returns 𝑆×𝑆×𝐵 different bounding box proposals.
Many are likely to overlap while referring to the same object. This problem is
solved by the non-max suppression method, which is structured as follows. The
first step is to discard all bounding boxes with 𝑝 < 𝑡𝑝 , where 𝑡𝑝 is a threshold
for minimum confidence. The bounding box with the highest confidence
is extracted and added to the output list. Afterward, the Intersection over
Union (IoU) between this bounding box and the remaining bounding boxes are
calculated. If 𝐼𝑜𝑈 > 𝑡𝐼𝑜𝑈 , with 𝑡𝐼𝑜𝑈 being a second threshold, the candidate
gets removed. This process is repeated until there are no candidates left.

While the efficient and straightforward trainable structure is advantageous for
YOLO, there are significant drawbacks compared to alternative approaches.
The fixed size of the output restricts the number of objects detected. Further-
more, each field can be the center of only one object, which is problematic on
crowded images or small objects in groups.

7 × 7 Grid

7 × 7 Class Probability Estimations

7 × 7 × 2 Bounding Box Estimations

Object Detections

(x,y,h,w,p)

(, . . . ,)c1 c20

Figure 2.12: Schematic representation of the YOLO framework [85] using a 7 × 7 grid, 𝐵 = 2
bounding box proposals per field, and 𝑛 = 20 classes. Hence, the network’s output
for this grid has the dimension 7 × 7 × (𝐵 ∗ 5 + 𝑛) = 7 × 7 × 30.

36

2.5 Object detection frameworks

Single shot detector (SSD)

The SSD framework [86] is based on similar principles as the YOLO frame-
work. An SSD object detector consists of a single network that produces a
fixed number of bounding box proposals. In contrast to YOLO, the network
contains more layers, making it more precise while increasing computing time.
Using a convolutional structure, similar to the one classification networks have,
the SSD network generates feature maps of different sizes. These feature maps
encode information on objects centered in the input image’s respective area.
For each field of these feature maps, the SSD network predicts the presence of
an object that matches into a default bounding box. These default boxes have
different aspect ratios to test different object shapes. For each default box and
each field, the network predicts relative shape and position offsets, as well as
class confidences that indicate the chance of an object being present. Hence,
bounding box estimation and classification are done by the same network on
the same feature map. Fig. 2.13 shows a schematic representation of the SSD
framework with two feature maps of size 8 × 8 and 4 × 4. For each field,
the presence of four bounding boxes with different sizes is estimated. This
allows the detection of objects of different sizes and shapes. Like the YOLO
framework, the SSD framework utilizes non-max suppression to extract the
final output from the whole set of bounding boxes.

a) Original image with GT boxes b) 8 × 8 feature map c) 4 × 4 feature map

Figure 2.13: Schematic representation of the SSD framework [86]. The network transforms the
image to feature maps of different sizes (Here 8 × 8 𝑎𝑛𝑑 4 × 4). For each field of
each feature map, the network performs a prediction for 𝑛 default bounding boxes.
For each bounding box, there are predicted offsets and confidences for 𝑝 different
object classes (𝑐1, ..., 𝑐𝑝) .

37

2 Fundamental techniques of environmental perception in automated driving

Region-based convolutional neural networks (R-CNN)

Region-based object detection frameworks have proven to achieve high ac-
curacy, essential for safety-critical applications, making them the dominant
methods for automated vehicles. The basic concept of R-CNN was introduced
in 2014 by [87]. In contrast to SSD and YOLO, R-CNN methods do not esti-
mate a fixed number of bounding boxes for default regions but are based on a
three-staged approach. The first stage applies a region proposal algorithm to the
image to get rectangular object proposals. The proposed regions are cut out on
the second stage, warped to a standard size, and processed by a neural network
to be transformed into a feature representation. The original framework uses
a Support Vector Machine-classifier to assign the feature representations to a
class. A schematic representation of this process is shown in Fig. 2.14. Like
the other frameworks, the extraction of bounding boxes of all proposals is done
by non-max suppression. While SSD and YOLO are based on single networks
that can be trained end-to-end, the original R-CNN framework is modular
to substitute the components. Hence, the third stage is often performed by
classification networks directly incorporated into the second stage. However,
in the original R-CNN concept, each region is individually processed by the
second and third stages, making object detection time-consuming and compu-
tationally expensive. To improve speed and reduce computational effort, fast
R-CNN [88] and faster R-CNN [74] have been introduced. These approaches
incorporate YOLO and SSD’s strengths into the R-CNN framework, such as a
unified end-to-end learnable structure and a shared feature map that enables a
fast computation while still being based on multi-stage processes that increase
accuracy and reliability.

Input Image 1) Region Proposals 2) CNN Feature Extraction 3) Region Classifier

Figure 2.14: Multi-stage framework for R-CNN [87]. The first stage extracts proposals for regions
of interest (RoI). These regions are then transformed to a standardized feature repre-
sentation and assigned to an object class.

38

2.5 Object detection frameworks

Performance evaluation using mean average precision (mAP)

To conclude the principles of deep learning methods for object detection, a
performance measure must be established. As mentioned above, an object
detector returns a set of bounding boxes proposals, called detections with
attached confidences and predicted classes, since multi-class object detection
is a hybrid between object classification and object localization. The number
of proposals depends on the minimum confidence value threshold. The lower
this threshold is chosen, the more proposals are returned, increasing the chance
of an object being detected while also increasing the risk of false detections.
An appropriate evaluation technique has to consider both localization and
classification. One of the most common measures for this matter is the mean
average precision (mAP) measure that has been established by the PASCAL
Visual Objects Classes (VOC) challenge [89]. Since the average precision is a
measure for binary classifiers, the 𝑛-class object detector results are split in 𝑛
different binary results - one for each object class. The mAP measure is then
defined by

𝑚𝐴𝑃 =
1
𝑛

𝑛∑︁
𝑖=1

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐𝑙𝑎𝑠𝑠𝑖 . (2.9)

Intersection over Union =

Intersection

Union

Figure 2.15: Schematic representation of the intersection over union (IoU).

Calculating the average precision requires a scheme to determine whether
the detections are true or false. The geometric intersection over union (IoU)
measure is used to evaluate a bounding box prediction’s correctness. The
calculation of an IoU is straightforward, given a bounding box prediction and
a corresponding ground truth bounding box. The intersection is defined by the
overlap between the boxes, while the bounding boxes’ total area defines the

39

2 Fundamental techniques of environmental perception in automated driving

10 0.50.2 0.8

Precision

Recall

p
(r

)

p(0.9)

p(0.8)

p(0.7)

p(0.6)
p(0.5)

p(0.4)

p(0.4)

p(0)

Average Precision = p(r)
1

11
∑

r∈{0,0.1,...,1}

Figure 2.16: Receiver operating characteristic (ROC) curve for a given class. The curve is build by
calculating recall and precision for different confidence levels for object detections.
For the average precision, the confidence values are chosen such that the recall takes
on the values {0, 0.1, ..., 1}. The corresponding precision values are averaged to get
the AP value.

union. Fig. 2.15 displays the relationship between these two areas. For object
detection, the IoU determines whether a predicted bounding box is correct
or incorrect. A detection is called a true positive (TP) if there is a ground
truth bounding box of the same class with 𝐼𝑜𝑈 > 𝑡, where 𝑡 is a threshold for
minimum IoU (Usually 0.5). Otherwise, the detection is called a false positive
(FP). Furthermore, ground truth bounding boxes that are missed detections,
i.g., there is no detection of the same class with 𝐼𝑜𝑈 > 𝑡, are called false
negatives (FN).

Precision and recall are then defined by

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 , 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 . (2.10)

The average precision can be derived from the fact that an increase of the
confidence threshold is likely to decrease the number of detections changing
the relationship between precision and recall. Fig. 2.16 shows the so-called
receiver operating characteristic (ROC) curve that can be created by calculating
precision and recall for a range of different confidence thresholds. The average
precision is determined by extracting a set of different confidence thresholds,

40

Design and testing of deep neural network-based perception functions

such that the recalls with those thresholds are equal or near a set of desired recall
values. [89] proposes the recall values {0, 0.1, ..., 1}. The AP is calculated by
averaging the respective precisions. Finally, to retrieve the mAP, the APs for
all classes are averaged.

41

3 Design and testing of deep neural
network-based perception
functions

3.1 Basic terminologies
Before release, software has to undergo an intensive testing process to ensure
its quality. Depending on their objective and the requirements, tests can be
differentiated in two classes. Functional testing focusses on the functional
requirements set for the software and describes what the software should
do. These requirements include correctness, accuracy, and robustness. Non-
functional testing focuses on requirements that are not directly tied to the
functional behavior of the software and describe how the software should do
it. These requirements include efficiency, fairness, and interpretability [55].

Hence, functional testing aims to detect states where the tested software’s be-
havior does not comply with the functional requirements. The IEEE Standard
Glossary of Software Engineering Terminology defines these states as fail-
ures [52]. Uncovering a significant amount of failures requires the generation
of an extensive data set to identify data patterns that increase the probability
of a failure to occur.

Black-/White-/Gray- box testing

Testing techniques for neuronal networks can be categorized in black-, white-,
and gray-box testing, similar to testing of traditional software [90].

White-Box Testing: In contrast to black-box testing, white-box testing tech-
niques focus on the network’s inner structure. Usually, this includes
the network’s architecture, the weights between neurons, and neuron
activation patterns if data flows through the network. The advantages
and disadvantages of white-box testing are inverse to black-box testing.

43

3 Design and testing of deep neural network-based perception functions

For example, the model-under-test cannot be exchanged offhand for an
existing testing pipeline since some parts of the testing process may be
set up for an explicit architecture. On the other hand, the analysis of
the internal processes during training can identify and interpret possible
failure causes on the feature level of a DNN.

Black-Box Testing: Black-box testing is applied if there are no assumptions
made on the inner workings of the DNN. Instead, the DNN’s response
to a given input signal is evaluated. The main advantage of black-box
testing techniques is the independence of the model-under-test. As long
as the input and output data formats are equal, an existing testing process
can be used for all perception functions, even if their functionality differs.
On the other hand, ignoring information on the network’s architecture
and neuron patterns limits debugging options and explaining false pre-
dictions. Hence, black-box testing techniques may be too superficial in
some cases. Another application of black-box testing techniques is the
use of pre-defined meta-models trained to imitate the behavior of the
black-box model. Applying white-box methods to these meta-models
allows utilizing the advantages of white-box without the drawbacks.
However, the meta-model only approximates the real model-under-test,
and accordingly, the drawn conclusions should be treated with caution.

Gray-Box Testing: The term gray-box testing is used to test strategies that
combine white-box and black-box testing characteristics. This includes
strategies in which the knowledge of the internal processes is limited.
Limited knowledge could be that only the architecture of the network
may be known without the values of the individual weights. Sometimes
gray-box testing is used for testing strategies in which the distribution of
the training data is available.

Definition of image domains and the domain gap

The term domain is another essential and recurring theme in deep learning
research, though sometimes utilized partly contradicting. The term is used in
different contexts to portray the relationship between data points. A domain
describes a group that contains all data points systematically related by a certain
data characteristic. There is no explicit requirement or specification for the

44

3.2 Development process for object detection

data characteristic that defines the domain. The most intuitive example of data
domains is the algebraic sign in the space of real numbers. Consider 𝑥 ∈ R:
We consider 𝑥 in the negative domain if 𝑥 < 0 and in the positive domain if
𝑥 ≥ 0. This can be transferred to the use of any arbitrary interval in the space
R𝑛, 𝑛 ∈ N.

In computer vision, a domain describes semantic characteristics of an image’s
appearance rather than plain numerical intervals. The most common uses are
detailed below.

Scenario Level: Domains on scenario level refer to the content of an image:
position and appearance of objects, weather, and daytime, or street ge-
ometry. The focus is on what scenario is displayed? A straight forward
example is the categorization of images into the daytime domains day,
dawn, dusk, and night [91].

Signal Level: For domains on signal level, the focus is on how is the scenario
displayed? An engaging (and highly relevant for this dissertation) ex-
ample of signal-level domains is the distinction between real and virtual
images. The virtual KITTI data set is a set of virtual images with the
scenarios configured in the same way as the original KITTI images. Al-
though a virtual image would belong to the same scenario domain as its
real counterpart, there is a discrepancy between virtual and real images.
Other examples are sensor position and perspective on the vehicle or
different sensor technology.

3.2 Development process for object detection
The development and evaluation of perception functions usually follow a sim-
ple principle: Via vehicles, sensor data is recorded in real traffic. After
retrieving the ground truth information by labeling, a complete data set for
model development is available. Since the recording was done in real traffic,
the distribution of the data set should be equal to the data distribution during the
final deployment. Hence, if the model performs well on the development data
set, the model is assumed to perform well in deployment. This development
data usually is split into three separate data sets: The train set and validation
set for model design and the test set for model evaluation [92]. This process is
shown in Fig. 3.1. The function of each split is detailed as follows:

45

3 Design and testing of deep neural network-based perception functions

Model Design and
Selection

Test Data

Validation Data

Sensor Recordings

in Traffic

Training Data

Deployment in real World

Learning / Development Process
Iterative Training of Weights on

Training Data

Provide

Architecture

Provide

Weights

Provide trained Model

Provide Performance Feedback

Training Improvement Monitoring

through Validation

Testing Process
Check final Model Performance

against Benchmarks/Requirements

Provide final Model

Figure 3.1: Best practice for collecting development data for perception functions: In real traffic,
vehicles equipped with perception sensors record data that gets labeled to obtain ground
truth information on the actual locations of objects in the sensor data. This data set
gets partitioned into three separate data sets: Train set for model training, validation
set for model selection, and a test set for model evaluation.

Train Set: The development process of machine learning algorithms starts
with a training data set. In contrast to classical software solutions,
machine learning methods are so-called data-based methods. In contrast
to rule-based methods, the magic of machine learning algorithms lies
in the training data. The models are trained to learn the patterns in the
data that is provided in the training set. The learned model is adjusted
to behave in the same way the underlying training data behaves.

Validation Set: Most machine learning methods inherit a variable architec-
ture, such as a variable number of parameters that can be used. This
causes a high number of model candidates for final deployment. Choos-
ing the model that performs best on the training data could lead to
overfitting, meaning that the model loses its ability to generalize to fit
the training data well. On the other hand, choosing the model with the
best performance on the validation set ensures a high accuracy on unseen
data that has not been used during training, thus preventing overfitting.

46

3.2 Development process for object detection

Test Set: Holdout data set for model evaluation. While training set and val-
idation set are used for model design, the test set is used for evaluating
the final performance of the chosen machine learning model. This data
set is completely excluded from the design process and often serves as
benchmark.

The practice of using training-validation-test splits has been made common
practice and is implemented on most major data sets for perception functions
such as MS-Coco [93], BDD100k [43], or Cityscapes [94].

However, there are two assumptions on the data set properties that have to be
made for the data split [82]:

identically distributed: The three data sets are drawn from the same data
distribution, relating to sensor type, weather conditions, and objects. If
the validation set follows a different distribution than the train set, the
model development process could select a non-ideal model. If the test
set follows a different distribution than the train and validation set, the
model could perform poorly in the deployment domain.

independent: The three data sets are independent, and there should be ade-
quate separation between the data sets. However, poor separation could
arise from dividing individual recordings into the three data sets or
recording the data sets at the same locations. In addition, dependence
between the train and validation set and the test set could bias the per-
formance evaluation of the final model.

A reliable behavior within the complete deployment domain must be guaran-
teed to apply machine learning algorithms in safety-critical applications. For
example, if parts of the input space are not covered by the development data
set, this could cause catastrophic consequences. Fig. 3.2 shows the importance
of input space coverage when developing machine learning algorithms. Based
on the available development data, a machine learning model is developed to
imitate the behavior of the underlying function. For domains with a dense
availability of data points, the model will perform well. However, suppose
there are domains in the input space with a low density of available data points.
In that case, the estimations of the fitted models for these domains become
unreliable, as the extrapolation becomes uncertain, and the underlying func-
tion may behave significantly different than the extrapolation. For perception

47

3 Design and testing of deep neural network-based perception functions

Input Space

Behavior

Covered DomainCovered Domain Uncovered

Domain

Development Datapoint
Deployment Datapoint
Underlying Function
Trained Function

Figure 3.2: Visualization of the importance of domain coverage. The model is trained to imitate
the underlying behavior of the development data. If there are domains in the input
space that are not covered by available development data points, accurate predictions
can not be guaranteed.

functions, situations that are challenging are relatively rare in real traffic, such
as adverse weather conditions [45, 64].

3.3 Safety concerns regarding the use of DNN in
automated driving tasks

Although DNNs achieve human-like performances in computer vision tasks,
there are serious concerns regarding their reliability when applied in safety-
critical automated driving tasks. A comprehensive overview on these concerns
was presented by Willers et al. [95] and is summed up and commented with
regard to requirements of machine learning models in Sec. 2.3:

a) Data distribution is not a good approximation of real world: Assessing
the reliability of a perception function in real traffic can only be done
if the distribution of scenarios in the development data approximates
the distribution of scenarios in the real world. This point is directly
tied to the assumptions of identically and independent distribution of
data sets (see Sec. 3.2). While accurate knowledge of the real world
data distribution is crucial for model development, especially regarding
the data coverage of this distribution, strictly assessing the reliability

48

3.3 Safety concerns regarding the use of DNN in automated driving tasks

of a perception function by using the appearance probabilities of traffic
scenarios could cause unfair models. Low detection rates on rare road
users could be neglected (following the description of the requirement
fairness).

b) Distributional shift over time: Changes in the distribution of scenarios in
the real world can distort the reliability estimates of the perception func-
tion. Such shifts include the introduction of novel objects to traffic.
Furthermore, there has to be a steady monitoring of the traffic envi-
ronment to identify distributional changes and the introduction of novel
traffic artifacts.

c) Dependence on labeling quality: The labeling quality of the development
data is crucial for supervised machine learning algorithms. Training a
DNN using faulty labels can lead to an inherited defect. This weakness
also refers to the problem of missing or inadequate label classes.

d) Unknown behavior in rare critical situations: Critical traffic scenarios
may occur in real traffic with a low probability. Detecting such sce-
narios in real traffic may require a vast data recording effort, and there
is no insurance that these scenarios will be captured.

e) Inadequate separation of test and training data: While the training and
test data sets should follow the same distribution, they should be uncor-
related. For example, using training data to test the network would lead
to overestimating the networks’ performance.

f) Incomprehensible behavior: A DNN’s ability to automatically learn to
detect the relevant image features for correct predictions also implies
an inherent lack of interpretability. In contrast to rule-based functions,
DNNs are hard to debug since the correlations between image features
and the networks’ decisions are difficult to analyze. Incomprehensive be-
havior is a challenging characteristic of DNNs when examining whether
a model complies with interpretability requirements.

g) Brittleness of DNNs: A lack of robustness has been a downside of DNNs
subject to a range of studies. Even minor permutations in the image,
such as noise, image translations, or weather effects, can cause mis-
classification. Adversarial attacks utilize such permutations to provoke

49

3 Design and testing of deep neural network-based perception functions

system failures, as shown in Fig. 2.4. This concern is directly tied to the
requirement robustness towards unapparent permutations of an image.

h) Unreliable confidence information: A DNN should estimate confidence
for each prediction to indicate when the automated vehicle should instead
rely on other sensors. However, using the DNNs output for class prob-
abilities as confidence value has been shown to cause overconfidence in
the network [96].

i) Insufficient consideration of safety in metrics: Most common metrics to
measure the quality of DNNs for object detection, such as the mAP (Eq. 2.9),
are not directly based on safety factors. For example, a prediction is
more safety-relevant for the driving function the nearer an object is and
the faster the object moves.

Safety concerns a)-e) are directly related to the data quality and composi-
tion of development data. These issues are often expressed with the quote
"Garbage in - Garbage out" to emphasize the central role data has in the de-
velopment process of machine learning functions. Safety concerns f)-g) arise
with the non-linear nature of DNNs. Because of the connected architecture, in-
significant changes to the input can propagate through the network and change
the prediction. In this regard the non-linear structure of DNNs, usually their
greatest strength, ironically is one of their major weaknesses. Safety concerns
h)-i) are tied to difficulties in estimating the reliability of DNNs in automated
driving tasks and evaluating their impact on traffic safety.

3.4 Techniques for testing of perception
functions

There are different testing techniques to enhance the quality and scope of the
available test cases. In this section, the most relevant for current research are
presented. Note that the test generation via simulative tools is presented in
Sec. 3.4.3.

50

3.4 Techniques for testing of perception functions

3.4.1 Benchmark testing

Benchmark testing refers to evaluating and comparing the performance of
different perception function standardized datasets and metrics. Benchmark
testing helps researchers and practitioners assess the effectiveness and effi-
ciency of various perception functions in a comparable setting. Some of the
most significant data sets are:

BDD100k [43] The BDD100k, or Berkeley Deep Drive, is a large collection
of 100,000 crowd-sourced videos recorded using dash cams. Labeled
frames with annotations for various perception tasks, such as object de-
tection, drivable area estimation, and instance segmentation, are avail-
able for each video.

KITTI [38] The KITTI (Karlsruhe Institute of Technology and Toyota Techno-
logical Institute) is an established benchmark for perception functions
in an automated driving setting. The data was recorded in Karlsruhe in
2012 with about 7,500 images for training and testing each. In contrast
to the BDD100k, the KITTI data set offers a complete standardized and
calibrated sensor stack for automated driving.

Cityscapes [97] The Cityscapes data set is another data set for the develop-
ment and benchmarking of perception functions for automated driving.
The recording was performed in 50 different cities with 5,000 high-
quality annotated images. Furthermore, there are additional 20,000
images with coarse annotations.

Additionally to the data sets, for each CV task there exists a range of standard
metrics. However, using perception functions in safety critical applications
requires novel metrics that take safety in consideration instead of ignoring the
relevance of objects to the traffic event [98, 99]. For example, while the mAP
metric is one of the most used metrics in object detection tasks, it ignores the
traffic context. Missing the detection of a pedestrian on the other side of the
road is not as critical as missing the detection the jaywalker right in front of
the vehicle.

51

3 Design and testing of deep neural network-based perception functions

3.4.2 Coverage-guided testing

During testing, the requirement of completeness has to be proven (see Sec. 2.3).
In classical programming, this is done by checking that the assembled set of
test cases triggers all branches of the software code to find branches that
cause failures [90]. Although the functionality of neural networks differs from
traditional software, the concept of code coverage can be applied to the net-like
structure of neural networks. A neural network consists of connected neurons
that process incoming information to generate an output signal (see Sec. 2.4 and
Fig. 2.9). An activation function determines the output signal of each neuron.
In the neurons’ most basic form, this activation function is a step function that
takes on the value 0 for negative input and 1 for positive input (see Fig. 2.10).
Hence, if the input value is positive, the neuron is considered triggered for
this function. With this concept, coverage criteria for neural networks have
been created that measure the coverage a data set provides on the internal
structure. Thus, coverage-guided testing techniques are prime examples of
white-box testing. There are two levels of coverage metrics [66, 100–102]:
Neuron-level and layer-level. Coverage metrics on neuron-level observe the
activation behavior of neurons independently and individually. In contrast,
layer-level coverage metrics are based on combinations or sequences of neuron
activations in the DNN.

Neuron-level coverage

In contrast to the example above, which uses the step function as the activation
function for neurons, modern DNNs utilize continuous activation functions
such as the ReLU function or the sigmoid function (see Sec. A and Fig. .3).
The following metrics are defined for the ReLU activation function with

ReLU(𝑥) =
{
𝑥, if 𝑥 > 0
0, else,

(3.1)

but can be also applied to most alternative activation functions [102].

For simplicity, suppose 𝜙(x) returns the output value of an individual neu-
ron 𝜙(·) if the whole network is fed with input x. Hence, this definition

52

3.4 Techniques for testing of perception functions

deviates from Eq. 3.1, which regards x as the immediate input to the neuron
inside the network.

Neuron Coverage Basic neuron coverage is measured similarly to the exam-
ple above. A neuron 𝜙(·) is considered to be covered by the test set S if
there is a test case x ∈ S for which the neuron’s activation function 𝜙(x)
outputs a value greater than zero with 𝜙(x) > 0. The neuron coverage
of a test set is then equal to #activated neurons by test set

#total neurons .

k-multisection Neuron Coverage Achieving full neuron coverage has been
shown to be easily achievable. Thus, a more sophisticated metric for
neuron activation has been developed. For k-multisection neuron cov-
erage, the activation value is not interpreted binary with activated and
not activated, but is categorized in pre-defined categories. The to-
tal output range of each neuron is partitioned in k-sections, hence the
name. A section 𝑆 = [𝑎, 𝑏] of neuron 𝜙(·) is considered to be covered
by the data set if there is a test case for which the neuron’s activation
function 𝜙(𝑥) outputs a value with 𝜙(𝑥) ∈ 𝑆. The metric is then equal
to #activated sections of all neurons by test set

#sections of all neurons .

Strong Neuron Activation Coverage In contrast to the other metrics, strong
neuron activation coverage takes information about activation behavior
during network training into account. The strong neuron activation cov-
erage observes the highest output value for the whole training data set
for each neuron. A test data set should then reproduce these values
at least once. Suppose 𝜙 being the maximum activation value of neu-
ron 𝜙(·) during training. The neuron is then considered as covered by
the test set if there is a test case for which the activation value matches 𝜙
with 𝜙(𝑥) − 𝜙 ≈ 0. The neuron coverage of a test set is then equal
to #strongly activated neurons by test set

#total neurons .

Layer-level coverage

For layer-level coverage, the activation behavior of all neurons is observed to
evaluate combinations and sequences of neuron activations.

Top-k Neuron Coverage For top-k neuron coverage, a neuron 𝜙(·) in the
network layer 𝑙 is considered as covered by test set S if there is a

53

3 Design and testing of deep neural network-based perception functions

test case x ∈ S for which the activation value 𝜙(x) is in the 𝑘 highest
activation values of all neurons inside layer 𝑙. Then, the coverage metric
measures which fraction of neurons have been activated by the test setS.

t-Way Combination sparse Coverage The t-way combination sparse cover-
age considers the behavior of neurons binary: non-activated and acti-
vated. However, the metric measures how well the test set S covers
the t-wise combinations of activations across all neurons. Assume the
pair-wise case 𝑡 = 2, then a pair of neurons 𝜙1 (·), 𝜙2 (·) is covered by test
set S if there is a test case x ∈ S with 𝜙1 (x) > 0 and 𝜙2 (x) > 0. The
concept is equivalent to the concept of coverage arrays in Sec. 4.4.1.

Test case generation and limits

The presented coverage metrics are mainly used to quantify the quality of
an existing data set and estimate how much data is still needed to achieve
necessary coverage. However, testing techniques have been introduced to
expand an existing data set to optimize coverage metrics. Coverage-guided
fuzzing is an existing technique of software testing that has been adapted for
DNNs [67, 103]. In general, fuzzing techniques generate a high quantity of
input data to provoke failures. Random changes are made to the inputs to create
mutates based on available test cases. The initial data set is called corpus. If
mutants increase the coverage criteria, they are added to the corpus and serve
as a base for the next mutants. Multiple approaches center around this concept,
such as TensorFuzz [67] or DeepHunter [104]. However, while coverage
metrics contribute to a safety argumentation for using DNNs in automated
driving, they also bear limitations. For example, Sun et. al [66] showed that
full neuron coverage of an MNIST classifier could be already achieved by
only choosing a few samples from the test set randomly. Furthermore, full
coverage does not guarantee the detection of all possible failure causes of
a DNN [105, 106]. The most intuitive weakness of coverage-guided testing
is that it does not imply completeness of the input space from a semantic
perspective. Complete coverage of a perception function does not guarantee
that all possible scenarios have been tested and that the whole input domain is
covered.

54

3.4 Techniques for testing of perception functions

3.4.3 Adversarial testing

Basic concept of adversarial testing

Adversarial testing or adversarial attacks of DNNs has seen significant re-
search over the past years. The traditional definition of adversarial testing
centers around the safety concern brittleness of DNNs [65,107]. Through the
connective structure, minor changes to the input values can propagate through
the network to cause significant changes in the output value. Adversarial at-
tacks aim to utilize this weakness to cause failures and test for local robustness.

There is a multitude of adversarial testing [101]. In short, the adversarial attack
is performed by a function

𝜙 : X → X 𝑥 ↦→ 𝑥 (3.2)

that transforms the inputs to a DNN

𝑓 : X → Y. (3.3)

𝜙(·) shall not change the semantic characteristic of the input, ideally being
unidentifiable by a human observer. The objective of 𝜙(·) is to minimize
performance of 𝑓 (·), causing a falsification of a previously correct prediction.
Thus, the data generation process is transformed into an optimization problem
that permutes existing testing data. A data point 𝜙(𝑥) ∈ X is called adversarial
example if and only if the DNNs prediction for 𝜙(𝑥) is incorrect while the
prediction for 𝑥 ∈ X is correct.

Szegedy et. al [65] observed that adversarial examples for a network architec-
ture 𝑓1 (·) are likely to be also adversarial examples for a network architecture
𝑓2 (·) if 𝑓1 (·) and 𝑓2 (·) are trained on subsets of the same data set. This indi-
cates a certain transferability of 𝜙(·), which is development for 𝑓1 (·) to create
adversarial examples for 𝑓2 (·).

Adversarial attacks have been shown to create severe difficulties for perception
functions, reducing the mAP score of state-of-the-art object detectors such as
Faster R-CNN and YOlO bellow 1% [108].

55

Adaptive test case sampling for DNN-based perception functions

There are two different objectives for adversarial attacks [109]: The goal of
an untargeted attack is to misguide a DNN to force a false prediction on the
image. The attack does not provoke a particular misdetection but tries to fool
the DNN. In contrast to untargeted attacks, a targeted attack tries to fool the
DNN to make a particular error. For example, the attack may be explicitly
designed to classify an image as horse.

Test case generation

There are two main branches of attacks, depending on how an image is altered
to provoke a DNN failure [110]:

Full-Image Attack Full-image attacks, or global attacks, are enabled to alter
the total image. That does not imply that every pixel value of the image
has to be altered but enables the transformation function 𝜙 to change
all pixel values. The addition of noise is a typical example of a global
attack. Usually, the attack should not be visually recognizable by a
human observer. An example of a full-image attack is displayed in
Fig. 3.3.

Patch-Level Attack Patch-level attacks only change a limited image area by
adding a local pattern [111]. In contrast to full-image attacks, the
changing area is small but recognizable by a human observer. This kind
of attack poses an explicit risk to the DNNs in automated driving, as
patch-level attacks have shown to be applicable in the real world [112].
Here, the patch is not added by post-processing an image but by placing
a print of the patch in front of the camera sensor.

56

Adaptive test case sampling for DNN-based perception functions

=+ 0,007 *

"panda"
57.7 % confidence

"nematode"
8.2 % confidence

"gibbon"
99.3 % confidence

Figure 3.3: Example of full-image attack on GoogLeNet [113] on ImageNet [84] data. A mask
in the size of the original image with small values is added to the image to force a
misclassification. Note that the change is almost unrecognizable to a human observer.
Image and experiment by Goodfellow et. al [107]

(a) No DPATCH (b) Witch DPATCH

Figure 3.4: Example of the patch-level DPATCH [108] attack on YOLO object detector [85] in
the upper left corner. While the area of the patch-level attack is clearly visible for a
human observer, the attack is restricted on a small area on the upper left corner.

57

4 Adaptive test case sampling for
DNN-based perception functions

4.1 Simulative testing - Advantages and
weaknesses

Synthetic image data to complement real world testing

The established process of testing perception function that solely rely on real
data may have significant flaws. The development data set itself has to follow
the distribution of the real world traffic and cover the whole input space [95,
115]. However, to appropriately represent real traffic, an immense amount
of data has to be collected, which is a point that has already been raised in
Sec. 1.3 [26]. Although there is a de facto endless number of traffic scenarios,
data recordings in real traffic will inevitably get more and more repetitive [1,
114] with an increasing number of driven kilometers, as displayed in Fig. 4.1.

In the recent past, the use of simulative tools to complement real world data
has been proposed, as studies showed evidence regarding the applicability of
synthetic image data in the development process of perception functions [116–
118]. The virtual KITTI data set [119] demonstrates how synthetic data
simulation tools can substitute and complement the existing real world data.
The data set was created as virtual reproduction of the real KITTI data set [38].
Fig. 4.2 displays some examples of this data set. Ground truth information is
then generated cheaply by the simulative tool. Hence, underrepresented effects
in real world data sets can be stuffed using synthetic data. For example, cyclists
only account for 4% of annotations in the KITTI data set with 1,627 annotations
in 7,400 images. The synthetic data set for improving Cyclist Detection from
Parallel Domain [120] enhances the available real KITTI data set with synthetic
images that contain annotated cyclists to improve the detection performance of
a YOLOv3 model, especially on the class cyclist [121].

59

4 Adaptive test case sampling for DNN-based perception functions

Driven Distance

Number
Scenarios

Total recorded
Scenarios

Unique
Scenarios

Repetitive
Scenarios

Figure 4.1: With an increasing driven distance in real traffic, the recording of real world data starts
to collect more and already recorded traffic scenarios as the data recordings get more
and more repetitive [1, 114].

Thus, the variety of virtual data sets, simulation tools, and scientific research
has increased over the past years. For example, in the previous work on adaptive
test case selection, the commercial tool CarMaker from IPG Automotive [122]
was used for image generation [2]. Other approaches for image sensor simu-
lation come from unexpected but consequential sources. Richter et. al [123]
used the computer game Grand Theft Auto 5 to generate traffic image data.

Limits and weaknesses of simulative testing

While simulative testing of perception functions may seem like the perfect and
flawless substitute for real world testing, some weaknesses must be addressed.
Currently, the most significant and most urgent limitation of simulative testing
of perception functions is the domain gap. In Sec. 3.1 image domains are
defined, and the domain of real images is set against the domain of synthetic
images. Experiments show that the performance of a model trained with
real data may differ when using test data from the virtual domain and vice
versa [118]. The transferability of results on synthetic data in the real domain

60

4.1 Simulative testing - Advantages and weaknesses

Figure 4.2: Synthetic image data from simulation tools can create imitations of real world traffic
situations to substitute and complement real world data. This particular image is from
the virtual KITTI data set [119] that was created as a virtual reproduction of parts of
the real KITTI data set [38].

remains a question mark. However, this transferability is critical when creating
a safety argument for perception functions: In the end, a perception function has
to work in real traffic. Although this sounds like a deal-breaker for simulative
testing, several research areas address this issue:

Physical Sensor Simulation: The most straightforward approach is increas-
ing sensor simulation quality. Physical sensor simulation refers to sensor
simulation in which the generated sensor signals correspond to the sig-
nals of a real sensor in a way that allows it to be used interchangeably
with real sensor signals. The area includes tools to generate geometri-

61

4 Adaptive test case sampling for DNN-based perception functions

cally correct image data [124] or the addition of camera artifacts, such
as lens flares [125] and light reflection [126].

Transfer Learning: In transfer learning, the objective is to transfer knowl-
edge obtained from training one task to be used for another task. For
simulative data, transfer learning implies using insights into a model’s
performance in the virtual domain on applying the function in the real
domain [127].

I2I Domain Translation: Another approach is image-to-image (I2I) transla-
tion between different domains. I2I translation transforms a given image
from a source domain to a target domain by changing its appearance.
An example of this could be a translation from the night domain to day
domain [91], or from no-fog domain to fog domain [128]. In the pre-
sented context, the virtual domain is considered the source domain, and
the real domain is the target domain. Previous research for Sim-to-Real
image translation includes transformation approaches such as fully con-
volutional networks [129] or generative approaches such as generative
adversarial networks (GAN) [130].

Another weakness of simulative testing is the problem of unknown-unknowns.
A simulation framework can only generate traffic elements that are known
and coded into the framework. If, for instance, there are weather effects not
accounted for in the simulation, such as raindrops at the lens, this may lead to
unreliable test results of the perception function. The same applies to objects
that may not be available in the simulation, such as wild animals.

These weaknesses highlight the fact that simulative testing, although being a
convenient complement, cannot substitute testing with real world data.

Addressing the course of dimensionality

In contrast to the random nature of real world recordings, simulative tools
can generate the data "on-demand" by feeding the specification of the desired
image data to the tool [2,69]. The specifications include weather information,
object properties, and positional arguments. Fig. 4.3 shows a schematic repre-
sentation of the process of generating synthetic image data using the simulation
tool CARLA [131]. In this example, the image space is parameterized by a

62

4.1 Simulative testing - Advantages and weaknesses

Test Case 2Test Case 1

Pedestrian Type

Fog Level
Rain Level

Pedestrian Position

Sun Position
...

Simulation Software
and HardwareMorphological Box

Figure 4.3: Simulative process for synthetic image generation. The simulation space is defined
by a combinatorial space containing the available simulation variables. Feeding the
simulation software and hardware with elements of the simulation space, image data,
and corresponding ground truth labels is generated.

morphological box, also called Zwicky box. The morphological box contains
all options for each image parameter. The space of possible images then arises
from the Cartesian product of parameters.

The simulation process will inevitably run into the curse of dimensional-
ity [132]. In machine learning, this expression describes specific issues when
analyzing high-dimensional spaces. For example, there is a rapid volume in-
crease when adding dimensions to a discrete or continuous space. See Fig. 4.3
as an example of a simulative process for a jaywalker scenario with five dis-
crete simulation variables. Assuming each variable has ten characteristics,
the total simulation space contains 105 elements. If one more variable with
ten characteristics is added to this simulation space, the amount of elements
increases to 106. In general, the amount of elements in a simulation space
with 𝑛 variables, with variable 𝑖 having 𝜆𝑖 characteristics, is equal to

no. elements =
𝑛∑︁
𝑖=1

𝜆𝑖 . (4.1)

This formula applies only to discrete variables. In the context of software
testing, this phenomenon is referred to as combinatorial explosion. Due to the
high number of variables required to accurately describe image data, testing a
significant fraction of the simulation space becomes unfeasible [68]. Relying
on a random sampling of elements is unlikely to uncover failures, as critical
concrete scenarios are rare.

63

4 Adaptive test case sampling for DNN-based perception functions

4.2 Introducing pipeline for adaptive scenario
selection for simulative testing

Adaptive test strategies

Adaptive test strategies have been proposed [133] to identify failures and criti-
cal scenarios [134–136] more efficiently. Unlike pre-configured experimental
designs, adaptive strategies adjust the selection of test cases depending on
already observed test cases. The relationship between the specifications of a
test case and the perception function’s performance is following patterns that
can be exploited is assumed. The test result is transformed into a numerical
optimization problem. Hence, this optimization problem can be incorporated
into a sampling process that iteratively selects and observes the perception
functions behavior. This process is displayed in Fig. 4.4. Finally, the testing
gets converted into a minimization problem in which the performance of the
system-under-test gives the objective function.

Test Case Test Result
System

Under Test

Objective Function
Test Case Selection

Figure 4.4: Schematic representation of functional testing to detect system states where the system-
under-test fails to comply with the functional requirements. The behavior in concrete
test cases is observed. New test cases are selected depending on an objective function
derived from the system’s performance [135].

Scenario-based testing

While coverage-guided testing of neural networks for perception tasks usu-
ally refers exclusively to neuron- and layer-level coverage, the application in
automated driving enables for an alternative view on the term coverage (s.
Sec. 2.3). Scenario-based testing focusses on covering the input space rather
than covering all branches and nodes of the network. The set of test cases

64

4.2 Introducing pipeline for adaptive scenario selection for simulative testing

Layer 6:

Data and Communication

Layer 5:

Environmental Conditions

Layer 4:

Movable Objects and

Participants

Layer 3:

Temporal Modifications

Layer 2:

Traffic Infrastructure

Layer 1:

Street Geometry

Figure 4.5: The six layers used to describe a traffic scenario as defined by the PEGASUS project [6].

should be able to sufficiently cover the traffic scenarios that can occur in real
traffic [29, 137, 138].

There has been research to standardize and structure the representation of a
driving scenario. The public-funded PEGASUS project [6] lays the foundation
of scenario-based testing and defines five different layers for a standardized
description of traffic scenarios for simulative testing. The five layers are
displayed in Fig. 4.5 and include

1. Road-Level: Geometry and topology of traffic scenery.

2. Traffic Infrastructure: Building development and traffic infrastructure of
traffic scenery.

3. Temporary Manipulation of 1. and 2.: Construction sites and temporary
changes in traffic regulations.

4. Objects: Appearance and behavior of traffic participants, such as trajecto-
ries, size, and object textures.

65

4 Adaptive test case sampling for DNN-based perception functions

5. Environment: Environmental effects on visibility and road conditions, such
as weather and daytime.

The original 5-layer model has been extended to a 6-layer model [139]. The
sixth layer includes digital information, such as digital map data or V2X
communication information.

Furthermore, the PEGASUS project builds on a scenario logic, dividing sce-
narios in three categories: functional scenarios, logical scenarios, and concrete
scenarios with the definitions being displayed in Fig. 4.7.

A process visualization is shown in Fig. 4.6 [5]. The process is simultaneously
data-driven and expert-driven, with a central database containing the relevant
logical scenarios and their corresponding parameter space. Using a testing
platform and performance metrics, the SuT is evaluated on this parameter
space via a test case variation method to generate an evaluation of the system’s
performance.

Formal definition of pipeline

The testing process of a deep neural network for object detection using sim-
ulated images relies on a simulation process that generates image data from
formal specifications test cases. Hence, the simulation process requires a stan-
dardized scenario description format that specifies the image to be generated.
The description format is a test space derived from pre-defined scenario vari-
ables. These variables relate to the environment (weather or sun position), the
scene (road geometry and background), or objects (attributes of pedestrians or
cyclists).

The following definitions and their relationship are visualized in Fig. 4.8.

Definition 4.1 (Functional scenario). A functional scenario F is a linguis-
tic description of a driving situation from an ego perspective, including the
relevant information on the traffic participants, their intentions, the road ge-
ometry, and environmental conditions. 𝔉 = {F𝑖}𝑖∈N then describes the space
of functional scenarios.

66

4.2 Introducing pipeline for adaptive scenario selection for simulative testing

Knowledge-drivenData-driven

b) R
equirem

ents
Engineering

Metrics Definition

Requirement
Analysis

a)
 D

at
a

Pr
oc

es
si

ng

Identification of
Scenarios (Data)

Identification of
Scenarios (Expert)

Systematic
Identification of

Scenarios

Preprocessing/

Reconstruction

c)
 D

at
ab

as
e

Identification of logical Scenarios

+ Parameter Space

Application of Test
C

oncept and
Variation M

ethod

Test Execution

Sim

ulation - R
eal

W
orld Testing

Test Evaluation
and C

lassification

R
isk Assessm

ent

Contribution of
Safety

Statement

d) A
ssessm

ent of
A

utom
ated D

riving
Function

Figure 4.6: Overview of scenario-based testing process [5].

Since functional scenarios are defined by linguistic descriptions and categorical
numerical values (speed limit ∈ 10, 30, 50, 70, 80, 100, 130 with each having
finite options, 𝔉 is assumed to be discrete and finite itself.

Example 4.1 (Functional scenario).

F =

Straight road with two lanes

Bus stop in urban environment, speed limit at 50km/h

No temporary influences

Ego passing a parking bus, pedestrian crossing the street

Dawn, slight rain

67

4 Adaptive test case sampling for DNN-based perception functions

Functional Scenarios Logical Scenarios Concrete Scenarios

Format:

Functional scenarios contain
natural language of scenario
conditions.

Format:

Logical scenarios describe
parameter spaces in the state
space.

Format:

Concrete scenarios depict a
concrete representative of a
logical scenario.

Road Network:

Three-lane motorway in
curve
Moveable Objects:

Ego vehicle

Leading object vehicle
Environment:

Summer

Rain

Road Network:

[2.3, 3.5]m width,

[0.6, 0.9]km radius
Moveable Objects:

[0, 100]km/h ego speed

[10, 200]m distance to object
Environment:

[10, 40]°C temperature

[0, 40]l/h rain

Road Network:

3.2m

0.7km
Moveable Objects:

60km/h

40m

Environment:

20°C

20mm/h

Increasing Level of Abstraction

Increasing Number of Scenarios

Figure 4.7: Scenario description scheme from PEGASUS project [6]. Scenarios can be described
on three levels of abstraction: Functional scenarios, logical scenarios and concrete
scenarios.

Definition 4.2 (Scenario variable and logical scenario). A scenario variable
𝑆
𝑗

𝑖
, 𝑗 = {1, ..., 𝑛𝑖} is a set of semantic values that specifies a semantic feature

of the functional scenario F𝑖 , with 𝑛𝑖 being the number of scenario variables
for F𝑖 . The scenario variable can be continuous or discrete.

Given a functional scenario F𝑖 , the corresponding logical scenario space, or
logical scenario, is defined as the Cartesian product over all relevant scenario
variables S𝑖 = 𝑆

1
𝑖
× ... × 𝑆𝑛𝑖

𝑖
.

Definition 4.3 (Interpreter). With 𝔉 being the space of functional scenarios
and 𝔖 being the space of logical scenarios, an interpreter function

𝐼 : 𝔉 →𝔖, (4.2)

68

4.2 Introducing pipeline for adaptive scenario selection for simulative testing

transforms the information of a functional scenario into the corresponding
logical scenario.

Note that the amount and nature of scenario variables 𝑆 𝑗

𝑖
is specific to the

functional scenario F𝑖 , as a different constellation of traffic participants may
result in different variables. The crucial core of Def. 4.3 is that there is a logical
scenario space for each functional scenario. In this regard, the proposed
approach differs from the traditional PEGASUS schema shown in Fig. 4.7.
The original approach assumes that functional scenarios are different levels of
abstraction with multiple logical scenarios for a given functional scenario. The
approach of this work considers a logical scenario and the space of scenario
variables of a functional scenario. While two functional scenarios may share
the same logical scenario space, each functional scenario has one and only one
logical scenario space.

Example 4.2 (Scenario Variable and Logical Scenario Space). An example
of a discrete variable that relates to an image feature is the weather variable
𝑆𝑤𝑒𝑎𝑡ℎ𝑒𝑟 = {dry, rain, cloudy}, while an example for a continuous variable is
the speed range of an object 𝑆𝑠𝑝𝑒𝑒𝑑 = [0kmh, 10kmh].

The logical scenario space would then consist of the Cartesian product S =

𝑆𝑤𝑒𝑎𝑡ℎ𝑒𝑟 × 𝑆𝑠𝑝𝑒𝑒𝑑 .

Definition 4.4 (Concrete scenario (Test case)). Given a functional scenario F
with logical scenario space S, an element 𝑠 ∈ S is called a concrete scenario
or a test case in the context with the simulation framework. Hence a concrete
scenario is a vector containing a concrete value from each scenario variable
𝑆 𝑗 , 𝑗 ∈ {1, ..., 𝑛} with 𝑛 being the number of scenario variables of F .

Example 4.3 (Concrete scenario (Test case)). Given S = 𝑆𝑤𝑒𝑎𝑡ℎ𝑒𝑟 × 𝑆𝑠𝑝𝑒𝑒𝑑 ,
𝑠 = (dry, 2𝑘𝑚ℎ) is a concrete scenario.

69

4 Adaptive test case sampling for DNN-based perception functions

Definition 4.5 (Ground truth function, image space, and ground truth space).
A ground truth function for a perception system is defined as a function

𝑇 : I → B, (4.3)

with I being the image space and B being the perception functions’ output
space.

The rather abstract nature of B as a formal space depends on the perception
task. For segmentation tasks, B consists of all possible segmentation maps,
while B consists of all possible combinations of object bounding boxes for an
object detector.

Definition 4.6 (Perception system (System-under-Test)). A perception system
is defined as a function

𝐷 : I → B, (4.4)

with I being the image space and B being the output space as defined in
Def. 4.5.

A perception function should approximate the ground truth, and an optimal
object detector would fulfill 𝐷 (𝑥) = 𝑇 (𝑥), ∀𝑥 ∈ I.

The emphasis of this thesis is laid upon image-based perception systems.
Interchangeably, the image space I can be replaced by radar/lidar signals or a
combination of perception signals.

Definition 4.7 (Simulation process). For a given functional scenario F𝑖 and
an perception function 𝐷 (·), a simulation process is defined as

𝐺𝑖 : S𝑖 → 𝔓(B) ×𝔓(I), (4.5)

with I being the image space, B being the output space, S𝑖 being the logical
scenario space for F𝑖 , and 𝔓(·) being the power set operation.

70

4.2 Introducing pipeline for adaptive scenario selection for simulative testing

The simulation process iteratively generates 𝐼 𝑖𝑡 ∈ I at time step 𝑡 with corre-
sponding ground truth 𝐼 𝑖𝑡 ∈ I taking into account the results of 𝐷 (𝐼 𝑖

𝑡−1) for a
given concrete scenario 𝑠 ∈ 𝑆𝑖 .

Definition 4.8 (Key-performance-indicator). WithB being the space of ground
truth elements, the perception systems’ performance of a simulation run
{𝐷 (𝐼 𝑖𝑡)} ∈ 𝔓(B) compared to the corresponding ground truth {𝑇 (𝐼 𝑖𝑡)} ∈
𝔓(B) is measured by a key-performance-indicator (KPI) function

𝐾 : 𝔓(B) ×𝔓(B) → R (𝐵1, 𝐵2) ↦→ 𝐾 (𝐵1, 𝐵2). (4.6)

Usually the higher the KPI value 𝐾 (𝐵1, 𝐵2), the better the prediction 𝐵1.

Example 4.4 (Key-performance-indicator). The mean Average Precision (mAP)
is introduced with Eq. 2.9. The mAP is a standard measure for quantifying an
object detectors’ performance on a given data set for which the ground truth
is given.

Combining these definitions, the complete simulative testing process of the
object detector on the scenario space S can be defined.

Definition 4.9 (Simulative testing process). Evaluating the behavior of an
object detector 𝐷 (·) on the scenario space S𝑖 using a data generator 𝐺𝑖 (·)
and a KPI function 𝐾 (·, ·) is done by the simulative testing process

𝜓𝑖 : S𝑖 → R, 𝑠 ↦→ 𝜓𝑖 (𝑠) = 𝐾 (𝐺1
𝑖 (𝑠), 𝐷 (𝐺2

𝑖 (𝑠))), (4.7)

where 𝐺1
𝑖
(𝑠) is the set of ground truth outputs of 𝐺𝑖 (𝑠) and 𝐷 (𝐺2

𝑖
(𝑠)) is the

set of predictions.

The testing process aims to identify system failures, defined as the concrete
scenarios in which the performance of the object detector does not comply
with a pre-defined requirement.

71

4 Adaptive test case sampling for DNN-based perception functions

Definition 4.10 (System failure). Let 𝐷 (·) be an object detector with 𝜓𝑖 (·)
being its simulative testing process on functional scenario F𝑖 with logical
scenario space S𝑖 = 𝐼 (F𝑖). A system failure is then defined as a concrete
scenario in which the performance of 𝐷 (·) is equal or falls below a pre-defined
threshold 𝑡 ∈ R:

𝑥 ∈ S𝑖 is failure ⇔ 𝜓𝑖 (𝑥) ≤ 𝑡. (4.8)

Utilizing this definition to derive a probability of failure requires a probability
density function 𝑓S𝑖

for logical scenario S𝑖 containing information on the
real world occurrence probability of logical scenario variables. Then, the
probability of failure for this 𝑝failF𝑖 is defined as the integral of 𝑓S𝑖

over the
subspace of S𝑖 where the perception systems’ performance is below or equal
the threshold 𝑡:

Definition 4.11 (Scenario failure probability). Let S𝑖 be the logical scenario
space of F𝑖 with probability density function 𝑓S𝑖

. The scenario failure prob-
ability is then defined as the probability of the system failing in functional
scenario F𝑖:

𝑝fail F𝑖 = P({𝜓(S𝑖) ≤ 𝑡}) =
∫
{𝑥∈S𝑖 |𝜓 (𝑥) ≤𝑡 }

𝑓S𝑖
(𝑥) 𝑑𝑥. (4.9)

Estimation of the scenario failure probability can then be used to estimate an
overall failure probability for the system across the total space of functional
scenarios 𝔉. As Def. 4.2 mentions, functional scenarios are made from the
linguistic description and are assumed to be finite. Then the space 𝔉 has
a discrete probability distribution 𝑞𝔉 = (𝑞1, ..., 𝑞𝑛), stating the occurrence
probability for each functional scenario.

Definition 4.12 (System failure probability). With 𝔉 = {F1, ..., F𝑛} being the
space of functional scenarios, let 𝑝𝔉 = (𝑝fail F1 , ..., 𝑝fail F𝑛

) be the vector of

72

4.2 Introducing pipeline for adaptive scenario selection for simulative testing

scenario failure probabilities and 𝑞𝔉 = (𝑞1, ..., 𝑞𝑛) be the vector of occurrence
probabilities, then the system failure probability is calculated by

𝑝failure = 𝑝𝔉 ∗ 𝑞𝑇
𝔉
. (4.10)

73

4 Adaptive test case sampling for DNN-based perception functions

C

on
cr

et
e

Sc
en

ar
io

Pe
rc

ep
tio

n
Fu

nc
tio

n

S

ys
te

m
-u

nd
er

-T
es

t

Fu
nc

tio
na

l S
ce

na
rio

s

"V
eh

ic
le

 a
pp

ro
ac

hi
ng

 J
un

ct
io

n
w

ith
P

ed
es

tri
an

 c
ro

ss
in

g
fro

m
 th

e

ne
ar

-S
id

e"

Lo
gi

ca
l S

ce
na

rio

Te
st

in
g

Pl
at

fo
rm

 -
cl

os
ed

-L
oo

p

S

im
ul

at
io

n
S

of
tw

ar
e

Te
st

 In
pu

t

Im

ag
e

D
at

a

Pr
ed

ic
tio

n

B

ou
nd

in
g

B
ox

es

Te
st

 C
as

e

K

ey
Pe

rf
or

m
an

ce
In

di
ca

to
r

Se
c.

 4
.3

) +
 S

ec
. 4

.4
) S

am
pl

in
g

St
ra

te
gy

W

hi
ch

 S
pe

ci
fic

at
io

n
C

ha
ra

ct
er

is
tic

s
ca

us
e

a
lo

w
 P

er
fo

rm
an

ce
?

Se
c.

 4
.3

.1
) T

es
t R

ep
or

tin
g

S
um

m
ar

y
of

 T
es

tin
g

R
es

ul
ts

sp
an

s
th

e
lo

gi
ca

l S
ce

na
rio

 S
pa

ce

Pr
ov

id
es

 b
as

ic
 S

et
-u

p
of

 S
im

ul
at

io
n

Pr
ov

id
es

 s
pe

ci
fic

 P
ar

am
et

er
 V

al
ue

s

Si
m

ul
at

io
n

In
fo

rm
at

io
n

In
pu

t G
en

er
at

io
n

Pe
rc

ep
tio

n

R
es

ul
t

Fe
ed

ba
ck

R
un

In

fe
re

nc
e

Pr
ov

id
es

 In
te

rv
al

s
an

d
O

pt
io

ns

G
ro

un
d

Tr
ut

h
an

d

M
et

a
In

fo
rm

at
io

n

B

ou
nd

in
g

B
ox

es

Se
t o

f a
ll

G
T

an
d

M

et
a

In
fo

rm
at

io
n

Se
t o

f a
ll

Pr
ed

ic
tio

ns

fo
r

fo
r T

im
e

St
ep

fo
r T

im
e

St
ep

In
te

rp
re

te
r

fro
m

 f
un

ct
io

na
l S

ce
na

rio

fo
r S

im
ul

at
io

n
Pa

ra
m

et
er

Figure 4.8: Schematic representation of the simulative testing process. Test inputs and the cor-
responding ground truths are generated based on a combinatorial scenario space.
Applying an object detector allows a systematic performance assessment in the sce-
nario space.

74

4.3 Defining quality metrics for an adaptive test case sampling

4.3 Defining quality metrics for an adaptive test
case sampling

In theory, the testing process assumes that every concrete scenario in the sce-
nario space can be generated by the data generator process 𝐺𝑖 (·, ·). This
would allow observing the perception systems’ performance for every sce-
nario. However, in practice, a test execution is computationally expensive and
time-consuming. A high dimensionality of the logical scenario space S𝑖 and
constraints of the computational resources prevent the full factorial testing of
the scenario space. Hence, the testing process executions have to be planned
so that the scenario space is explored most efficiently.

Definition 4.13 (Observed concrete scenario and observed test set). With S
being the scenario space and𝜓(·) being the simulative testing process of object
detector 𝐷 (·) then observed concrete scenario is defined as follows:

𝑥 ∈ S is observed concrete scenario ⇔ 𝜓(𝑥) is known. (4.11)

Simultaneously an observed test set S̃ is defined as follows:

S̃ ⊂ S is observed test set ⇔ 𝜓(𝑥) is known ∀𝑥 ∈ S̃. (4.12)

To make observed test sets more practical for the following definitions, a
notation for the space of observed concrete scenarios is introduced as follows:

T = {(𝑥, 𝜓(𝑥)) |𝑥 ∈ S} ⊂ S × [0, 1] . (4.13)

Hence, any element (𝑥, 𝜓(𝑥)) ∈ T consists of a concrete scenario specification
and its test result. Likewise, any subset T̃ ⊂ T is an observed test set.

Building on an observed test set, a sampling strategy can be defined as the
selection process of concrete scenarios out of the scenario space.

75

4 Adaptive test case sampling for DNN-based perception functions

Definition 4.14 (Sampling strategy). A sampling strategy is defined as a func-
tion that selects an untested scenario out of the scenario space S, based on an
already observed test set T̃ :

𝜙 : 𝔓(T) → S, T̃ ↦→ 𝜙(T̃). (4.14)

The sampling strategy takes an observed test set as input and returns an untested
scenario. Then, the simulative testing process is triggered to observe the
detectors’ performance. Finally, the result is added to the observed test set,
and the sampling strategy is applied again. Hence, the scenario space is
explored according to the underlying objectives of the sampling strategy.

Definition 4.15 (Sampling order and failure sequence). A sampling order is
defined as the recursive sequence (𝑥𝑖)𝑖∈N , 𝑥𝑖 ∈ S that results from applying a
sampling strategy 𝜙(·) iteratively to the scenario space S:

𝑥𝑛+1 = 𝜙

(
𝑛⋃
𝑖=1

(𝑥𝑖 , 𝜓(𝑥𝑖))
)
, (4.15)

where
⋃𝑛

𝑖=1 (𝑥𝑖 , 𝜓(𝑥𝑖)) is the aggregation of all previous selected concrete
scenarios.

Based on the sampling order, the strategies’ ability to detect failures can be
evaluated from the sequence of test results (𝜓𝑖)𝑖∈N , 𝜓𝑖 = 𝜓(𝑥𝑖).

Then, with threshold 𝑡 > 0, a failure sequence (𝜏𝑖)𝑖∈N can be generated palely
with

𝜏𝑖 =


1 if 𝜓𝑖 ≤ 𝑡

0 otherwise.
(4.16)

Hence, 𝜏𝑖 equals 1 if 𝑥𝑖 is a failure and is equal to 0 otherwise.

76

4.3 Defining quality metrics for an adaptive test case sampling

Finally, for evaluation, the function Θ is defined as the accumulation of the
sequence 𝜏𝑖:

Θ : N→ N, 𝑛 ↦→
𝑛∑︁
𝑖=1

𝜏𝑖 . (4.17)

See Fig. 4.9 for a visualization.

Figure 4.9: Visualization of the sequences 𝜏𝑖 and Θ𝑖 as defined in Def. 4.15.

Defining detection metrics

To evaluate the effectiveness of the test strategies, metrics have to be introduced.
Consider 𝜏𝑖 and Θ being defined as the failure sequence of a sampling order
(see Def. 4.15). Then the failure detection metrics are defined as follows:

Definition 4.16 (F-Measure). The standard F-measure is the number of tests
required to detect the first failure. Formally, that equates to the following:

𝐹-Measure = min Θ−1 (1). (4.18)

The standard score of the F-measure is the first position in the testing process
with Θ = 1.

77

4 Adaptive test case sampling for DNN-based perception functions

The number of tests before detecting the first failure may be influenced by some
randomness and can be misleading. To design the original F-measure more
robustly, the F𝑛-measure is introduced to measure the number of concrete
scenarios to detect 𝑛 failures:

𝐹𝑛-Measure = min Θ−1 (𝑛). (4.19)

Another approach is to consider alternative sampling strategies for direct effi-
ciency comparison. A strategy’s ability to detect failures held against random
concrete scenario selection generates an intuitive measure to evaluate the cost
saving through adaptive testing. For this, the C-measure is introduced.

Definition 4.17 (𝐶-Measure). The C-measure is defined by this work as the
saved costs for test executions to detect 𝑛 failures relative to random testing.

Formally, the C-measure is expressed by

𝐶𝑛-Measure = 1 − 𝐹𝑠
𝑛

𝐹𝑟
𝑛

, (4.20)

where 𝐹𝑠
𝑛 is the F-measure of the test strategy for 𝑛 failures and 𝐹𝑟

𝑛 is the
F-measure for random concrete scenario selection for 𝑛 failures.

Example 4.5 (𝐶-Measure). Assume the testing process with random testing
detecting the first failure after 100 test executions. Thus 𝐹𝑟

1 = 100. Addi-
tionally, assume an adaptive strategy detecting the first failure in the first test
execution. Thus 𝐹𝑠

1 = 1. Then

𝐶𝑛-Measure = 1 − 1
100

= 0.99, (4.21)

which states that the fraction of saved test executions is 99%.

78

4.3 Defining quality metrics for an adaptive test case sampling

Introducing failure regions to avoid oversampling

Even for low failure probabilities of the system-under-test in the scenario
space, the set of failures in the scenario space may be uncountable infinite.
For example, assume a system-under-test failing all concrete scenarios for sun
altitude between 40◦ and 50◦ and sun azimuth between −5◦ and 5◦ due to
blinding sunlight. As soon as the testing process establishes this failure root,
sampling from this region in the scenario space does not provide additional
information. However, a greedy sampling strategy has shown to focus on this
region due to the high density of failures (compare with results in Sec. 6.3).
The plain amount of detected failures would not represent the strategy’s real
performance since the objective is to find diverse failure causes instead of
a high number of small variations of one failure. Optimally, the sampling
strategy should ignore regions established as failure regions to sample for yet
undetected failure regions. For this purpose, the concept of failure patterns is
used and customized for the applications of this thesis.

Chan et al. [140] describe different patterns to characterize the distribution
and occurrence of failures. Based on this concept, the following definitions
introduce failure regions. Using these, the relevant region for the sampling
process can be determined and potential concrete scenarios can be checked
before test execution.

Def. 4.18 and Def. 4.19 motivate the idea formally for a discrete scenario space,
while Def. 4.20 introduces a measure to examine whether testing a yet-untested
concrete scenario provides more inside on the failure distribution.

Definition 4.18 (Neighbour concrete scenarios). Let S = 𝑆1 × ... × 𝑆𝑛 be
a scenario space with ordered discrete numerical scenario variables 𝑆𝑖 =

{𝑠𝑖,1, ..., 𝑠𝑖,𝑛𝑖 }. Two concrete scenarios 𝑥1, 𝑥2 ∈ S are defined as neighbours
if the concrete scenarios are equal for all but one dimension 𝑖 ∈ {1, ..., 𝑛}
for which the two values are next to each other. For neighbours a notation is
introduced:

𝑥1, 𝑥2 ∈ S are neighbours ⇔ 𝑥1 ⋄ 𝑥2 (4.22)

79

4 Adaptive test case sampling for DNN-based perception functions

Figure 4.10: Visualization of failure region with non-failures in green and failures in dark blue.
Every two concrete scenarios in the red area Ŝ ⊂ 𝑆1 × 𝑆2 are connected failures.

Definition 4.19 (Connected failures and failure region). Let 𝑥1, 𝑥2 ∈ S be
two concrete scenarios in the same same setup as Def. 4.18. Both concrete
scenarios are failures as defined in Def. 4.8. 𝑥1 and 𝑥2 are now defined as
connected failures if there exists a path from 𝑥1 to 𝑥2 via other failures that are
neighbours:

𝑥1, 𝑥2 ∈ S are connected failures ⇔ ∃{𝑥1, ..., 𝑥𝑙} ⊂ S with

𝑥1 ⋄ 𝑥1 ⋄ ... ⋄ 𝑥𝑙 ⋄ 𝑥2 and ∀ 𝑖 ∈ {1, ..., 𝑙} : 𝑥𝑖 is failure.
(4.23)

Using this definition, a set Ŝ ⊂ S is defined as failure region if all concrete
scenarios are pair-wise connected failures:

Ŝ ⊂ S is failure region ⇔ ∀ 𝑥1, 𝑥2 ∈ Ŝ : 𝑥1 and 𝑥2 are connected failures.
(4.24)

Fig. 4.10 visualizes the concept of a failure region for a two-dimensional
discrete space. Every failure is connected to every other failure in the failure
region.

However, Def. 4.18 and Def. 4.19 are only applicable if the scenario space is
discrete. For continuous scenario spaces, a more applicable measure has to be
introduced to evaluate whether a candidate concrete scenario is inside a failure
region:

80

4.3 Defining quality metrics for an adaptive test case sampling

Definition 4.20 (𝜔-measure and sampling-relevant concrete scenarios). Let
𝑥 ∈ S be an untested concrete scenario and S̃ ⊂ S be a set of observed
concrete scenarios. Define B(𝑥) = {𝑥 ∈ S̃|𝑑 (𝑥, 𝑥) < 𝜖} as a metric ball
around 𝑥 that contains all observed concrete scenarios with distance 𝑑 (·, ·)
smaller than some threshold 𝜖 > 0. The relevance score 𝜔(𝑥) is then defined
as the difference between non-failures and failures inside B(𝑥):

𝜔(𝑥) = #{𝑥 ∈ B(𝑥) |𝜓(𝑥) > 𝑡} − #{𝑥 ∈ B(𝑥) |𝜓(𝑥) ≤ 𝑡} (4.25)

Let 𝑡𝜔 ∈ N− be a threshold for 𝜔(𝑥).

𝑥 is sampling-relevant ⇔ 𝜔(𝑥) > 𝑡𝜔 . (4.26)

See Fig. 4.11 for a visual demonstration. Assume 𝑡𝜔 = −5. Then both
candidate concrete scenarios get evaluated on whether it is assumed that they
belong to a failure region. The first candidate concrete scenario with𝜔1 = −6 <
𝑡𝜔 would be ignored since its immediate surrounding is already considered a
failure region, and spending computation resources is expected to generate no
additional insight into the distribution of failures in the scenario space. The
second candidate concrete scenario with 𝜔2 = 2 > 𝑡𝜔 is located in an area
that still requires exploration. While the fact that the concrete scenario was
selected by a sampling strategy indicates a high failure probability, 𝜔2 > 𝑡𝜔
indicates that the area is not considered a failure region yet.

81

4 Adaptive test case sampling for DNN-based perception functions

Detected Failure
Tested non-Failure
Candidate

Figure 4.11: Visualization of 𝜔-measure: The difference between non-failures and failures inside
the metric ball around candidate concrete scenarios indicates whether the candidate
is inside a failure region.

82

4.4 Presentation of sampling strategies

4.4 Presentation of sampling strategies

4.4.1 Covering arrays and t-wise testing

Dealing with the combinatorial explosion has been a problem for traditional
software, exhausting available testing resources with an unmanageable num-
ber of input variations, as illustrated in Eq. 4.1. To reduce the number of
test executions of the input space, the use of covering arrays has been pro-
posed [141]. Using covering arrays for concrete scenario generation, also
called 𝑡 − wise testing [69], is a combinatorial technique to uniformly explore
the input space for patterns that cause system failures. Covering arrays can be
applied to finite input space with a high number of discrete variables. Instead
of testing all possible combinations of the input variables, the set of concrete
scenarios aims at covering all 𝑡 − wise combinations of characteristics across
all variables. This set is then called a covering array. If 𝑡 = 2, the covering
array should contain concrete scenarios, such that there is at least one concrete
scenario containing characteristic 𝑠1 of scenario variable S𝑖 and characteristic
𝑠2 of scenario variable S𝑖 (𝑖 ≠ 𝑗). This concept is closely related to the neuron
coverage measure t-Way Combination sparse Coverage in Sec. 2.3.

Fig. 4.12 displays how this 2 − wise testing method, also called pair-wise
testing, can be used to reduce the full-factorial test space from eight concrete
scenarios to four concrete scenarios while upholding full coverage of pair-wise
combinations. This approach examines combinatorial patterns in the input for
their influence on the output. Such covering arrays can be generated by a range
of different algorithms. The standard brute force algorithm for covering array
generation is shown in Alg. 1.

Empirical studies in traditional software engineering have shown that the test-
ing of all 3−wise combinations can detect 90% of software bugs [142]. While
most of the work in this research area was done for traditional software and
hardware testing, utilizing simulative tools to extend existing image data sets
for the development of perception functions to achieve full coverage of combi-
nations has been proposed by Gladisch et al. [69]. The common use of covering
arrays does not account for the performance of the system-under-test during
the sampling process. A metric to evaluate the combinatorial coverage if spe-
cific characteristics are weighted with higher importance and an algorithm for
concrete scenario selection has been introduced by Cheng et al. [68].

83

4 Adaptive test case sampling for DNN-based perception functions

Variable Char. 1 Char. 2
Test Case 1
Test Case 2
Test Case 3
Test Case 4
Test Case 5
Test Case 6
Test Case 7
Test Case 8

Full-Factorial

Test Case 1
Test Case 4
Test Case 6
Test Case 7

Pairwise Testing

Figure 4.12: Example of pair-wise testing with three scenario variables and two characteristics
per variable. Overall there are eight possible combinations. Utilizing combinatorial
testing, the number of concrete scenarios to cover each two-wise combination of
characteristics can be reduced to four.

In general, the advantage of covering arrays is a uniform sampling of the test
space. Thus, the testing of all 𝑡 − wise combinations in the scenario space can
be guaranteed. However, covering arrays only can be applied to finite scenario
spaces and require an eventual discretization of continuous variables. Further-
more, solely combinatorial sampling strategies do not incorporate adaptive
elements that specifically provoke failures. Covering arrays can be used as an
initial sampling to guarantee a certain level of coverage of the scenario space.

4.4.2 Evolutionary sampling

Evolutionary learning algorithms are often used for optimization problems
where little is known about the relationship between a process’s input and
output. Evolutionary sampling for software testing is derived from the natu-
ral process of evolution [143, 144]. Evolutionary algorithms iteratively mu-
tate already observed concrete scenarios 𝑠 ∈ S̃ ⊂ S with a low-performance
value 𝜓(𝑠) to increase the failure detection rate. The general algorithm starts
with an initial set of 𝑛𝑒 observed concrete scenarios S̃. After evaluating 𝜓(𝑠)
for each concrete scenario in S̃ the 𝑙 concrete scenarios with the lowest KPI
values are extracted as the first parent generation, with 𝑙 being a pre-defined
parameter. Afterward, each element of the parent generation is mutated 𝑘

84

4.4 Presentation of sampling strategies

Algorithm 1 Brute force algorithm for covering array generation [142]
Require: concrete scenarios of finite scenario space S in arbitrary order

1: Calculate total number of 𝑡 − wise combinations 𝜆𝑡S in space S
2: Initialize number of covered 𝑡 − wise combinations 𝜆𝑡𝑐𝑜𝑣 = 0 and empty

test set S̃
3: while 𝜆𝑡𝑐𝑜𝑣 ≠ 𝜆𝑡S do
4: Initialize 𝜆𝑡𝑚𝑎𝑥 = 0 and 𝑥𝑚𝑎𝑥 = []
5: for every scenario 𝑥 ∈ S ∧ 𝑥 ∉ S̃ do
6: Calculate amount of 𝑡 −wise combinations of 𝑥 that are yet uncov-

ered in S̃ as 𝜆𝑡𝑥
7: if 𝜆𝑡𝑥 > 𝜆𝑡𝑚𝑎𝑥 then
8: 𝑥𝑚𝑎𝑥 = 𝑥

9: 𝜆𝑡𝑚𝑎𝑥 = 𝜆𝑡𝑥
10: end if
11: end for
12: 𝜆𝑡𝑐𝑜𝑣 = 𝜆𝑡𝑐𝑜𝑣 + 𝜆𝑡𝑚𝑎𝑥

13: Append 𝑥𝑚𝑎𝑥 to S̃
14: end while
15: return Test set S̃

times, marginally changing one scenario parameter. A mutation ¤𝑠 has to be a
valid untested scenario (¤𝑠 ∈ S \ S̃). After observing 𝜓(¤𝑠) for each mutation ¤𝑠,
the next parent generation is selected. This process emulates natural principle
of survival of the fittest and is depicted in Fig. 4.13.

This brute force version of evolutionary optimization can be extended by
changing the parent generation selection process. For example, joining ran-
dom observed concrete scenarios to the parent generation adds an exploratory
element. Furthermore, the mutation step can be extended by selecting certain
scenario variables more likely to change. These variables are identified to have
more impact on the object detectors’ performance.

Applying evolutionary sampling for simulative test generation for automated
driving functions has proven to achieve effective identification of challenging
concrete scenarios [135,145]. The advantage of evolutionary concrete scenario
sampling is the autonomy of a mathematical function and the low required pre-
knowledge of the underlying relationship 𝜓(·) between the scenario space and

85

4 Adaptive test case sampling for DNN-based perception functions

Sampling Process
 Testing Platform - closed-
Loop

Simulation Software

Perception Function

Simulation

 Concrete Scenario

Functional Scenario

Logical Scenario Space

Data Sources
Interpreter

In
iti

al
 D

at
a-

Se
t

Se
t o

f r
an

do
m

 sa
m

pl
ed

co

nc
re

te
 S

ce
na

rio
s

Mutation
Select random Variations of Parent

Generation

Complete Set of
Tested Scenarios

Parent Generation Selection

Select concrete Scenarios with lowest

KPI as Candidates

Mutation Check

Which Variations of concrete "Parent"

Scenarios are still available
KPI

Figure 4.13: Schematic representation of evolutionary testing process. Iteratively, concrete scenar-
ios are selected for test execution, and the concrete scenarios with the lowest results
are used to select new concrete scenarios by mutation.

the object detectors’ performance. However, the significant random element of
evolutionary algorithms may be more inefficient than alternative approaches
like meta-model based sampling.

4.4.3 Coupling the use of meta-model with
fixed-sized-candidate-set method

Meta-model based sampling strategies root in the assumption that the per-
formance 𝜓(·) of the object detector 𝐷 (·) on the scenario space S can be
approximated by a mathematical function, called meta-model. While test exe-
cutions are computationally expensive, a meta-model can be evaluated cheaply.
Furthermore, derivations of meta-model can be used to apply numerical opti-
mization algorithms.

86

4.4 Presentation of sampling strategies

Sampling Process

In
iti

al
 D

at
a-

Se
t

Se
t o

f r
an

do
m

sa
m

pl
ed

co

nc
re

te
 S

ce
na

rio
s

Testing Platform - closed-
Loop

Simulation Software

KPI

Perception Function

Simulation

 Concrete Scenario

Functional Scenario

Logical Scenario Space

Data Sources

Data Aggregation

All tested Data with
corresponding KPI

Scenario Selection

concrete Scenarios with lowest predicted KPI

Candidate Sampling

Fixed-Size Candidate
Sampling of untested
concrete Scenarios

Train Meta-Model

Meta-Model predicts KPI trained on

 available concrete Scenarios

KPI Prediction

Inference on Candidates

Complete Set of
Tested Scenarios

Interpreter

Figure 4.14: Schematic representation of meta-model based testing process.

Definition 4.21 (Meta-model). Let S be a scenario space and S̃ ⊂ S be an
observed subset as defined in Eq. 4.12. Based on S̃, a so-called meta-model

𝑀S̃ : S → [0, 1] (4.27)

can be trained that emulates the behavior of the simulative testing process 𝜓(·)
from Eq. 4.7.

Meta-model based testing aims to create a bridge between the scenario space
and the object detectors’ performance that allows estimating the performance
reliability for concrete scenarios without triggering the test execution [146].
Setting up a meta-model requires an already observed test-set that serves
for model training and model selection. Iteratively, the meta-model is used
to select untested concrete scenarios that indicate a low performance of the

87

4 Adaptive test case sampling for DNN-based perception functions

object detector utilizing inter- and extrapolation. Triggering the simulative
testing process for these concrete scenarios provides insight into the effect of
scenario variables on the object detectors’ performance. Variables that have
significant impact on the relationship between scenario space and the system-
under-tests’ performance can be identified, and the detection rate of failures
can be optimized. Furthermore, during the sampling process, the training
data for the meta-model gets more comprehensive, theoretically increasing its
accuracy. The basic algorithm for this adaptive test strategy is shown in Alg. 2.

KPI

Test Space

Performance Evaluation Process

Meta-Model

true but expensive

Tr
ue

 T
es

t R
es

ul
ts

fo

r T
ra

in
in

g

Proposals for next

 Test Execution

cheap but just an estimation

Performance Evaluation Process

Figure 4.15: Schematic representation of the relationship between performance evaluation process
and the meta-model. Test results from the performance evaluation process are used
to train the meta-model. The meta-model is then used to generate proposals for the
performance evaluation process.

The algorithm strictly chooses the subsequent concrete scenarios from the
learned meta-model, making the meta-models’ accuracy central for the per-
formance of the sampling process. Hence, the choice of the meta-model is
crucial. A multitude of regression functions are available for this task, such
as Gaussian process regression [146], neural networks [147–149], and support
vector machines [150]. As for all machine learning tasks, the chosen function
represents the relationship between input and output space. However, if the
meta-model is chosen wrongly or 𝜓(·) contains too much random behavior
that cannot be learned, meta-model based sampling strategies cannot work
efficiently.

88

4.4 Presentation of sampling strategies

Algorithm 2 Meta-model based sampling
Require: Scenario space S, meta-model 𝑀 (𝑠), batch size 𝑏 ∈ N, simulative

testing process 𝜓(·)
1: Select initial concrete scenarios S̃ ⊂ S, #S̃ = 𝑏

2: Observe real performances of concrete scenarios 𝜓(S̃)
3: while Testing resources not exhausted and testing objectives not achieved

do
4: if 𝑀 (𝑠) is dependent on hyperparameters then
5: Optimize hyperparameters of 𝑀 (𝑠) acc. to Alg.
6: end if
7: Fit 𝑀S̃ (𝑠) using S̃
8: Predict 𝑀S̃ (S) for a set of untested concrete scenarios selected using

FSCS
9: Select 𝑏1 sampling-relevant concrete scenarios with the lowest predic-

tion and further 𝑏2 sampling-relevant concrete scenarios by random for
test executions

10: Trigger simulative testing process 𝜓(·)
11: Add observed concrete scenarios to S̃ and observe real performances

𝜓(S̃)
12: end while
13: return Order in which concrete scenarios were added and corresponding

test results for evaluation

Fixed-sized-candidate-set method A problem with meta-model based sam-
pling is that the scenario space S may be continuous or contain too many
elements for predicting 𝑀 (𝑥) for all possible concrete scenarios. A popular
workaround for this problem is using a fixed-sized-candidate-set (FSCS) [151,
152]. Each iteration generates a random set of candidates for which the meta-
model predicts the performance. The advantage is the reduced computational
effort during the prediction phase. The disadvantage is that failures must be
sampled into the FSCS first to be selected by the meta-model.

Meta-model selection Theoretically, fitting a meta-model can be done with
every regression model. However, fitting a regression model is tied to making
assumptions about the underlying relationship, and each model has advantages

89

4 Adaptive test case sampling for DNN-based perception functions

and disadvantages. This dissertation uses three models: Linear regression,
neural network regression, and Gaussian process regression.

Hyperparameter optimization Some meta-models require pre-defined hy-
perparameters. An example is the architecture of a neural network, which
includes the number of layers/neurons or types of activation functions. The
performance of the sampling strategy depends highly on how well the meta-
model is adjusted to the task. Techniques like grid-search [153], random-
search [154], or evolutionary optimization [155] are established approaches to
optimize hyperparameters.

The two meta-models presented here that use hyperparameters, neural network,
and Gaussian process regression only use a limited set of hyperparameters.
For optimization, a pre-defined grid of parameter specifications was set up.
The optimization was done utilizing a grid of pre-defined hyperparameter
combinations. The available data is partitioned into a development and test
set for each iteration in the test process. After training the model for each
parameter combination with the development set, the mean-squared error for
the test set is calculated. After finishing the process, the best model is selected
for the sampling process.

Linear regression

Linear regression is one of the most basic regression concepts. The relationship
between an independent variable x ∈ R𝑛, also called explanatory variable, and
a dependent variable 𝑦 ∈ R, also called response variable, is assumed to
follow a linear model (LM). For meta-model based sampling, the explanatory
variable is a numerical expression of the concrete scenario specification, while
the response variable is the KPI value. The dependent variable is assumed to
be generated by a linear combination of the dependent variable with the formal
expression

90

4.4 Presentation of sampling strategies

𝑓 (x) = 𝛽0 + 𝛽1 ∗ 𝑥1 + ... + 𝛽𝑛 ∗ 𝑥𝑛 + 𝜖

= (𝛽0, 𝛽1, ..., 𝛽𝑛) ∗
©­­­­«

1
𝑥1

...

𝑥𝑛

ª®®®®¬
+ 𝜖 = 𝜷 ∗ x−𝑇 + 𝜖,

(4.28)

with 𝜖 ∼ (0, 𝜎2) being an error term that usually follows a normal distribution
and 𝜷 ∈ R𝑛+1 being the LM-parameters. For vector notation x ∈ R𝑛+1 is
the transformed explanatory variable that includes the 1 value that is multi-
plied with the intercept value 𝛽0 (hence 𝑓 (0) = 𝛽0). However, similar to all
regression problems, the real parameter set 𝛽 ∈ R𝑛+1 is unknown and thus
has to be estimated based on a sample set X = {x1, ..., x𝑙} with observed
response values Y = { 𝑓 (x1), ..., 𝑓 (x𝑙)} = {y1, ..., y𝑙}. For the LM-estimation
the following matrix notation is introduced:

y = X ∗ 𝜷 + 𝝐 , with

X =

©­­­«
1 𝑥1,1 . . . 𝑥𝑛,1
...

...
. . .

...

1 𝑥1,𝑙 . . . 𝑥𝑛,𝑙

ª®®®¬ , y =

©­­­«
𝑦1
...

𝑦𝑙

ª®®®¬ , 𝜷 =

©­­­­­«
𝛽0

𝛽1
...

𝛽𝑙

ª®®®®®¬
, 𝝐 =

©­­­«
𝜖1
...

𝜖𝑙

ª®®®¬ .
(4.29)

Getting an usable estimator for 𝜷 is done via the ordinary least squares esti-
mation (OLS). The vector of estimation errors, the so-called residuals, when
using an LM parameter vector 𝜷̂, is calculated with

e = y − X ∗ 𝜷̂. (4.30)

The OLS estimation is done by finding the 𝜷̂ that minimizes the mean-squares
error (MSE):

𝜷̂ = arg min
𝜷

MSE = arg min
𝜷

1
𝑙

(
(y − X ∗ 𝜷) ∗ (y − X ∗ 𝜷)𝑇

)
. (4.31)

91

4 Adaptive test case sampling for DNN-based perception functions

b)a)

Figure 4.16: Relationship between true underlying function and fitted model for linear regression
tasks. a) Sampled data points from the true underlying function with true parameters
𝛽0, 𝛽1. b) Fitted regression model using the available data points 𝑥𝑖 with estimated
parameters 𝛽0, 𝛽1.

For optimization, the function MSE is derived by 𝜷̂ and equated to 0 to deduce
the estimator

𝜷̂ =

(
X𝑇X

)−1
X𝑇y. (4.32)

The relationship between the underlying true function and an estimated model
is displayed in Fig. 4.16.

The advantages and disadvantages of LR models lie in their simplicity. Since
the estimation is calculated as a linear combination of the input variables,
each input variable 𝑥𝑖 has its slope parameter 𝛽𝑖 . The model does not assume
any interaction between the variables. Thus, each slope parameter 𝛽𝑖 directly
indicates the influence 𝑥𝑖 has on the estimation. This characteristic makes LR-
models one of the most intuitive machine learning models and easy to interpret.
If slope 𝛽𝑖 is positive, an increase in the variable 𝑥𝑖 will increase the model’s
output and vice versa. For example, if 𝛽fog is negative, the scenario variable
Fog is expected to have a negative influence on the KPI of the system-under-
test. Furthermore, the calculation of the estimator is efficient, even when large
amounts of data are observed.

However, LM models can only describe linear relationships between input
and output and ignore any possible interaction between variables. The models’
ability to capture complex relationships is limited and results can be inaccurate.

92

4.4 Presentation of sampling strategies

Hidden
Layer 3

Hidden
Layer 2

Hidden
Layer 1

B
ia

se
s

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

Sigmoid OutputInput 1

Input 2

Input 3

ReLU

Figure 4.17: Standard feed-forward neural network that can be used for regression tasks.

Neural network

The second option of a meta-model focuses on a standard feed-forward neural
network for regression. The functionality of neural networks is detailed in
Sec. 2.4. Fig. 4.17 visualizes a standard architecture for such tasks, although the
number of layers and nodes are variable. Using a sigmoid activation function
for final prediction is convenient for KPI estimation for metrics between 0 and
1.

The advantages and disadvantages of using a neural network-based meta-model
are contrary to a linear regression model. Neural networks can describe non-
linear relationships between input and output variables. Due to the connected
structure of neural networks, the model can capture interactions between input
variables (an intuitive example is an interaction between sun azimuth and sun
altitude) and are generally more capable.

On the other hand, one could argue that using a neural network as a meta-
model shifts the interpretability problem from the perception function towards
the meta-model. Furthermore, fitting a neural network requires several hyper-
parameters, such as architecture, learning rate, or training iterations.

93

4 Adaptive test case sampling for DNN-based perception functions

Gaussian Process Regression

Gaussian process regression (GPR), sometimes referred to as Kriging, differs
significantly from the other two meta-models. In contrast to deterministic
meta-models such as linear regression or neural networks, a Gaussian process
is a probabilistic model [92, 156]. Additionally to a prediction itself, GPR
generates an uncertainty estimation, indicating confidence in the prediction. A
detailed description of GPR is provided in Appx. B.

A Gaussian process is a special form of a stochastic process

{𝑋𝑡 |𝑡 ∈ X}, (4.33)

with 𝑋𝑡 being random variables indexed over the index set X. The index set
can be continuous or discrete.

A realization of a stochastic process is defined as the sequence of values
that results when drawing from the distribution of the random variable of the
stochastic process.

Then a realization can be described by a function

𝑦 = 𝑓 (𝑡), (4.34)

with 𝑓 (𝑡) being the outcome of random variable 𝑋𝑡 .

A stochastic process {𝑋𝑡 |𝑡 ∈ X} is called a Gaussian process if and only if
every finite selection of 𝑛 random variables from {𝑋𝑡 |𝑡 ∈ X} follows a n-
dimensional normal distribution. Hence, for {𝑡1, ..., 𝑡𝑛} ⊂ X, the distribu-
tion 𝑋 = (𝑋𝑡1 , ..., 𝑋𝑡𝑛) follows a n-dimensional normal distribution:

𝑋 ∼ N(𝜇, Σ), (4.35)

with 𝜇 ∈ R being the distributions mean vector and Σ ∈ R𝑛 being the distribu-
tions covariance matrix.

Similar to the other regression models, using Gaussian processes for regression
tasks requires assumptions on the data distribution. A stochastic process can
be interpreted as a distribution of functions. For Gaussian processes, this

94

Implementing proposed pipeline for fault detection

distribution is some n-dimensional normal distribution. The distribution of
realizations is then defined by

𝑓 (𝑋) ∼ N (𝑚(𝑋), 𝑘 (𝑋, 𝑋)), (4.36)

with 𝑋 = {𝑥1, ..., 𝑥𝑛} being the functions input domain, 𝑚(𝑋) being the
distributions mean vector function, and 𝑘 (𝑋, 𝑋) being the distributions kernel
function that generates the covariance matrix. The mean function is defined as
the expected value of a realization at the position 𝑥:

𝑚(𝑥) = E[𝑓 (𝑥)] . (4.37)

This expected value denotes the prediction that the Gaussian process returns
for a given point in the input space and can be interpreted analogously to the
output of a linear regression model or a neural network.

The kernel function returns the covariance between the realization at two
positions 𝑥 and 𝑥 ′. The covariance matrix is then calculated element-wise with

𝑘 (𝑥, 𝑥 ′) = E[(𝑓 (𝑥) − 𝑚(𝑥)) (𝑓 (𝑥 ′) − 𝑚(𝑥 ′))] . (4.38)

The purpose of the kernel function is to describe the connection between the
different positions of a realization function along the input axis. Furthermore,
the kernel 𝑘 (𝑥, 𝑥) denotes the point-wise variance of the Gaussian process and
the uncertainty related to the corresponding prediction 𝑚(𝑥).

95

Implementing proposed pipeline for fault detection

6 4 2 0 2 4 6
x

3

2

1

0

1

2

3

y

Distribution of posterior given one observation

sin(x)
2 2|1

2|1

(x1, y1)

6 4 2 0 2 4 6
x

3

2

1

0

1

2

3

y

Distribution of posterior given three observations

sin(x)
2 2|1

2|1

(x1, y1)

Figure 4.18: Posterior distribution of Gaussian process with 𝑚(𝑥) = 0 and RBF kernel given one
and three real observations from the underlying function 𝑓 (𝑥) = 𝑠𝑖𝑛(𝑥) . Addition-
ally, five samples from each posterior are drawn and plotted.

96

5 Implementing proposed pipeline
for fault detection

5.1 Overview
This chapter presents the implementation of a testing pipeline for an object
detector using synthetic image data. The modules in the overview Fig. 4.8
must be filled with concrete software tools to evaluate the pipeline. The ex-
periments are performed on a pedestrian detector network. First, image data
is generated that stresses the pedestrian detector and causes failures in the
prediction either by provoking false positives or false negatives. CARLA, a
state-of-the-art simulation software for automated driving tasks, is used for
image generation. The data generation process is structured using different
functional scenarios based on the European New Car Assessment Program
(Euro NCAP) framework for pedestrian test scenarios for Autonomous Emer-
gency Braking (AEB) systems [8]. Each functional scenario displays a driving
situation where an automated vehicle is confronted with a pedestrian intersect-
ing the ego vehicle’s path. Scenario variables of the logical scenario space
span a parameterized scenario space for each base context that can be varied.
Finally, the data generation is triggered for each concrete scenario out of the
logical scenario space to generate a closed-loop test run for a basic AEB sys-
tem. The synthetic image is fed to a custom-trained YOLOv5 [157] object
detector trained to detect pedestrians exclusively. The vehicle activates a brake
when the object detector correctly detects the pedestrian. The AEB controller
aims to evaluate whether the object detector can detect the pedestrian early
enough to avoid a collision in the concrete scenario. A custom KPI measure
was introduced, based on the original Time-to-Collision (TTC) measure, called
adjusted Time-to-Collision (aTTC), is introduced to quantify the performance.
Then the sampling strategies are implemented to control the data generation
process and iteratively select the concrete scenarios for the next round of data
generation. This process is displayed in Fig. 5.1.

97

5 Implementing proposed pipeline for fault detection

C

on
cr

et
e

Sc
en

ar
io

YO
LO

v5
 O

bj
ec

t
D

et
ec

to
r

S
ys

te
m

-u
nd

er
-T

es
t

Te
st

in
g

Pl
at

fo
rm

 -
cl

os
ed

-L
oo

p
C

A
R

LA
 S

im
ul

at
io

n

A
EB

 C
on

tr
ol

le
r

K

PI

ad
j.

Ti
m

e
to

co
llu

si
on

ad

j.
TT

C

A
da

pt
iv

e
Sc

en
ar

io
 S

am
pl

in
g

W
hi

ch
 V

al
ue

s
fo

r w
hi

ch
 S

ce
na

rio
Va

ria
bl

es
 c

au
se

 lo
w

 K
P

Is
?

H
ow

 to
 s

el
ec

t c
on

cr
et

e
Sc

en
ar

io
s

to
 p

ro
vo

ke
 S

uT
 F

ai
lu

re
s?

Te
st

 R
ep

or
tin

g

S

um
m

ar
y

of
 T

es
tin

g
R

es
ul

ts

Pr
ov

id
es

 b
as

ic
 S

et
-u

p
of

 S
im

ul
at

io
n

R
un

In

fe
re

nc
e

G
ro

un
d

Tr
ut

h

an

d

M
et

a
In

fo
rm

at
io

n

 Se

t o
f a

ll
Pr

ed
. f

or

co
nc

re
te

 s
ce

na
rio

Sp
an

 L
og

ic
al

 S
ce

na
rio

 S
pa

ce

Fu
nc

tio
na

l E
U

R
O

 N
C

AP
 S

ce
na

rio

C
on

cr
et

e
Sc

en
ar

io

Fu
nc

tio
na

l S
ce

na
rio

Lo
gi

ca
l S

ce
na

rio
 S

pa
ce

Pr
ov

id
es

 s
pe

ci
fic

 P
ar

am
et

er
 V

al
ue

s

Figure 5.1: Experimental pipeline to evaluate the proposed testing strategies. Definition and
structure follows Fig. 4.8 and equations in Sec. 4.2.

98

5.2 Designing a scenario space for adaptive sampling

5.2 Designing a scenario space for adaptive
sampling

Simulation platform

The experiments of this dissertation make use of CARLA(Car learning to
Act) [131] - Release 0.9.14 [158]. CARLA is an open-source driving simu-
lator developed to virtualize and support all development stages of automated
driving functions from prototyping to validation. CARLA is an established
simulation tool, used in a high number of recent work [159].

CARLA provides various layouts and blueprints for traffic assets, including
buildings, vehicles, pedestrians, vegetation, and street signs. These assets can
be assembled and spawned to generate on-demand traffic scenarios. CARLA
utilizes the free-to-use Unreal Engine 4 (UE4) [160] for high-quality rendering
and realistic physics simulation. In addition, an easy-to-use Python API can
control CARLA. The usage is designed as a server-client system in which the
client sends commands to the simulation server and receives the sensor output.
The relevant sensor types for testing an object detector are the RGB camera
and the instance segmentation sensor.

There are also pre-built maps that can be used for simulation. These maps
depict various driving environments in great detail and can be navigated by
traffic participants freely.

99

5 Implementing proposed pipeline for fault detection

Functional scenario set-up for pedestrian detection

As shown in Fig. 5.1, each simulation is set up on a functional scenario. The
functional scenario defines the scene and the objects of the scenario space
while being able to provide further context information, such as weather con-
ditions. For the experiments of a pedestrian detection network, eight func-
tional scenarios are assembled, all derived from expert knowledge rather than
data-driven approaches. The basic interactions between an ego vehicle and a
jaywalking/crossing pedestrian are derived from the Euro NCAP scenarios for
AEB systems for adult pedestrians [8]. The eight fundamental interactions are
displayed in Fig. 5.2. A functional scenario is defined for each interaction, de-
scribing the vehicles’ and pedestrians’ actions and defining additional vehicles
and their actions. Note that the functional scenario description for this imple-
mentation mainly focuses on layer 3 and layer 4 of the scenario model [139].
In the Euro NCAP framework, nearside refers to the side of the road the ego
vehicle is driving on (right side for right-hand traffic), while farside refers to
the opposite side of the road (left side for left-hand traffic). See the description
of layers in Fig. 4.5.

Layer 1+2+3: Each functional scenario is defined for a separate fixed road
segment with neither road geometry nor infrastructure being changed
during sampling.

Layer 4: The traffic participants and their paths are predefined for each func-
tional scenario. The core of each functional scenario is the interaction
between a pedestrian and the ego vehicle, which is different for each
scenario. These interactions are shown and described in Fig. 5.2 and
Tab. 5.1.

Layer 5: Weather and environmental effects have significant impact on per-
ception systems’ performance. The available factors of rain, fog, and
sun position are defined in the logical scenario space and not restricted
by the functional scenario description.

Layer 6: As the AEB controller does not rely on digital information, such as
digital map data and V2X communication, the testing process ignores
this layer.

100

5.2 Designing a scenario space for adaptive sampling

8. Car-to-Pedestrian

Turn-Right Farside

1. Car-to-Pedestrian

Crossing Nearside

2. Car-to-Pedestrian

Crossing Farside

3. Car-to-Pedestrian
Longitudinal Approaching

4. Car-to-Pedestrian

Longitudinal Overtake

5. Car-to-Pedestrian

Turn-Left Nearside

6. Car-to-Pedestrian

Turn-Left Farside

7. Car-to-Pedestrian

Turn-Right Nearside

Figure 5.2: Defined functional scenarios, derived from the pedestrian-vehicle interactions from
the Euro-NCAP scenarios for AEB systems for adult pedestrians [8].

101

5 Implementing proposed pipeline for fault detection

F1 Urban environment with bus station. Ego vehicle is passing a parking bus.
A pedestrian is located behind the bus. The pedestrian disregards the traffic
rules and crosses the street from the nearside in front of the vehicle.

F2 Urban environment with straight road with intensive vegetation on both
sides and bus station. Ego vehicle is passing the station with an approaching
passenger car on the opposite side of the road. A pedestrian disregards the
traffic rules and crosses the street from the farside in front of the vehicle.

F3 Urban environment with bus station. The ego vehicle is passing the sta-
tion with a vehicle leading on the left lane of the track. A pedestrian is
approaching the station on the ego vehicle’s lane.

F4 Urban environment with vegetation on the right side of the road. The ego
vehicle is following the road with a vehicle leading on the left lane of the
track. The vehicle is overtaking a pedestrian in the ego vehicle’s lane.

F5 Urban environment with T-junction. The ego vehicle turns left with a
leading vehicle on the new lane. A pedestrian crosses the new track from
the nearside on a regular crosswalk.

F6 Urban environment with T-junction. The ego vehicle turns left with an
approaching vehicle turning right from the opposite lane. A pedestrian
crosses the new track from the farside on a regular crosswalk.

F7 Urban environment with T-junction. The ego vehicle turns right with an
approaching passenger car crossing the junction and a stationary passenger
car in the left lane of the ego vehicle’s new driving track. A pedestrian
disregards the traffic rules and crosses the street from the nearside in front
of the vehicle to board the stationary passenger car.

F8 Urban environment with T-junction. The ego vehicle turns right with
an approaching passenger car waiting on the new track and an impeding
vehicle on the new track. A pedestrian crosses the new track from the
farside on a regular crosswalk.

Table 5.1: Defined functional scenarios, derived from the pedestrian-vehicle interactions from the
Euro-NCAP scenarios for AEB systems [8].

102

5.2 Designing a scenario space for adaptive sampling

a) S1_c2p_crossing_nearside

c) S3_c2p_longitudinal_approaching

b) S2_c2p_crossing_farside

d) S4_c2p_longitudinal_overtake

e) S5_c2p_turn_left_nearside

g) S7_c2p_turn_right_nearside

f) S6_c2p_turn_left_farside

h) S8_c2p_turn_right_farside

Figure 5.3: Functional scenarios as implemented in the experiments.

103

5 Implementing proposed pipeline for fault detection

Logical scenario space

The following sub-sections detail the sampling process that can control the dif-
ferent logical scenario variables that are parameterized and the exact scenario
space results from the options that the functional scenario offers.

Position and Velocity of Pedestrian

Positional information for the traffic participants. Partial occlusion of objects
affects the detection performance and may cause system failures through failed
or late detection. For each functional scenario, there is a 𝑆𝑃𝑒𝑑𝑆ℎ𝑖 𝑓 𝑡 variable,
which is an offset for the pedestrian’s initial position and a 𝑆𝑃𝑒𝑑𝑆𝑝𝑒𝑒𝑑 variable
that sets the movement speed of the pedestrian with a range of up to ten
kilometers per hour.

Pedestrian Blueprint

The different pedestrian blueprints change the appearance of a pedestrian in the
image. Various pedestrian blueprints are available for traffic simulation. These
objects differ in many aspects, including size, body shape, clothing, and skin
color, allowing to inspect the influence of these characteristics on pedestrian
detection performance.

Pedestrian Animation Behavior

As the behavior and movement of pedestrians significantly influence automated
driving systems [161], they must be included in the simulation. Therefore,
there is a set of six animations that are assigned to the pedestrians’ movement.
The skeleton alignments during the animations are generated by virtualizing
real world recordings via the open-source website Deepmotion [162] and then
overlaid with the skeleton inside the Carla simulation [4]. The pedestrian’s
speed is then used to adapt the animation speed.

The set of pedestrian animations is 𝑆Ped. Animation with the appearance being
self-explanatory.

104

5.2 Designing a scenario space for adaptive sampling

𝑆Ped. Animation = {walking, texting, crouching, limping, drunk, stumble}
(5.1)

Weather Variables

S𝑆𝑢𝑛−𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (Numerical) The sun parameters azimuth and elevation set the
sun’s position in the simulation and the daytime. With decreasing el-
evation, the sun’s intensity decreases, creating a sunset. If decreased
further, there is a seamless transition into the night. Different daytimes
can be seen in Fig. 5.4.

S𝐹𝑜𝑔 (Numerical) The overall thickness of the fog and the visual range can
be changed.

S𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (Numerical) The precipitation parameter refers to the severity
of rain in the form of small streaks in the images and to how puddles
cover the road. Ponding affects how light is reflected on the street.

105

5 Implementing proposed pipeline for fault detection

a) Sun

c) Rain

e) Fog

b) Afternoon

d) Sunset

f) Night

Figure 5.4: Different weather and daytime effects by the simulation. These effects can have major
implications on the detection performance of perception functions.

106

5.3 Autonomous emergency braking controller

5.3 Autonomous emergency braking controller
With a custom-trained pedestrian detection model at its core, an AEB controller
is implemented to test the model’s ability to avoid a pedestrian-related collision.
An ego vehicle is simulated in the selected functional scenario and equipped
with an RGB-camera sensor to generate image data with corresponding ground
truth. With a pre-defined velocity, the vehicle follows a path with a pedestrian
crossing during the simulation. A visualization is displayed in Fig. 5.5.

Iteratively, the pedestrian detector is applied to the image data. If no pedestrian
is detected, the controller will follow the original path. If there is a true
positive detection, the brake is activated with the braking intensity equaling
the detection’s confidence. Otherwise, the controller aims to hold the car’s
speed constant. The braking signal does not influence the steering command.

While an operational AEB controller does not have access to the ground truth
information of real traffic, this avoids correct braking caused by a false positive
while the pedestrian is not detected. Thus, false negatives during the simulation
run cause delayed braking, while false positives do not impact the simulation
directly. However, the false positives are indirectly accounted for during the
KPI calculation, as the number of false positives lowers the test result, detailed
in Sec. 5.5. Thus, during the simulation run, the AEB controller evaluates
whether the pedestrian detector can detect the object early enough to avoid
collision with full braking.

5.4 System-under-Test: YOLOv5
Architecture

As mentioned in Sec. 2.5, the you only look once (YOLO) framework [85]
is a popular concept for object detection due to a good balance between
detection accuracy and speed. Thus, a YOLO network is used as a system-
under-test for the experiments and forms the core of the AEB controller.
Running with low latencies is a key requirement for perception functions
used in automated vehicles. Since its introduction in 2016, the origi-
nal YOLO (sometimes called YOLOv1) framework has been optimized
multiple times. The YOLO versions with highest academic impact are

107

5 Implementing proposed pipeline for fault detection

Concrete Scenario

Functional Scenario

Logical Scenario Space

Testing Platform - closed-Loop

CARLA Simulation

KPI Calculation

Prediction Evaluation

AEB - Controller

Image-based Object
Detector

Closed-Loop
Simulation

Inference

Control Command

Sampling Strategy

Test Reporting

Figure 5.5: Simulation framework for SuT evaluation. Carla, the simulation software generates
image data with corresponding ground truth. Depending on whether pedestrians are
detected, the simulated vehicle activates the brake to avoid a collision.

YOLO (2016) [85], YOLOv2&YOLO9000 (2017) [163], YOLOv3 (2018)
[164], and YOLOv4 (2020) [157].

The general concept behind YOLO is already described in Sec. 2.5. The YOLO
method generally refers to an end-to-end trainable neural network that takes an
input and generates a grid-like output of the image. Then, for each grid cell, the
network predicts various values that indicate whether there is an object with
its center in that grid cell. These values include the probability of an object
being present, the position and size of the potential object’s bounding box, and
the class probabilities. A visualization of this grid is displayed in Fig. 5.6.

A more in-depth description of YOLOv5 [165] is provided, although black-box
testing is unaffected by an object detector’s architecture.

108

5.4 System-under-Test: YOLOv5

Backbone Most of today’s neural networks resort to so-called backbone (or
feature extractor) networks for initial feature extraction. The backbone
transforms the input image into a standardized feature space that serves
as input for the following network layers and can be interpreted as an
encoder [166]. The advantage of using established backbones is that the
user can apply an initial encoding of the input with a network that has
been proven useful for the task. Suppose the backbone is already pre-
trained to identify important image features for a certain application, such
as pedestrian detection or cancer cell segmentation. The following neural
network stages can be learned more efficiently in that case. YOLOv5 is
built on a backbone called CSPDarknet53 [167].

Neck A neck is used if the backbone generates feature maps for different sizes
(low- and high-dimensional features). The neck is an aggregation logic
that collects the data from different sizes and passes it on to the prediction
network. YOLOv5 utilizes Spatial Pyramid Pooling (SPP) and Path
Aggregation Network (PANet). SPP pools from different output layers
of the backbone network to generate a fixed-length feature vector that is
then passed on. PANet regulates how the different data from the SPP
and feature maps from the backbone are combined.

Head The head of an object detector generates the actual prediction of the
whole model. YOLOv5 takes over the established head of the previ-
ous version, YOLOv3, which follows the original YOLO logic above,
although there are extensions. One significant addition was introduced
with YOLOv2: Anchor boxes - while the original YOLO was only capa-
ble of predicting one object for any given grid cell, the newer model hold
for each grid cell several predefined bounding boxes. The probability
of containing an object with the potential offset is predicted for each
candidate bounding box.).

Dealing with the domain gap

There are limitations to simulative testing. The most significant is the domain
gap (see Sec. 4.1). In addition, while synthetic and real images appear similar
to a human observer, the behavior of neural networks may differ. Therefore, a

109

5 Implementing proposed pipeline for fault detection

Figure 5.6: Visualization of YOLO output. The meta information of a potential object with its
center in that grid cell is predicted for each grid cell. This process is done for different
grid sizes.

model that achieves good results on virtual images may not be reliable for real
images [118].

This can be addressed using a post-processing measure called domain adap-
tation image data [168]. There are methods to change an image’s appearance
from a source domain to a target domain. For example, using a domain adap-
tation model, images from the source domain "virtual data" can be translated
into the target domain "real data". Another approach is to improve image
rendering software to make the simulation more photo-realistic. For instance,
the virtual KITTI 2 data set improves the virtual KITTI data set and offers
improved graphic quality [50].

The experiments are performed solely in the virtual domain ignoring the do-
main gap. The object detector is trained to detect pedestrians in the virtual
domain and tested in the virtual domain. Hence, training data from the sim-
ulation framework has to be generated to adjust the object detector for this
domain. This training data is generated randomly to not manually bias the
object detector, as it would be with real world recorded data.

By randomly spawning vehicles and pedestrians on the map and steering them
to random positions, object tracks for the training data can be generated.
First, a data set for development was generated using these functionalities and
randomization of the weather parameters. Next, 3,000 images were assembled
for each available map using this random data generation. Afterward, the data

110

5.5 Key performance indicator: adjusted Time-to-Collision

Figure 5.7: YOLOv5 custom training process. Training on randomly generated image data was
performed to adapt the object detector for pedestrian detection on synthetic image data.

was split into traditional training/validation sets with a ratio of 90% to 10%
and used to train the object detector.

5.5 Key performance indicator: adjusted
Time-to-Collision

To measure the performance of the object detector, a KPI metric must be
defined for the AEB controller. Usually, the standard benchmark measure for
object detectors is the average precision defined in Sec. 2.5. However, the
average precision is usually used to evaluate an object detector’s performance
for a large set of images since the interpolation of the ROC curve requires many
predictions and ground truth objects. Hence, the average precision may not be
helpful for such an application. Furthermore, the average precision is mainly
safety-relevant information, such as whether a detected object is on a collision
path with a vehicle or a non-critical part of the road geometry.

An established way to measure the criticality of driving situations is the Time-
to-Collision (TTC)-measure. In short, the TTC measures the time left until
two traffic objects on a collision path collide. For TTC

111

5 Implementing proposed pipeline for fault detection

𝑇𝑇𝐶 =

{
0 if collision happened
| |𝑥𝐶𝑃−𝑥𝑒𝑔𝑜 | |−2.5

𝑣𝑒𝑔𝑜
else,

(5.2)

with 𝑥𝐶𝑃 being the coordinates of collision point, 𝑥𝑒𝑔𝑜 being the coordinates
of the ego, and 𝑣𝑒𝑔𝑜 being the speed of the ego vehicle. The term −2.5 adjusts
for the size of ego-vehicle since 𝑥𝑒𝑔𝑜 refers to the vehicle’s center. There is a
contact if the distance between a pedestrian’s and vehicle’s coordinate is 2.5.

To quantify the SuT performance during the entire simulation run, the minimal
TTC is selected and adjusted for false positives. This is done due to the
omission of false positives during the simulation. The adjusted TTC measure
for a simulation run with 𝑛 time steps is defined by

adj. TTC =
min𝑖 𝑇𝑇𝐶𝑖

1 + ∑𝑛
𝑖 #𝐹𝑃𝑖

, (5.3)

with 𝑇𝑇𝐶𝑖 being the 𝑇𝑇𝐶 value at time step 𝑖 and #𝐹𝑃𝑖 being the amount of
false positives at time step 𝑖.

5.6 Visualization of experimental process
Displaying a dynamic simulation process in the form of a single graphic is
hardly possible. A format has been introduced for visualization of testing
results, as shown in Fig. 5.8.

a) Single Frame from Simulation A single image is selected from the simu-
lation and displayed with the ground truth bounding box of a pedestrian
in blue and the predicted bounding box with prediction confidence in
red.

b) Meta-Information of Test Execution Contains functional scenario ID, test
strategy used during test execution, and the execution ID during the test
execution. The execution ID refers to the position during the simula-
tion process: 28th tested concrete scenario during random testing on
functional scenario F1.

c) Test Result Displays the resulting minimal adj. TTC during the test exe-
cution.

112

5.6 Visualization of experimental process

d) Concrete Scenario Specifications Contains the concrete scenario values
of 𝑠 ∈ S𝑖 for each scenario variable during the test execution.

e) Test Result Signals Displays the course of key test execution signals dur-
ing the full simulation. The blue line displays the prediction confidence
of the true positive during each step with a zero value if there is no de-
tection. The green line displays the speed of the ego vehicle. The purple
line shows the adj. TTC during each time step of the test execution with
a red marker if the value goes below the threshold 𝑡 = 0.1.

f) Time Stamp of Image The red line shows the time step during the simula-
tion from which the frame in a) is drawn.

113

Results of pipeline for fault detection

d) Concrete Scenario

Specifications

b) Meta-Information

Test Execution

a) Single Frame from Simulation

e) Test Result Signals
 f) Time Stamp of Image

c) Test Result

Figure 5.8: Visualization of execution run of concrete scenario. The parts of the image are
explained in Sec. 5.6.

114

6 Results of pipeline for fault
detection

6.1 Process set-up and Scenario variable
selection

Utilizing the presented methods from Sec. 4.4.3 and tools from Sec. 5.1,
an experimental implementation of the concepts in Sec. 3.4.3 is performed.
Tab. 6.1 shows the implemented testing experiments. On each of the eight
functional scenarios F1, ..., F8, all six test strategies are run with a given
"test budget" of 1000 test executions, which is chosen because, during the
experiments, the improvement in failure detection for adaptive testing has
shown to bottom out after around 800-1,000.

The adaptive test strategies are executed batch-wise with a batch size of 𝑛𝑏 =

20. While the batch size does not impact random testing, t-wise testing, or
evolutionary testing, for meta-model-based testing, the batch size determines
how many data points are added to the meta-model training data before re-
training.

The failure threshold 𝑡 for defining the execution of a concrete scenario as
failure is chosen as 𝑡 = 0.1, hence

𝑎𝑑𝑗 .𝑇𝑇𝐶 ≤ 0.1 ⇔ failure detected. (6.1)

Overall, that implies that the number of test executions is calculated with

test budget × # strategies × # functional scenarios = 1000 × 6 × 8 = 48000.

Each concrete scenario took about 25-35 seconds for test execution. For 1000
test executions this adds up to 6.9-9.7 hours per test strategy and functional

115

6 Results of pipeline for fault detection

scenario and 333.3-466.6 hours for all experiments, excluding the test strategy
overhead time for model training.

Other parameters for the simulation process are defined in Sec. 4.3 with 𝜖 (=
10% * number of logical scenario dimensions) being the size of the metric
ball and 𝑡𝜔 = 5 being the threshold for the relevance score. These parameters
influence the size of the failure regions that prevent oversampling. Analysis
of several simulation runs showed that this selection yields a good balance
between avoiding oversampling and not restricting the selection process too
much.

1 Random Testing Random sampling of test cases using independent
discrete or continuous uniform distributions for
each scenario variable.

2 Pair-wise Testing Test case sampling based on t-wise testing with
𝑡 = 2 (see Sec. 4.4.1, Fig. 4.13). The test plan is
initialized at the beginning of the testing process
and then executed all at once. Pair-wise testing
plan contains 986 test cases which were filled up
to 1,000 by adding random test cases.

3 Evolutionary Testing Iterative test case selection using evolutionary test-
ing (see Sec. 4.4.2, Fig. 4.13). The test selection
is executed with a batch size of 𝑛𝑏 = 20. After
each executed batch, the evolutionary sampling is
performed.

4 LR Testing Iterative test case selection using meta-model
based testing with linear regression (see Sec. 4.4.3,
Sec. 4.16, and Fig. 4.14). The test selection is ex-
ecuted with a batch size of 𝑛𝑏 = 20.

5 NNR Testing Analogous to LR Testing, while using neural net-
work regression.

6 GPR Testing Analogous to LR Testing, while using Gaussian
process regression.

Table 6.1: Implemented testing strategies.

116

6.1 Process set-up and Scenario variable selection

Strategy evaluation

For evaluating of effectiveness and efficiency of the test strategies, a range
of measures has been defined in Sec. 4.3. In the following, the practical
implementation of these measures is outlined.

Failures detected

The most straightforward measure is the count of detected failures, which is
given by the number of test cases in which the adj. TTC falls below threshold 𝑡.
Since all experiments are carried out with the same amount of test executions,
this measure is comparable. However, it does not consider the efficiency of the
test strategies during different phases of the testing process.

Saved cost of testing

Recall from Def. 4.17 the definition of the C-measure which measures saved
costs for test executions to detect 𝑛 failures through an intelligent test strategy
relative to random testing. Formally, the C-measure is expressed by Eq. 4.20:

𝐶𝑛-Measure = 1 − 𝐹𝑠
𝑛

𝐹𝑟
𝑛

,

where 𝐹𝑠
𝑛 is the F-measure (Eq. 4.19) of the test strategy for 𝑛 failures and

𝐹𝑟
𝑛 is the F-measure for random concrete scenario selection for 𝑛 failures. For

practical implementation, 𝑛 is chosen as the number of failures detected within
the test budget.

To calculate the 𝐶𝑛 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 (saved costs of test executions of adaptive
strategy compared to random testing) for an intelligent test strategy, at least
one failure has to be detected by random testing, with the test strategy detecting
at least as many failures, as random testing. Since the first condition is not
fulfilled for F1 and F8, a work-around has to be found without continuing
random testing as this does not guarantee detecting any failure. The work-

117

6 Results of pipeline for fault detection

Table 6.2: Discretization of continuous variables. Including the categorical variables Animation
and Pedestrian Blueprint, there are 8102 2-wise combinations.

Variable Name min. Value Step Size max. Value

Rain Intensity 0 10 100
Fog Intensity 0 10 100
Sun Azimuth 0 30 360
Sun Altitude -20 10 90
Pedestrian Shift -0.5 0.1 0.5
Pedestrian Speed 0 0.25 3

around was done by assuming that for the next test execution a failure is found,
hence the transformed formula for Eq. 4.20 is given by

𝐶1-Measure = 1 −
𝐹𝑠

1
𝐹𝑟

= 1 −
𝐹𝑠

1
1001

. (6.2)

Combinatorial coverage

Combinatorial coverage is derived from the idea of combinatorial testing and
t-wise coverage (compare to Sec. 4.4.1). First, continuous variables are dis-
cretized by defining intervals in which the values can fall. Then, for the discrete
testing space, all possible 2 − wise combinations are generated (compare to
Fig. 4.12). Overall, including the categorical variables, there are 8102 2-wise
combinations. Finally, the test strategy is evaluated by the fraction of 2−wise
combinations covered by the tested concrete scenarios relative to the total
2 − wise combinations. Furthermore, the diversification of detected failures
can be measured similarly to evaluate whether the test strategy detected a wide
variety of failure causes or just a high number of slight variations of a few
failures.

118

6.2 Random sampling and pair-wise testing

6.2 Random sampling and pair-wise testing
Applying random sampling establishes a baseline that the result of sampling
strategies can be held against. The next batch of concrete scenarios is randomly
selected at each iteration of random sampling without any particular strategy.
This should resemble the stochastic data collection that occurs in real traffic
and a missing test strategy.

The results for all functional scenarios using random testing are displayed in
the scatter plots Fig. 6.1 and Fig. 6.2. Each point represents one test execution,
with the y-axis representing the resulting adj. TTC of the test execution. The
position of the x-axis displays the position in the total testing process in %, with
the first concrete scenario execution plotted on the left and the last concrete
scenario execution on the right. Additionally, the plot shows the average adj.
TTC for each testing batch.

The plots visualize one of the initial hypotheses of the dissertation (see Sec. 1.3).
Failures are sparsely distributed, and to rely on random data collection to gen-
erate failures requires significant computation resources. Especially the results
of functional scenarios F4, F5, F6, and F8 display this predicament. In these
functional scenarios, the random testing strategy did not detect a concrete
scenario in which the object detector could not avoid a collision, formally
defined as 𝑎𝑑𝑗 . 𝑇𝑇𝐶 < 0.1. Each functional scenario has its own ceiling
for adj. TTC, depending on the scenario set-up, such as the point when the
pedestrian comes into the vehicles’ view. Furthermore, for each functional
scenario, the fluctuation of adj. TTC varies. This can be attributed to the
different difficulties that the functional scenarios have.

Table 6.3: Resulting number of detected failures Θ1,000 for 1,000 test executions using random
sampling and pair-wise sampling.

Strategy F1 F2 F3 F4 F5 F6 F7 F8

Random Testing 1 4 2 0 0 0 6 0
Pair-wise 0 1 0 2 0 2 4 0

119

6 Results of pipeline for fault detection

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Individual Test Cases
Average adj. TTC for each Test Batch

Functional Scenario: F1_c2p_crossing_nearside
 / Test Strategy: random_testing

Testing Process - 100% = 1000 Test Cases

ad
j.

TT
C

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Individual Test Cases
Average adj. TTC for each Test Batch

Functional Scenario: F2_c2p_crossing_farside
 / Test Strategy: random_testing

Testing Process - 100% = 1000 Test Cases

ad
j.

TT
C

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Individual Test Cases
Average adj. TTC for each Test Batch

Functional Scenario: F3_c2p_longitudinal_approaching
 / Test Strategy: random_testing

Testing Process - 100% = 1000 Test Cases

ad
j.

TT
C

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

Individual Test Cases
Average adj. TTC for each Test Batch

Functional Scenario: F4_c2p_longitudinal_overtake
 / Test Strategy: random_testing

Testing Process - 100% = 1000 Test Cases

ad
j.

TT
C

Figure 6.1: Test results using random testing for F1 − F4. Each point represents the result of the
simulation execution for a concrete scenario, with the KPI result being on the y-axis
and the position within the testing process on the x-axis.

120

6.2 Random sampling and pair-wise testing

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Individual Test Cases
Average adj. TTC for each Test Batch

Functional Scenario: F5_c2p_turn_left_nearside
 / Test Strategy: random_testing

Testing Process - 100% = 1000 Test Cases

ad
j.

TT
C

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Individual Test Cases
Average adj. TTC for each Test Batch

Functional Scenario: F6_c2p_turn_left_farside
 / Test Strategy: random_testing

Testing Process - 100% = 1000 Test Cases

ad
j.

TT
C

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Individual Test Cases
Average adj. TTC for each Test Batch

Functional Scenario: F7_c2p_turn_right_nearside
 / Test Strategy: random_testing

Testing Process - 100% = 1000 Test Cases

ad
j.

TT
C

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

Individual Test Cases
Average adj. TTC for each Test Batch

Functional Scenario: F8_c2p_turn_right_farside
 / Test Strategy: random_testing

Testing Process - 100% = 1000 Test Cases

ad
j.

TT
C

Figure 6.2: Test results using random testing for F5 − F8. Each point represents the result of the
simulation execution for a concrete scenario, with the KPI result being on the y-axis
and the position within the testing process on the x-axis.

121

6 Results of pipeline for fault detection

0

20

40

60

80

100

Precipitation
100

0
0

20

40

60

80

100

Fog Intensity
100

0
0

100

200

300

Sun Azimuth
360

0
−20

0

20

40

60

80

Sun Altitude
90

−20

−0.4

−0.2

0

0.2

0.4

Ped. Shift
0.5

−0.5
0

1

2

3

Ped. Speed
3

0
Walker01
Walker02
Walker03
Walker04
Walker05
Walker06
Walker07
Walker08
Walker09
Walker10
Walker11

Ped. BP

walking

texting

crouching

limping

drunk

stumble

Ped. Ani

Figure 6.3: Parallel coordinates plot for Random Testing and functional scenario F2. Each of the
4 lines represent one failure with the position on each scale representing the concrete
scenarios value for the respective variable.

As expected for a test process without any strategy, the average adj. TTC for
each batch does not change significantly during the testing process, ignoring
the noise infused by the random sampling.

Tab. 6.3 shows the number of failuresΘ1,000 detected in 1,000 test executions of
random testing and pair-wise testing. As already mentioned, for four functional
scenarios - F4, F5, F6, and F8 - no failure is detected. Compared to random
testing, the also non-adaptive pair-wise testing shows no clear improvement
towards random testing, hence not supporting previous work that suggests
improved failure detection using combinatorial testing [169]. While detecting
failures in F4 and F6, pair-wise testing fails to detect any failure in F1 and F3.

Fig. 6.3 displays a so-called parallel coordinates plot for the failures during
random testing in F2. Each plot line represents the concrete scenario variable
values for the failure, hence displaying high dimensional data points in an
intuitive 2D diagram. I.e., the plot visualizes how all failures occurred with
the rain intensity above 96%, which assists in identifying the blind spots causing
failures. Fig. 6.4 shows extracts from two of these failures - one at night and
one at day.

122

6.3 Evaluation of adaptive testing

Figure 6.4: Visualization of two failures from random testing on F2.

6.3 Evaluation of adaptive testing
Failure detection of adaptive testing

Tab. 6.4 displays the number of failures in 1,000 test executions using all
sampling strategies, including the adaptive ones. The data highlights the

123

6 Results of pipeline for fault detection

Table 6.4: Resulting number of detected failures Θ1,000 for 1,000 test executions using different
sampling strategies.

Strategy F1 F2 F3 F4 F5 F6 F7 F8

Random Testing 1 4 2 0 0 0 6 0

Pair-wise 0 1 0 2 0 2 4 0

Evolutionary 1 28 6 19 24 91 118 11
LR 0 36 32 13 4 38 63 7
NNR 3 42 38 23 15 38 159 21
GPR 3 40 11 15 12 38 107 8

effectiveness of adaptive test strategies relative to non-adaptive random or
pair-wise testing. In all functional scenarios (see. Sec. 4.4), the adaptive
strategies outperform the non-adaptive strategies significantly. Comparing the
adaptive strategies, evolutionary testing detected the most failures in six out of
eight functional scenarios, leading by a high margin in F6 and F7.

The three options for the meta-model based testing show different levels of
detected failures, with GPR and NNR outperforming the LR in all but func-
tional scenarios. Overall, the comparison between GPR and NNR shows an
advantage of NNR based testing. The NNR outperforms the GPR in all but
two scenarios and tying in F1 and F6.

Overall, the evolutionary testing showed comparable results to meta-model
based testing and detected failures in each functional scenario. In F5 and F6,
the evolutionary sampling outperforms the other models while trailing in all
other functional scenarios.

The most striking statistic is the performance of evolutionary testing in F6
compared to the meta-model based strategies. Here, the number of failures is
2.4 times higher than the GPR, with 91 to 38 failures. This functional scenario
serves as an optimal case study for a comparison of the different strategies.

To look deeper into this observation, Fig. 6.5 a) displays the parallel coordinates
plot of the evolutionary testing. The visual analysis shows that the detected

124

6.3 Evaluation of adaptive testing

a)

b)

Figure 6.5: a) Parallel coordinates plot for evolutionary testing on functional scenario F6. Each line
represents one of the 91 failures. The 80 of these failures that accord in 𝑆Sun altitude =

0.47◦ are colored blue, while the failures that differ from this pattern are highlighted in
red. b) Parallel coordinates plot for the failures detected by meta-model based testing
using GPR on functional scenario F6. The failure with 𝑆Sun altitude = 0.28◦ is colored
in red.

failures follow a very distinct pattern. Each line represents one of the 91
failures. For visualization, the 80 failures that include 𝑆Sun altitude = 0.47◦ are
colored blue, while the failure that differs from this pattern is displayed in red.

125

6 Results of pipeline for fault detection

b)

a)

Figure 6.6: Visualization of two test executions during testing in F6. a) Single failure detected
by evolutionary test strategy with 𝑆Sun altitude = 0.47◦ . b) Single failure detected by
meta-model based testing using GPR with 𝑆Fog intensity = 89.1%.

Overall, this pattern (colored in blue) shows that the failure source mainly
originates from

𝑆Sun altitude = 0.47◦ ∧ 𝑆Ped. speed < 0.73m/s. (6.3)

126

6.3 Evaluation of adaptive testing

One of these failures is displayed in Fig. 6.6 a). Observing the test execution
reveals that the pedestrian was not detected during this simulation run due to
bad lighting conditions. Furthermore, due to the pedestrians’ low speed, the
pedestrian stays in the dark corner on the lower left side of the cameras’ per-
spective. However, from the human perspective, the outlines of the pedestrian
are still visible. The wide variety of failures detected by evolutionary testing
can be explained by the fact that if these two scenario conditions are fulfilled,
the values of the other conditions become insignificant, highlighting the ex-
ploitative properties of evolutionary sampling. I.e., the pedestrians’ animation
is irrelevant if the contrast to the background is too small. As a side note,
this failure pattern also highlights the importance of traffic infrastructure. For
𝑆Sun altitude < 0◦, the traffic lights activate, making pedestrians more visible.
For higher sun altitudes, the environmental lighting is better as well.

There are failures differing from above pattern with 𝑆Sun altitude ≫ 0.47◦ (≫
being defined as "significantly higher"). These are colored in red in Fig. 6.5 a)
and all comply with

𝑆Fog intensity > 90.1% ∧ 𝑆Ped. speed < 1.06m/s ∧
𝑆Ped. blueprint ∈ {W 07, W 08, W 09} ∧ 𝑆Ped. ani ∈ {stumble, crouching}.

(6.4)

This corresponds with the main failure pattern of meta-model based testing
using GPR, which accords with the results of the other meta-model based
testing strategies. However, the specific value ranges slightly differ. These
results are displayed in Fig. 6.5 b). A visualization of one detected failure
during meta-model based testing using GPR is shown in Fig. 6.6 b). Due
to the low speed, relatively high fog level, and the vegetation at the side of
the road, the perception function misses the pedestrian crossing from the left
side. The pedestrian gets detected by the YOLOv5 at time step 33 but is lost
again after six time steps, leading to a collision. While the pedestrian is hardly
visible in this scenario, even for the human eye, there is no obstruction, and
the pedestrians’ outlines are still recognizable.

On the other hand, a single failure was detected by GPR that corresponds with
Eq. 6.3. This failure with 𝑆Sun altitude = 0.26◦ is highlighted in Fig. 6.6 b).

127

6 Results of pipeline for fault detection

b)

a)

Figure 6.7: Visualization of non-failure test execution during evolutionary testing.

The fact that only a few instances of the significant failure pattern Eq. 6.3 are
detected by meta-model based testing can be explained by attributes of fitting
a continuous meta-model on a brittle failure pattern. For 𝑆Sun altitude < 0, the
traffic lights activate (see Fig. 6.7 a) / adj. TTC = 1.29s), making the pedestrian
visible. While for 𝑆Sun altitude ⪆ 1.0, the natural sunlight makes the pedestrian
visible enough for the object detector (see Fig. 6.7 b) / adj. TTC = 1.03s).
Then, the continuous function smooths the predicted values in this range. On
the contrary, evolutionary testing excels in exploiting these patterns, due to the
mutation feature of just changing a subset of scenario variables. If the sweet

128

6.3 Evaluation of adaptive testing

Table 6.5: 𝐶-Measure for 1,000 test executions using different sampling strategies, stating the
saved fraction of test executions by an intelligent adaptive strategy. n/a indicates that
the strategy did not match the amount of failures detected by random testing.

Strategy F1 F2 F3 F4 F5 F6 F7 F8

Pair-wise n/a n/a n/a 0.34 n/a 0.58 n/a n/a

Evolutionary 0.75 0.57 -2.35 0.98 0.93 0.79 0.79 0.75
LR n/a 0.77 0.58 0.82 0.86 0.92 0.80 0.84
NNR -0.12 0.88 0.85 0.92 1.00 0.87 0.79 0.79
GPR -0.08 0.70 0.35 0.85 0.84 0.94 0.83 0.97

spot of Eq.6.3 is detected once, the mutants of this parent element are likely to
fall into this category.

However for larger failure patterns including the bigger ranges involving a
higher number of variables, meta-model based testing using GPR or NNR
have shown to more effective.

Saved cost of adaptive testing

While failure detection numbers focus on the absolute amount during the test
budget, the introduced 𝐶 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (see Def. 4.17) evaluates how fast a
certain level of failures has been reached relative to random testing. Thus, a
high number near 1 indicates an earlier testing success, with a negative number
indicating even slower testing success than pure random sampling. Tab. 6.5
shows the results during the experiments.

The meta-model based testing leads the table in six of the eight functional sce-
narios, evolutionary testing leading in F1 and F4. The six functional scenarios
are evenly distributed between the usage of GPR and NNR. Overall, in each
functional scenario, the amount of test executions could be reduced by above
75%, indicating the efficiency gain of adaptive testing.

129

6 Results of pipeline for fault detection

The first striking observation is the n/a values for pair-wise testing and meta-
model based testing using LR, indicating functional scenarios in which these
testing processes failed to detect enough failures for a qualifying value. Fur-
thermore, in F1 and F3, there are negative values for the𝐶-Measure, indicating
that these testing processes reached the required number of failures later than
random testing. In general, each adaptive strategy has scored a negative value
or n/a in at least one functional scenario.

Another observation is that in only three scenarios, the strategy with the most
detected failures is not the strategy that achieves the highest 𝐶-Measure. This
also applies to F6 in which the evolutionary testing massively outperformed
the other strategies. Evolutionary testing tends to require more test executions
until the process detects its first failures but exploits these failure causes more
efficiently. This fits to the observations made in Sec. 6.3, with the mutation
step of evolutionary testing being effective in expanding on detected failures.

Coverage analysis of adaptive testing

Up to this point, the analysis focuses plainly on the strategies’ ability to detect
failures. No attention was paid to the variety of failures and how diverse
the test case selection is. With the methodology from Sec. 6.1, the pair-wise
combinatorial for failures 𝛾 𝑓 and total test cases 𝛾𝑡 can be evaluated. The
coverage analysis result is displayed in Tab. 6.6. 1.0 = 100% represents the
maximum value for 𝛾𝑡 , E.g. 100% of all pair-wise combinations of scenario
variables are covered by the tested concrete scenarios.

The full coverage for the pair-wise testing is trivial, as the test selection is
specifically designed to cover all combinations. Hence, the complete coverage
𝛾𝑡 is 1.00 by default. The random testing achieving the second highest overall
coverage is interesting, as the selection is purely random. However, this avoids
any overfitting towards some variable combinations and keeps the sampling
evenly distributed. Neither of these strategies achieve any significant coverage
values regarding failures due to a low number of detections.

A more interesting and telling observation of the coverage numbers for adaptive
strategies can be made. On overall coverage 𝛾𝑡 , meta-model based testing using
NNR achieves the highest result on all functional scenarios, outperforming the
other strategies.

130

Active Learning using adaptive Testing

Figure 6.8: Detected Failure from evolutionary testing on F5 with 𝑆Sun Altitude =

−4.89◦ , 𝑆Precipitation > 96.71%, 𝑆Fog Intensity = 13.63. This combination applies
to 13 of all 24 failures of this strategy on F5.

Similar to the 𝐶-measure, the dynamics of 𝛾 𝑓 tend to follow the absolute
number of detected failures. However, the most striking observation can be
made on functional scenario F7, where evolutionary testing outperformed
the alternative approaches but trails meta-model based testing using NNR.
Furthermore, in F6 evolutionary testing is leading the alternative approaches.
However, this lead may not be as significant as the lead in the amount of detected
failures. The cause of this observation was already touched on in Sec. 6.3 with
evolutionary testing focusing to much on exploitation (see Fig. 6.5 for analysis
on F6). Similar exploitation can be observed in evolutionary testing on F5 with
13 of 24 failures having the scenario variable values

𝑆Sun Altitude = −4.89◦ ∧ 𝑆Precipitation > 96.71% ∧ 𝑆Fog Intensity = 13.63%.
(6.5)

One of these failures is shown in Fig. 6.8. The simulation run starts with
the object detector detecting the pedestrian with rather low TP confidence.
Afterwards, the vehicle slightly accelerates due to the object detector losing
the pedestrian. While the dark environment and the blurred image worsen
the pedestrians’ visibility, the pedestrian is still visible for the human eye. At
the end of the simulation run, the pedestrian is detected again. However, the
detection comes to late to prevent a collision.

131

Active Learning using adaptive Testing

Table 6.6: Combinatorial coverage from different test strategies for total tested concrete scenarios
and the concrete scenarios that result in failures. The full coverage for total tested
concrete scenarios for the pair-wise testing is somewhat trivial, as the test selection is
specifically designed to cover all combinations.

Strategy F1 F2 F3 F4

𝛾 𝑓 𝛾𝑡 𝛾 𝑓 𝛾𝑡 𝛾 𝑓 𝛾𝑡 𝛾 𝑓 𝛾𝑡

Random Testing 0.002 0.786 0.008 0.789 0.004 0.789 0.000 0.785

Pair-wise 0.000 1.000 0.002 1.000 0.000 1.000 0.004 1.000

Evolutionary 0.002 0.544 0.033 0.577 0.009 0.557 0.024 0.571
LR 0.000 0.650 0.052 0.656 0.049 0.670 0.023 0.652
MNR 0.006 0.706 0.064 0.709 0.056 0.725 0.039 0.685
GPR 0.006 0.674 0.056 0.658 0.021 0.657 0.026 0.668

Strategy F5 F6 F7 F8

𝛾 𝑓 𝛾𝑡 𝛾 𝑓 𝛾𝑡 𝛾 𝑓 𝛾𝑡 𝛾 𝑓 𝛾𝑡

Random Testing 0.000 0.787 0.000 0.785 0.012 0.789 0.000 0.789

Pair-wise 0.000 1.000 0.004 1.000 0.008 1.000 0.000 1.000

Evolutionary 0.022 0.572 0.073 0.585 0.083 0.571 0.016 0.573
LR 0.008 0.682 0.054 0.668 0.085 0.657 0.013 0.654
NNR 0.027 0.704 0.057 0.702 0.164 0.674 0.036 0.728
GPR 0.022 0.651 0.055 0.652 0.120 0.656 0.015 0.687

132

7 Active Learning using adaptive
Testing

7.1 Process overview for active learning
Chapter 6 is focused on testing an existing deep learning-driven perception
model. However, the scope of this thesis extends to improve model perfor-
mance. A key advantage of data-driven machine learning is improving model
performance by adding data. The straightforward approach is to add the gen-
erated data to the training process. The model itself chooses the additional
training data.

The idea of using a trained deep-learning model during the data collection
process is an established field of machine learning, defined as active learning:

Definition 7.1 (Active Learning [62]). A training approach in which the algo-
rithm chooses some of the data it learns from. Active learning is particularly
valuable when labeled examples are scarce or expensive to obtain. Instead of
blindly seeking a diverse range of labeled examples, an active learning algo-
rithm selectively seeks the particular range of examples it needs for learning.

Traditionally, active learning in deep learning addresses the problem of huge
data sets that cannot be processed due to labeling constraints. Using techniques
such as uncertainty detection can identify image data that, for a perception
function, appear out of domain [170, 171]. However, the data generation
using the adaptive testing pipeline (𝑥𝑖)𝑖∈N (see Def. 4.15) also fulfills the
above description of targeting particular data examples. The data generation
approach via adaptive sampling fits this definition, as it represents an active
process to generate challenging data.

The underlying assumption is that the active learning approach outperforms
random data sampling. This comparison is significant since improving the

133

7 Active Learning using adaptive Testing

Re-Training Re-Training

Test

Execution

Test Execution of Model on

functional Scenario

Re-Training original Model with Data

from former Testing Process

Testing Datarandom Testing Dataadaptive

Figure 7.1: Process of re-training and testing the new YOLOv5 model weights. The original model
𝐷o gets re-trained two times. 𝐷r is trained with additional data from random testing
and 𝐷a is trained with additional data from adaptive testing.

model solely by adding data is trivial. The process to evaluate the model im-
provement is shown in Fig. 7.1. Utilizing the results presented in Sec. 5.6, two
data sets are generated using the testing pipeline on custom-trained YOLOv5
model for the functional scenarios {F1, ..., F8}: adaptive - generated through
adaptive testing based on meta-model based testing using a neural network -
and random - generated without implementation of adaptive strategies. The
data sets contain the images and ground truths during the test executions of
the two testing processes. For both data sets, the custom-trained YOLOv5 gets
re-trained (𝐷 (·) referring to notation introduced by Eq. 4.4). This yields three
models:

𝐷o Original custom trained model (see Sec. 5.4). The YOLOv5 model
trained for the testing pipeline on custom CARLA data. Note that
original does not refer to the published version from Ultralytics, but a
version adapted to CARLA data.

𝐷r YOLOv5 model, trained on the data from 𝐷o with added data from the
testing pipeline using random testing without any strategy.

𝐷a Actively learned updated model. Similar to 𝐷r, 𝐷o gets re-trained with
additional data from the testing pipeline. However, for 𝐷a, adaptive

134

7.1 Process overview for active learning

strategies are used to asses the additional effect from data, specifically
selected to falsify the performance of 𝐷o.

To evaluate the performance of the three models𝐷o,𝐷a, and𝐷r the test pipeline
is set up for additional functional scenarios {F ∗

1 , ..., F
∗

4 }. The description of
the additional functional scenarios is detailed in Tab. 7.1. Setting up new
scenarios instead of testing the new model on the old functional scenarios, or
even concrete scenarios, is important, as the model is now explicitly fitted on
scenarios F1 − F8. To reduce the risk of overfitting, these scenarios are set up
on map Town03, which was neither included during the training of the model
nor testing of the model, hence completely unseen to the three models. The
logical scenario space is set up the same way as in {F1, ..., F8}.

To achieve a comparable test result, the models are run on the exact same
sequence of concrete scenarios. This sequence cannot be generated adaptively,
since the adaptive sampling focusses on the specific failure patterns of each
model, which may differ. To generate the test sequence, the t-wise testing
strategy was selected, as it resulted in the highest coverage of the logical
scenario space.

Figure 7.2: Visualization of additional functional scenarios.

135

7 Active Learning using adaptive Testing

Table 7.1: Defined functional scenarios, derived from the pedestrian-vehicle interactions from the
Euro-NCAP scenarios for AEB systems [8].

F ∗
1 Suburban environment with bus station. Ego vehicle is passing a park-

ing bus. A pedestrian is located behind the bus. The pedestrian disre-
gards the traffic rules and crosses the street from the nearside in front
of the vehicle.

F ∗
2 Suburban environment with straight road. Ego vehicle is following the

road with an leading passenger car. A pedestrian disregards the traffic
rules and crosses the street from the farside from behind a tree.

F ∗
3 Suburban environment with train line running over the road. The ego

vehicle is following the road with an approaching vehicle on the opposite
side of the track. A pedestrian is approaching the ego vehicle on the
ego vehicle’s lane.

F ∗
4 Suburban environment in residential area. The ego vehicle is passing

the station with a vehicle leading on the left lane of the track. The
vehicle is overtaking a pedestrian in the ego vehicles’ lane.

136

7.2 Data selection and preparation

a) b)

Figure 7.3: Extract from the process of ensuring data quality during re-training (F1). Both images
are zooms from the original images, and 𝐷o did not detect the pedestrian in any of
the images. a) The pedestrian is not recognizable by the human eye, and the image is
filtered out. b) The pedestrian is visible to the human eye, and the image is added to
the training data.

7.2 Data selection and preparation
Using the generated images and labels of the testing process is more difficult
than it appears at first glance. During the testing process, the data is selected to
provoke system failures, i.g. false positives or false negatives. However, there
are problems regarding the data quality. The adaptive strategies select concrete
scenarios in which pedestrians are less visible, challenging the object detection
function. In this process, technically correct labels for present pedestrians are
generated. However, the pedestrian may not be visible in the image. Hence,
the training data needs to be filtered for these low quality bounding boxes. The
images with unrecognizable bounding boxes are excluded from the training
process by judgement of the human eye. A visualization is shown in Fig. 7.3.
The pedestrian in Fig. 7.3 a) is non-recognizable by the human eye. Thus the
image is excluded. The visible pedestrian in Fig. 7.3 b) is included.

137

7 Active Learning using adaptive Testing

7.3 Active learning testing results
The results of applying the scenario-based testing pipeline to the three models
𝐷o, 𝐷r, and 𝐷a using the three-wise testing strategy are shown in Tab. 7.2.
Each entry shows the number of failures during the test sequence with the
respective model.

Table 7.2: Resulting number of failures during pair-wise testing of new model weights for all
additional functional test scenarios.

Strategy F ∗
1 F ∗

2 F ∗
3 F ∗

4

𝐷o 21 69 40 25
𝐷r 11 5 44 6
𝐷a 6 4 25 3

In each functional scenario, the 𝐷a outperforms the other models, supporting
the hypothesis of significantly improved perception performance when using
adaptively generated data during training. In F ∗

1 the number of failures de-
creased by about 47% from the original model to 𝐷r and by 71% to 𝐷a proving
a significantly improved performance for the re-trained. The most significant
reduction can be seen in F ∗

2 , where the amount of failures is reduced from 69
in the original model to four with the 𝐷a model. Additionally, there were only
five failures, with the 𝐷r being only outperformed by one failure by 𝐷a.

Another interesting observation can be made in F ∗
3 , with 𝐷a significantly

outperforming both other models. However, 𝐷r is worse than 𝐷o. This cannot
be explained by training data but has to be attributed to the non-linear nature
of neural networks. Results on F ∗

4 also show significant improvement using
adaptive data compared to the random testing process with 50% as many
failures and only 12% compared to 𝐷o.

Fig. 7.4 and Fig. 7.5 show a histogram for each functional scenario containing
the KPI results for each model. Thus, Tab. 7.2 equates with the data in the
first bin from 0 to 0.1 which are the concrete scenarios with 𝑎𝑑𝑗 . 𝑇𝑇𝐶 ≤ 0.1.
While the whole picture largely corresponds with the analysis to this point,
there is an outlier regarding F ∗

2 : While the original model massively under-
performs with 69 failures compared to the adaptive model, the original model

138

7.3 Active learning testing results

Figure 7.4: Histogram for each functional scenarios F∗
1 and F∗

2 containing the test results for each
model.

also has significantly more test results in the range between 1.0 and 1.2. In
fact, the median of test results decreased from 0.88 (𝐷o) to 0.82 (𝐷a) although
the number of failures plummeted from 96 to 4.

Fig. 7.6 displays a test case in which the different models’ performances are
compared. a) With 𝐷o, the pedestrian is detected at no point of the simulation,

139

Conclusion and outlook

Figure 7.5: Histogram for each functional scenarios F∗
3 and F∗

4 containing the test results for each
model.

with low visibility in rainy and foggy weather at night. b) In contrast, during
simulation with𝐷a, the pedestrian is detected, starting at time step 31, avoiding
a collision. c) Using 𝐷r, the pedestrian is detected at time step 31 but is lost
shortly after, causing the AEB to release the brake and resulting in a collision.

140

Conclusion and outlook

a)

b)

c)

No detection

Continous detection

starting at time step 31

Detection at time step 31

but losing the pedestrian

 at time step 34

Figure 7.6: Visualization of testing improved YOLOv5 versions on the same concrete scenario.
a) Model performance of 𝐷o, b) Model performance of 𝐷a, c) Model performance of
𝐷r.

141

8 Conclusion and outlook
8.1 Discussion
In Ch. 2, the concept of deep learning is presented. Belonging to machine
learning, the development of deep learning models differs from the develop-
ment of hard-coded programs, as the decision-making significantly originates
from the data the model was trained on.

Ch. 3 addresses existing and established testing techniques for deep learning
systems and the key safety concerns arising from using deep learning models
in automated driving tasks. Furthermore, significant shortcomings of these
testing techniques are highlighted, especially the unfeasibility of collecting,
processing, and labeling of sufficient amounts of real-world data via recordings.
Real-world data sets may be unbalanced, with many challenging scenarios
being underrepresented (see Fig. 1.2).

In Ch. 4, a closed-loop testing pipeline for adaptive sampling is proposed based
on scenario-based testing. The improvements in sensor simulation tools have
opened the door for simulative testing in a virtual environment, although ques-
tions regarding the transferability of results remain. The simulation addresses
the limitations of real-world data recordings. With labeling and recording
costs limiting the amount of real-world data that can be collected, simula-
tion can complement the available data by sensor data of rare but challenging
driving scenarios. In essence, the pipeline structures the high dimensional
space of traffic scenarios. At the core of the thesis, traffic scenarios are made
parametrized, computer-readable, and executable by simulation software. By
doing so, a formalized scenario space gets spanned on which the system-under-
test operates. However, this scenario space is spanned over many dimensions,
such as weather factors, object behavior, and object appearance. Applying
adaptive sampling to the test execution enables the pipeline to uncover per-
ception failures in the parameter space. In adaptive sampling, a strategy is
applied with the clear objective to trigger simulation runs that the system can-

143

8 Conclusion and outlook

not pass. Meta-model-based and evolutionary testing were used in the pipeline
and evaluated for their ability to detect failures.

Ch. 5 outlines a practical implementation of the concepts introduced in Ch. 4
for evaluation. Using the CARLA simulation tool, a pipeline is created to test
a custom-trained YOLOv5 object detection network adaptively. The object
detector is used for an adaptive cruise control setting to avoid a collision with
jaywalking pedestrians. For this pipeline, all functional scenarios and simula-
tion variables are presented, as well as the simulation KPI and visualization.

Results of the testing pipeline are shown in Ch 6, with adaptive sampling
being evaluated against random sampling and space-filling t-wise testing. In
contrast to non-adaptive sampling strategies, this approach can efficiently detect
failures, even when random testing cannot do so. In the experiments, using
meta-model-based testing using a neural network as a meta-model has yielded
the most efficient results, outperforming the other sampling strategies.

Finally, Ch 7 addresses the testing processes’ ability to improve the SuT’s
performance by retraining the model on the challenging data generated dur-
ing testing. Retraining with adaptive data resulted in the model significantly
outperforming the previous model and reducing failures. Hence, the proposed
methods not only falsify perception methods but also improve their perfor-
mance.

Fig. 8.1 places the proposed pipeline in context with SOTIF [49, 172]. The
problem of unknown and unsafe scenarios is approached in parallel. Using
adaptive sampling to generate new data, the space of unknown scenarios gets
explored with a focus on unsafe scenarios. Hence, the SuT’s capability to
handle scenarios safely gets mapped on the scenario space to identify the ODD
in which the vehicle can operate. Improving the SuT’s performance by re-
training the model with the adaptively generated data also increases the space
of safe scenarios.

In Sec. 3.3, the major concerns are presented regarding the use of deep learning
algorithms in perception for automated driving, based on [95]. Here, the
proposed method is set in context to these concerns.

a) Data distribution is not a good approximation of real world: In this con-
text, a domain can be interpreted on signal-level and scenario level (see
definitions in Sec. 3.1). On the scenario level, including traffic statistics

144

8.1 Discussion

Adaptive Testing +

Active Learning

Figure 8.1: Placing the proposed testing process in context with SOTIF [172]. Adaptive scenario-
based testing manages to expand the space of known and safe scenarios. Image by [49].

helps improve real-world data sets to be more representative by filling
domain gaps. However, accurate observations of scenario variables are
required. While the cost, variety, and reliability of simulative image
generation are superior to real world-based data sources, there are draw-
backs regarding domain gaps on signal level, especially since there are
still concerns regarding the transferability of synthetic data to real world
applications.

b) Distributional shift over time: This concern is highly related to a). The
advantages of simulative testing can be leveraged to adapt to shifting
data distribution. Similarly to a), constant traffic monitoring is required,
with constant improvement of simulation capabilities. For new scenario
elements, such as introducing new traffic objects, data can be generated
immediately without costly data collection.

c) Dependence on labeling quality: A significant advantage of simulative
image generation is reliable ground truth generation, as the simulation
platform can generate many accurate ground truth data, such as instance
segmentation, depth information, or optical flow. Hence, labeling qual-
ity is a strength of the proposed testing process if testing data is used for
further development.

145

8 Conclusion and outlook

d) Unknown behavior in rare critical situations: Addressing this safety con-
cern is the most significant advantage of adaptive scenario-based testing.
Systematic sampling of the scenario space identifies weaknesses of the
perception function that must be addressed in further development.
Hence, the models’ behavior in rare critical situations can be observed
and mitigated if insufficiencies exist. Alternatively, if weaknesses cannot
be mitigated, the domain for which the function is authorized is limited
by boundaries.

e) Inadequate test and training data separation: The proposed testing pro-
cess must address this safety concern. However, if simulative testing
data is used for model development (as described in c)), over-confidence
may occur. The testing of the improved model must then be tested on
completely new test scenarios.

f) Incomprehensible behavior: For deep learning models, explainability
must be achieved through white-box testing, which the proposed testing
process does not address.

g) Brittleness of DNNs: While simulative testing can increase domain cover-
age and identify weaknesses in the scenario space, the inherit brittleness
of DNNs cannot be solved exclusively by assembling more data.

h) Unreliable confidence information: The proposed testing pipeline identi-
fies scenarios in which the models’ confidence may lead to false vehicle
behavior. However, research has shown that addressing wrong confi-
dences requires improved architectures and training methods instead of
more data. Hence, this safety concern is rather out-of-scope of this work.

i) Insufficient consideration of safety in metrics: The presented approach
for testing perception functions utilizes the dynamic manner of the sim-
ulation to generate an intuitive performance metric. In contrast to recall
or precision-based metrics, the adj. TTC allows to intuitively evaluate
the models’ ability to prevent collisions by detecting pedestrians reliably.

146

8.2 Future Work

8.2 Future Work
Assessment and Extension of Simulation Quality and Coverage

While the experiments in this dissertation gave important conclusions on apply-
ing adaptive testing to object detectors and the ability to detect systemic weak-
nesses in perception function behavior, there remain significant unknowns. As
mentioned in multiple chapters, a testing process with synthetic data only is as
viable as the produced data is viable. Hence, future work in this research in-
cludes using a physics-based camera and assessing the real-world - simulation
gap [173,174]. These include two main categories:

Geometric dimensions Assure that the dimensions of objects, their shad-
ows, and road geometry in the simulation will match dimensions in the
real world. This can be assessed via checkerboard patterns for camera
simulation (Fig. 8.2).

Photo-realism Photo-realism refers to "how realistic" an image appears to the
human eye. Improved rendering and 3D models increase the realism
of image features that trigger the neurons in a DL-driven perception
function.

Additionally, behavior models of traffic participants have been shown to sig-
nificantly influence the trustworthiness of the traffic simulation [161]. Thus,
quality assessment and extension of behavior models have to be performed.

The simulation quality also depends on the coverage of traffic artifacts imple-
mented. A simple example is the simulation of a deer on a rural road that

Figure 8.2: Validation of geometric precision of camera simulation using a checkerboard pat-
tern [7].

147

8 Conclusion and outlook

can only be simulated if a corresponding 3D model is available. Furthermore,
over time, the ODD of the perception function inevitably changes. Introducing
new traffic participants, such as e-scooter riders, can pose a risk to the per-
ception function that was not accounted for during testing. Hence, constant
traffic monitoring is required using techniques such as uncertainty detection or
out-of-distribution detection.

Combining real and simulative Data to yield Probability of Failure

Def. 4.11 and Def. 4.12 introduced a formula to calculate the probability
of failure for the system using scenario-based testing. In essence, it raises
information on the probability distribution of functional scenarios and the
scenario variables inside the logical scenario.

The basic concept for the probability of failure stems from traditional reliability
analysis [146]. For every logical scenario, two functions are required: The
probability density function and a performance function. Then, the probability
of failure is defined as the integral of the probability density function over
the subspace of the scenario space in which the performance falls below the
minimum required KPI. Fig. 8.3 shows the relationship between the simulation
process and the distributional information of scenario occurrence in the real
world.

Generating a data set for functional scenarios with corresponding occurrence
probabilities out of real trajectory recordings requires additional modules for

Probability DensityKPI

How likely is the scenario?How does the SuT perform?

Simulation Process Distribution Generator

Figure 8.3: Probability of failure calculation for functional S.

148

8.2 Future Work

Functional Scenario 1

Functional Scenario 2

Figure 8.4: Scenario clustering to generate functional scenarios from real-world trajectory data [1].

scenario analysis. Such a model was already proposed while working on this
dissertation in [1], with the introduction of a scenario clustering algorithm.
Traffic scenarios on a fixed road segment are grouped according to trajectory
information. All scenario clusters can be interpreted as functional scenarios
(see Fig. 8.4).

In each logical scenario, accessing the distributional data is more difficult on
some scenario variables than others. Retrieving weather distribution is possible
via weather data provider and speed distributions via trajectory analysis; getting
information on behavior models or participant appearance will pose a bigger
challenge.

Given the distributional information and the simulative testing process, tech-
niques such as Monte Carlo simulation [175] or Sub-set simulation [176] can
be used to calculate the probability of failure.

149

Publications Johannes Bernhard
[1] Johannes Bernhard, Mark Schutera, and Eric Sax. Optimizing test-set

diversity: Trajectory clustering for scenario-based testing of automated
driving systems. In 2021 IEEE International Intelligent Transportation
Systems Conference (ITSC), pages 1371–1378. IEEE, 2021.

[2] Johannes Bernhard, Thomas Schulik, Mark Schutera, and Eric Sax. Adap-
tive test case selection for dnn-based perception functions. In 2021
IEEE International Symposium on Systems Engineering (ISSE), pages 1–7.
IEEE, 2021.

[3] Johannes Bernhard, Jonas Schmidt, and Mark Schutera. Density based
anomaly detection for wind turbine condition monitoring. In Proceedings
of the 1st International Joint Conference on Energy and Environmental
Engineering-CoEEE, pages 87–93, 2021.

[4] Lucas Fonseca Alexandre de Oliveira, Johannes Bernhard, Lars Schories,
Martin Meywerk, and Eric Sax. Enhancing carla traffic simulation with
pedestrian animation for testing perception functions in automated driving.
In 2023 IEEE 26th International Conference on Intelligent Transportation
Systems (ITSC), pages 3859–3864. IEEE, 2023.

151

Bibliography
[5] PEGASUS Project. THE PEGASUS METHOD, 2019 (accessed Febru-

ary 01, 2024). https://www.pegasusprojekt.de/en/pegasus-
method.

[6] PEGASUS Project. Pegasus Method - An Overview, 2019 (ac-
cessed November 20, 2019). https://www.pegasusprojekt.d
e/files/tmpl/Pegasus-Abschlussveranstaltung/PEGASUS-
Gesamtmethode.pdf.

[7] NVIDIA. Validating NVIDIA DRIVE Sim Camera Models, accessed
December 15, 2023). https://developer.nvidia.com/blog/va
lidating-drive-sim-camera-models/.

[8] The European New Car Assessment Programme. EUROPEAN
NEW CAR ASSESSMENT PROGRAMME (Euro NCAP), TEST
PROTOCOL – AEB VRU systems, 2021 (accessed February 03,
2023). https://cdn.euroncap.com/media/62795/euro-ncap-
aeb-vru-test-protocol-v304.pdf.

[9] Bundesministerium für Verkehr und digitale Infrastruktur. Ethics Com-
mission’s complete report on automated and connected driving, 2017
(accessed November 23, 2021). https://www.bmvi.de/SharedDo
cs/EN/publications/report-ethics-commission.html.

[10] Bernhard Friedrich. The effect of autonomous vehicles on traffic. In
Autonomous Driving, pages 317–334. Springer, 2016.

[11] Statistisches Bundesamt. Straßenverkehrsunfälle mit Personenschaden,
Getöteten, Schwer- und Leichtverletzten: Deutschland, Jahre, 2022 (ac-
cessed December 02, 2023). https://www.destatis.de/DE/Them
en/Gesellschaft-Umwelt/Verkehrsunfaelle/_inhalt.html.

[12] Statistisches Bundesamt. Todesursachen in Deutschland, 2022 (ac-
cessed December 03, 2023). https://www.destatis.de/DE/Them
en/Gesellschaft-Umwelt/Gesundheit/Todesursachen/_inh
alt.html.

153

https://www.pegasusprojekt.de/en/pegasus-method
https://www.pegasusprojekt.de/en/pegasus-method
https://www.pegasusprojekt.de/files/tmpl/Pegasus-Abschlussveranstaltung/PEGASUS-Gesamtmethode.pdf
https://www.pegasusprojekt.de/files/tmpl/Pegasus-Abschlussveranstaltung/PEGASUS-Gesamtmethode.pdf
https://www.pegasusprojekt.de/files/tmpl/Pegasus-Abschlussveranstaltung/PEGASUS-Gesamtmethode.pdf
https://developer.nvidia.com/blog/validating-drive-sim-camera-models/
https://developer.nvidia.com/blog/validating-drive-sim-camera-models/
https://cdn.euroncap.com/media/62795/euro-ncap-aeb-vru-test-protocol-v304.pdf
https://cdn.euroncap.com/media/62795/euro-ncap-aeb-vru-test-protocol-v304.pdf
https://www.bmvi.de/SharedDocs/EN/publications/report-ethics-commission.html
https://www.bmvi.de/SharedDocs/EN/publications/report-ethics-commission.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/_inhalt.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Verkehrsunfaelle/_inhalt.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Todesursachen/_inhalt.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Todesursachen/_inhalt.html
https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Todesursachen/_inhalt.html

Bibliography

[13] Waymo press release. Waymo IAA Frankfurt 2019, 2019 (accessed
November 21, 2019). https://medium.com/waymo/waymo-iaa-fr
ankfurt-2019-b3cca36d8479.

[14] Yves Page, Jean-Yves Foret-Bruno, and Sophie Cuny. Are expected
and observed effectiveness of emergency brake assist in preventing road
injury accidents consistent. In 19th ESV Conference, Washington DC.,
USA, 2005.

[15] Thomas Hummel, Matthias Kühn, Jenö Bende, and Antje Lang. Ad-
vanced driver assistance systems: An investigation of their potential
safety benefits based on an analysis of insurance claims in germany.
German Insurance Association Insurers Accident Research, Research
Report FS, 3, 2011.

[16] European Union. Regulation (EU) 2019/2144 of the European
Parliament and of the Council, 2019 (accessed November 23,
2021). https://eur-lex.europa.eu/legal-content/EN/TXT/
PDF/?uri=CELEX:32019R2144&from=EN.

[17] Ernst & Young. Who’s in the driving seat, 2015 (accessed November
21, 2019). https://ey-france.relayto.com/e/who-s-in-the-
driving-seat-hacgevic.

[18] American Automobile Association. AAA: Fear of Self-
Driving Cars on the Rise, 2023 (accessed December 03,
2023). https://newsroom.aaa.com/2023/03/aaa-fear-of-se
lf-driving-cars-on-the-rise/.

[19] American Transportation Research Institute. An Analysis of the
Operational Costs of Trucking: 2023 Update, 2023 (assessed
January 24, 2024)). https://truckingresearch.org/wp-
content/uploads/2023/06/ATRI-Operational-Cost-of-
Trucking-06-2023.pdf.

[20] American Journal of Transportation. The Truck Driver
Shortage in the US Continues, 2023 (assessed January 24,
2024)). https://www.ajot.com/news/the-truck-driver-shor
tage-in-the-us-continues.

[21] International Road Transport Union (IRU). Global truck driver
shortage to double by 2028, 2023 (assessed January 24, 2024)).
https://www.iru.org/news-resources/newsroom/global-tr
uck-driver-shortage-double-2028-says-new-iru-report.

154

https://medium.com/waymo/waymo-iaa-frankfurt-2019-b3cca36d8479
https://medium.com/waymo/waymo-iaa-frankfurt-2019-b3cca36d8479
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R2144&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R2144&from=EN
https://ey-france.relayto.com/e/who-s-in-the-driving-seat-hacgevic
https://ey-france.relayto.com/e/who-s-in-the-driving-seat-hacgevic
https://newsroom.aaa.com/2023/03/aaa-fear-of-self-driving-cars-on-the-rise/
https://newsroom.aaa.com/2023/03/aaa-fear-of-self-driving-cars-on-the-rise/
https://truckingresearch.org/wp-content/uploads/2023/06/ATRI-Operational-Cost-of-Trucking-06-2023.pdf
https://truckingresearch.org/wp-content/uploads/2023/06/ATRI-Operational-Cost-of-Trucking-06-2023.pdf
https://truckingresearch.org/wp-content/uploads/2023/06/ATRI-Operational-Cost-of-Trucking-06-2023.pdf
https://www.ajot.com/news/the-truck-driver-shortage-in-the-us-continues
https://www.ajot.com/news/the-truck-driver-shortage-in-the-us-continues
https://www.iru.org/news-resources/newsroom/global-truck-driver-shortage-double-2028-says-new-iru-report
https://www.iru.org/news-resources/newsroom/global-truck-driver-shortage-double-2028-says-new-iru-report

Bibliography

[22] Stephen Wood, Jesse Chang, Thomas Healy, and John Wood. The poten-
tial regulatory challenges of increasingly autonomous motor vehicles.
Santa Clara L. Rev., 52:1423, 2012.

[23] SAE On-Road Automated Vehicle Standards Committee. Taxonomy
and definitions for terms related to on-road motor vehicle automated
driving systems. SAE Standard, 3016:1–16, 2014.

[24] Walther Wachenfeld and Hermann Winner. The release of autonomous
vehicles. In Autonomous driving, pages 425–449. Springer, 2016.

[25] ISO Central Secretary. Road vehicles — safety and cybersecurity for au-
tomated driving systems — design, verification and validation. Standard
ISO/TR 4804:2020(E), International Organization for Standardization,
Geneva, CH, 2020.

[26] Nidhi Kalra and Susan M Paddock. Driving to safety: How many miles
of driving would it take to demonstrate autonomous vehicle reliabil-
ity? Transportation Research Part A: Policy and Practice, 94:182–193,
2016.

[27] Jacob Langner, Johannes Bach, Lennart Ries, Stefan Otten, Marc
Holzäpfel, and Eric Sax. Estimating the uniqueness of test scenar-
ios derived from recorded real-world-driving-data using autoencoders.
In IEEE Intelligent Vehicles Symposium (IV), pages 1860–1866. IEEE,
2018.

[28] Lennart Ries, Jacob Langner, Stefan Otten, Johannes Bach, and Eric
Sax. A driving scenario representation for scalable real-data analytics
with neural networks. In IEEE Intelligent Vehicles Symposium (IV),
pages 2215–2222. IEEE, 2019.

[29] Johannes Bach, Jacob Langner, Stefan Otten, Eric Sax, and Marc
Holzapfel. Test scenario selection for system-level verification and
validation of geolocation-dependent automotive control systems. In
ICE/ITMC, pages 203–210, 2017.

[30] Simon Ulbrich, Till Menzel, Andreas Reschka, Fabian Schuldt, and
Markus Maurer. Defining and substantiating the terms scene, situation,
and scenario for automated driving. In IEEE 18th International Con-
ference on Intelligent Transportation Systems, pages 982–988. IEEE,
2015.

[31] IHS Markit. Artificial intelligence driving autonomous vehicle develop-
ment, 2020 (accessed November 29, 2021). https://ihsmarkit.co

155

https://ihsmarkit.com/research-analysis/artificial-intelligence-driving-autonomous-vehicle-development.html
https://ihsmarkit.com/research-analysis/artificial-intelligence-driving-autonomous-vehicle-development.html
https://ihsmarkit.com/research-analysis/artificial-intelligence-driving-autonomous-vehicle-development.html

Bibliography

m/research-analysis/artificial-intelligence-driving-
autonomous-vehicle-development.html.

[32] Our World in Data. What is Moore’s Law?, accessed January 16, 2024).
https://ourworldindata.org/moores-law.

[33] Jane Hung and Anne Carpenter. Applying faster r-cnn for object de-
tection on malaria images. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages 56–61, 2017.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference on
computer vision, pages 1026–1034, 2015.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. Imagenet large scale visual recognition chal-
lenge. International journal of computer vision, 115(3):211–252, 2015.

[36] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Mace-
sanu. A survey of deep learning techniques for autonomous driving.
Journal of Field Robotics, 37(3):362–386, 2020.

[37] Sajjad Mozaffari, Omar Y Al-Jarrah, Mehrdad Dianati, Paul Jennings,
and Alexandros Mouzakitis. Deep learning-based vehicle behavior pre-
diction for autonomous driving applications: A review. IEEE Transac-
tions on Intelligent Transportation Systems, 2020.

[38] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun.
Vision meets robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231–1237, 2013.

[39] Ben Miethig, Ash Liu, Saeid Habibi, and Martin Mohrenschildt. Lever-
aging thermal imaging for autonomous driving. In IEEE Transportation
Electrification Conference and Expo (ITEC), pages 1–5. IEEE, 2019.

[40] Mitsunori Mizumachi, Atsunobu Kaminuma, Nobutaka Ono, and
Shigeru Ando. Robust sensing of approaching vehicles relying on acous-
tic cues. Sensors, 14(6):9546–9561, 2014.

[41] Jelena Kocić, Nenad Jovičić, and Vujo Drndarević. Sensors and sensor
fusion in autonomous vehicles. In 26th Telecommunications Forum
(TELFOR), pages 420–425. IEEE, 2018.

156

https://ihsmarkit.com/research-analysis/artificial-intelligence-driving-autonomous-vehicle-development.html
https://ihsmarkit.com/research-analysis/artificial-intelligence-driving-autonomous-vehicle-development.html
https://ihsmarkit.com/research-analysis/artificial-intelligence-driving-autonomous-vehicle-development.html
https://ihsmarkit.com/research-analysis/artificial-intelligence-driving-autonomous-vehicle-development.html
https://ourworldindata.org/moores-law

Bibliography

[42] Leichen Wang, Tianbai Chen, Carsten Anklam, and Bastian Goldluecke.
High dimensional frustum pointnet for 3d object detection from cam-
era, lidar, and radar. In Proceedings of the IEEE Intelligent Vehicles
Symposium (IV), 2020.

[43] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao,
Vashisht Madhavan, and Trevor Darrell. BDD100K: A diverse driving
video database with scalable annotation tooling. CoRR, abs/1805.04687,
2018.

[44] Isaac Ogunrinde and Shonda Bernadin. A review of the impacts of
defogging on deep learning-based object detectors in self-driving cars.
SoutheastCon 2021, pages 01–08, 2021.

[45] Mazin Hnewa and Hayder Radha. Object detection under rainy condi-
tions for autonomous vehicles: A review of state-of-the-art and emerg-
ing techniques. IEEE Signal Processing Magazine, 38(1):53–67, 2020.

[46] Vishwanath A Sindagi, Poojan Oza, Rajeev Yasarla, and Vishal M
Patel. Prior-based domain adaptive object detection for hazy and rainy
conditions. In European Conference on Computer Vision, pages 763–
780. Springer, 2020.

[47] Matthias Heller. Data Labeling: AI’s Human Bottleneck, 2020 (accessed
November 25, 2021). https://medium.com/whattolabel/data-
labeling-ais-human-bottleneck-24bd10136e52.

[48] IBM. What is data labeling?, accessed December 16, 2023. https:
//www.ibm.com/topics/data-labeling.

[49] ISO Central Secretary. Road vehicles - safety of the intended function-
ality. Standard ISO 21448:2022, International Organization for Stan-
dardization, Geneva, CH, 2022.

[50] Yohann Cabon, Naila Murray, and Martin Humenberger. Virtual kitti 2,
2020.

[51] Google Cloud. Ai platform data labeling service pricing. https://cl
oud.google.com/ai-platform/data-labeling/pricing, 2023.
accessed December 18th 2023.

[52] IEEE Standards Coordinating Committee et al. Ieee standard glossary of
software engineering terminology (ieee std 610.12-1990). los alamitos.
CA: IEEE Computer Society, 169:132, 1990.

157

https://medium.com/whattolabel/data-labeling-ais-human-bottleneck-24bd10136e52
https://medium.com/whattolabel/data-labeling-ais-human-bottleneck-24bd10136e52
https://www.ibm.com/topics/data-labeling
https://www.ibm.com/topics/data-labeling
https://cloud.google.com/ai-platform/data-labeling/pricing
https://cloud.google.com/ai-platform/data-labeling/pricing

Bibliography

[53] Christian Murphy, Gail E Kaiser, and Marta Arias. An approach to
software testing of machine learning applications. In Proceedings of the
19th international conference on software engineering and knowledge
engineering (SEKE), pages 167––172, 2007.

[54] Martin D Davis and Elaine J Weyuker. Pseudo-oracles for non-testable
programs. In Proceedings of the ACM’81 Conference, pages 254–257,
1981.

[55] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. Machine learn-
ing testing: Survey, landscapes and horizons. IEEE Transactions on
Software Engineering, 2020.

[56] Andreas Vogelsang and Markus Borg. Requirements engineering for
machine learning: Perspectives from data scientists. In 2019 IEEE
27th International Requirements Engineering Conference Workshops
(REW), pages 245–251. IEEE, 2019.

[57] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu,
Chao Xie, Li Li, Yang Liu, Jianjun Zhao, et al. Deepmutation: Mutation
testing of deep learning systems. In 2018 IEEE 29th International
Symposium on Software Reliability Engineering (ISSRE), pages 100–
111. IEEE, 2018.

[58] Sebastian Raschka and Vahid Mirjalili. Machine Learning mit Python
und Scikit-Learn und TensorFlow: Das Praxis-Handbuch für Data Sci-
ence, Predictive Analytics und Deep Learning. MITP Verlags GmbH &
Company KG, 2017.

[59] Chih-Hong Cheng, Chung-Hao Huang, Harald Ruess, Hirotoshi Ya-
suoka, et al. Towards dependability metrics for neural networks. In
2018 16th ACM/IEEE International Conference on Formal Methods
and Models for System Design (MEMOCODE), pages 1–4. IEEE, 2018.

[60] European Commission, Content Directorate-General for Communica-
tions Networks, and Technology. Ethics guidelines for trustworthy AI.
Publications Office, 2019.

[61] ISO Central Secretary. Systems and software engineering — systems
and software quality requirements and evaluation (square) — system and
software quality models. Standard ISO/IEC 25010:2011, International
Organization for Standardization, Geneva, CH, 2011.

158

Bibliography

[62] Google Developers. Machine Learning Glossary, accessed December
08, 2021. https://developers.google.com/machine-learning
/glossary#loss.

[63] Georg Volk, Stefan Müller, Alexander von Bernuth, Dennis Hospach,
and Oliver Bringmann. Towards robust cnn-based object detection
through augmentation with synthetic rain variations. In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pages 285–292.
IEEE, 2019.

[64] Guofa Li, Yifan Yang, and Xingda Qu. Deep learning approaches on
pedestrian detection in hazy weather. IEEE Transactions on Industrial
Electronics, 67(10):8889–8899, 2019.

[65] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

[66] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp,
Matthew Hill, and Rob Ashmore. Testing deep neural networks. arXiv
preprint arXiv:1803.04792, 2018.

[67] Augustus Odena and Ian Goodfellow. Tensorfuzz: Debugging
neural networks with coverage-guided fuzzing. arXiv preprint
arXiv:1807.10875, 2018.

[68] Chih-Hong Cheng, Chung-Hao Huang, and Hirotoshi Yasuoka. Quan-
titative projection coverage for testing ml-enabled autonomous systems.
In International Symposium on Automated Technology for Verification
and Analysis, pages 126–142. Springer, 2018.

[69] Christoph Gladisch, Christian Heinzemann, Martin Herrmann, and
Matthias Woehrle. Leveraging combinatorial testing for safety-critical
computer vision datasets. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops, pages
324–325, 2020.

[70] Zachary C Lipton. The mythos of model interpretability: In machine
learning, the concept of interpretability is both important and slippery.
Queue, 16(3):31–57, 2018.

[71] Grégoire Montavon, Sebastian Bach, Alexander Binder, Wojciech
Samek, and Klaus-Robert Müller. Deep taylor decomposition of neural
networks. In Proceedings of the ICML 2016 Workshop on Visualization
for Deep Learning, 2016.

159

https://developers.google.com/machine-learning/glossary#loss
https://developers.google.com/machine-learning/glossary#loss

Bibliography

[72] Xihui Liu, Haiyu Zhao, Maoqing Tian, Lu Sheng, Jing Shao, Shuai Yi,
Junjie Yan, and Xiaogang Wang. Hydraplus-net: Attentive deep fea-
tures for pedestrian analysis. In Proceedings of the IEEE international
conference on computer vision, pages 350–359, 2017.

[73] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should
i trust you?" explaining the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pages 1135–1144, 2016.

[74] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 28. Curran
Associates, Inc., 2015.

[75] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Ko-
rattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio
Guadarrama, et al. Speed/accuracy trade-offs for modern convolutional
object detectors. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7310–7311, 2017.

[76] Ricardo Baeza-Yates and Zeinab Liaghat. Quality-efficiency trade-offs
in machine learning for text processing. In 2017 IEEE International
Conference on Big Data (Big Data), pages 897–904. IEEE, 2017.

[77] Sam Corbett-Davies and Sharad Goel. The measure and mismeasure
of fairness: A critical review of fair machine learning. arXiv preprint
arXiv:1808.00023, 2018.

[78] Warren McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, 1943.

[79] Donald Olding Hebb. The organization of behavior: a neuropsycholog-
ical theory. J. Wiley; Chapman & Hall, 1949.

[80] Frank Rosenblatt. The perceptron, a perceiving and recognizing au-
tomaton Project Para. Cornell Aeronautical Laboratory, 1957.

[81] David Rumelhart, Geoffrey Hinton, and Ronald Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–
536, 1986.

[82] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

160

Bibliography

[83] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[84] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. Advances in
neural information processing systems, 25:1097–1105, 2012.

[85] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
779–788, 2016.

[86] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox
detector. In European conference on computer vision, pages 21–37.
Springer, 2016.

[87] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmen-
tation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 580–587, 2014.

[88] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 1440–1448, 2015.

[89] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn,
and Andrew Zisserman. The pascal visual object classes (voc) challenge.
International journal of computer vision, 88(2):303–338, 2010.

[90] Yunchao Wang, Zehui Wu, Qiang Wei, and Qingxian Wang. Neufuzz:
Efficient fuzzing with deep neural network. IEEE Access, 7:36340–
36352, 2019.

[91] Mark Schutera, Mostafa Hussein, Jochen Abhau, Ralf Mikut, and
Markus Reischl. Night-to-day: Online image-to-image translation for
object detection within autonomous driving by night. IEEE Transactions
on Intelligent Vehicles, 6(3):480–489, 2020.

[92] Christopher M. Bishop. Pattern Recognition and Machine Learning (In-
formation Science and Statistics). Springer-Verlag, Berlin, Heidelberg,
2006.

[93] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft

161

Bibliography

coco: Common objects in context. In European conference on computer
vision, pages 740–755. Springer, 2014.

[94] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The cityscapes dataset for semantic urban scene under-
standing. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

[95] Oliver Willers, Sebastian Sudholt, Shervin Raafatnia, and Stephanie
Abrecht. Safety concerns and mitigation approaches regarding the use
of deep learning in safety-critical perception tasks. In International
Conference on Computer Safety, Reliability, and Security, pages 336–
350. Springer, 2020.

[96] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On cal-
ibration of modern neural networks. In International Conference on
Machine Learning, pages 1321–1330. PMLR, 2017.

[97] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld,
Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and
Bernt Schiele. The cityscapes dataset for semantic urban scene under-
standing. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3213–3223, 2016.

[98] Kaushik Madala and Carlos Avalos Gonzalez. Metrics for machine
learning models to facilitate sotif analysis in autonomous vehicles. Tech-
nical report, SAE Technical Paper, 2023.

[99] Georg Volk, Jörg Gamerdinger, Alexander von Bernuth, and Oliver
Bringmann. A comprehensive safety metric to evaluate perception in
autonomous systems. In 2020 IEEE 23rd International Conference on
Intelligent Transportation Systems (ITSC), pages 1–8. IEEE, 2020.

[100] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li,
Chunyang Chen, Ting Su, Li Li, Yang Liu, et al. Deepgauge: Multi-
granularity testing criteria for deep learning systems. In Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering, pages 120–131, 2018.

[101] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp,
Youcheng Sun, Emese Thamo, Min Wu, and Xinping Yi. A survey
of safety and trustworthiness of deep neural networks: Verification,

162

Bibliography

testing, adversarial attack and defence, and interpretability. Computer
Science Review, 37:100270, 2020.

[102] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore:
Automated whitebox testing of deep learning systems. In proceedings
of the 26th Symposium on Operating Systems Principles, pages 1–18,
2017.

[103] Kosta Serebryany. Continuous fuzzing with libfuzzer and addresssani-
tizer. In 2016 IEEE Cybersecurity Development (SecDev), pages 157–
157. IEEE, 2016.

[104] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang
Liu, Jianjun Zhao, Bo Li, Jianxiong Yin, and Simon See. Deephunter:
a coverage-guided fuzz testing framework for deep neural networks. In
Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 146–157, 2019.

[105] Zenan Li, Xiaoxing Ma, Chang Xu, and Chun Cao. Structural coverage
criteria for neural networks could be misleading. In 2019 IEEE/ACM
41st International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), pages 89–92. IEEE, 2019.

[106] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quan-
quan Gu, and Miryung Kim. Is neuron coverage a meaningful measure
for testing deep neural networks? In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, pages 851–862,
2020.

[107] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[108] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai Li, and Yiran
Chen. Dpatch: An adversarial patch attack on object detectors. arXiv
preprint arXiv:1806.02299, 2018.

[109] Pradeep Rathore, Arghya Basak, Sri Harsha Nistala, and Venkataramana
Runkana. Untargeted, targeted and universal adversarial attacks and
defenses on time series. In 2020 International Joint Conference on
Neural Networks (IJCNN), pages 1–8. IEEE, 2020.

[110] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopad-
hyay, and Debdeep Mukhopadhyay. A survey on adversarial attacks and

163

Bibliography

defences. CAAI Transactions on Intelligence Technology, 6(1):25–45,
2021.

[111] Tom B Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin
Gilmer. Adversarial patch. arXiv preprint arXiv:1712.09665, 2017.

[112] Mikhail Pautov, Grigorii Melnikov, Edgar Kaziakhmedov, Klim Kireev,
and Aleksandr Petiushko. On adversarial patches: real-world at-
tack on arcface-100 face recognition system. In 2019 International
Multi-Conference on Engineering, Computer and Information Sciences
(SIBIRCON), pages 0391–0396. IEEE, 2019.

[113] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
1–9, 2015.

[114] Lennart Ries, Philipp Rigoll, Thilo Braun, Thomas Schulik, Johannes
Daube, and Eric Sax. Trajectory-based clustering of real-world urban
driving sequences with multiple traffic objects. In 2021 IEEE Inter-
national Intelligent Transportation Systems Conference (ITSC), pages
1251–1258. IEEE, 2021.

[115] Trevor Darrell, Marius Kloft, Massimiliano Pontil, Gunnar Rätsch,
and Erik Rodner. Machine learning with interdependent and non-
identically distributed data. In Dagstuhl Reports. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

[116] Borna Jelic, Ratko Grbic, Mario Vranjes, and David Mijic. Can we
replace real-world with synthetic data in deep learning-based adas al-
gorithm development? IEEE Consumer Electronics Magazine, 2021.

[117] Sujan Gannamaneni, Sebastian Houben, and Maram Akila. Semantic
concept testing in autonomous driving by extraction of object-level
annotations from carla. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1006–1014, 2021.

[118] Farzan Erlik Nowruzi, Prince Kapoor, Dhanvin Kolhatkar, Fahed Al
Hassanat, Robert Laganiere, and Julien Rebut. How much real data
do we actually need: Analyzing object detection performance using
synthetic and real data. arXiv preprint arXiv:1907.07061, 2019.

[119] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. Virtual
worlds as proxy for multi-object tracking analysis. In Proceedings of

164

Bibliography

the IEEE conference on computer vision and pattern recognition, pages
4340–4349, 2016.

[120] Phillip Thomas, Lars Pandikow, Alex Kim, Michael Stanley, and James
Grieve. Open synthetic dataset for improving cyclist detection, 2021.

[121] Parallel domain synthetic data improves cyclist detection, 2021.
[122] IPG Automotive. IPG CarMaker, accessed April 1, 2022). https:

//ipg-automotive.com/de/.
[123] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun.

Playing for data: Ground truth from computer games. In European
conference on computer vision, pages 102–118. Springer, 2016.

[124] Craig Kolb, Don Mitchell, and Pat Hanrahan. A realistic camera model
for computer graphics. In Proceedings of the 22nd annual conference
on computer graphics and interactive techniques, pages 317–324, 1995.

[125] Matthias Hullin, Elmar Eisemann, Hans-Peter Seidel, and Sungkil Lee.
Physically-based real-time lens flare rendering. In ACM SIGGRAPH
2011 papers, pages 1–10, 2011.

[126] Intel Corporation. Intel ospray. https://www.ospray.org, 2019.
accessed June 18th 2023.

[127] David Isele and Akansel Cosgun. Transferring autonomous driv-
ing knowledge on simulated and real intersections. arXiv preprint
arXiv:1712.01106, 2017.

[128] Rui Gong, Dengxin Dai, Yuhua Chen, Wen Li, Danda Pani Paudel, and
Luc Van Gool. Analogical image translation for fog generation. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 1433–1441, 2021.

[129] Yuhua Chen, Wen Li, Xiaoran Chen, and Luc Van Gool. Learning
semantic segmentation from synthetic data: A geometrically guided
input-output adaptation approach. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 1841–
1850, 2019.

[130] Xi Guo, Zhicheng Wang, Qin Yang, Weifeng Lv, Xianglong Liu, Qiong
Wu, and Jian Huang. Gan-based virtual-to-real image translation for
urban scene semantic segmentation. Neurocomputing, 394:127–135,
2020.

165

https://ipg-automotive.com/de/
https://ipg-automotive.com/de/
https://www.ospray.org

Bibliography

[131] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. Carla: An open urban driving simulator. In Conference
on robot learning, pages 1–16. PMLR, 2017.

[132] Fei-Ching Kuo, Tsong Yueh Chen, Huai Liu, and Wing Kwong Chan.
Enhancing adaptive random testing for programs with high dimensional
input domains or failure-unrelated parameters. Software Quality Jour-
nal, 16(3):303–327, 2008.

[133] Julien Bect, David Ginsbourger, Ling Li, Victor Picheny, and Emmanuel
Vazquez. Sequential design of computer experiments for the estimation
of a probability of failure. Statistics and Computing, 22(3):773–793,
2012.

[134] Julian Hay, Lars Schories, Eric Bayerschen, Peter Wimmer, Oliver Ze-
hbe, Stefan Kirschbichler, and Jörg Fehr. Application of data-driven sur-
rogate models for active human model response prediction and restraint
system optimization. Frontiers in Applied Mathematics and Statistics,
9:1156785, 2023.

[135] Oliver Bühler and Joachim Wegener. Evolutionary functional testing.
Computers & Operations Research, 35(10):3144–3160, 2008.

[136] Halil Beglerovic, Michael Stolz, and Martin Horn. Testing of au-
tonomous vehicles using surrogate models and stochastic optimization.
In 2017 IEEE 20th International Conference on Intelligent Transporta-
tion Systems (ITSC), pages 1–6. IEEE, 2017.

[137] Paweł Skruch, Marcin Szelest, and Paweł Kowalczyk. An approach for
evaluating the completeness of the test scenarios for the vehicle envi-
ronmental perception-based systems. In 2021 25th International Con-
ference on Methods and Models in Automation and Robotics (MMAR),
pages 133–138. IEEE, 2021.

[138] Thilo Braun, Lennart Ries, Franziska Körtke, Lara Ruth Turner, Ste-
fan Otten, and Eric Sax. Collection of requirements and model-based
approach for scenario description. In VEHITS, pages 634–645, 2021.

[139] Maike Scholtes, Lukas Westhofen, Lara Ruth Turner, Katrin Lotto,
Michael Schuldes, Hendrik Weber, Nicolas Wagener, Christian Neu-
rohr, Martin Herbert Bollmann, Franziska Körtke, et al. 6-layer model
for a structured description and categorization of urban traffic and envi-
ronment. IEEE Access, 9:59131–59147, 2021.

166

Bibliography

[140] FT Chan, Tsong Yueh Chen, IK Mak, and Yuen-Tak Yu. Proportional
sampling strategy: guidelines for software testing practitioners. Infor-
mation and Software Technology, 38(12):775–782, 1996.

[141] Charles Colbourn. Combinatorial aspects of covering arrays. Le Matem-
atiche, 59(1, 2):125–172, 2004.

[142] Richard Kuhn, Raghu Kacker, and Yu Lei. Introduction to combinatorial
testing. CRC press, 2013.

[143] Priyanka Paygude and Shashank Joshi. Use of evolutionary algorithm in
regression test case prioritization: A review. In International conference
on Computer Networks, Big data and IoT, pages 56–66. Springer, 2018.

[144] Andrew F Tappenden and James Miller. A novel evolutionary ap-
proach for adaptive random testing. IEEE Transactions on Reliability,
58(4):619–633, 2009.

[145] Alessio Gambi, Marc Müller, and Gordon Fraser. Asfault: Testing self-
driving car software using search-based procedural content generation.
In 2019 IEEE/ACM 41st International Conference on Software Engi-
neering: Companion Proceedings (ICSE-Companion), pages 27–30.
IEEE, 2019.

[146] Vincent Dubourg, Bruno Sudret, and Franois Deheeger. Metamodel-
based importance sampling for structural reliability analysis. Proba-
bilistic Engineering Mechanics, 33:47–57, 2013.

[147] David Lechevalier, Steven Hudak, Ronay Ak, Y Tina Lee, and Sebti
Foufou. A neural network meta-model and its application for manufac-
turing. In 2015 IEEE International Conference on Big Data (Big Data),
pages 1428–1435. IEEE, 2015.

[148] Manolis Papadrakakis and Nikos Lagaros. Reliability-based structural
optimization using neural networks and monte carlo simulation. Com-
puter methods in applied mechanics and engineering, 191(32):3491–
3507, 2002.

[149] Tai Song, Huaguo Liang, Ying Sun, Zhengfeng Huang, Maoxiang Yi,
Xiangsheng Fang, and Aibin Yan. Novel application of deep learning
for adaptive testing based on long short-term memory. In 2019 IEEE
37th VLSI Test Symposium (VTS), pages 1–6. IEEE, 2019.

[150] Jean-Marc Bourinet, François Deheeger, and Maurice Lemaire. As-
sessing small failure probabilities by combined subset simulation and
support vector machines. Structural Safety, 33(6):343–353, 2011.

167

Bibliography

[151] Tsong Yueh Chen, Hing Leung, and Ieng Kei Mak. Adaptive random
testing. In Annual Asian Computing Science Conference, pages 320–
329. Springer, 2004.

[152] Min Yan, Li Wang, and Aiguo Fei. Artdl: Adaptive random testing for
deep learning systems. IEEE Access, 8:3055–3064, 2019.

[153] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra,
and Yoshua Bengio. An empirical evaluation of deep architectures on
problems with many factors of variation. In Proceedings of the 24th
international conference on Machine learning, pages 473–480, 2007.

[154] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of machine learning research, 13(2), 2012.

[155] Erik Bochinski, Tobias Senst, and Thomas Sikora. Hyper-parameter
optimization for convolutional neural network committees based on
evolutionary algorithms. In 2017 IEEE international conference on
image processing (ICIP), pages 3924–3928. IEEE, 2017.

[156] Christopher KI Williams and Carl Edward Rasmussen. Gaussian pro-
cesses for machine learning, volume 2. MIT press Cambridge, MA,
2006.

[157] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
Yolov4: Optimal speed and accuracy of object detection. arXiv preprint
arXiv:2004.10934, 2020.

[158] CARLA. Release 0.9.13, accessed March 24, 2022. http://carla.
org/2021/11/16/release-0.9.13/.

[159] Prabhjot Kaur, Samira Taghavi, Zhaofeng Tian, and Weisong Shi. A sur-
vey on simulators for testing self-driving cars. In 2021 Fourth Interna-
tional Conference on Connected and Autonomous Driving (MetroCAD),
pages 62–70. IEEE, 2021.

[160] Epic Games. Unreal Engine 4, accessed March 24, 2022. https:
//www.unrealengine.com.

[161] Lucas Fonseca Alexandre de Oliveira, Martin Meywerk, Lars Schories,
Maria Meier, Ramakrishna Nanjundaiah, Paulthi Victor, Francesco
Foglino, Mark Carroll, and Arunaachalam Muralidharan. Influence
of different pedestrian behavior models on the performance assessment
of autonomous emergency braking (aeb) systems via virtual simulation.

168

http://carla.org/2021/11/16/release-0.9.13/
http://carla.org/2021/11/16/release-0.9.13/
https://www.unrealengine.com
https://www.unrealengine.com

Bibliography

In Proceedings of the 7th International Digital Human Modeling Sym-
posium (DHM 2022) and Iowa Virtual Human Summit 2022, volume 7.
University of Iowa, 2022.

[162] Deeepmotion Animate 3D official website, accessed May 25, 2023. ht
tps://www.deepmotion.com/animate-3d.

[163] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 7263–7271, 2017.

[164] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767, 2018.

[165] YOLOv5: Unofficial PyTorch implementation. https://docs.ultra
lytics.com/yolov5/. Accessed: April 1, 2024.

[166] Mikhail G Lobanov and Dmitry L Sholomov. Application of shared
backbone dnns in adas perception systems. In Thirteenth International
Conference on Machine Vision, volume 11605, pages 619–627. SPIE,
2021.

[167] Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang
Chen, Jun-Wei Hsieh, and I-Hau Yeh. Cspnet: A new backbone that can
enhance learning capability of cnn. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops,
pages 390–391, 2020.

[168] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai,
Matthew Kelcey, Mrinal Kalakrishnan, Laura Downs, Julian Ibarz, Pe-
ter Pastor, Kurt Konolige, et al. Using simulation and domain adaptation
to improve efficiency of deep robotic grasping. In 2018 IEEE interna-
tional conference on robotics and automation (ICRA), pages 4243–4250.
IEEE, 2018.

[169] Huayao Wu, Changhai Nie, Justyna Petke, Yue Jia, and Mark Harman.
An empirical comparison of combinatorial testing, random testing and
adaptive random testing. IEEE Transactions on Software Engineering,
46(3):302–320, 2020.

[170] Jiwoong Choi, Ismail Elezi, Hyuk-Jae Lee, Clement Farabet, and Jose M
Alvarez. Active learning for deep object detection via probabilistic
modeling. arXiv preprint arXiv:2103.16130, 2021.

169

https://www.deepmotion.com/animate-3d
https://www.deepmotion.com/animate-3d
https://docs.ultralytics.com/yolov5/
https://docs.ultralytics.com/yolov5/

Bibliography

[171] Nicolas Jourdan, Eike Rehder, and Uwe Franke. Identification of un-
certainty in artificial neural networks. In Proceedings of the 13th Uni-
DAS eV Workshop Fahrerassistenz und automatisiertes Fahren, page 12,
2020.

[172] Retrospect. How Safe is Safe Enough? - According to SOTIF, 2020
(accessed November 29, 2023). https://www.retrospectav.com
/blog/how-safe-is-safe-enough.

[173] Inc. Ansys. Ansys AVxcelerate Sensors, accessed December 15,
2023). https://www.ansys.com/products/av-simulation/ans
ys-avxcelerate-sensors.

[174] dSPACE GmbH. Physics-Based Sensor Models for High-Fidelity
Simulation, accessed December 15, 2023). https://www.dspace
.com/de/gmb/home/learning-center/recordings/physics-
based-sensor-models-fo.cfm.

[175] Dhanesh Padmanabhan, Harish Agarwal, John E Renaud, and
Stephen M Batill. A study using monte carlo simulation for failure
probability calculation in reliability-based optimization. Optimization
and Engineering, 7:297–316, 2006.

[176] Siu-Kui Au and James L Beck. Estimation of small failure probabilities
in high dimensions by subset simulation. Probabilistic engineering
mechanics, 16(4):263–277, 2001.

[177] MathWorks. Getting Started with YOLO v4, 2020 (accessed August
15, 2022). https://www.mathworks.com/help/vision/ug/getti
ng-started-with-yolo-v4.html.

[178] Tom Gasser, Clemens Arzt, Mihiar Ayoubi, Arne Bartels, Lutz Bürkle,
Jana Eier, Frank Flemisch, Dirk Häcker, Tobias Hesse, Werner Huber,
et al. Rechtsfolgen zunehmender fahrzeugautomatisierung. Berichte der
Bundesanstalt für Straßenwesen. Unterreihe Fahrzeugtechnik, 2012.

[179] Peter Roelants. Gaussian processes - From scratch, 2018 (accessed
August 01, 2022). https://peterroelants.github.io/posts/
gaussian-process-tutorial/#Sidenotes.

[180] ISO Central Secretary. Road vehicles - functional safety. Standard ISO
26262:2018, International Organization for Standardization, Geneva,
CH, 2018.

[181] Jasmin Breitenstein, Jan-Aike Termöhlen, Daniel Lipinski, and Tim Fin-
gscheidt. Corner cases for visual perception in automated driving: Some

170

https://www.retrospectav.com/blog/how-safe-is-safe-enough
https://www.retrospectav.com/blog/how-safe-is-safe-enough
https://www.ansys.com/products/av-simulation/ansys-avxcelerate-sensors
https://www.ansys.com/products/av-simulation/ansys-avxcelerate-sensors
https://www.dspace.com/de/gmb/home/learning-center/recordings/physics-based-sensor-models-fo.cfm
https://www.dspace.com/de/gmb/home/learning-center/recordings/physics-based-sensor-models-fo.cfm
https://www.dspace.com/de/gmb/home/learning-center/recordings/physics-based-sensor-models-fo.cfm
https://www.mathworks.com/help/vision/ug/getting-started-with-yolo-v4.html
https://www.mathworks.com/help/vision/ug/getting-started-with-yolo-v4.html
https://peterroelants.github.io/posts/gaussian-process-tutorial/#Sidenotes
https://peterroelants.github.io/posts/gaussian-process-tutorial/#Sidenotes

Bibliography

guidance on detection approaches. arXiv preprint arXiv:2102.05897,
2021.

[182] IPG Automotive. IPG MovieNX, accessed April 1, 2022).
https://ipg-automotive.com/de/produkte-loesungen/
software/movienx/.

[183] CARLA Documentation, accessed March 24, 2022. https://carla.
readthedocs.io/en/latest/.

[184] Zhang-Wei Hong, Chen Yu-Ming, Shih-Yang Su, Tzu-Yun Shann, Yi-
Hsiang Chang, Hsuan-Kung Yang, Brian Hsi-Lin Ho, Chih-Chieh
Tu, Yueh-Chuan Chang, Tsu-Ching Hsiao, et al. Virtual-to-real:
Learning to control in visual semantic segmentation. arXiv preprint
arXiv:1802.00285, 2018.

[185] Jeroen Van Baar, Alan Sullivan, Radu Cordorel, Devesh Jha, Diego
Romeres, and Daniel Nikovski. Sim-to-real transfer learning using
robustified controllers in robotic tasks involving complex dynamics. In
2019 International Conference on Robotics and Automation (ICRA),
pages 6001–6007. IEEE, 2019.

[186] Tsong Yueh Chen, Fei-Ching Kuo, and Robert Merkel. On the statistical
properties of testing effectiveness measures. Journal of Systems and
Software, 79(5):591–601, 2006.

[187] Qutub Syed Sha, Oliver Grau, and Korbinian Hagn. Dnn analysis
through synthetic data variation. In Proceedings of the 4th ACM Com-
puter Science in Cars Symposium, pages 1–10, 2020.

[188] Jinfu Chen, Qihao Bao, TH Tse, Tsong Yueh Chen, Jiaxiang Xi, Chengy-
ing Mao, Minjie Yu, and Rubing Huang. Exploiting the largest available
zone: A proactive approach to adaptive random testing by exclusion.
IEEE Access, 8:52475–52488, 2020.

[189] Valentina Mus, at, Ivan Fursa, Paul Newman, Fabio Cuzzolin, and An-
drew Bradley. Multi-weather city: Adverse weather stacking for au-
tonomous driving. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 2906–2915, 2021.

[190] Philipp Oberdiek, Matthias Rottmann, and Gernot A Fink. Detection
and retrieval of out-of-distribution objects in semantic segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 328–329, 2020.

171

https://ipg-automotive.com/de/produkte-loesungen/software/movienx/
https://ipg-automotive.com/de/produkte-loesungen/software/movienx/
https://carla.readthedocs.io/en/latest/
https://carla.readthedocs.io/en/latest/

Bibliography

[191] Dario Fontanel, Fabio Cermelli, Massimiliano Mancini, and Barbara
Caputo. Detecting anomalies in semantic segmentation with prototypes.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 113–121, 2021.

172

Appendices
A Convolutional Neural Network Architecture
The concept of artificial neural networks is heavily based on information
extraction from data points. Neurons are connected to prior layers to identify
feature information they are trained to detect. The neuron 𝑥1,1 in Fig. 2.9
determines whether a data-point satisfies the condition 0.5 < 𝑥0,1 + 𝑥0,2. The
neuron passes on the information that this feature is present if it does. A wide
range of layers can be concatenated to build a neural network. Fig. .1 displays
the standard layers of the convolutional neural networks used in this work:

a) Fully-connected (dense) Layer: The traditional structure of the percep-
tron. Each neuron of layer 𝑖 + 1 is connected to each neuron of layer
𝑖 by individual weights. An activation function processes the weighted
values plus the bias to examine the neurons’ feature’s presence.

b) Convolutional Layer: The core layer of convolutional neural networks.
Instead of dense connections between two layers, the neurons of layer
𝑖 + 1 are locally or sparsely connected to neurons in layer 𝑖. This is
done by sliding a filter matrix over the input image for computer vision.
The small patch is multiplied with the weight matrix and added to the
bias. The output of the receptive neuron is the activation function of this
value. Hence, each filter matrix is applied to each patch, checking for
its feature’s presence.

c) Max-Pooling Layer: Pooling is another standard operation in convolutional
neural networks. Like the convolutional layer, the pooling layer can be
seen as a window that slides over the input layer, performing an operation.
However, pooling does not include a filter matrix. Usually, the sliding
window’s maximum value is selected to be the output. Since a high value
represents a strong presence of a feature in the input layer, max-pooling
can be used for down-sampling. Suppose a certain feature is present
in an area. In that case, the max-pooling layer will transfer the highest
value into the next layer. Pooling layers do require neither weights nor
an activation function.

173

Appendices

d) Up-Sampling Layer: Up-sampling is a simple operation to transform the
input to a higher dimension. Each entry of the input feature map is
repeated, depending on the up-sampling layer’s window size.

e) Transposed convolutional Layer: A transposed convolutional layer is
based on the concept of transposed local connectivity. Each input
value is multiplied to a kernel matrix before sliding the window over the
input. The overlaps are added together. After completing the process,
each value of the resulting matrix is fed to an activation function to get
the output matrix.

Fig. .2 depicts the architecture of AlexNet [84] as an example of how these
elements can be combined for image classification.

174

A Convolutional Neural Network Architecture

bias

x14 x15

x24 x25

x34 x35

x41 x42 x43 x44 x45

x51 x52 x53 x54 x55

w11 w12 w13

w21 w22 w23

w31 w32 w33

y12 y13

y22 y23

y31 y32 y33

y11

y21

x11 x12 x13

x21 x22 x23

x31 x32 x33

b)

x14

x24

x34

x41 x42 x43 x44

y12 y13

y22 y23

y31 y32 y33

y11

x13

x23

x31 x32 x33

c)

x11 x12

x21 x22

y21

w11 w12
y13

y23

y31 y32 y33

x12

x21 x22

e)

x11

w21 w22

y12

y22

y11

y21

x12

x12

x21 x21 x22

x12

x21 x22

d)

x11
y12x11 x12

x12

x22

x21 x21 x22 x22

x11x11

y = activation(bias +∑x ∗ w)

y = max(x)

y = activation(x ∗ w) | (add overlap)

x11

x1

x2

x3

bias

w2

w3

w1

y1

y = activation(bias +∑x ∗ w)
a)

Figure .1: Standard building blocks for convolutional neural networks. Activation is done element-
wise. a) Fully connected layer, b) Convolutional layer, c) Pooling layer, d) Up-sampling
layer, e) Transposed convolutional layer.

175

Appendices

Layer Window Size Stride Output Size

Input 224 × 224 × 3

Convolution 11 × 11 4 55 × 55 × 96

Channels

96

MaxPool 3 × 3 2 27 × 27 × 96

Convolution 5 × 5 1 27 × 27 × 256256

MaxPool 3 × 3 2 13 × 13 × 256

Convolution 3 × 3 1 13 × 13 × 384384

Convolution 3 × 3 1 13 × 13 × 384384

Convolution 3 × 3 1 13 × 13 × 256256

MaxPool 3 × 3 2 6 × 6 × 256

Dense 40964096

Dense 40964096

Dense 10001000

Figure .2: AlexNet-architecture [84]: The network calculates a classification vector to the input
image containing the class-scores for all 1000 classes. The image is assigned to the
class with the highest score.

Activation Function

The activation function of a neuron processes the weighted input to the neuron.
There are different concepts for the activation. For computer vision tasks,
activation functions are mostly monotonous increasing. A high input value
to the neuron should lead to a high output value. A high activation value is
usually interpreted as the feature’s presence, the neuron is trained to detect.
Fig. .3 displays the common activation functions used for this research.

a) Step function: Traditional activation function, introduced by Pitt & Mc-
culloch [78]. The function returns 0 for negative input values and 1 for
positive input values.

b) Sigmoid function: The sigmoid function is a special case of the logistic
function. It is used as a continuous derivable approximation of the
step function. The function’s values are in the interval (0, 1). Hence
a negative input value to this activation results in a near-zero output.
In contrast, a high input value results in a near-one output. Hence this
activation function returns whether its neuron’s feature is present or not.

c) Hyperbolic tangent (Tanh): The tanh function has a similar shape to the
step function. In contrast to the sigmoid function, the tanh function’s
values lie in the interval (−1, 1). In the positive domain, the function

176

A Convolutional Neural Network Architecture

returns 1, indicating the neuron’s feature. In the negative domain, the
function returns −1, which can be interpreted as a penalty term.

d) Rectified linear unit (ReLU): Trimmed linear function. The function is
equal to zero in the negative domain and equal to its identity function
in the positive domain. Like the step function, a negative input value
is interpreted as the absence of the feature. In contrast, a positive
input indicates the feature’s presence with higher intensity for high input
values. In practice, the ReLU function is often approximated by the
softplus function, which is continuously differentiable.

e) Leaky ReLU: The leaky ReLU function is a slight modification of the ReLU
function. While the function is equal to the ReLU function in the positive
domain, the function is a linear function with a slope 𝛼 = 0.01. Like the
negative output of the tanh function for the negative domain, the absence
of a feature can be interpreted as penalty input to the next layer.

a)

b) c)

d) e)

1

−1

1

1

Step Function

Sigmoid Tanh

ReLU

Leaky ReLU

y =
1, if x > 0

0, if x ≤ 0

y =
1

1 + e−x
y =

−ex e−x

+ex e−x

y =
x, if x > 0

0, if x ≤ 0

y =
x, if x > 0

0.01x, if x ≤ 0
y = ln(1 +)ex
Softplus

Output V alue of Neuron

Input V alue to Neuron

positive Domainnegative Domain

Figure .3: Standard activation functions for convolutional neural networks. a) Traditional step
function. b) Sigmoid function (Special case of logistic function). c) Hyperbolic tangent
function. d) Rectified linear unit and softplus function (continuously differentiable
approximation). e) Leaky rectified linear unit.

177

Appendices

Model Parameter Optimization

The accuracy of neural networks to perform their tasks depends on two types
of parameters:
Hyperparameters: Also called architectural parameters. In general, hyper-

parameters describe a neural network’s architecture, such as the number
and type of layers, the loss function, and the optimization specifications.

Model Parameters: Model parameters describe the numerical values used to
compute a neural network’s output. For example, the weights of the
network layers belong to the model parameters.

The number and type of model parameters depend on hyperparameters and the
network’s overall structure. During weight optimization, a fixed architecture
is used. In this case, the neural network is defined by

N : I ×W → O, (.1)

where I is the input space, W is the networks’ weight space and O is the
output space. Given an input data point 𝑥 ∈ I and the ground-truth output
value for this input 𝑦̂ ∈ O, the training process of a neural network is defined
by the optimization problem

𝑤̂ = arg min
𝑤∈W

L(N(𝑥, 𝑤), 𝑦̂) = arg min
𝑤∈W

L(𝑤), (.2)

where L is the so-called loss function that measures the deviation between the
ground truth and the networks’ prediction. Hence, during training the weights
are modified to minimize the loss for a given data point/ground truth pair. A
popular choice for the loss function is the mean-squared-error (MSE), which
is defined by

L(𝑤) = 𝑀𝑆𝐸 (𝑤) = | |N (𝑥, 𝑤) − 𝑦̂ | |2, (.3)

with | | • | |2 being the euclidean norm.

178

B Gaussian Process Regression

B Gaussian Process Regression
Similar to the other regression models, using Gaussian processes for regression
tasks requires assumptions on the data distribution. A stochastic process can
be interpreted as a distribution of functions. For Gaussian processes, this
distribution is some n-dimensional normal distribution. The distribution of
realizations is then defined by

𝑓 (𝑋) ∼ N (𝑚(𝑋), 𝑘 (𝑋, 𝑋)), (.4)

with 𝑋 = {𝑥1, ..., 𝑥𝑛} being the functions input domain, 𝑚(𝑋) being the
distributions mean vector function, and 𝑘 (𝑋, 𝑋) being the distributions kernel
function that generates the covariance matrix. The mean function is defined as
the expected value of a realization at the position 𝑥:

𝑚(𝑥) = E[𝑓 (𝑥)] . (.5)

This expected value denotes the prediction that the Gaussian process returns
for a given point in the input space and can be interpreted analogously to the
output of a linear regression model or a neural network.
The kernel function returns the covariance between the realization at two
positions 𝑥 and 𝑥 ′. The covariance matrix is then calculated element-wise with

𝑘 (𝑥, 𝑥 ′) = E[(𝑓 (𝑥) − 𝑚(𝑥)) (𝑓 (𝑥 ′) − 𝑚(𝑥 ′))] . (.6)

The purpose of the kernel function is to describe the connection between the
different positions of a realization function along the input axis. Furthermore,
the kernel 𝑘 (𝑥, 𝑥) denotes the point-wise variance of the Gaussian process and
the uncertainty related to the corresponding prediction 𝑚(𝑥).

Example: Sampling from Distribution The most popular kernel used for
Gaussian process regression is the radial basis function kernel (RBF), with the
covariance matrix defined element-wise by

𝑘 (𝑥𝑖 , 𝑥 𝑗) = 𝑒𝑥𝑝(−
||𝑥𝑖 − 𝑥 𝑗 | |2

2𝜎2), (.7)

with 𝜎2 being a variance hyperparameter for the Gaussian process. The RBF-
covariance matrix for 𝑋 = {0, 0.25, ..., 3.75, 4} ∈ R17 and 𝜎 = 1 is displayed

179

Appendices

0 1 2 3 4
xi

0

1

2

3

4

x j

a) Radial Basis Function Kernel
example of covariance matrix

0 1 2 3 4
x

0.2

0.4

0.6

0.8

1.0

co
va

ria
nc

e

b) Radial Basis Function Kernel
between x and 2

k(x, 2)

0.2

0.4

0.6

0.8

1.0

k(
x i

,x
j)

Figure .4: a) Covariance matrix using the radial basis function for input domain 𝑋 =

{0, 0.25, ..., 3.75, 4}. b) Pair-wise covariance 𝑘 (𝑥, 𝑥′) between 𝑥 ∈ [0, 4] and 𝑥′ = 2.
Figure framework by [179].

in Fig. .4 a). The higher the difference between the position in the input
domain 𝑥 and 𝑥 ′, the lower the covariance between 𝑓 (𝑥) and 𝑓 (𝑥 ′). This effect
is displayed in Fig. .4 b). By assuming the mean function being 𝑚(𝑥) = 0, the
Gaussian process can be described by the distribution

𝑓 (𝑥) ∼ N (𝜇, Σ), (.8)

with 𝜇 being a 17-dimensional vector of zeros and Σ being the matrix from
Fig. .4 a). Using a zero vector for the mean is a standard starting point if no
time-dependent shift is assumed. Fig. .5 shows five realizations drawn from
this distribution.

From Prior to Posterior: Adapting to observed Data (Noise-free) Fig. .5
shows the Gaussian processes’ distribution prior to any observed data, based
solely on the pre-defined mean function and covariance function, hence named
prior distribution. The core purpose of regression is to generate predictions for
the output of a target function based on already observed data, which is done
by generating a so-called posterior distribution that incorporates several data
points already observed.
Assume 𝑥1 ∈ R𝑛1 being a vector input values for which the vector of response
values 𝑦1 ∈ R𝑛1 is known. Now assume 𝑥2 ∈ R𝑛2 being a vector with input

180

B Gaussian Process Regression

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

3

2

1

0

1

2

3

y
=

f(x
)

5 different function realizations
sampled from a Gaussian process with Radial Basis Function Kernel

= 0
±2

Figure .5: Five different function realizations sampled from a Gaussian process with input domain
𝑋 = {0, 0.25, ..., 3.75, 4}, radial basis function kernel as covariance function and mean
function 𝑚(𝑥) = 0. The strong red line denotes the mean function, while the red area
approximately denotes the 95% confidence interval via 𝜇 ± 2𝜎. Figure framework
by [179].

values for which the vector of response values 𝑦2 ∈ R𝑛2 is unknown and has to
be estimated. As stated in Eq. .8 the prior distribution is given by[

𝑦1

𝑦2

]
∼ N

([
𝜇1

𝜇2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
, (.9)

with 𝜇1 = 𝑚(𝑥1) and 𝜇2 = 𝑚(𝑥2) being the prior mean vectors andΣ11 = 𝑘 (𝑥1, 𝑥1),
Σ22 = 𝑘 (𝑥2, 𝑥2), and Σ12 = 𝑘 (𝑥1, 𝑥2) = Σ𝑇

21 being the covariance matrices.
The goal is now to generate the posterior given through the conditional distri-
bution

𝑝(𝑦2 |𝑦1, 𝑥1, 𝑥2) ∼ N (𝜇2 |1, Σ2 |1), (.10)

181

Appendices

6 4 2 0 2 4 6
x

3

2

1

0

1

2

3

y

Distribution of posterior given one observation

sin(x)
2 2|1

2|1

(x1, y1)

6 4 2 0 2 4 6
x

3

2

1

0

1

2

3

y

Distribution of posterior given three observations

sin(x)
2 2|1

2|1

(x1, y1)

Figure .6: Posterior distribution of Gaussian process with 𝑚(𝑥) = 0 and RBF kernel given one
and three real observations from the underlying function 𝑓 (𝑥) = 𝑠𝑖𝑛(𝑥) . Additionally,
five samples from each posterior are drawn and plotted. Compare with Fig. .5 for prior
distribution. Figure framework by [179].

with 𝜇2 |1 being the conditional mean vector and Σ2 |1 being the covariance
matrix of 𝑦2 for input values 𝑥2 given the observations (𝑦1, 𝑥1). Calculating

182

B Gaussian Process Regression

𝜇2 |1 and Σ2 |1 can be done using the established formulas for conditional normal
distributions, for which all components are known:

𝜇2 |1 = 𝜇2 + Σ21Σ
−1
11 (𝑦1 − 𝜇1) (.11)

Σ2 |1 = Σ22 − Σ21Σ
−1
11 Σ12 (.12)

Fig. .6 shows this process. In this example, the underlying function of observa-
tions drawn that shall be approximated is 𝑓 (𝑥) = 𝑠𝑖𝑛(𝑥). There are two runs of
the regression using one and three observations. The original mean function
is 𝑚(𝑥) = 0, and the RBF kernel has been used.
In this setup the conditional mean 𝜇2 |1 for training data-points 𝑥2 = 𝑥1, is equal
to the observed response value 𝑦1 with variance 0, which easily can be proven,
since Σ11 = Σ22 = Σ21 = Σ12 and 𝜇1 = 𝜇2 = 0:

𝜇2 |1 =𝜇2 + Σ21Σ
−1
11 (𝑦1 − 𝜇1)

𝜇2 |1 =𝜇2 + 𝑦1 − 𝜇1 | Σ21 = Σ11

𝜇2 |1 =𝑦1 | 𝜇2 = 𝜇1

(.13)

Σ2 |1 =Σ22 − Σ21Σ
−1
11 Σ12

Σ2 |1 =Σ22 − Σ12 | Σ21 = Σ11

Σ2 |1 =0 | Σ22 = Σ12.

(.14)

Adapting to observed Data assuming Noise To this point, there has been
the assumption that the observations are generated deterministic, hence there is
no noise (see results of Eq. .13 and Eq. .14). There are applications that cannot
rely on this assumption, like real world observations in noisy experiments.
Adapting the Gaussian process regression to an noisy environment can be done
by adding assuming 𝑓 (𝑥1) = 𝑦1 + 𝜖 , with 𝜖 ∼ N(0, 𝜎2

𝜖). While this does not
change the mean vector, the assumed variance is added to the covariance kernel
of the observations

Σ11 = 𝑘 (𝑥1, 𝑥1) + 𝜎2
𝜖 𝐼 . (.15)

By applying this concept to the example Fig. .6 with 𝜎2
𝜖 generates a noisy

Gaussian process, which is displayed in Fig. .7.

183

Appendices

6 4 2 0 2 4 6
x

3

2

1

0

1

2

3

y

Distribution of posterior for noisy observations

sin(x)
±2 2|1

2|1

(x1, y1)

Figure .7: Posterior distribution of Gaussian process with 𝑚(𝑥) = 0 and RBF kernel given one
and three real observations from the underlying function 𝑓 (𝑥) = 𝑠𝑖𝑛(𝑥) with added
noise drawn from N(0, 0.5 ∗ 𝐼) . Figure framework by [179].

The main advantage of adjusting for noise in Gaussian processes is that outliers
do not cause major shifts in the conditional mean vector 𝜇2 |1. Due to Eq. .13
the noise free Gaussian process forces the regression estimation through every
train data point.
While the ability to model uncertainty in the meta-models prediction is quite
useful, using the model causes some capacity problems. As shown in Eq. .11,
making a prediction requires the inversion of the covariance matrixΣ11. Hence,
the computational cost for making a prediction increases with each training
data point.

184

	Glossary and Math Symbols
	Introduction
	Automated driving and its impact on public traffic
	Deep learning as enabler of automated driving systems
	Scientific contribution

	Fundamental techniques of environmental perception in automated driving
	Traditional programming vs. machine learning
	Types of machine learning
	Requirements for machine learning algorithms
	Deep learning - origin and foundations
	Object detection frameworks

	Design and testing of deep neural network-based perception functions
	Basic terminologies
	Development process for object detection
	Safety concerns regarding the use of DNN in automated driving tasks
	Techniques for testing of perception functions
	Benchmark testing
	Coverage-guided testing
	Adversarial testing

	Adaptive test case sampling for DNN-based perception functions
	Simulative testing - Advantages and weaknesses
	Introducing pipeline for adaptive scenario selection for simulative testing
	Defining quality metrics for an adaptive test case sampling
	Presentation of sampling strategies
	Covering arrays and t-wise testing
	Evolutionary sampling
	Coupling the use of meta-model with fixed-sized-candidate-set method

	Implementing proposed pipeline for fault detection
	Overview
	Designing a scenario space for adaptive sampling
	Autonomous emergency braking controller
	System-under-Test: YOLOv5
	Key performance indicator: adjusted Time-to-Collision
	Visualization of experimental process

	Results of pipeline for fault detection
	Process set-up and Scenario variable selection
	Random sampling and pair-wise testing
	Evaluation of adaptive testing

	Active Learning using adaptive Testing
	Process overview for active learning
	Data selection and preparation
	Active learning testing results

	Conclusion and outlook
	Discussion
	Future Work

	Publications Johannes Bernhard
	Bibliography
	Appendices
	Convolutional Neural Network Architecture
	Gaussian Process Regression

