

Karlsruhe Institute of Technology

Numerical Simulation of Fibre Dose in an Air-Liquid-Interface Exposure System

S. Mülhopt, S. Klein, B. Gutmann, C. Schlager, T. Krebs, and D. Stapf

Particle geometries and their description

Inhalable fibres ("WHO fibres") —

bioassays as e.g. cell cultures

EXPOSURE DOSE / CELL DOSE Airborne particles: Number concentration c_N [1/cm³] Mass concentration c_M [µg/cm³] Size distribution $N(d_P)$ oder $N(L_P)$ Fluid: gas (air) viscosity ~ 18 µPa*s density ~ 10^{-3} g/cm³ Relation: deposition efficiency ω₀

ORGAN DOSE / CELL DOSE Relation to the **lung (cell) surface**: Number concentration $c_N [1/cm^2]$ Mass concentration c_M [µg/cm²] Size distribution $N(d_P)$ oder $N(L_P)$

Shape factor and aerodynamic equivalent diameter <u>of fibres</u> The aerodynamic equivalent diameter $d_{ae} = d \sqrt{\frac{\delta_P \beta}{\delta_0 \chi}}$ Determination of the shape factor χ with the stretched ellipsoid of revolution approach¹ d_{ae} = 9.7 μm 1000 For a movement **parallel** to the polar axis d_s = 9.7 μm σ 48.0

Deposition efficiency ω_0 on membrane surface

Comparison of measured deposition

KIT – The Research University in the Helmholtz Association

