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Abstract
Capturing complex dependence structures between outcome variables (e.g.,
study endpoints) is of high relevance in contemporary biomedical data prob-
lems and medical research. Distributional copula regression provides a flexible
tool to model the joint distribution of multiple outcome variables by disentan-
gling the marginal response distributions and their dependence structure. In
a regression setup, each parameter of the copula model, that is, the marginal
distribution parameters and the copula dependence parameters, can be related
to covariates via structured additive predictors. We propose a framework to fit
distributional copula regression via model-based boosting, which is a modern
estimation technique that incorporates useful features like an intrinsic variable
selection mechanism, parameter shrinkage and the capability to fit regression
models in high-dimensional data setting, that is, situations with more covariates
than observations. Thus, model-based boosting does not only complement exist-
ing Bayesian and maximum-likelihood based estimation frameworks for this
model class but rather enables unique intrinsic mechanisms that can be help-
ful in many applied problems. The performance of our boosting algorithm for
copula regression models with continuous margins is evaluated in simulation
studies that cover low- and high-dimensional data settings and situations with
and without dependence between the responses. Moreover, distributional cop-
ula boosting is used to jointly analyze and predict the length and the weight of
newborns conditional on sonographic measurements of the fetus before delivery
together with other clinical variables.

KEYWORDS
Archimedean copula, component-wise gradient boosting, early stopping, GAMLSS, tail
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1 INTRODUCTION

The analysis of complex association structures between
multiple outcome variables is of increasing interest in
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contemporary biomedical research. For instance, in
genetic epidemiology the joint consideration of multiple
phenotypes leads to a better understanding of physical and
mental disorders and the identification of relevant genetic
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risk factors (Ghosh, 2014; Ott & Wang, 2011). Moreover,
in clinical medicine multivariate investigations provide
a broader view on diseases like diabetes (Espasandín-
Domínguez et al., 2019) or Alzheimer’s disease (Yan et al.,
2015) and important clinical measures like the body fat
percentage (Petterle et al., 2021). The motivating example
of this paper is to model and predict the height and
weight of newborn babies based on sonographic and
clinical covariates of fetuses and mothers collected at the
Erlangen University Hospital before birth (Faschingbauer
et al., 2016). In clinical obstetrics and gynecology, the pre-
diction of the fetal weight is of high relevance for decision
making during the birth process. We investigate the fetal
weight and height together, as these measures are likely to
interrelate. From a delivery management perspective the
analysis of both responses yields new insights like the
identification of cases with disproportional growth or
the calculation of joint probabilities that crucial thresh-
olds are passed. Moreover, it could also be of particular
interest to explore predictor variables that influence the
association between the weight and the length of the fetus.
To define an appropriate and flexible joint model, we

employ copulas and integrate their use into a bivariate
distributional regression model. Copula models offer a
flexible approach to define multivariate distributions of
several outcome variables. In particular, by using copulas
the model-building process is conveniently decomposed
into the specification of the univariate marginal distribu-
tions (i.e., in our case those of fetal weight and height)
and the selection of an appropriate copula function that
defines the dependence structure (Nelsen, 2006). Thus,
response variables with potentially different marginal dis-
tributions can be combined via copula functions that
introduce distinct dependence scenarios. This makes the
copula approach a versatile tool for multivariate analy-
sis going well beyond Gaussian distribution assumptions
of the marginals or linear correlations. Within the struc-
tured additive distributional regression framework like
generalized additive models for location scale and shape
(GAMLSS; Rigby & Stasinopoulos, 2005), different types
of univariate response variables, that is, continuous, dis-
crete or mixed continuous-discrete, can be considered.
This model class extends the generalized additive model
(GAM; Hastie & Tibshirani, 1990) by associating every
response distribution parameter with the covariates via
additive predictors. The additive predictors allow for dif-
ferent covariate effects, that is, linear, nonlinear, random
and spatial, on the model parameters (Wood, 2017). While
there exists a rich literature regarding copula regression
(see Craiu & Sabeti, 2012; Kolev & Paiva, 2009; Sabeti
et al., 2014, and references therein), these typically cover
only parts of the flexibility of the distributional copula
regression frameworks introduced in a Bayesian (Klein

& Kneib, 2016) and a penalized-likelihood (Marra &
Radice, 2017) based context. As part of distributional cop-
ula regression all parameters of the model, that is, both
the distributional parameters of the marginals and the
dependence parameters, are related to the covariates via
simultaneously estimated additive predictors. Hence, the
dependence structure is also described by flexible covariate
effects that possibly exceed classical linear relations.
Our contribution is to develop a general boosting

approach to structured additive distributional copula
regression. We refer to this framework as boosted cop-
ula regression and we conceptualize and implement a
first scenario with continuous marginals and three dif-
ferent copula functions. To do so, we extend a popu-
lar estimation technique of modern data analysis called
model-based boosting to fit distributional copula regres-
sion models. While the original concept of boosting arose
in the machine learning community (Freund & Schapire,
1996), Friedman et al. (2000) provided a statistical view on
boosting. Model-based boosting (Bühlmann & Yu, 2003;
Bühlmann & Hothorn, 2007) builds on a functional gra-
dient boosting paradigm (Friedman, 2001) and serves well
for estimation problems in the context of univariate regres-
sionmodels.Mayr et al. (2012) further extended themodel-
based boosting algorithm to GAMLSS. The estimation via
model-based boosting yields several advantages compared
to the Bayesian and frequentist counterparts that are of
high interest in applied data analysis. First, model-based
boosting incorporates an intrinsic mechanism for variable
selection. Variable selection, that is, the problem to select
a small set of truly informative covariates, presents a key
issue in applied statistics (Hastie et al., 2009). This becomes
even more urgent in the context of complex model classes
containing various additive predictors. The model-based
boosting algorithm thereby automatically leads to sparse
solution of the parameter-specific structured additive pre-
dictors. Second, fitting regression models via boosting
shrinks the effect estimates toward zero. This leads to a
decreased variability of predictor effects and typically also
to an improvement in the prediction accuracy (Mayr et al.,
2012). Finally and third,model-based boosting is capable to
estimate regression models in high-dimensional settings,
for instance, when the number of covariates exceeds the
number of observations by far (𝑝 ≫ 𝑛), as it frequently
occurs in biomedical research (Bermingham et al., 2015;
Romero et al., 2006). As a result, model-based boosting
complements existing Bayesian and penalized-likelihood
techniques in the context of copula regression models and
incorporates valuable modeling features that are of high
relevance in applied data analysis.
The paper is structured as follows. We first review

distributional copula regression models with continu-
ous margins in Section 2. In Section 3, we extend the
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model-based boosting algorithm to the distributional
copula regression class and give insights into the algorith-
mic structure and hyperparameter tuning. Subsequently,
Section 4 summarizes the main outcome of our simu-
lation studies, whereas the Supporting Information (SI)
covers the respective detailed documentations to evaluate
the overall estimation results, the variable selection
accuracy and the model building process in low- and
high-dimensional settings and scenarios with dependent
and independent responses. In Section 5, we apply boosted
distributional copula regression to jointly analyze the birth
length and weight of fetuses by means of a birth cohort
dataset. Boosted copula distributionalmodels are of partic-
ular interest in this application as the responses are defined
on the positive real line and thus require other marginal
distributions than the normal distribution. Moreover, the
dataset consists of 36 covariates, which makes simultane-
ous variables selection for the different additive predictors
of themodel parameters a non-trivial task that can be tack-
ledwith boosting. Finally, parameter shrinkage induced by
boosting in particular suits prediction setups like in deliv-
ery management scenarios. We conclude with a thorough
discussion and further research ideas in Section 6.

2 DISTRIBUTIONAL COPULA
REGRESSIONMODELS

We now review structured additive distributional copula
regression models along the lines of Klein and Kneib
(2016). As these authors, we focus on the bivariate case
throughout but will discuss possible extensions to multi-
variate situations at the end of the paper.

2.1 The notion of distributional copula
regression models

Copulas provide a flexible approach to the construction
of multivariate distributions and regression models. One
can show that the joint conditional cumulative distribution
function (CDF) of the two continuous random response
variables 𝒀 = (𝑌1, 𝑌2)

⊤ given a 𝑝-dimensional covariate
vector 𝒙 = (𝑥1, … , 𝑥𝑝)

⊤ can be expressed as

𝐹𝒀(𝑦1, 𝑦2|𝝑) = 𝐶
{
𝐹1

(
𝑦1|𝝑(1)), 𝐹2(𝑦2|𝝑(2))|𝝑(𝑐)}, (1)

where 𝝑 = {(𝝑(1))⊤, (𝝑(2))⊤, (𝝑(𝑐))⊤}⊤ ∈ ℝ𝐾 , 𝐾 =

𝐾1 + 𝐾2 + 𝐾𝑐, is the vector of model parameters,
𝐹1(𝑦1|𝝑(1)) and 𝐹2(𝑦2|𝝑(2)) are the marginal CDFs of
the two response variables, respectively, and 𝐶(⋅, ⋅|𝝑(𝑐))

is a uniquely defined copula function (Patton, 2006;
Sklar, 1959). The vectors 𝝑(∙) with ∙ ∈ {1, 2, 𝑐} contain the
𝑘 = 1,… , 𝐾∙ parameters 𝜗

(∙)

𝑘
of the marginal distributions

and the copula function. In our distributional regres-
sion setup, all components of 𝝑 are linked to (potentially
different subsets of) the covariate vector 𝒙 via additive pre-
dictors and appropriate link functions. Since 𝐹1(𝑦1|𝝑(1))
and𝐹2(𝑦2|𝝑(2)) can be interpreted as uniformly distributed
random variables 𝑢1 and 𝑢2, respectively, 𝐶(⋅, ⋅|𝝑(𝑐)) is
a bivariate CDF on [0, 1]2 that does not depend on the
specific marginal CDFs. Further, if 𝐶(⋅, ⋅|𝝑(𝑐)) is a con-
ditional copula function and 𝐹1(𝑦1|𝝑(1)) and 𝐹2(𝑦2|𝝑(2))
are conditional CDFs, then 𝐹𝒀 is a conditional bivariate
CDF with conditional marginal distributions 𝐹1 and 𝐹2.
Hence, linking together two (different) univariate con-
tinuous distributions via a copula yields a valid bivariate
distribution with conditional probability density function
(PDF)

𝑓𝒀(𝑦1, 𝑦2|𝝑) = 𝑐
{
𝐹1

(
𝑦1|𝝑(1)), 𝐹2(𝑦2|𝝑(2)) || 𝝑(𝑐)}

×𝑓1
(
𝑦1|𝝑(1))𝑓2(𝑦2|𝝑(2)), (2)

where 𝑓1(𝑦1|𝝑(1)) and 𝑓2(𝑦2|𝝑(2)) are the marginal PDFs
and

𝑐
{
𝐹1

(
𝑦1|𝝑(1)), 𝐹2(𝑦2|𝝑(2))|𝝑(𝑐)} =

𝜕2

𝜕𝐹1𝜕𝐹2
𝐹1,2(𝑦1, 𝑦2|𝝑)

is the copula density. For 𝑛 bivariate observations
{(𝑦𝑖1, 𝑦𝑖2)

⊤}𝑖=1,…,𝑛 with covariate vectors 𝒙1, … , 𝒙𝑛
and observation-specific distributional parameters
𝝑(𝑖) = {(𝝑

(1)

(𝑖)
)⊤, (𝝑

(2)

(𝑖)
)⊤, (𝝑

(𝑐)

(𝑖)
)⊤}⊤ ∈ ℝ𝐾 , Equation (2)

induces the joint log-likelihood function

𝑙(𝝑(1∶𝑛)) ≡

𝑛∑
𝑖=1

log
[
𝑐
{
𝐹1

(
𝑦1𝑖 ∣ 𝝑

(1)

(𝑖)

)
, 𝐹2

(
𝑦2𝑖 ∣ 𝝑

(2)

(𝑖)

)
∣ 𝝑

(𝑐)

(𝑖)

}]

+

𝑛∑
𝑖=1;𝑑∈{1,2}

log
{
𝑓𝑑

(
𝑦𝑑𝑖 ∣ 𝝑

(𝑑)

(𝑖)

)}
, 𝝑(1∶𝑛)

=
(
𝝑⊤
(1)
, … , 𝝑⊤

(𝑛)

)⊤

∈ ℝ𝑛×(𝐾). (3)

2.2 Marginal distributions

A variety of continuous marginals can be applied within
our copula framework to account for, for example, skew-
ness, heteroscedasticity, or heavy tails. In the empiri-
cal evaluation of Sections 4 and 5, the log-normal and
the log-logistic distributions will be of relevance, which
both comprise two distributional parameters. Further
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F IGURE 1 Predictive risk (PR) values of the correct model (x-axis) vs. the incorrect models (y-axis). For (1)–(3), the Gaussian, the
Clayton, and the Gumbel copula are the correct model, respectively. The triangles (light grey) mark the comparison to the incorrect Clayton
copula, the stars (black) to the incorrect Gumbel copula, and the points (dark grey) to the incorrect Gaussian copula. The plots of the low- and
high-dimensional data setup are represented in the first and the second row, respectively.

information on the PDF, the CDF and the mean of both
distributions are given in SI A.

2.3 Dependence structure

Archimedean and elliptical copulas are popular copula
function choices in practice (McNeil et al., 2005) and allow
for different dependence scenarios (see SI B Web Figure 1
for a graphical illustration). To summarize the associa-
tions between the components of a multivariate response
beyond the commonly employed linear Pearson’s corre-
lation coefficient, important dependence measures in a
copula context are given by the Kendall’s tau rank correla-
tion 𝜏𝜅 and the upper and the lower tail dependence,which
are defined as 𝜆𝑢 = lim𝑞→1− 𝑃{𝑦2 > 𝐹−1

2
(𝑞)|𝑦1 > 𝐹−1

1
(𝑞)}

and 𝜆𝑙 = lim𝑞→0+ 𝑃{𝑦2 ≤ 𝐹−1
2
(𝑞)|𝑦1 ≤ 𝐹−1

1
(𝑞)}, respec-

tively (McNeil et al., 2005). The most important example
of elliptical copulas is the Gaussian copula (Song, 2000),

which has no tail dependence, that is, 𝑦1 and 𝑦2 are
independent in the limit and 𝜆𝑢 = 𝜆𝑙 = 0. In contrast,
Archimedean copulas do allow for lower or upper tail
dependence. The Clayton and Gumbel copulas are promi-
nent members of this family, the former allowing for lower
tail dependence and the latter for upper tail dependence.
Note that all introduced copula functions contain only
one parameter of dependence, which we denote as 𝜗(𝑐).
An overview of the introduced copulas and the respective
formulas for Kendall’s tau and the lower and upper tail
dependence are given in Table 1.

2.4 Structured additive predictors

In distributional copula regression, each distributional
parameter 𝜗

(∙)

𝑘
can be associated with a structured

additive predictor 𝜂
(∙)

𝑘
through appropriate monotonic
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TABLE 1 Details on the Gaussian, Clayton, and Gumbel copulas. The functions Φ(⋅) and Φ2(⋅, ⋅; 𝜌) denote the CDFs of the standard
univariate normal distribution and bivariate normal distribution with standard normally distributed margins and linear correlation
parameter 𝜌 ≡ 𝜗(𝑐), respectively.

Copula 𝑪(𝒖𝟏, 𝒖𝟐; 𝝑
(𝒄)) Tail dependence 𝝉𝜿

Gaussian Φ2{Φ
−1(𝑢1), Φ

−1(𝑢2); 𝜗
(𝑐)} 𝜆𝑢 = 𝜆𝑙 = 0

2

𝜋
arcsin(𝜗(𝑐))

Clayton (𝑢−11 + 𝑢−12 − 1)−1∕𝜗
(𝑐)

𝜆𝑢 = 0, 𝜆𝑙 = 2

−1

𝜗(𝑐)
𝜗(𝑐)

(𝜗(𝑐)+2)

Gumbel exp[−{(− log(𝑢1))
𝜗(𝑐) + (− log(𝑢2))

𝜗(𝑐) }1∕𝜗
(𝑐)

] 𝜆𝑢 = 2 − 2

1

𝜗(𝑐) , 𝜆𝑢 = 0 1 −
1

𝜗(𝑐)

response functions ℎ
(∙)

𝑘
(⋅) to ensure the restrictions on

the respective parameter spaces. This leads to 𝜗
(∙)

𝑘
=

ℎ
(∙)

𝑘
(𝜂

(∙)

𝑘
) and 𝜂

(∙)

𝑘
= (ℎ

(∙)

𝑘
)−1(𝜗

(∙)

𝑘
), where the inverse

(ℎ
(∙)

𝑘
)−1 is the link function and is similar to GAMs, where

link functions are used to model the conditional expecta-
tion of a distribution from the exponential family. Now, in
the spirit of GAMLSS, each structured additive predictor
is modeled through a sum of an overall intercept term 𝛽

(∙)

0,𝑘

plus 𝐽(∙)
𝑘
generic functions 𝑓(∙)

𝑗,𝑘
(𝒙𝑗) expressed as

𝜂
(∙)

𝑘
= 𝛽

(∙)

0,𝑘
+

𝐽
(∙)

𝑘∑
𝑗=1

𝑓
(∙)

𝑗,𝑘
(𝒙𝑗),

where each parameter specific predictor is associated to
an individual subset of covariates, that is, 𝒙1, … , 𝒙

𝐽
(∙)

𝑘

. The
intercept is the overall level of the predictor when all func-
tion evaluations are zero and the effects of the covariates
on the parameter models are determined by the functions
𝑓
(∙)

𝑗,𝑘
(𝒙𝑗). For instance, in the application in Section 5 we

fit models that incorporate linear and nonlinear effects.
Dropping the parameter superscripts (∙) and parameter
index 𝑘 a single generic linear effect is given by a func-
tion of the form 𝑓linear

𝑗
(𝑥𝑗) = 𝛽𝑗𝑥𝑗 . Nonlinear effects of

univariate covariates 𝑥𝑗 can be modeled via P-splines
with 𝐿𝑗 B-Spline basis functions 𝐵𝑗,𝑙𝑗 (𝑥𝑗) resulting in the

generic smooth function 𝑓smooth
𝑗

(𝑥𝑗) =
∑𝐿𝑗

𝑙𝑗=1
𝛽𝑗,𝑙𝑗𝐵𝑗,𝑙𝑗 (𝑥𝑗).

A second order difference penalty on the coefficients is
introduced to control for the smoothness of the nonlinear
effect (Eilers&Marx, 1996).Many types of smoothing func-
tions, such as smoothing or regression splines, exist (Wood,
2017). Moreover, further covariate effect types like indi-
vidual or group specific random effects or spatial effects
can be incorporated in the structured additive predictors
(Fahrmeir et al., 2013). In summary, eachmodel parameter
specific structured additive predictor is related to an indi-
vidual set of covariates, which are also based on different
functional forms.

3 ESTIMATION VIAMODEL-BASED
BOOSTING

Our proposed method includes the estimation of distribu-
tional copula regression models via model-based boosting.
This section provides an overview on the algorithm and
covers questions related to hyperparameter tuning and
model building.

3.1 Algorithm for boosting
distributional copula models

Parameter estimation of the distributional copula regres-
sion model of a bivariate continuous random variable 𝒀

can be expressed in terms of the optimization problem

�̂� = argmin
𝜼

[
𝐸𝒀

{
𝜔
(
𝒀; 𝜂

(1)

1 , … , 𝜂
(1)
𝐾1
, 𝜂

(2)

1 , … , 𝜂
(2)
𝐾2
, 𝜂

(𝑐)

1 , … , 𝜂
(𝑐)
𝐾𝑐

)}]
,

where 𝜼 = (𝜂
(1)
1
, … , 𝜂

(1)
𝐾1
, 𝜂

(2)
1
, … , 𝜂

(2)
𝐾2
, 𝜂

(𝑐)
1
, … , 𝜂

(𝑐)
𝐾𝑐
)⊤ ∈ ℝ𝐾

is the vector of additive predictor functions of
the model parameters, the respective estimates
of the additive predictor functions are given by
�̂� = (𝜂

(1)
1
, … , 𝜂

(1)
𝐾1
, 𝜂

(2)
1
, … , 𝜂

(2)
𝐾2
, 𝜂

(𝑐)
1
, … , 𝜂

(𝑐)
𝐾𝑐
)⊤ ∈ ℝ𝐾 and 𝜔(⋅)

denotes the loss function. Considering a data sample with
observations 𝑖 = 1, … , 𝑛, we minimize the empirical risk
1

𝑛

∑𝑛

𝑖=1
𝜔(𝒚𝑖; 𝜂

(1)

(𝑖),1
, … , 𝜂

(1)

(𝑖),𝐾1
, 𝜂

(2)

(𝑖),1
, … , 𝜂

(2)

(𝑖),𝐾2
, 𝜂

(𝑐)

(𝑖),1
, … , 𝜂

(𝑐)

(𝑖),𝐾𝑐
)

over 𝜼(𝑖) = (𝜂
(1)

(𝑖),1
, … , 𝜂

(1)

(𝑖),𝐾1
, 𝜂

(2)
𝑖1
, … , 𝜂

(2)

(𝑖),𝐾2
, 𝜂

(𝑐)
𝑖1
, … , 𝜂

(𝑐)

(𝑖),𝐾𝑐
)⊤ ∈

ℝ𝐾 instead. The loss function 𝜔(⋅) measures the discrep-
ancy between the observed responses and the estimated
additive predictors. A common choice for 𝜔 is the negative
log-likelihood of the (bivariate) response distribution from
Equation (3).
The fundamental idea of model-based gradient boost-

ing is to sequentially minimize the empirical risk by a
stepwise descent of the loss function’s gradient in func-
tion space. It represents a sequential ensemble method,
where the base-learners building the ensemble consist of
regression functions. In more detail, the algorithm starts
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with an initial specification of the additive predictors and
a set of pre-defined regression-like base-learners, for exam-
ple, simple linear models or regression splines with low
degrees of freedom, for every model parameter. Note that
the specification of the base-learner determines the type
of effect the corresponding covariate has in the respec-
tive additive predictor (e.g., linear or nonlinear effect).
An overview on potential base-learners in the context of
model-based boosting is provided in Hofner et al. (2014).
In every iteration 𝑚, the parameter-specific sets of base-
learners are fitted one-by-one to the respective negative
partial gradient vectors based on the fit from iteration
𝑚 − 1. These gradient vectors can be seen as pseudo-
observations representing in the simplest case of the 𝐿2
loss the residuals from the previous boosting iteration.
In our case, they are the first derivatives of the negative
log-likelihood with respect to the corresponding model
parameter predictors 𝜂

(∙)

𝑘
. Subsequently, the best base-

learner to fit the corresponding gradient vector in terms
of a residual sum of squares criterion is selected for each
parameter 𝜗

(∙)

𝑘
, which eventually leads to an intrinsic

variable selection. Two algorithmic versions for boosting
distributional regression models exist, namely the cyclic
(Mayr et al., 2012) and the noncyclic (Thomas et al., 2018)
algorithm. The cyclical version updates each additive pre-
dictor functionwith the respective best-fitting base-learner
in each iteration successively, using the other estimates as
offset values. The noncyclic version incorporates an addi-
tional selection step of the best-fitting model parameter.
More specifically, in each iteration only the parameter
model that yields the highest overall loss reduction is
updated with its parameter-specific best base-learner. A
strictly additive aggregation of the best fitting base-learners
over the course of the boosting procedure accounts for
the additive structure of the resulting predictor functions
(see Section 2.4). For reasons of faster tuning properties,
we focus on the noncyclic algorithm in the following. The
algorithm is summarized in a generic way in SI C.

3.2 Choice of hyperparameters

Two hyperparameters of the boosting algorithm are cru-
cial for the parameter estimation and the complexity of
the additive predictors, namely the step length 𝑠 and the
stopping iteration𝑚stop. The step length is involved in the
additive updates, adding only a small proportion of the
base-learner fit to the models. This guarantees the stability
of the boosting algorithm and shrinks the parameter esti-
mates to zero in combinationwith an appropriate stopping
criterion. The stopping iteration𝑚stop defines the iteration
after which further updates are no longer necessary. Early
stopping, that is, when the algorithm is stopped before

convergence, automatically controls the model complexity
of the parameter specific additive predictors. Particularly,
component-wise gradient boosting constitutes an intrin-
sic variable selection mechanism by assigning exactly one
base-learner to each covariable 𝑥1, … , 𝑥𝑝 for each model
parameter (Bühlmann & Yu, 2003; Mayr et al., 2012).
Consequently, in each iteration only the most informa-
tive variable is selected. Stopping the algorithm early
finally leads to the inclusion of the most-informative vari-
ables in the additive predictors, while the less informative
covariates are dismissed.
Tuning is the task of finding appropriate values for

the hyperparameters. In the model-based boosting frame-
work, the optimal 𝑚stop is usually determined via cross-
validation or resampling procedures based on the predic-
tive risk (Bühlmann&Hothorn, 2007; Hothorn et al., 2005;
Mayr et al., 2012). More precisely, the original data are split
into a training and test fold several times. While a boosting
model is fitted to the training sets, the test folds are used
to assess the performance of the model by means of the
predictive risk. Eventually, the optimal𝑚stop is assigned to
the iteration of the smallest predictive risk averaged over
the different test folds. In case of small datasets, it is also
possible to subsequently leave out only one observation
from fitting themodel and perform this leave-one-out cross
validation for all 𝑛 observations. For large sample sizes also
initially splitting the data into training and test data is an
option. Note that a selection of𝑚stop based on information
criteria like the Akaike information criterion (AIC) in con-
trast is problematic due to biased estimates for the effective
degrees of freedom in case of boosting (Hastie, 2007; Mayr
et al., 2012). The step length 𝑠 might be set to a fix small
value (much less than 1) in advance (Mayr et al., 2012). The
simulation studies fromSection 4 suggest that a step length
of 0.01 is suitable for one parametric conditional copula
models with two parametric marginal distributions.

3.3 Model building

In the practical use of distributional copula regression,
researchers are confronted with the choice of the marginal
distributions and the copula function. Klein et al. (2019)
argued that within the framework the model building pro-
cess can be simplified by separating the task of finding
the marginals and the copula function based on Bayesian
information criteria in combination with normalized
quantile residuals. Similarly, in a penalized likelihood-
based context, the AIC and/or Bayesian information crite-
rion (BIC) is proposed for those model building decisions
(Marra andRadice, 2017). However, the boosting algorithm
yields regularized fits,whichmakes the evaluation of resid-
uals and information criteria like the AIC and BIC difficult
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2304 HANS et al.

as mentioned above. As a consequence, for boosted uni-
variate regression models authors suggest to consider the
predictive risk, that is, the risk on a new dataset, to make
decisions not only about 𝑚stop but also the appropriate
distribution function (Mayr et al., 2012). We follow their
approach for the decision concerning the marginal distri-
butions and expand the concept of the predictive risk also
to the choice of the copula function. As a consequence, in
our application in Section 5 we split the dataset randomly
into training and test data. In a first step, we make a deci-
sion on the marginal distributions based on the predictive
risk of the test data. Subsequently, we also choose themost
appropriate copula function bymeans of the predictive risk
using the same test data.

4 SIMULATIONS

Estimating regression models via component-wise gradi-
ent boosting yields appealing properties like parameter
shrinkage, an intrinsic variable selection mechanism and
the capability to fit models in high-dimensional data. The
following simulation study investigates these properties
in the context of distributional copula regression with
continuous margins. More specifically, we are interested
in answering three questions, which are crucial for the
application of boosted copula regression in practice:

(1) Does the boosting algorithm estimate the correct (but
shrunk) effects of the informative covariates on the
different parameter models?

(2) Is boosting able to separate the informative from the
non-informative covariates?

(3) Is the predictive risk a valid tool to choose the correct
copula function?

We carry out simulations in R (R Core Team, 2020) that
cover a low (𝑝 = 20) and a high-dimensional (𝑝 = 1000)
data setup for the Gaussian, the Clayton and the Gum-
bel copula in combination with the log-normal and the
log-logistic marginal distributions and 𝑛 = 1000 observa-
tions. Note that the effective number of covariates is 100
and 5000 for the low- and the high-dimensional scenario,
respectively, as each of the covariates might be integrated
in each of the five sub-models of the copula distribu-
tion. We associate each model parameter with informative
covariates in a linear and nonlinear fashion. However,
most of the 𝑝 covariates remain uninformative in both sce-
narios. For insights on the simulation setup and a more
detailed discussion of the simulation results, we refer to SI
D.2. Moreover, we confirm for a low-dimensional example

with only four linear covariate effects that our algorithm
converges to the estimates of the penalized likelihood
approach of Marra and Radice (2017) (implemented in the
R-package GJRM) for all three copulas and find a slightly
better predictive performance of boosting once we apply
early stopping (see SI D.1.1, D.1.2).

(1) Parameter estimates: The boosting estimates reflect
the true structure of the informative covariates on each
parameter in both the low- and the high-dimensional
settings, including a slight shrinkage toward zero.
In general, the parameter shrinkage is more pro-
nounced for the copula parameter in comparison to
the marginal parameters and in the high-dimensional
in comparison to the low-dimensional setting. A
graphical representation of the estimates is provided
via Web Figures 5–8 in the SI D.2.

(2) Variable selection: The variable selection perfor-
mance is sound for both the low- and the high-
dimensional setting. In each simulation run, all infor-
mative variables were correctly selected for every
model parameter, resulting in correct selection rates
of 100%. However, in case of the low-dimensional
setting the 𝜇-models also tend to include many non-
informative variables. In general, more uninformative
variables are included in the low-dimensional set-
ting compared to the high-dimensional scenarios. The
selection rates of the non-informative covariates for
the low- and high-dimensional setting are presented in
Web Tables 2 and 3 in SI D.2, respectively.

(3) Predictive risk: The predictive risk is a helpful tool
to discriminate between the true and incorrect cop-
ula functions in the low- and the high-dimensional
data case. Figure 1 displays the values of the predic-
tive risk for the correct copula specification on the
x-axis versus the values of the predictive risk of the
misspecified models on the y-axis for each copula
function. All points for all three correct copulas are
located above the diagonal line, indicating that the
true model is always selected for both the low- and
the high-dimensional setting. Note that for a correct
selection the predictive risk of the true model needs
to be smaller than the predictive risk value of the
misspecified models.

Finally, we consider a more extreme high-dimensional
scenario (𝑝 = 1000), with very little observations (𝑛 =

200). As expected, the results for estimation, variable
selection, and predictive risk get worse when 𝑛 gets too
small (see SI D.2.4) and the algorithm tends to select too
simplistic models to avoid overfitting.
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HANS et al. 2305

F IGURE 2 Effects of femur length and gestational age on the mean birth length in the first row of plots and effects of abdomen
circumference and gestational age on the mean birth weight in the second row of plots (solid line). The dashed lines represent the 95%
confidence bands estimated from 100 bootstrap samples (Hofner et al., 2016).

5 ANALYSIS OF FETAL ULTRASOUND
DATA

In this section,wemodel and predict the height andweight
of newborn babies based on sonographic and clinical
covariates of fetuses and mothers collected at the Erlan-
gen University Hospital before birth (Faschingbauer et al.,
2016) bymeans of boosted distributional copula regression.
The weight of a fetus is an important factor in clinical
obstetrics and gynecology (Barker, 1997). Both a very low
and a very high weight are associated with increased risks
of adverse events during labor. Fetal ultrasound measure-

ments play an important role in the determination of the
fetal weight and thus are of major importance for delivery
and labormanagement (Dudley, 2005). In the current liter-
ature and clinical practice, the length of the newborn is not
part of the prediction scheme—but could also lead to a bet-
ter decisionmaking during the labor process. Model-based
boosting was applied several times in the development of
prediction formulas for fetal weight, due to its advantages
in prediction situations and its intrinsic variable selection
mechanism (Faschingbauer et al., 2012, 2015; Schild et al.,
2008), but we are the first to consider fetal weight jointly
with its height.
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2306 HANS et al.

F IGURE 3 Effects of femur length and occipitofrontal diameter on Kendall’s tau rank correlation coefficient 𝜏𝜅 between birth length
and weight (solid line). The dashed lines represent the 95% confidence bands estimated from 100 bootstrap samples (Hofner et al., 2016).

5.1 Birth cohort data

Previous analyses investigate different facets of sono-
graphic fetal weight prediction by means of the Erlangen
birth cohort data (Faschingbauer et al., 2015, 2016). The
dataset we use for our illustrative analysis was collected at
theDepartment of Obstetrics andGynecology of the Erlan-
genUniversityHospital and consists of𝑛 = 6103 pregnancy
observations during 2008–2016. We include 𝑝 = 36 covari-
ates consisting of seven sonographic variables and their
interaction terms as well as various clinical variables of
the mother and the fetus. The response variables birth
length and birth weight are measured in centimeters and
kilograms, respectively. For a detailed description of the
dataset and the covariates, we refer to SI E.1.

5.2 Model building

First of all, we are concerned with the choice of the
marginal distributions and the copula function. Follow-
ing Section 3.3, we randomly assign the data to a training
(𝑛train = 4103) and a test (𝑛test = 2000) dataset and choose
the optimal marginal distributions and the copula func-
tion by means of the predictive risk. For both response
variables, we compare the performance of the Gamma,
inverseGaussian, log-normal, log-logistic, andWeibull dis-
tribution, as birth length and birth weight are continuous
on ℝ+. To ensure similar effective step-lengths among
outcomes and parameter dimensions, we apply a gradi-
ent stabilization (Hofner et al., 2016). Regarding the type
of effects, in all model fits we use cubic P-splines with

20 equidistant knots, a second-order difference penalty
and four degrees of freedom as base-learners for all con-
tinuous variables (allowing for nonlinear effects on the
corresponding model parameter) and include the categor-
ical variables’ sex of the fetus and gestational diabetes
via linear base-learners. For both birth length and birth
weight, the log-logistic distribution suits best (see SI E.2
Web Table 6). Next, we decide on the most appropriate
copula function by fitting the Gaussian, the Clayton, and
the Gumbel copula with the selected log-logistic marginal
distributions to the data. The Gaussian copula is the most
appropriate choice for this data situation (see SI E.2 Web
Table 7).

5.3 Results and selected variables

5.3.1 Marginal distributions

For the predictors of the scale parameters 𝜇 of the log-
logistic distributions for birth length and birth weight, the
boosting algorithm selects 92% and 81% of the covariates,
respectively. Less covariates are included into the predic-
tors of the shape parameters𝜎with 44% for the birth length
and 39% for the birth weight.
The plots of Figure 2 show the effects of femur length

and gestational age on the mean birth length and abdomi-
nal circumference and gestational age on themean of birth
weight. For each plot, all other covariates are set to the ref-
erence category in case of the binary variables and set to
the average covariate values of the whole dataset in case of
continuous variables. Themean birth length and themean
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HANS et al. 2307

F IGURE 4 Joint probabilities from the copula model. Left: histogram of joint probabilities separated by oversized children (grey) and
children that meet standard values for length and weight (black) as defined in the main text. Right: receiver operating characteristic (ROC)
curve over the joint probabilities.

birth weight increase with higher covariate values for all
presented plots. The effects of the sonographic covari-
ates femur length and abdomen circumference are almost
linear. These results are coherent with the findings of
previous univariate sonographic birth weight estimations
(Faschingbauer et al., 2012).

5.3.2 Dependence parameter and Kendall’s
tau

The boosting algorithm selects 25% of the covariates into
the dependence parameter model.
For both femur length and occipitofrontal diameter,

Kendall’s tau rank correlation coefficient 𝜏𝜅 decreases for
higher covariate values as presented in Figure 3. These
findings seem plausible, as an increase of femur length
possibly has a stronger impact on the birth length than
on the birth weight. For the occipitofrontal diameter, we
assume that a larger head of a fetus rather effects the birth
weight than the birth length, leading to a weaker associa-
tion.

5.4 Comparison to univariate models

We want to compare the probabilistic forecasting per-
formance of the Gaussian copula model with univariate
distributional regression models for the birth length and
the birth weight by fitting the two univariates’ responses
independently from each other. In order to compare the
bivariate model with the univariate counterparts, we use
multivariate proper scoring rules that assign a numeri-
cal score to a combination of a future observation and its
predictive probabilistic distribution (Gneiting & Raftery,

2007). In particular, we focus on two scoring rules, namely
the logarithmic score and the energy score, and calculate
the averaged score values of the 2000 observations in the
test data for the Gaussian copula model and the indepen-
dent univariate models. Both scores favor the Gaussian
copula model over the independent univariate models for
our dataset. The resulting values for the logarithmic score
are 2.079 and 2.228 for the Gaussian copula and indepen-
dent models, respectively. For the energy score, the former
has an average score of 1.085, while the latter yields an
average score of 1.087. Note that for both scores lower val-
ues indicate a better probabilistic forecasting performance
(Jordan et al., 2019).

5.5 Joint probabilities and thresholding

Finally, we evaluate the predictive joint probabilities of the
fetuses from the test sample to exceed a birth length of
51 cm and a birth weight of 4 kg for the Gaussian copula
model. A birth weight of >4 kg is defined as fetal macro-
somia (Faschingbauer et al., 2015). Following a study on
international standards on newborns’ length (Villar et al.,
2014) the 90th centile of the birth length is given by approx-
imately 51 cm for fetuses within the 38th and 41th week
of gestational age. These two thresholds are interesting to
investigate as it is for examplemore likely formothers with
large babies to experience a cesarean section (Boulet et al.,
2003). The Erlangen birth dataset confirms this finding
by a section rate that is approximately 1.42 times higher
for newborns that exceed these thresholds versus new-
borns that meet standard values, that is, birth length ∈

[47, 51] cm and birth weight ∈ [2.65, 4] kg, where 47 cm
and 2.65 kg are approximately the 10th centiles for birth
length and birthweight for fetuseswithin the 38th and 41th
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week of gestational age, respectively (Villar et al., 2014).
Figure 4 (left) shows the histogram of the joint probabil-
ities separated by oversized children (grey) and children
that meet standard values for length and weight (black)
in the test dataset. It is obvious that the joint probabilities
to exceed both thresholds tend to be higher for oversized
children. Thus, we consider the receiver operating char-
acteristic curve (ROC, right) to evaluate the classification
performance of the joint probabilities. With an area under
the curve (AUC) of 0.937 the joint probability seems to be
a valuable indicator to identify oversized children.

6 CONCLUSION

We have introduced a flexible framework to fit conditional
copula regression models via model-based boosting.
Boosting proves to be a valuable fitting procedure in many
applied data analysis settings, due to its fully data-driven
mechanism to select variables and predictor effects, its
feasibility in high-dimensional data settings and its good
performance in prediction setups. In extensive simula-
tion studies, we demonstrate the sound performance of
boosted conditional copula regression models in low- and
high-dimensional settings. Moreover, an application on
fetal ultrasound data exemplary illustrates the potential
of boosted copula regression in medical research. Boosted
copula regression could be of interest in many other
applications of biomedical research and beyond. In many
clinical trials or experiments, one typically evaluates a
potential intervention effect on various outcome variables
(primary or secondary endpoints), which are typically
analyzed separately. This may lead to insufficient results,
since separate analyses cannot detect potential effects on
the associations of these endpoints.
Despite its merits, we notice three major limitations

of our approach that frequently occur in the context
of boosting regression models in general. First of all,
even though model-based boosting incorporates an intrin-
sic variable selection mechanism, in some situations the
algorithm tends to include too many variables due to
optimizing the predictive risk. This occurs in particu-
lar in low-dimensional data settings with large 𝑛, where
boosting shows a slow overfitting behavior and a rela-
tively late stopping of the algorithm (Staerk &Mayr, 2021).
Strömer et al. (2022) investigated the latter phenomenon
for univariate GAMLSS and proposed a new procedure
for enhanced variable selection that effectively deselects
base-learners with minor importance. This idea could
be further developed for boosting distributional copula
regression. Moreover, when boosting is applied to high-
dimensional data with 𝑝 larger than 𝑛, the algorithm tends
to stop relatively early leading to sparse and thus sim-

pler models—as can be also observed in our simulation
results with smaller 𝑛. Note that for complex models like
the ones we are dealing with, it is not unexpected that
more observations are needed to arrive at reliable esti-
mates (see also the GJRM-package manual (p. 22) in the
penalized likelihood framework in the 𝑝 < 𝑛 case). Sec-
ond, boosting distributional regression with a unique step
length for all parameter submodels might lead to imbal-
anced updates of predictors in some scenarios as Zhang
et al. (2022) outline. In certain situations, this can become
a problem as some submodels might not be appropriately
fitted within a limited number of boosting iterations. As
a result, the authors propose using adaptive step-lengths
for univariate Gaussian location-scale models and it could
be interesting to test this procedure in other univariate
and multivariate GAMLSS family classes. Third, a further
limitation of model-based boosting is its computation-
ally expensive tuning procedure based on cross-validation.
Alternatives avoiding time-consuming resampling proce-
dures have been proposed based on so-called random
probes (Thomas et al., 2017). However, these come at a cost
of higher memory demand. Still it may be interesting to
investigate such alternatives in our model class.
Another direction for future research, we aim to explore

is the extension to boosted copula regression models with
discrete and continuous-discrete outcomes to leverage
Bayesian and frequentist counterparts (Klein et al., 2019;
Radice et al., 2016). Moreover, it would be interesting to
analyzemultivariate responses of higher dimension.While
such a setting can conceptually be embedded into distri-
butional copula regression in a straightforward manner,
model building and selection of all marginal distributions
and a parametric copula as well as stable estimation are
far more challenging. Here, it seems to be more promising
to resort to semiparametric methods not requiring para-
metric assumptions on the margins and the dependence
structure (e.g., Klein et al., 2022, and reference therein) or
other forms of copulas such as pair-copula constructions
(Vatter & Nagler, 2018).
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