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End-to-end learners for autonomous driving are deep neural networks
that predict the instantaneous steering angle directly from images of the street
ahead. These learners must provide reliable uncertainty estimates for their
predictions in order to meet safety requirements and to initiate a switch to
manual control in areas of high uncertainty. However, end-to-end learners
typically only deliver point predictions, since distributional predictions are
associated with large increases in training time or additional computational
resources during prediction. To address this shortcoming, we investigate ef-
ficient and scalable approximate inference for the deep distributional model
of Klein, Nott and Smith (J. Comput. Graph. Statist. 30 (2021) 467–483)
in order to quantify uncertainty for the predictions of end-to-end learners.
A special merit of this model, which we refer to as implicit copula neural
linear model (IC-NLM), is that it produces densities for the steering angle
that are marginally calibrated, that is, the average of the estimated densities
equals the empirical distribution of steering angles. To ensure the scalabil-
ity to large n regimes, we develop efficient estimation based on variational
inference as a fast alternative to computationally intensive, exact inference
via Hamiltonian Monte Carlo. We demonstrate the accuracy and speed of the
variational approach on two end-to-end learners trained for highway driving
using the comma2k19 dataset. The IC-NLM is competitive with other es-
tablished uncertainty quantification methods for end-to-end learning in terms
of nonprobabilistic predictive performance and outperforms them in terms
of marginal calibration for in-distribution prediction. Our proposed approach
also allows the identification of overconfident learners and contributes to the
explainability of black-box end-to-end learners by using the predictive densi-
ties to understand which steering actions the learner sees as valid.

1. Introduction. In recent years there have been immense advances in autonomous dri-
ving. Nevertheless, the progression from mere driver assistance to fully autonomous drivers
still poses great safety challenges. Owing to the high costs associated with wrong decisions
made by autonomous drivers, models have to be extremely accurate and safe in a wide range
of driving scenarios. As a response to the safety and scalability issues of traditional au-
tonomous driving systems, a new family of models, called end-to-end learners, has emerged
in the last decade. End-to-end learners predict steering angles of a moving vehicle directly
from images or videos of the street ahead using a single deep neural network (DNN). These
models usually only provide a point prediction for the steering angle, thus making it difficult
to quantify uncertainty or address potential overconfidence of a learner.

Obtaining accurate predictive uncertainty measures for the steering angles is essential to
assessing the safety of an end-to-end learner reliably. Predictive uncertainty can also be lever-
aged to initiate a switch to human control in areas of high uncertainty to avoid crashes.
Recently, there has been much progress in obtaining reliable uncertainty estimates for a
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DNN prediction. In contrast, the vast training set sizes as well as temporal and computa-
tional limitations during prediction in autonomous driving pose challenges to these methods.
As a solution, we propose obtaining predictive densities for the steering angle, building on
the marginally calibrated deep distributional regression model developed by Klein, Nott and
Smith (2021). We label this approach the implicit copula neural linear model (IC-NLM) to
highlight its connection to the class of neural linear models (NLMs). NLMs comprise DNNs
in which the last layer is augmented to a Bayesian linear regression model. The IC-NLM is
based on the implicit copula (Section 5 of Nelsen (2006)) of a vector of transformed response
variables that arises from an NLM. The resulting copula allows the modelling of highly flex-
ible relations between the feature vector and the response densities. The copula is combined
with a nonparametrically estimated marginal distribution for the observed response variable
to ensure certain calibration properties.

Our work delivers two main contributions to the quantification of uncertainty in end-to-end
learners. First, we develop a scalable version of the IC-NLM based on approximate estimation
using variational inference (VI). The original version of the IC-NLM is founded on Markov
chain Monte Carlo (MCMC) estimation which is plagued by convergence issues and long run-
times when applied to the dataset sizes typically used in end-to-end learning. MCMC is thus
not a scalable option for realistic autonomous driving models with large training set sizes n.
We verify the accuracy of the VI approach by comparing it to Hamiltonian Monte Carlo
(HMC; Neal (2011)) in an empirical setting based on the comma2k19 autonomous driving
data (Schafer et al. (2018)) with n > 300,000 observations. Second, we demonstrate that the
IC-NLM is competitive with other established methods of obtaining predictive densities for
end-to-end learners with respect to the in-distribution prediction in terms of nonprobabilistic
predictive accuracy while providing marginal calibration. To this end, we train end-to-end
learners in lane keeping on highways on the comma2k19 data and quantify the uncertainty of
the steering angle predictions using the IC-NLM and a number of state-of-the-art benchmark
methods. In addition to its competitive performance, the IC-NLM only requires a single for-
ward pass and no sampling at prediction time, making it suitable for fast and reliable real-time
prediction.

The remainder of the paper is structured as follows. We start out with the basic idea and
development of end-to-end learners as well as the unique challenges encountered when quan-
tifying uncertainty for their predictions in Section 2. We also introduce the data used to train
our end-to-end learners in this section. In Section 3 we present the IC-NLM, starting with
the definition of NLMs and continuing with reviewing the construction of the implicit cop-
ula version of the NLM. Section 4 develops both exact and approximate inference through
HMC and VI to estimate the IC-NLM. Section 5 contains our detailed analysis to quantify
uncertainty in end-to-end learners. In Section 6 we present our conclusions.

2. Background and challenges in end-to-end learning. Traditionally, autonomous
driving approaches involve modularized models that rely on object classification and object
tracking paired with if-else behavior rules (Chen et al. (2015)). But these models still strug-
gle to navigate vehicles autonomously without any human intervention. One reason for the
failure of traditional models lies in the limited training sets. Providing sufficient training data
is costly: object-detection models require bounding boxes for each object in a single training
image. Only humans can provide such bounding boxes for the training data manually, mak-
ing large training sets very expensive to produce. Small training sets, in turn, lead to driving
models that are not robust toward the diversity of situations encountered on real-world roads.

Eliminating this manual annotation requirement opens new avenues for ultralarge train-
ing sets and motivates the evolution to so-called end-to-end learners. These models directly
translate sensory inputs into driving instructions through a single, nonmodularized model.
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FIG. 1. Classic autonomous driving models vs. end-to-end learning.

Typically, the steering angle is predicted from images of the street ahead through a single
DNN. The first end-to-end learners were convolutional neural networks (CNNs) that predict
steering angles directly from the images of a forward-facing camera on a moving vehicle
(Bojarski et al. (2016)). Nowadays, end-to-end learners have evolved to take spatial and time
dimensions also into account (Xu et al. (2017), Chi and Mu (2017), Amini et al. (2019)) and
use, for example, long short-term memory (LSTM) networks. The workflow underlying both
the classic paradigm in autonomous driving and end-to-end learning is illustrated in Figure 1.

Formally, an end-to-end learner is a mapping from images of the road ahead to the steering
angle. Let Y = (Y1, . . . , Yn)

� be a random vector of n steering angles from which we observe
realizations y = (y1, . . . yn)

�. The corresponding observed features xi , x = (x1, . . . ,xn)
T

are tensors that contain the image pixels. Typically, all pixels are stored in three-dimensional
tensors. The dimensions correspond to position of the pixels along the width, height, and
color channels of the image. An end-to-end learner is a mapping f (xi ) = ŷi that can be used
to predict steering angles also from new feature values.

End-to-end learners typically only deliver point predictions ŷi = E[Yi | xi] without any
uncertainty quantification. However, it is important to ensure the safety of end-to-end learn-
ers. Hence, one is interested in predicting not only ŷi but rather the entire predictive density
p(y∗ | x∗) at an arbitrary steering angle y∗, given an arbitrary input image x∗ (see Arnez
et al. (2020), for an overview of existing methods). The latter can be used to identify areas
of high uncertainty, initiate a switch to manual control, or act as an early alerting system for
wrong predictions and crashes (Michelmore, Kwiatkowska and Gal (2018)). Overconfident
end-to-end learners can also be identified through p(y∗ | x∗), since they will associate wrong
predictions with low predictive variance. Owing to its attractiveness in autonomous driving
applications, obtaining suitable estimators for p(y∗ | x∗) has recently become the topic of ex-
tensive research. However, most current methods exhibit computational difficulties or suffer
from a lack of accuracy. The reason is that many methods for computing p(y∗ | x∗) con-
flict with the unique hardware and prediction speed requirements in autonomous vehicles.
Furthermore, existing methods often do not produce densities that are accurate, reliable, and
consistent with the data as a result of unrealistic model assumptions.

Obtaining predictive densities for end-to-end learners in autonomous driving comes with
unique challenges. To ensure safety, predictive densities should be well calibrated. Calibra-
tion is an essential criterion to ensure the reliability of predictive uncertainty. But currently,
few methods based on DNNs produce calibrated estimates of p(y∗ | x∗). We provide an
overview of important calibration notions in Section 2.1. Another challenge is to obtain flexi-
ble predictive distributions p(y∗ | x∗) for end-to-end learners at low cost. Predictive densities
have to be complex (e.g., multimodal, skewed) to reflect the existence of several valid steer-
ing options. Training has to be relatively cheap, since large models with huge training sets



are needed. Prediction not only has to be fast to ensure real-time results but also hardware-
efficient, since only limited computational resources are available in an autonomous vehicle
(Lin et al. (2018)). We discuss and investigate how well current methods for obtaining pre-
dictive densities in end-to-end learning handle these challenges in our analysis in Section 2.2
and compare them to the IC-NLM.

2.1. Notions of calibration and reliability of predictive distributions. In the machine
learning literature, calibration is often understood as the reliability of prediction intervals.
For the IC-NLM we will adhere to the more statistical notions of calibration introduced by
Gneiting, Balabdaoui and Raftery (2007a), namely, marginal and probabilistic calibration.
Reliable prediction intervals will arise as a natural by-product of these types of calibration,
as we will see later.

Formally, marginal calibration can be expressed as follows: Assume that we compute pre-
dictive densities for the elements of a stochastic process {Y1, Y2, . . .}. The corresponding
probabilistic predictions are predictive cumulative distribution functions (CDFs) which are
continuous, strictly increasing, and collected in a sequence (F̂i)i∈N. The true CDFs of the
data-generating process are denoted as (Fi)i∈N. Following Gneiting, Balabdaoui and Raftery
(2007a), marginal calibration of (F̂i)i∈N, relative to (Fi)i∈N, occurs if the asymptotic limits
of the average true distribution and the average predictive CDFs exist and are equal to each
other, that is,

lim
n→∞

(
1

n

n∑
i=1

Fi(y)

)
= lim

n→∞

(
1

n

n∑
i=1

F̂i(y)

)
∀y ∈ R.

Note that in our case of cross-sectional data, there is no ordering in the sequence. However,
as noted in Gneiting, Balabdaoui and Raftery (2007b), the above framework can still provide
related empirical notions of marginal calibration. Gneiting and Ranjan (2013) develop such
a notion and demonstrate that marginal calibration can be defined as equality of the marginal
distribution of the observation and the expected forecast distribution. In the context of end-
to-end learning, marginal calibration can be interpreted as a stable distribution over driving
trajectories. For example, when training an end-to-end learner for lane-keeping on highways,
we would expect that most steering trajectories are straight and no extreme turns are made,
except when leaving the highway. Probabilistic predictions that are not marginally calibrated
could place too much probability mass on extreme steering angles which is inconsistent with
the distribution over steering angles that we observe in practice. We will see in Section 5 that
the IC-NLM produces marginally calibrated predictive densities for in-distribution observa-
tions per construction.

Another notion of calibration is probabilistic calibration. The predictive densities are prob-
abilistically calibrated if, on average, the probability that we observe Yi ≤ y under the pre-
dictive CDF F̂i converges almost surely to the probability of observing Yi ≤ y under Fi , that
is,

1

n

n∑
i=1

Fi ◦ F̂−1
i (p)

a.s.→ p ∀p ∈ (0,1),

where
a.s.→ denotes almost sure convergence. Even though the IC-NLM does not provide the-

oretical guarantees for probabilistic calibration, we will see in Section 5 that its predictions
still perform quite well under this aspect.

Predictive densities can also be used to compute prediction intervals and identify poten-
tially wrong predictions. Following the definition of Pearce et al. (2018), an 1−α% prediction
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interval is an interval [ŷi,LB, ŷi,UB] such that an observation yi falls into this interval with a
probability of, at least, 1 − α%

P(ŷi,LB ≤ yi ≤ ŷi,UB) ≥ 1 − α.

The coverage rates of the prediction intervals should be accurate such that the width of the
prediction interval at a given level can be used to quantify the uncertainty of the current
prediction.

2.2. Probabilistic models and uncertainty quantification. In current methods for proba-
bilistic predictions with DNNs, a trade-off exists between computational cost and prediction
accuracy. Probabilistic models often possess a substantially higher number of parameters than
their nonprobabilistic counterparts such that researchers are confronted with long computing
times or increased hardware requirements. This is the case for, for example, Bayesian neu-
ral networks (BNNs) which learn probability distributions over all network weights. Even
state-of-the art algorithms for estimating BNNs (Blundell et al. (2015)) lead to, at least, twice
as many parameters as in a non-Bayesian DNN. In contrast, most non-Bayesian, ensemble-
inspired approaches that estimate p(y∗ | x∗) require several parallel DNN evaluations. Given
that the hardware in autonomous vehicles is restricted, evaluating a sufficient number of
DNNs in parallel is not always feasible. Some methods that suffer from these drawbacks
are the ensemble approach of Lakshminarayanan, Pritzel and Blundell (2017), and Monte
Carlo (MC) dropout, as proposed in Gal and Ghahramani (2016) and applied to autonomous
driving by Amini et al. (2019), Michelmore, Kwiatkowska and Gal (2018). In addition, both
(pseudo-) ensembles and BNNs do not generally produce calibrated probabilistic predictions
empirically. This is often attributed to a lack of model expressivity and diversity (Kuleshov,
Fenner and Ermon (2018), Zhang, Dalca and Sabuncu (2019)).

A few approaches are exempt from the aforementioned trade-off. Uncertainty of end-to-
end learners can be quantified by discretizing the steering angle into bins (Xu et al. (2017),
Chi and Mu (2017)). The regression problem is thereby turned into a classification problem.
The resulting class probabilities can easily be used to quantify uncertainty but are often not
calibrated (Guo et al. (2017)). Explanations of this problem can be found in Zhang, Dalca
and Sabuncu (2019). Beyond that, distributional models that can capture aspects of the re-
sponse distribution beyond the mean have evolved also in deep learning. For instance, het-
eroscedastic Gaussian models (Kendall and Gal (2017)), deep versions of quantile regression
(Rodrigues and Pereira (2020)), or generalized linear models (Tran et al. (2020)) have been
suggested. Mixture density networks (MDNs; Bishop (1994), Uria, Murray and Larochelle
(2013)) also produce predictive densities, are easy to train, and require little modification
from a nonprobabilistic DNN. The only drawback is that, empirically, the resulting predic-
tive densities are often not calibrated.

2.3. Data. We demonstrate the IC-NLM’s speed and accuracy by quantifying the uncer-
tainty of end-to-end learners trained on the comma2k19 dataset (Schafer et al. (2018)). The
data contains over 33 hours of driving footage on highways in California, collected in 2019
video files. A camera mounted on the windshield records the road ahead and several sensory
inputs are measured simultaneously. The comma2k19 data are particularly suited to training
an end-to-end learner, since lane markings on highways are clearly visible, making it easy for
a CNN to use them as a steering orientation. Two example frames from the data are depicted
in Figure 2.

To train a meaningful end-to-end learner, we clean a fifth1 of the data of erratic driving be-
havior and lane changes. This is a typical step in autonomous driving, to ensure that the model

1Only a fifth of the full data are used since manual cleaning is extremely time consuming.



FIG. 2. Example images from the comma2k19 dataset.

does not learn faulty driving behavior such as minor swerving. After cleaning, the data are
split into 43,736 training and 10,472 validation observations. In real-life autonomous driving
applications, the datasets are usually much larger. To explore the scalability of VI estima-
tion for the IC-NLM, we also use the full, uncleaned comma2k19 data. This large dataset is
divided into a training and validation set with 355,543 training and 155,386 validation obser-
vations. However, with these data a distribution shift naturally occurs between the training
and validation components. The IC-NLM is not designed for out-of-distribution prediction,
as the marginal density of the training data will influence all predictive densities. Any shift
between the validation and training distributions will, therefore, negatively impact predictive
performance. For this reason we only use the uncleaned data to illustrate the computational
gains of VI over HMC for the IC-NLM. Employing VI, instead of HMC, reduces the compu-
tation time by several days when using the full data.

Much interest lies in directly using raw data to train end-to-end learners (compare, e.g., Xu
et al. (2017)), because cleaning datasets of erratic or unwanted driving behavior is extremely
time consuming. However, training on raw data requires semisupervised methods, which are
not the scope of this paper and which have been only partly developed so far in the context of
end-to-end learning (see Abbasi et al. (2020), for an overview). In addition, semisupervised
models cannot generalize accurately enough to be used in real-world scenarios. Therefore,
hand-picking training examples from the raw data is still an essential step in training reliable
end-to-end learners.

3. The implicit copula neural linear model.

3.1. Primer on DNNs. Typically, end-to-end learners for autonomous driving are DNNs
that map from images of the road ahead directly to the steering angle. Generally, DNNs can
be used to approximate arbitrary continuous functions f ∗(X∗) = Y ∗ mapping a random vec-
tor of features X∗ (not necessarily tabular but, e.g., images or text) to a scalar response Y ∗.
DNNs comprise layers of neurons, where each neuron receives the neuron activations from
the previous layer as inputs. The neurons of the network jointly implement a complex nonlin-
ear mapping from the input to the output through weight matrices of linear transformations
and nonlinear activation functions. This mapping is learned from the data by adapting the
weights of each neuron using a technique called error backpropagation (Rumelhart, Hinton
and Williams (1986)).

For end-to-end learners the last layers of a DNN typically consist of fully connected, dense
layers. The output f (k), k ∈ {1, . . . ,K} of the kth layer of such a DNN for a single observation



C. HOFFMANN AND N. KLEIN

with feature x∗ may be represented as

f (k)(x∗) = g(k)(Z(k)(x∗)
W (k) + b(k)),

where Z(k)(x∗) are the outputs of the previous (i.e., (k − 1)th) layer, W (k) is a weight ma-
trix, b(k) is a bias vector, and g(k) is a (non)linear activation function. The weights and bi-
ases of an entire K-layer DNN consist of {ζ ,W (K),b(K)}, with ζ denoting the set of all
weights and biases of the DNN up to the last hidden layer. All weights and biases are de-
termined by minimizing an empirical loss criterion, such as the mean squared error (MSE)
loss,

∑n
i=1(f

(K)(xi ) − yi)
2, based on a training set D = {(xi , yi)}ni=1 of features and re-

sponses (we refer interested readers to Goodfellow, Bengio and Courville (2016), Polson and
Sokolov (2017), for a further discussion on how to determine the weights of a DNN and more
information on DNNs, including regularization). In a regression setting, minimization based
on the MSE is equivalent to assuming a homoscedastic Gaussian model (thus assuming that
the responses are indeed conditionally Gaussian), although minimization does not require
parametric model assumptions.

3.2. Neural linear models. The class of NLMs comprises Bayesian linear models in
which the features are deep basis functions learned by a DNN with an identity activa-
tion function in the last layer (Ober and Rasmussen (2019), Pinsler et al. (2019), Snoek
et al. (2015), Riquelme, Tucker and Snoek (2018)). Assume that we have trained a DNN
on a training set D. We denote the n × p matrix of outputs from the (K − 1)th layer as
Bζ (x) = [ψζ (x1) | . . . |ψζ (xn)]T ∈ Rn×p , where ψζ (·) is the vector of p basis functions
defined by the (K − 1)th layer. Then, the NLM is of the form

(1) y = Bζ (x)β + β0 + ε,

where β = (β1, . . . , βp)� ∈ Rp is the vector of regression coefficients (or weights), ε =
(ε1, . . . εn)

� is the vector of i.i.d. error terms, ε ∼ N(0, σ 2I ), and β0 ∈ R is the intercept
(also called bias in the machine learning literature). Both the vector of weights β and the
bias β0 are equipped with a prior in an NLM. This way it is possible to perform Bayesian
inference over the model’s parameters and compute the posterior of β and, subsequently, the
predictive densities p(y∗ | x∗) via the posterior predictive densities (see Section 3.4.1).

Most of the existing NLMs use simple, conjugate priors which, in turn, results in insuffi-
ciently complex, unimodal predictive densities p(y∗ | x∗). These densities are not appropri-
ate for modeling complex uncertainty scenarios in autonomous driving. The IC-NLM over-
comes this issue by employing an implicit copula. The latter allows the whole distribution
of the steering angle to vary flexibly with the features. Construction of the IC-NLM in the
next section will be based on an NLM, and in this context, we will also give details on prior
specifications and posterior inference.

3.3. Derivation of the implicit copula neural linear model. To ensure marginally cali-
brated densities, Klein and Smith (2019) and Smith and Klein (2021) introduce a new ap-
proach to distributional regression that uses a copula decomposition constructed from the
so-called inversion method (Nelsen (2006)). Klein, Nott and Smith (2021) outline how to
extend their approach to deep learning regression, which we refer to as the IC-NLM. We
review the key ideas of this method and the adaptations necessary for our application in the
following.



3.3.1. Calibrated copula process. Copula models with regression margins for multivari-
ate responses Y ∈ RD , D > 1 have been widely used in the literature (see, e.g., Craiu and
Sabeti (2012), Klein and Kneib (2016a), Pitt, Chan and Kohn (2006), Song, Li and Yuan
(2009)). However, another use of a copula with regression data is to capture the dependence
between multiple observations on a single dependent variable Y , conditional on the feature
values, which in our case are the steering angles and corresponding feature image tensors.

Doing so defines a copula process (Wilson and Ghahramani (2010)) on the feature space,
which Smith and Klein (2021) call a regression copula because of its dependence on the
features. When combined with a flexible marginal distribution for Y ∗, the authors illustrate
that it specifies a tractable and scalable distributional (i.e., probabilistic) regression model in
which the entire distribution of Y ∗ varies with the features.

Klein, Nott and Smith (2021) use this idea when the regression copula is the implicit copula
of the joint distribution of a pseudo response. Such pseudo responses can be modeled with
a DNN regression. As a consequence, the pseudo responses can be obtained through density
transformations from the observed response Y , as detailed in Section 3.3.2 below. We shall
now explain the copula construction and its relation to other statistical probabilistic models.

Sklar’s theorem (Sklar (1959)) states that the n-dimensional distribution of Y | x can be
written as

p(y | x) = c†(
FY1(y1 | x1), . . . ,FYn(yn | xn) | x) n∏

i=1

pYi
(yi | xi),

where the n-dimensional copula with density c† is a copula process on the covariate space
and FYi

(yi | xi ) is the marginal distribution function of Yi | xi with density pYi
. Both the

copula and the marginal distributions are typically unknown, and it is common to make the
copula dependent on some copula parameters θ . We follow Klein, Nott and Smith (2021) and
use cDNN(u | x, θ) with ui = FYi

(yi) (cf. Section 3.3.2).
One further tractable but effective simplification is to allow the covariates only to affect

the dependent variable through the copula function (Klein and Smith (2019)) and to calibrate
the distribution of Yi | xi to its invariant margin so that FYi

≡ FY has density pYi
(yi | xi) =

pY (yi). This margin can be estimated nonparametrically. Thus, in the IC-NLM the response
has the joint density

(2) p(y | x, θ) = cDNN(u1, . . . , un | x, θ)

n∏
i=1

pY (yi).

The marginal invariance assumption may seem counter-intuitive at first, given the usual con-
ditional formulation of a regression model for Yi | xi through a univariate marginal model.
Still, it is a valid approach for which Y is indeed dependent on x in the joint distribution
defining a flexible distributional regression model; see Smith and Klein (2021) for details.

3.3.2. Copula construction. The basis for the construction of the IC-NLM of Klein, Nott
and Smith (2021) is a DNN trained to predict density-transformed pseudo responses Z, where
zi = �−1

1 (FY (yi)) with an identity activation function in the last layer. Let Z̃i be the ith
pseudo response, i = 1, . . . , n. Then, Z̃i can be modeled using the output layer of the DNN
plus some Gaussian noise εi ∼ N(0, σ 2), that is, Z̃i = f

(K)
i + εi , where f

(K)
i denotes the

output when passing the ith feature observation to the DNN. Then, from (1) the vector Z̃ =
(Z̃1, . . . , Z̃n)

� follows the linear model

(3) Z̃ = Bζ (x)β + ε,

where the intercept β0 was excluded, since it will not be identified in the copula. The weights
ζ can be easily obtained by training the DNN to predict the pseudo response (see Section 4
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for details on how to fix them). Thus, (3) is a linear model with design matrix Bζ and vector
of weights β . Efficient estimates for β are produced via regularization with the conditionally
Gaussian prior as a shrinkage prior, that is,

β | θ, σ 2 ∼ N
(
0, σ 2P (θ)−1)

.

The (sparse) precision matrix P (θ) is a function of the copula parameters θ . The density
cDNN is then derived by integrating β out in (3) (see Klein and Smith (2019), for a detailed
derivation). This results in a Gaussian copula (Song (2000)) with density

(4) cDNN(u | x, θ) = p(z | x, σ 2, θ)∏n
i=1 p(zi | x, σ 2, θ)

= φn(z;0,R(x, θ))∏n
i=1 φ1(zi)

,

where

(5) R(x, θ) = S(x, θ)
(
I + Bζ (x)P (θ)−1Bζ (x)�

)
S(x, θ),

zi = �−1
1 (ui), z = (z1, . . . , zn)

�, and φn(·;0,R) and φ1 are the densities of Nn(0,R) and
N(0,1) distributions, respectively. The random variables Zi are standardized versions of
Z̃i , Z = (Z1, . . . ,Zn)

� = σ−1S(x, θ)Z̃, where S(x, θ) = diag(s1, . . . , sn) is a diagonal
scaling matrix with elements si = (1 + ψζ (xi )

�P (θ)−1ψζ (xi))
−1/2, which ensures that

Zi | x, σ 2, θ ∼ N(0,1).

3.3.3. Shrinkage for deep regression copulas. For specific choices of P (θ), we compare
the two shrinkage priors employed in Klein, Nott and Smith (2021), namely, the ridge and
the horseshoe prior:

Ridge. The ridge prior is one of the simplest forms of shrinkage priors, where βj | τ 2 ∼
N(0, τ 2), j = 1, . . . , p and a hyperprior is used on the variance τ 2. For this we employ the
robust and principled choice of scale-dependent priors of Klein and Kneib (2016b), which
corresponds to a Weibull prior, τ 2 ∼ WB(1/2, ν) with scale parameter ν. We found the pre-
dictive densities to be rather robust with respect to the actual value of ν, and we follow Klein,
Nott and Smith (2021) and set ν = 2.5 in our analysis.

Horseshoe. The horseshoe prior is attractive owing to its robustness, local adaptivity, and
analytical properties (Carvalho, Polson and Scott (2010)). It is a scale mixture of the hi-
erarchical form βj | λj ∼ N(0, λ2

j ), with π0(λj | τ) = Half-Cauchy(0, τ 2) and π0(τ ) =
Half-Cauchy(0,1). Compared to the ridge prior, this prior is a global-local shrinkage prior
which allows for weight-specific local shrinkage for each coefficient in addition to overall
regularization through τ 2.

Even though the dimension of β is quite small in our application (p = 10, see Section 5),
regularizing the weights can make the posterior response densities more robust to noise and
enhance the predictive quality, as we demonstrate in Section 5. While the ridge prior intro-
duces only one further scalar parameter θ = {τ 2}, the horseshoe prior comes with p + 1
hyperparameters θ = {λ1, . . . , λp, τ 2}.

The corresponding correlation matrices for both priors are

R(x, θ) = S(x, θ)
(
I + τ 2Bζ (x)Bζ (x)�

)
S(x, θ),

R(x, θ) = S(x, θ)
(
I + Bζ (x)diag(λ)2Bζ (x)�

)
S(x, θ).

Allowing for more sophisticated shrinkage of each regression coefficient introduces addi-
tional parameters to the model which, in turn, can slow down estimation. However, our re-
sults reveal that allowing for local shrinkage in addition to global regularization significantly
enhances predictive performance and the model’s ability to identify potentially high-error
predictions. This is why we argue that employing a more complex shrinkage prior through
the horseshoe is worth the additional computational cost. The full hierarchical IC-NLM is
illustrated as a graphical model in Figure 3.



FIG. 3. The IC-NLM as a graphical model. Dotted arrows indicate that only one of the dependencies can hold
at a time, that is, either the ridge or horseshoe prior.

3.4. Estimation of the IC-NLM. Algorithm 1 summarizes how estimation of the IC-NLM
is realized.

Step 1 involves estimating the marginal distribution F̂Y via a kernel density estimator
(KDE). Later, we will use a nonparametric KDE with a Gaussian kernel (Racine (2008)); see
Section 5. Steps 2 and 3 are dependent upon the choice of architecture, which we discuss
later in Section 5. Step 4 requires evaluation of the likelihood which is given by the copula
decomposition at (2). To do so directly requires evaluation of the copula density at (4) which
is computationally infeasible, in general, because of the need to invert the n × n matrix R.
Klein and Smith (2019) solve this problem by instead using the likelihood conditional also
on β , which is

(6)

p(y | x,β, θ) = p(z | x,β, θ)

n∏
i=1

pY (yi)

φ1(zi)

= φn

(
z;S(x, θ)Bζ (x)β, S(x, θ)2) n∏

i=1

pY (yi)

φ1(zi)
,

Algorithm 1: Estimation of the IC-NLM
Input : Features x, responses y for training and new features x0 for prediction.
Output: Posterior densities for the response p̂(y0 | x0)

1 Estimate the empirical density F̂Y from the observed responses y and transform y to z

via zi = �−1
1 (F̂Y (yi)).

2 Train a K-layer DNN with transformed responses z as targets and x as inputs, and
denote the trained weights of all layers except the last hidden layer as ζ ; see Section 5.1
and Supplementary Material B.1 (Hoffmann and Klein (2023)).

3 Predict the outputs Bζ (x) of the (K − 1)th layer of the DNN by forward-passing the
features x through the model up to the (K − 1)th layer.

4 Estimate p(β, θ | x,y) by MCMC or VI, as described in Section 4.
5 Compute posterior predictive densities p̂(y0 | x0) as described in Section 3.4.1.
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and can be evaluated in O(n) operations because S(x, θ) is diagonal. We present exact and
approximate Bayesian inference for this step in Section 4. Computation of Step 5 is based
on (6) and described next. All steps are implemented in Python, and the code is available on
GitHub.

3.4.1. Predictive densities and beyond. The desired predictive uncertainty for the steer-
ing angle at new feature values x0 is based on the posterior predictive density p(y0 | x0,x,y)

of the IC-NLM, which, for a new value y0, is given by

(7) p(y0 | x0,x,y) =
∫

p(y0 | x0,x,β, θ)p(β, θ | x,y) d(β, θ),

where we use p(y0 | x0,x,β, θ) instead of p(y0 | x0,x, θ) to avoid direct computation of
R(x, θ). If z0 = �−1

1 (FY (y0)), then | dz0
dy0

| = pY (y0)
φ1(z0)

, and by changing variables from y0 to z0,
estimates p̂ of (7) can be obtained via

p̂(y0 | x0) = pY (y0)

φ1(z0)
p̂(z0 | x0,x,y) = pY (y0)

φ1(�
−1
1 (FY (y0))

1

ŝ0
φ1

(
�−1

1 (FY (y0)) − m̂(x0)

ŝ0

)
.

Here, m̂(x0) = ŝ0ψζ (x0)
T β̂ and ŝ0 = (1+ψζ (x0)

�P (θ̂)−1ψζ (x0))
−1/2 based on the poste-

rior mean VI estimates β̂ , θ̂ in case of approximate posterior estimation (see Section 4.2) or
from the MCMC output {(β(1), θ (1)), . . . , (β(J ), θ (J ))} via m̂(x0) = ψζ (x0)

T ( 1
J

∑J
j=1 s

[j ]
0 ×

β[j ]) and ŝ0 = 1
J

∑J
j=1 s

[j ]
0 in case of exact posterior estimation (see Section 4.1). Note that

m̂(x0) is an estimator for E[Z0 | x0,x,y].
Later in our analysis, we will also make use of the posterior predictive variance, which is

Var(Y0 | x0,x,y) = E[Y 2
0 | x0,x,y] −E[Y0 | x0,x,y]2, with posterior predictive mean

E[Y0 | x0,x,y] =
∫

E[Y0 | x0,x,β, θ]p(β, θ | x,y) d(β, θ)

=
∫

F−1
Y

(
�1(z0)

) 1

s0
φ1

(
z0 − s0ψζ (x0)

�β

s0

)
dz0,

and

E
[
Y 2

0 | x0,x,y
] =

∫ (
F−1

Y

(
�1(z0)

))2 1

s0
φ1

(
z0 − s0ψζ (x0)

�β

s0

)
dz0.

Both integrals involve univariate numerical integration only. Estimators for the integrands
are obtained in the same fashion as for the predictive densities. If the true steering angle
is available, the prediction error can be measured by the squared or absolute deviation from
Ê(Y0 | x0,x,y). Prediction intervals can also easily be obtained from the predictive densities.
Usually, symmetric prediction intervals are used where the lower bound is the response value
at which the predictive CDF is smaller than α/2 and the upper bound is the response value at
which the CDF is larger than 1 − α/2.

4. Exact and approximate posterior estimation. In this section we present a stable
MCMC scheme for posterior estimation of the IC-NLM which is applicable for moderately
sized datasets. It is based on HMC, since the MCMC sampler of Klein, Nott and Smith
(2021), based on Gibbs and Metropolis-Hastings updates, was too sticky to produce reliable
results in our application. Next, we develop a VI approach as an approximate alternative for
posterior estimation with large-scale datasets and highly parameterized models. Even though
MCMC delivers estimates in both of our data scenarios, it is plagued by slow convergence

https://github.com/clarahoffmann/commaai


and long runtimes as n grows large. This is an issue for autonomous driving applications
in which sample sizes can become extremely large. The VI approach is much faster than
MCMC and sufficiently accurate, as we reveal in Section 5. In the following we denote ϑ =
{β, θ} as the set of all model parameters and set pϑ = dim(ϑ). For convenience, we also
transform the parameters for VI and MCMC so that ϑ = {β, log(τ 2)} for the ridge prior and
ϑ = {β, log(λ2

1), log(λ2
2), . . . , log(λ2

p), log(τ )} for the horseshoe prior. We first introduce the
HMC scheme in Section 4.1 before we develop the scalable VI approach in Section 4.2.

4.1. Exact estimation using MCMC. Since the sampler of Klein, Nott and Smith (2021)
was too sticky to produce reliable estimates in this application, we suggest an alternative ap-
proach based on HMC to generate from ϑ | x, y. HMC augments ϑ by momentum variables
and draws samples from an extended target distribution that is proportional to the exponential
of the Hamiltonian function. The dynamics specify how the Hamiltonian function evolves,
and its volume-conserving property results in high acceptance rates of the proposed iterates
when tuned properly. To do so, we employ the leapfrog integrator which involves the poste-
rior logp(ϑ | x,y) and its gradient; see Web Appendix A.1 for full details on HMC settings
and the algorithm.

4.2. Approximate estimation using VI. The general idea of VI is to turn sampling from
the posterior into an optimization problem. In VI the posterior p(ϑ | x,y) is approximated by
a member of some tractable density family qλ(ϑ) that depends on a vector of variational pa-
rameters λ. Proximity between p(ϑ | x,y) and qλ is measured by some measure of closeness.
When this measure is the Kullback–Leibler divergence (KLD) from qλ to p(ϑ | x,y)

KLD
(
qλ(ϑ) ‖ p(ϑ | x,y)

) =
∫

log
(

qλ(ϑ)

p(ϑ | x,y)

)
qλ(ϑ) dϑ,

the optimal approximation maximizes the evidence lower bound (ELBO; Ormerod and Wand
(2010)), given by

(8) L(λ) =
∫

qλ(ϑ) log
(

p(y,ϑ |x)

qλ(ϑ)

)
dϑ,

with respect to λ. Setting h(ϑ) = p(y | x,ϑ)p(ϑ), we note that (8) is an expectation with
respect to qλ(ϑ), that is,

(9) L(λ) = Eqλ

[
logh(ϑ) − logqλ(ϑ)

]
.

This observation enables an unbiased MC estimation of the gradient of L(λ) after differenti-
ating under the integral sign. Doing so, the resulting expression for the gradient ∇λL(λ) leads
to an expectation with respect to qλ,

(10) ∇λL(λ) = Eqλ

[∇λ logqλ(ϑ)
(
logh(ϑ) − logqλ(ϑ)

)]
,

where the so-called log-derivative trick Eqλ[∇λ logqλ(ϑ)] = 0 has been used. This expres-
sion is often used in stochastic gradient ascent (SGA) to optimize the ELBO (also known as
stochastic VI; see, e.g., Hoffman et al. (2013), Nott et al. (2012), Titsias and Lázaro-Gredilla
(2014)). Denoting with ∇̂λL(λ) an unbiased MC estimate of the gradient ∇λL(λ) and with
λ(0) an initial value for λ, SGA performs the update

(11) λ(t+1) = λ(t) + ρ(t) ◦ ̂∇λL
(
λ(t)

)
recursively. In (11), ◦ denotes the Hadamard (element-by-element) product of two random
vectors and {ρ(t)}t≥0 is a sequence of vector-valued learning rates with dimension dim(λ).
In practice, it is important to consider adaptive learning rates, and we do so using the
ADADELTA method of Zeiler (2012) as successfully adopted in, for example, Ong, Nott
and Smith (2018).
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Algorithm 2: Variational approximation with a factored covariance structure

Input : Variational parameters λ(0) = (μ(0),vech(ϒ)(0),d(0)), iteration t = 0
Output: Optimal variational parameters λ̂

1 while ELBO has not converged do
2 Generate for m = 1, . . . ,M samples ξ (t,m), δ(t,m) ∼ N(0, I ).
3 Compute the unbiased estimate of the gradient

̂∇λL(λ(t)) ← ( ̂∇μL(λ(t)), ̂∇vech(ϒ)L(λ(t)), ̂∇dL(λ(t))) using the M samples
(ξ (t,1), δ(t,1)), . . . , (ξ (t,M), δ(t,M)).

4 Update the learning rate ρ(t) using ADADELTA.

5 Update the variational parameters via λ(t+1) ← λ(t) + ρ(t) ◦ ̂∇λL(λ(t)) and
t ← t + 1.

6 end

4.2.1. Choice for the variational approximation qλ. Successful application of stochas-
tic VI requires a numerically tractable yet flexible variational density qλ. A popular choice
for the approximation family is the Gaussian distribution, which contains the mean vector
and the covariance elements as variational parameters. It has been shown to approximate
posteriors well with similar copula regression models (Smith and Klein (2021)). To reduce
computational cost while remaining flexible enough, we follow Ong, Nott and Smith (2018),
who use a factored representation of the covariance matrix. A typical member qλ(ϑ) of this
approximating family takes on the form

qλ(ϑ) = N
(
μ,ϒϒT + 2)

,

with ϒ being a lower triangular, full rank pϑ × k matrix with k � pϑ , and  a real-valued
diagonal matrix with diagonal elements d = (d1, . . . , dpϑ ). The elements above the diagonal
in ϒ are fixed to zero. Computing the elements of a pϑ × k matrix is much faster than
computing the elements of the pϑ × pϑ covariance matrix directly.

For this variational density, Ong, Nott and Smith (2018) employ the re-parameterization
trick (Kingma and Welling (2014), Rezende, Mohamed and Wierstra (2014)) to reduce vari-
ance of the MC estimates required for estimating the gradients in an unbiased fashion. In
our case, this leads to re-writing the model parameters as ϑ = μ + ϒξ + d ◦ δ := g(ξ , δ),
where ξ ∈ Rk , δ ∈ Rpϑ and ξ , δ ∼ N(0, I ), λ = (μ�,vech(ϒ)�,d�)� and vech(ϒ), stacks
the elements of the lower triangle of ϒ (including the diagonal) columnwise into a vector. We
have found M = 50 iterates of (ξ , δ) to be sufficient to provide unbiased gradient estimates.
To implement the SGA (11), we need the gradients

∇λL(λ) = (∇μL(λ)�,∇vech(ϒ)L(λ)�,∇dL(λ)�
)�

which involve the gradients of h(ϑ) with respect to the elements of ϑ . The gradients can be
obtained analytically; see Supplementary Material A.2 (Hoffmann and Klein (2023)). The
complete VI algorithm is summarized in Algorithm 2.

5. Analysis in autonomous driving. The basis of the IC-NLM is a deep neural network
that maps images of the street ahead to the transformed steering angles (see Step 2 of Al-
gorithm 1). We will first introduce the end-to-end learning architecture and details on the
training process in Section 5.1. Afterward, our analysis in autonomous driving consists of
three parts. First, in Section 5.2 we verify that VI is an accurate and scalable alternative to
MCMC in the IC-NLM based on the two data scenarios introduced in Section 2.3. Second,



FIG. 4. PilotNet architecture by Bojarski et al. (2016) with activations from the comma2k19 driving data.

in Section 5.3 we benchmark the IC-NLM with two other competitive methods to obtain
predictive densities for end-to-end learners with regard to calibration, coverage rates of the
prediction intervals, and the ability to identify high-risk predictions. Third, we explore how
predictive densities for the steering angle can help to enhance the explainability of end-to-end
learners in Section 5.4.

5.1. End-to-end learner architecture and training. As an end-to-end learner, we use a
CNN based on the pioneering PilotNet architecture by Bojarski et al. (2016) with additional
regularization to prevent overfitting. We deliberately decide against exploring more complex
network architectures (such as LSTMs) to ensure comparability with the existing literature.
Figure 4 depicts the PilotNet architecture. PilotNet is a CNN with five convolutional layers
followed by four fully connected layers. CNNs are particularly suitable to deal with image
data, since they possess a “weight-sharing” property. This allows CNNs to learn features in-
dependently of their position in an image and reduces the number of training parameters.
Each convolutional layer is followed by batch normalization, and we use dropout on the fully
connected layers to avoid overfitting. We use ReLU (Rectified Linear Unit; Nair and Hin-
ton (2010)) activation functions for all layers but the last layer, which has a linear activation
function and dimension pϑ = 10. For Step 2 of Algorithm 1, the networks are trained on the
transformed steering angles zi = �−1(F̂Y (yi)) to minimize the MSE with the Adam opti-
mizer. Details on training settings and the preprocessing steps to obtain a good model can be
found in Supplementary Material B.1 (Hoffmann and Klein (2023)).

To estimate the marginal density of the steering angle in Step 1 of Algorithm 1, we use
a nonparametric KDE with a Gaussian kernel (Racine (2008)). We found that this estimator
captures the shape of the density sufficiently well, while producing no numerical issues on
the edges of the data distributions where observations are sparse. Driving on highways in-
volves relatively little steering action. Most steering angles, therefore, lie within the interval
of [−15◦,+15◦], and we limit the steering angles to [−50◦,+50◦]. Angles outside this inter-
val are associated with complex steering actions, such as U-turns or parking. These actions
are beyond the scope of present-day end-to-end learners. We fit the IC-NLM to the end-to-end
learner trained on both datasets once, using both the ridge and horseshoe prior, respectively.

5.2. Estimation accuracy of VI vs. HMC. To assess the pure estimation accuracy of VI
across the two data scenarios and priors, we compare the VI results with those of HMC. For
the horseshoe prior, this is not entirely possible, since the HMC chain already partly suffers
from convergence issues. This again highlights the importance of using VI as an alternative
in large n scenarios.

Figure 5 depicts the posterior estimates for the model parameters using a ridge prior. Panels
(a) and (b) portray the lower bound from VI with k = 3 factors and trace plots from HMC,
respectively. Posterior means and standard deviations of model parameters can be found in
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FIG. 5. Panel (a) depicts the ELBO for VI with k = 3 factors. Panel (b) portrays trace plots of HMC, where the
x-axis denotes the number of iterations minus the number of burn-in samples. Panels (c) and (d) depict posterior
means and standard deviations of β (black) and θ = {τ2} (red) for VI and HMC. The number of factors k = 3 was
found to be sufficient to achieve fast runtimes while maintaining the same estimation accuracy as with a larger
number of factors.

panels (c) and (d), respectively. In these two right-hand plots, points on the diagonal indicate
that the respective posterior means or standard deviations using VI and HMC coincide.

Figure 6 presents the same results but for the horseshoe prior. With both priors, VI con-
verges fast, while HMC chains exhibit obvious autocorrelation when the horseshoe prior is
used. For the ridge prior, VI estimates the posterior means very accurately, while the standard
deviations suffer from slight over and underestimation only in a very few cases. When using
a horseshoe prior, differences in standard deviations are more pronounced, but the posterior
means using VI and HMC still coincide. This over- and underestimation did not translate to
deviations between the final predictive densities for the steering angles obtained by VI and
HMC, as can be seen when inspecting the predictive accuracy in the following section. That
is why we adopted no further measures to improve the estimation of the standard deviations.

The results for the large data scenario are presented in Supplementary Material C
(Hoffmann and Klein (2023)) and are similar to those presented here apart from the expected
performance loss in terms of point metrics owing to the aforementioned distribution shift be-
tween the training and validation data. Table 1 reports the runtimes for the HMC samplers
and VI schemes in all data scenarios as well as for the ridge and horseshoe priors.

VI is much faster than HMC, especially as n grows larger. This becomes more evident
in the computationally more intensive case with the horseshoe prior, where VI is about 18
(small scenario) and 11 (large scenario) times faster.

FIG. 6. Panel (a) portrays the ELBO for VI with k = 3 factors. Panel (b) depicts trace plots of HMC. Panels (c)
and (d) portray posterior means and standard deviations of β (black), λ (grey) and τ (red).



TABLE 1
Computing times for the HMC samplers and VI. Further performance metrics for the n = 355,543 scenario can

be found in Supplementary Material C (Hoffmann and Klein (2023))

Runtime

Shrinkage prior Estimation type n = 43,736 n = 355,543

ridge HMC 4 h 14 min 15 h 5 min
ridge VI 2 h 21 min 10 h 50 min
horseshoe HMC 3 d 18 h 24 min 11 d 8 h 28 min
horseshoe VI 4 h 7 min 1 d 2 h 16 min

In the most extreme case (horseshoe prior, n = 355,543), using VI reduces the computation
time by several days when compared to HMC (both using two 12-core CPUs).

5.3. Benchmark study. Having ensured the scalability and accuracy of the VI approach,
we will now benchmark the predictive accuracy, calibration, and uncertainty estimates ob-
tained by the IC-NLM. We compare the performance on each of the two validation sets and
both priors with two nonprobabilistic and two probabilistic end-to-end learners. Overall, we
compare the following models:

• Naive learner: Driving model that always drives straight, regardless of the input.
• Uncalibrated learner: PilotNet trained directly on the response y.
• IC-NLM with ridge/horseshoe prior: IC-NLM based on PilotNet trained to predict the

transformed responses zi = �−1
1 (F̂Y (yi)), as described in Algorithm 1. We fit two versions,

one using VI and the other using HMC.
• MC dropout: PilotNet using MC dropout (Gal and Ghahramani (2016)) with dropout prob-

abilities from Michelmore, Kwiatkowska and Gal (2018) and using 1000 dropout masks at
prediction time.

• Mixture density network (MDN): Mixture density network (Bishop (1994)) with 50 mix-
ture components. An MDN is a DNN where the output is a Gaussian mixture, and the
model is trained to predict the means, variances, and weights of the mixture components
by maximizing the likelihood of the response.

All models are implemented using TensorFlow (Abadi et al. (2015)) and Keras (Chollet et al.
(2015)). We implement MC dropout ourselves, and for the MDN we use the Keras-compatible
keras-mdn-layer (Martin and Duhaime (2020)). Note that the first two models do not produce
predictive densities, so they will only be used in the comparison of the predictive point accu-
racy, which we will measure via the mean absolute error (MAE) and the corresponding mean
squared error (MSE) on the validation set. In order to compare predictive densities for the IC-
NLM, MC dropout, and MDN, we follow the literature and investigate the deviation between
the true and mean predictive angle. Specifically, we refer to “E < x◦ (%)” as the percentage
of predictions for which the true and predicted steering angles differ by fewer than x degrees.

Results for these measures are presented first, before we investigate the calibration and
uncertainty estimates in more detail. For the reasons explained in Section 2, results in the rest
of this subsection will be based on the small data scenario, while respective results for the
large scenario are documented in detail in Supplementary Material C (Hoffmann and Klein
(2023)).

Predictive accuracy. Table 2 lists the MAE, MSE, and the percentage of predictions where
the absolute deviation between the predicted and the observed steering angle is less than 5◦,
2◦, 1◦, and 0.5◦.
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TABLE 2
Benchmark study. Predictive performance as measured by the MAE, MSE, and E < x (%) with

x ∈ {5◦,2◦,1◦,0.5◦} (from left to right) on the validation set. The first column details the employed models

Model MAE MSE E < 5◦ (%) E < 2◦ (%) E < 1◦ (%) E < 0.5◦ (%)

Naive learner 2.16 14.61 93.21 65.12 52.12 33.08
Deterministic DNN 1.42 6.43 98.19 79.61 52.92 29.26
IC-NLM + ridge + HMC 1.34 6.28 98.08 82.22 57.14 32.12
IC-NLM + ridge + VI 1.34 6.28 98.08 82.21 57.18 32.16
IC-NLM + horseshoe + HMC 1.29 5.67 98.21 82.75 58.22 33.55
IC-NLM + horseshoe + VI 1.29 5.66 98.21 82.73 58.16 33.51
MC dropout 1.41 6.35 98.37 80.08 53.13 29.38
MDN 1.36 6.63 98.16 81.91 54.55 30.37

The IC-NLM using a horseshoe prior performs best on all metrics but E < 5◦, where
MC dropout performs best. Performance for VI is very similar to that of HMC which again
underpins the good accuracy of our approximate scalable method. The choice of the prior for
the IC-NLM is relevant, and the more complex horseshoe prior results in more accurate point
predictions. Hence, it is worth the additional computational cost.

Training and prediction speed. For all models in the benchmark study, training PilotNet
takes around 6.2 hours on a 12 GB NVIDIA Tesla K80 GPU (n = 43,736). For the IC-NLM,
there is the additional step of fitting VI which adds two hours (n = 43,736) to the training
time.

With regard to prediction, IC-NLM is more readily scalable compared to the MDN and MC
dropout. From our view this is a crucial advantage, since training only has to be performed
once, but prediction occurs many times during driving. MC dropout requires several forward
passes through the DNN. These can be evaluated in parallel, but this is not infinitely scalable
for autonomous driving applications. There is only limited space for computational resources
in a vehicle, since hardware generally needs to be placed in the vehicle cabin (Lin et al.
(2018)). The MDN requires sampling from several normal distributions during prediction
which can be computationally intensive. The IC-NLM, on the other hand, can be evaluated
in closed form without sampling, requires only a single forward pass, and evaluating the
predictive density at arbitrary values is readily parallelizable.

Calibration. Calibration is essential to the reliability of predictive densities, and one main
motivation for the IC-NLM is to achieve marginal calibration (see Section 2.1). Figure 7(a)
illustrates the marginal calibration plots of all probabilistic learners for the validation data
along with the histogram and the KDE. For the IC-NLM we portray the results from VI only,
since they are visually indistinguishable from the HMC results. Accurate marginal calibra-
tion occurs when the predictive densities coincide or are close to the respective KDE. Even
though the IC-NLM is by construction only marginally calibrated for the training data, it
demonstrates the most accurate marginal calibration also for the validation set. In contrast,
MC dropout and MDN are not marginally calibrated. Figure 7(b) illustrates the probabilistic
calibration of the end-to-end learners (see Section 2.1). Probabilistic calibration is measured
by the difference between the observed and expected confidence level plotted over the con-
fidence level. Even though probabilistic calibration is not guaranteed with the IC-NLM, it
performs relatively well for lower expected confidence levels. In general, no method is per-
fectly probabilistically calibrated, as Figure 7(b) depicts.

Prediction intervals, coverage rates and high-error predictions. Predictive densities should
not only be calibrated but also provide reliable and ideally sharp prediction intervals. They



FIG. 7. Benchmark study. Marginal (panel (a)) and probabilistic (panel (b)) calibration for the validation data
with the IC-NLM with ridge (solid yellow line), IC-NLM with horseshoe (dot-dashed red line), MC dropout (dotted
blue line), and MDN (dashed green line).

should be reliable in the sense that their coverage rates are accurate and sharp, in the sense
that, if accurate, the width of prediction intervals is tight. The first property can be measured
through the deviation between the expected and observed coverage rates of the prediction
intervals over the confidence level, as shown in Figure 8(a). The IC-NLM with a ridge prior
demonstrates the most accurate prediction intervals, closely followed by the MDN and IC-
NLM with a horseshoe prior. MC dropout produces unreliable prediction intervals, likely
owing to the use of only 1000 dropout masks at prediction time.2

FIG. 8. Benchmark study. Coverage rates and error-variance relation for the validation data with the IC-NLM
with ridge (solid yellow line), IC-NLM with horseshoe (dot-dashed red line), MC dropout (dotted blue line), and
MDN (dashed green line).

2Using more dropout masks, however, is associated with increased computational cost and is unlikely to be an
efficient solution in the context of autonomous driving.
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Another usage of predictive densities is to identify overconfident learners. Optimally, high
variances should point to predictions that are associated with incorrect steering actions such
that a high predictive variance can act as an early warning of wrong predictions (He, Laksh-
minarayanan and Teh (2020)). Predictive densities can then be used to identify predictions
that are potentially wrong and initiate a switch to human steering. In overconfident learners
the opposite relation holds, and these learners can be dangerous when deployed in real road
traffic.

Overconfident learners can be identified by plotting the MSE for all observations carry-
ing a predictive variance under a certain threshold ν against this threshold, as done in Fig-
ure 8(b). A perfect uncertainty quantifier would produce a line from the lower-right corner to
the upper-left corner so that the prediction error increases linearly as the predicted variance
increases. Figure 8(b) illustrates that no end-to-end learner exhibits this perfect relation be-
tween predictive variance and predictive error. But the MDN comes quite close and is by far
the most reliable uncertainty quantifier, followed by the IC-NLM with a horseshoe prior. For
MC dropout and the IC-NLM with a ridge prior, hardly any relation exists between prediction
error and predictive variance. This indicates that both of these learners are quite overconfi-
dent.

Overall, the IC-NLM performs best in terms of point predictions, calibration, and accuracy
of the coverage rates. Only for the relation between predictive variance and predictive error
does the MDN perform better. This demonstrates that the IC-NLM is a competitive option to
obtain reliable predictive densities for the steering angle in autonomous driving applications.

5.4. Understanding end-to-end learners. End-to-end learners are generally black-box
models which means that their predictions cannot easily be explained. In the context of au-
tonomous driving, it is desirable to know how much of its surroundings an end-to-end learner
actually understands so that its safety can be assessed precisely.

Predictive densities can be used to gain better insight into how an end-to-end learner sees
its surroundings. A well-suited scenario to check whether an end-to-end learner understands
its environment comprises situations in which multiple steering actions are valid, for exam-
ple, at intersections. In this case, one can check whether the predictive density for the steering
angle has several modes, where each mode should correspond to a valid steering action (com-
pare, e.g., Xu et al. (2017)). This is also important for combining end-to-end learners with
route planning.

Beyond that, we are often interested in the behavior of end-to-end learners in new environ-
ments, for example, novel lane patterns or road conditions that were not part of the training
set. Figure 9 and Figure 10 depict two example images of the comma2k19 data with the
predictive densities from the probabilistic end-to-end learners.

Figure 10 contains a distribution-shifted road pattern in the large, uncleaned validation
set which allows the exploration of how the end-to-end learners react in situations of high
uncertainty. All probabilistic learners correctly associate high uncertainty with this image
and are not overconfident. Especially the MDN does not favor any particular steering angle.
These examples also illustrate that it is not irrelevant which probabilistic learner is used,
since, for a single input image, the predictive densities of the learners can differ notably.

Figure 9 features a parting road with two valid steering options (keep straight or turn right)
in the small training set. Here, the two IC-NLMs correctly assign probability mass to the al-
ternative steering action. MC dropout and MDN, however, both deliver almost unimodal pre-
dictions. Hence, MC dropout and MDN seem to have a limited understanding of the meaning
of a parting lane and fail to indicate a second valid steering action.



FIG. 9. Exemplary predictive densities for a training image with multiple valid steering options. Shown are
IC-NLM with ridge (solid yellow line), IC-NLM with horseshoe (dot-dashed red line), MC dropout (dotted blue
line), and MDN (dashed green line), along with the true steering angle (blue vertical line).

6. Discussion. We have expanded the IC-NLM of Klein, Nott and Smith (2021) to a
scalable version using VI to enable fast uncertainty quantification for the steering angle with
end-to-end learners. A detailed case study using the comma2k19 highway driving dataset
reveals that the proposed VI approach is as accurate as exact inference based on MCMC and
much faster in large n scenarios. The scalable IC-NLM is competitive with other uncertainty
quantification methods, namely, MC dropout and MDNs. In terms of calibration, the IC-
NLM is even superior. The choice of the prior in the IC-NLM has an impact on the predictive
performance and reliable uncertainty quantification. Thus, we recommend using priors with
more complex shrinkage schemes, even though they generally lead to longer runtimes. Priors
that allow for even more flexibility could potentially improve calibration further. In fact,
one disadvantage of our recommended prior, the horseshoe prior, is that the shrinkage of
larger coefficients can be hard to control, thus resulting in potential undershrinking (Piironen
and Vehtari (2017)). The regularized horseshoe prior (Piironen and Vehtari (2017)) solves

FIG. 10. Exemplary predictive densities for a validation image with an unknown lane pattern. Shown are
IC-NLM with ridge (solid yellow line), IC-NLM with horseshoe (dot-dashed red line), MC dropout (dotted blue
line), and MDN (dashed green line), along with the true steering angle (blue vertical line).
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this problem by shrinking the larger coefficients like a slab and the smaller coefficients like 
a horseshoe prior. Future research could investigate whether the regularized horseshoe can 
achieve better calibration.

Future research should also address the over- and underestimation of the standard devia-
tions in the posterior of the model parameters when using VI. A first possible source of this 
issue could be gradient noise which also translates to noise in the ELBO. To improve the 
accuracy of the standard deviations further, one could adapt methods in the spirit of Miller 
et al. (2017), who introduce a control variate to reduce gradient noise in VI and reach better 
convergence without having to increase the number of samples M in the reparameterization 
trick to very large numbers. A second potential source may be the assumption of a Gaussian 
VI. This assumption could be relaxed for instance by resorting to VIs based on Gaussian 
copulas (Smith, Loaiza-Maya and Nott (2020)), mixtures thereof (Gunawan, Kohn and Nott 
(2021)), or VI based on implicit copulas (Smith and Loaiza-Maya (2021)).

Another relevant research question is to quantify the information loss by performing 
Bayesian inference only in the last layer of the DNN, compared to Bayesian inference on 
the weights in all layers. As has been demonstrated in this work, the posterior densities of the 
NLM provide useful and comprehensible information on predictive uncertainty. Nonetheless, 
the negligence of uncertainty of all preceding layers should be investigated further, also with 
respect to computational feasibility in large n scenarios. A promising route to overcome any 
limitations resulting from this could be to build on the fully Bayesian framework of deep 
generalized mixed models of Tran et al. (2020).

The IC-NLM can also be extended to DNNs that take sequential data (e.g., video snippets) 
as an input. Three classes of model are relevant here for autonomous driving: recurrent neural 
networks (RNNs), LSTMs, and vision transformers (ViTs). The IC-NLM can be used without 
further adjustments for any of these models, as long as the output layer is a dense layer. In 
ViTs a multilayer perceptron (MLP) head is often used to produce an output. The IC-NLM 
could still be used here to quantify uncertainty of predictions by replacing the MLP head 
with a dense layer during fine-tuning, as proposed in Dosovitskiy et al. (2021). Extending the 
IC-NLM to time-series prediction requires more effort. Klein, Smith and Nott (2021) propose 
a more sophisticated extension for probabilistic time-series prediction using a modified IC-
NLM based on RNNs in the context of electricity price forecasting.
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