
ReP2P Matrix: Decentralized Relays to Improve Reliability and
Performance of Peer-to-Peer Matrix

Benjamin Schichtholz
benjamin.schichtholz@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Roland Bless
roland.bless@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Florian Jacob
florian.jacob@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Hannes Hartenstein
hannes.hartenstein@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Martina Zitterbart
martina.zitterbart@kit.edu

Karlsruhe Institute of Technology
Karlsruhe, Germany

Abstract
Matrix is a decentralized middleware for low-latency group com-
munication, most renowned for its use in the Element instant mes-
senger. Proposals for peer-to-peer (P2P) Matrix architectures aim
to decentralize the current architecture further, which is based on
federated servers. These proposals require that the receiver and the
originator, or another peer that already successfully received the
message, are simultaneously online. We introduce relay-enhanced
P2P Matrix (ReP2P Matrix) in order to improve message delivery
between peers that are online at different times. The design main-
tains the advantages of P2P Matrix and integrates well into it, e.g.,
it reuses existing mechanisms for authentication and authorization.
Using an extended real-world group messaging traffic dataset, we
evaluate ReP2P Matrix by comparing it to P2P Matrix without re-
lays. The results show that relays do not only improve reliability
in message delivery, but also increase the share of low delivery
latencies by 50 % points in groups with up to 30 members.

CCS Concepts
• Computer systems organization → Peer-to-peer architec-
tures; Client-server architectures; • Networks→ Peer-to-peer
protocols; • Security and privacy→ Network security.

Keywords
Matrix; Decentralized Systems; Reliability; Asynchronous Delivery;
Instant Messaging; Overlay Networks

ACM Reference Format:
Benjamin Schichtholz, Roland Bless, Florian Jacob, Hannes Hartenstein,
andMartina Zitterbart. 2024. ReP2PMatrix: Decentralized Relays to Improve
Reliability and Performance of Peer-to-Peer Matrix. In Proceedings of the
ACM Conext-2024 Workshop on the Decentralization of the Internet (DIN
’24), December 9–12, 2024, Los Angeles, CA, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3694809.3700741

This work is licensed under a Creative Commons Attribution
International 4.0 License.

DIN ’24, December 9–12, 2024, Los Angeles, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1252-4/24/12
https://doi.org/10.1145/3694809.3700741

1 Introduction
Instant messaging platforms play an important role in today’s on-
line communities. Popular platforms such as WhatsApp, Signal,
WeChat, Telegram and so on, are logically centralized server-based
solutions. They are also closed platforms and allow their providers
to gather various user-related metadata (e.g., IP addresses, online
times) even if the actual message content is end-to-end encrypted.
Matrix [19] is an open decentralized middleware for low-latency
group communication, most renowned for its use in the Element
instant messenger [11]. Matrix employs a federated architecture
in contrast to the centralized platforms. Users take part in the net-
work only via their chosen Matrix homeserver as proxy, and for
every chat group, the homeservers of all participating users form a
federation of equals.

Nevertheless, even Matrix’ federated architecture faces chal-
lenges regarding centralization and privacy. In 2019, the authors
of [10] have shown that 87% of Matrix users were concentrated
on 1% of homeservers, resulting in a load centralization towards
only few homeservers. Homeservers store a replicated data struc-
ture that contains all events related to a specific chat room. Events
can refer either to a user action (e.g., sending a message) or room
state change (e.g., setting a user’s privileges). Metadata privacy is
a concern in the federated architecture, regarding both informa-
tion stored explicitly in the replicated data structure (e.g., user IDs)
and implicit information that homeservers can obtain by observing
users’ traffic patterns (e.g., online times). Privacy issues intensify
with a higher degree of centralization, because large servers with
many users obtain more metadata.

Peer-to-peer (P2P) Matrix architectures [1, 5, 7] have already
been proposed in order to address these challenges. In contrast
to federated Matrix, users do not rely on homeservers in P2P Ma-
trix, but store the replicated data structure themselves, making it
inherently more decentralized. However, the fully decentralized
nature of P2P Matrix implies the cost of peers having to be online
at the same time with at least one other peer within the same room,
in order to exchange events. In an extreme case, a peer wants to
send a message before going offline itself, while all other peers are
offline. An expectation from federated Matrix is that this message
is delivered to any peer as soon as it returns online, whereas in P2P
Matrix, peers have to wait until the originator (or another peer that
has already received the event) comes online again. Consequently,

https://orcid.org/0009-0007-0490-1497
https://orcid.org/0000-0002-1651-1548
https://orcid.org/0000-0002-5739-8852
https://orcid.org/0000-0003-3441-3180
https://orcid.org/0000-0003-0088-6289
https://doi.org/10.1145/3694809.3700741
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3694809.3700741


DIN ’24, December 9–12, 2024, Los Angeles, CA, USA Benjamin Schichtholz, Roland Bless, Florian Jacob, Hannes Hartenstein, and Martina Zitterbart

whether an online peer receives an event, depends on the online
state of other peers.

We present relay-enhanced P2P Matrix (ReP2P Matrix) that en-
ables peers to receive events even when other peers are offline.
ReP2P Matrix preserves the decentralization benefits of P2P Matrix
over the federated architecture, such as avoiding single points of
failure and centralized storage of user metadata. To evaluate ReP2P
Matrix, we extend a real-world messaging dataset with online peri-
ods modeled around the sending times and compare ReP2P with
P2P Matrix based on this extended dataset. We show that ReP2P
Matrix increased the share of delivery latencies under 2 s after re-
turning online by 50% points. Also, ReP2P Matrix increased the
share of successfully delivered events by 28 % points on average.

2 System Model and Requirements
Since our approach enhances P2P Matrix, we define a system model
that takes up design decisions and characteristics from existing
P2P Matrix architecture proposals [1, 5, 7], such as homeserver-
independent user IDs. Second, we specify both functional and qual-
itative requirements for a relay-enhanced P2P Matrix architecture.

2.1 System Model
We impose as few constraints on potential P2P Matrix architectures
as possible in order to avoid dependencies on a particular archi-
tecture. In general, P2P Matrix does not employ homeservers, so
all peers store their room history and manage the replicated data
structure themselves. P2P Matrix allows peers to exchange and
disseminate events via a concrete P2P network architecture, from
which we abstract. Also, we assume that P2P Matrix provides end-
to-end-encryption of event contents, whereas event metadata (e.g.,
user IDs, timestamps) is not encrypted, as it is the case in federated
Matrix. P2P Matrix currently only supports synchronous delivery,
i.e., in a two-peer room, both peers must be simultaneously online
in order to exchange an event, as shown with event 𝛼 in Fig. 1.
Finally, our system model applies to the context of single Matrix
rooms, as our focus is on optimizing the reliability event delivery,
which occurs within rooms.

2.2 Functional Requirements
Asynchronous delivery. An event is delivered asynchronously from
a sender to a receiver, if (i) the sender sends the event while the
receiver is offline, and (ii) after sending, the receiver receives the
event after returning online while the sender is offline. Two ex-
amples for asynchronous delivery are shown in Fig. 1, where the
receiver receives the event 𝛽 at 𝑡2 and 𝑡3. In the examples of Fig. 1,
a relay stores the event 𝛽 on behalf of the sender and forwards 𝛽
when the receiver returns online, thereby providing asynchronous
delivery.

ASAP delivery An event is delivered as-soon-as-possible (ASAP),
if the event is received in the first online period of the receiver after
the event is sent. A precondition for ASAP delivery is that the event
delivery time must be shorter than the length of the first online
period of the receiver after the event has been sent. In Fig. 1, the
events received at 𝑡1 and 𝑡2 are delivered ASAP.

time

Receiver

Event Offline Period Online Period

Relay

Async. ASAP
Delivery

Async.
Delivery

Synchronous ASAP
Delivery

Sender

t₁ t₂ t₃

α

β

β

β β

Figure 1: Synchronous vs. ASAP (as-soon-as-possible) vs.
Asynchronous delivery in a minimal setting

2.3 Qualitative Requirements
Metadata Privacy. We consider two types of metadata: (i) event
metadata, i.e., metadata explicitly stored in events, and (ii) peer
traffic metadata, i.e., implicit information that relays can obtain by
observing a peer’s traffic patterns, such as the frequency of requests
made by a peer to a relay. In contrast to homeservers in Federated
Matrix, where one user is limited to using a single homeserver, it
should be possible to distribute event metadata of a peer’s rooms
to several distinct relays. Within a room, it should be possible to
distribute peer traffic metadata between relays. Additionally, no
metadata should be disclosed to non-member peers. These non-
member peers possess no room membership and are therefore not
authorized to send or read events in a specific room.

Decentralized Relays. Decentralized Relays should not introduce
a single point of failure, i.e., peers in P2P Matrix should be able
to synchronously exchange events between each other even if no
relays are available. Also, the usage of relays is optional, meaning
that some peers in a room might use a relay while others do not.
Optional relay usage should ensure that relays do not become a
requirement for P2P Matrix. The solution should allow for distribut-
ing network load among the relays. Peers should be able to discover
available relays from a set of different relays and choose freely
among them.

3 ReP2P Matrix
Decentralized relays complement P2P Matrix in order to provide
asynchronous and ASAP delivery for peers, without re-introducing
the drawbacks related to homeservers. Figure 2 shows how events
are disseminated within a room. A sending peer, i.e., the originator
of the event, sends it to the peer distribution network, where it is
distributed among the online peers via its P2P network architecture.
At its discretion, the sender also sends the event to a relay from
the relay set. The relay set of a room is defined as part of the room
state, whereby peers can discover them. Only authorized peers
(e.g., room admins) can modify the room state and add relays to a
room. The receiving relay distributes the event to all other room
relays. We assume that the room’s relay set size is manageable
(e.g., few dozens rather than hundreds). However, for larger relay
sets, a more efficient dissemination mechanism among relays (e.g.,
multicast) may be necessary, but is out of scope for this paper. An
asynchronous receiver that was offline during the time of sending



ReP2P Matrix: Decentralized Relays to Improve Reliability and Performance of Peer-to-Peer Matrix DIN ’24, December 9–12, 2024, Los Angeles, CA, USA

Peer Distribution Network Relay Set

Peer
Relay
Event Sender Async. Receiver

re
sy

nc

Figure 2: Event dissemination example in a P2P Matrix room
with multiple relays

and that now returns online, can then resynchronize (resync) its
local state with a selected relay, resulting in the original event(s)
being delivered asynchronously to the receiving peer.

The design avoids changes to the existing Matrix protocol [20],
it merely extends it with the relay-related functionality, such as the
resync API endpoint. Moreover, peers are not required to use relays,
they can proactively choose to profit from asynchronous delivery.
Consequently, even if all relays are unavailable, peers can continue
to exchange events with simultaneously online peers, i.e., via the
peer distribution network.

3.1 Trust Assumptions
Regarding Metadata Privacy (Section 2.3), it is not possible to hide
all event metadata from both non-member peers and relays while
also providing Asynchronous & ASAP delivery (Section 2.2). More-
over, it has been shown that in instant messaging systems, perfor-
mance (e.g., throughput, latency) decreases with stronger privacy
and security guarantees [6]. We prioritize hiding event metadata
from non-member peers, and make stronger trust assumptions
about relays. Relays re-use existing Matrix mechanisms to authenti-
cate peers [21], and are equipped with the necessary information to
authorize peers (Section 3.2). A trusted relay forgets cached events
over time (Section 3.3), so that if the relay is compromised, the
attacker can only obtain a subset of the room’s event metadata.
Therefore, by avoiding metadata accumulation, trusted relays pro-
vide a weak form of post-compromise security. We note that event
metadata may accumulate at malicious relays who disregard the
policy of forgetting cached events over time. However, peers can
split up traffic metadata by switching relays over time. For example,
if a peer resynchronizes with relay 𝑎 during one time period, and
switches to relay 𝑏 in subsequent period, the information about
the peer’s resynchronization activity (i.e., traffic metadata) is split
between these two relays.

3.2 Authorizing Peers and Relays
Relays authorize peers, in order to prevent unauthorized peers (such
as non-member peers) from retrieving event metadata or sending
events to the relay. The replicated data structure that represents a
directed acyclic graph (DAG), stores all room events, including the
necessary information to authorize peers. However, because meta-
data should not accumulate at relays, relays store only a reduced
DAG, the AuthDAG. The AuthDAG contains only those events rel-
evant for authorization, e.g., membership or permission changes.

To authorize a peer’s resync request, a relay searches for the peer’s
room join event in the AuthDAG, and (if found) determines whether
this join event itself is authorized within the room. This procedure
reuses an existing Matrix authorization mechanism, as described
in [22]. The authorization mechanism of relays is therefore also
based on eventually consistent partial order without finality and
without a consensus algorithm [9].

3.3 Caching Events on Behalf of Peers
Relays store message events in the event cache, until either their
preemption due to lack of space or a configurable event retention
time expires, thus reducing the amount of data stored at the relays,
thereby improving post-compromise security. After receiving an
event, relays store a tuple consisting of the event and the UTC times-
tamp of the local clock in the associated room’s event cache. We
accept best-effort local clocks to avoid the cost of global clock syn-
chronization. Although clock drift can result in occasional missed
events on resynchronization, we consider this acceptable given that
peers hold the necessary information (i.e., the DAG) to identify and
re-request these missing events. Upon receiving resync requests
from peers, relays return a subset of events from the event cache,
containing only events with timestamps higher than the provided
since timestamp.

In theory, peers could resync all missing events based on the total
order of cached events established by a relay’s UTC timestamps.
However, the since timestamp allows peers to only approximate the
starting point of missing events. This required approximation is a
result of relays not storing the complete DAG. Relays only passively
cache events, without proactively re-requesting missing events,
so that peers perform the partial ordering of events themselves
without relying on a third party. This decision is made to enable
P2P Matrix to function without relays, thereby preventing relays
from becoming a new architectural requirement (Section 2.3) for
P2P Matrix. As a result, peers do not necessarily receive a complete
chain of events from the relay, but may have to either re-request
missing events from other online peers, or retry the resync request
directed to a relay with an earlier since timestamp.

3.4 Benefits over P2P Matrix
A problem for P2P Matrix is that peers only request missing events
after having received the event subsequent to the missing event.
Consequently, even if a peer has the latest room state and is online,
another online peer missing an event is not guaranteed to receive
this event. Relays circumvent this issue, because peers can resync
with them after returning online, thereby improving the reliability
of event delivery.

Moreover, ReP2P Matrix can help in reducing the peer device’s
energy consumption, which is especially relevant for mobile devices
that are frequently used as instant messaging platform. First, if
peers can obtain the latest state from relays, they do not have to
provide this service themselves to other peers. Second, because
events are disseminated between all relays in a room, the number
of required connections to obtain the latest room state is reduced,
while a relay-less solution would require discovering the peers that
are both currently online and hold the latest room state.



DIN ’24, December 9–12, 2024, Los Angeles, CA, USA Benjamin Schichtholz, Roland Bless, Florian Jacob, Hannes Hartenstein, and Martina Zitterbart

Table 1: Comparison of Relay-enhanced P2P approaches from related work and Matrix approaches.
✓ represents a supported property, ✗ represents a property not supported, (✓) represents a partially supported property.

Property
System Nostr SSB AMP2P Wesh Dendrite

Relay API
Briar

Mailbox
P2P

Matrix
Fed. Matrix ReP2P

Matrix
[4, 14] [18] [12] [2] [8] [13, 23] [1, 5, 7] [20]

Asynchronous Delivery ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓
Avoid Metadata Accumulation ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓
Relay Selection ✓ ✓ n/a ✓ ✓ ✗ n/a ✓ ✓
Relays Authorize Peers ✗ ✗ (✓) ✓ (✓) ✓ n/a ✓ ✓
Single Point of Failure none none none none none none none homeservers none
Relay Discovery ✓ ✓ ✗ ✓ ✗ ✓ n/a ✓ ✓

4 Related Work: Relay-enhanced P2P
In this section, we compare various relay-enhanced P2P systems
providing asynchronous delivery with ReP2P Matrix. We also in-
clude P2P Matrix and federated Matrix in the comparison, in or-
der to highlight the differences to ReP2P Matrix. The protocols
Nostr [4, 14] and SSB [18] are mostly used as social media applica-
tions, in both of which peers can publish messages to relays, and re-
trieve messages related to a subscribed topic from relays. The Asyn-
chronous Mobile P2P Relay (AMP2P) architecture [12] introduces
relays to a mobile P2P network, aiming to provide asynchronous
delivery and privacy, while focusing on encryption and authenti-
cation between peers and relays. Wesh [2], and Briar [13, 23] are
both protocols for secure instant messaging, and provide relaying
solutions that require relays to be associated to a user account.
The Dendrite Relay API [8] allows peers to send events to a relay
that are directed to a single other peer in P2P Matrix. As a result,
if all other peers within the same room are to receive an event
asynchronously, the Dendrite Relay API requires the sending peer
to transmit the event multiple times to the relay, with each event
instance directed to an individual peer in the room.

Table 1 compares different solution approaches according to
various properties. While the first property, Asynchronous deliv-
ery, relates to the functional requirements (Section 2.2), the other
properties relate to functionality derived from the qualitative re-
quirements (Section 2.3).

Aside from P2P Matrix, all compared systems provide asynchro-
nous delivery through mechanisms similar to those provided by
relays in ReP2PMatrix. FederatedMatrix provides this functionality
at the cost of having federated homeservers, that are a single point
of failure from a user perspective, in contrast to the other systems.
If a user’s homeserver is online, the user cannot participate in any
Matrix rooms. Nostr avoids metadata accumulation at relays for pri-
vate, direct messages (not for public posts) by encrypting metadata,
such as user IDs or sending times. While Briar restricts users to a
single relay, most of the other systems permit allow users to choose
from multiple relays. Relays in Wesh and Briar can authorize other
peers for sending or receiving messages by being linked to user ac-
counts. AMP2P authorizes only sending peers (not receiving peers),
while relays in the Dendrite Relay API only authorize the receiving
peer. Discovering relays is possible by having relays themselves
publish the set of available relays (Nostr), or making the relay set
part of the group metadata (SSB, Wesh, Briar).

5 Generating Traffic Scenarios
In order to evaluate ReP2P Matrix, we take a real-world WhatsApp
group messaging dataset [17], and evaluate only a subset due to
resource constraints. The dataset includes 5956 WhatsApp chat
traces, that were provided by more than 117 000 users and include
groups with up to 252 members. Each trace includes sending times,
anonymized user IDs, and the number of characters sent. However,
due to different export formats, only 27 % of the traces have times-
tamps with a granularity of seconds, while the other traces provide
a granularity of minutes. The interarrival times (i.e., intervals be-
tween two subsequent sending times) of the chats follow a long-tail
distribution that fits a beta-prime distribution [17]. This character-
istic accounts to both periods of frequent message exchange and
long communication pauses.

The group messaging dataset has one major limitation: It does
not include on- or offline periods of group members. However,
these periods are essential for evaluating asynchronous delivery of
messages. To the best of our knowledge, no real-world datasets for
online periods in group messaging systems are currently available.

5.1 Deriving Online Periods from Sending
Times

To profit from the dataset’s traffic characteristics despite missing
on-/offline data, we model online periods with the goal of providing
a range of different online rates and lengths per chat. Our model
establishes online periods around the sending times, by letting
the peer be online for a certain time before and after sending. We
call the duration between the time of sending and the time of the
online state change of a peer the online margin. Applying an online
margin to all sending times for each peer results in online periods,
as depicted in Fig. 3. If the time between two subsequent sending
times is shorter or equal to the online margin, the online period
is extended further. In the example chat course of Fig. 3, such an
extended online period is represented by Peer 𝐵’s second online
period. Online periods of different peers may also overlap, e.g.,
there is an overlap between the online periods of peers 𝐴 and 𝐵

shortly after peer 𝐴’s sending time.

5.2 Interarrival Times
To evaluate a range of different online margins for each chat, we
chose multiple online margin lengths. A relevant traffic charac-
teristic to produce online margins are interarrival times (IATs), as
these times capture the sending activity of peers, and also because
peers can be assumed to be online at the time of sending. We seek



ReP2P Matrix: Decentralized Relays to Improve Reliability and Performance of Peer-to-Peer Matrix DIN ’24, December 9–12, 2024, Los Angeles, CA, USA

Online PeriodOffline Period

Peer A

Peer B send

Online Margin send

send send

time

Figure 3: Applying onlinemargins to sending times, resulting
in several online periods

to generate a comparable rate of on-/offline periods between the
chats, i.e., a low online margin should result in few overlapping
online periods for the specific chat. If the same set of fixed online
margins was used for a chat with longer IATs and another chat
with shorter IATs, the shortest online margin would result in more
overlapping periods in the second chat compared to the first chat.
We specify five online margins for each chat by extracting its lowest
and highest IAT, and exponentially increase the values between
these two extremes. As a result, the five online margins are evenly
spaced values on a logarithmic scale. We refer to the lowest online
margin as short, the highest online margin as long, and the middle
online margin as medium. This exponential growth addresses the
long-tail distribution of the dataset’s IATs, resulting in both bursty
periods with short IATs, and communication pauses with long IATs.

An example chat with sending times from the group messaging
dataset (chat id: 1796) and online periods generated from the five
exponentially increasing online margins is depicted in Fig. 4. This
chat illustrates the long-tail distribution of IATs, characterized by a
bursty period with frequent message exchanges during the first day,
followed by a longer communication pause of approximately 4 to 5
days. Figure 4 also shows that the generated online periods vary
in scale, ranging from short durations (as highlighted in the box
that "zooms in" on the first day) to longer online periods. Varying
the online period ranges enables to assess the relay advantage in
ReP2P Matrix towards P2P Matrix as the durations of overlapping
online periods increase.

5.3 Selecting Data from the Dataset
The group messaging dataset contains 5956 chat histories. In or-
der to measure temporal differences between sending times within
minutes, we select chats with second-granularity timestamps. Eval-
uating every chat with five different online margins would result
in long experiment durations, because we use a real-world proof
of concept implementation. Also, to limit the time needed for each
experiment, we select chats with up to 500 exchanged messages. We
dismiss all chats with more than 30 group members, as the effect of
relays is expected to decrease in larger groups, where the proba-
bility of peers being simultaneously online is higher. Additionally,
chats with up to 30 group members account for 83 % of chats in the
dataset [17]. We checked that IATs of chats with this upper-bound
of exchanged messages are still representative for the beta prime
distribution [17] of the dataset. Also, as the online margins depend
on the IATs of the evaluated chat, we expect the results to also hold
for longer chats. From the remaining dataset (up to 500 messages),
we randomly sample 22 chats. Because each chat trace is applied to
both P2P and ReP2P Matrix, and five online margins are applied
separately to each chat, we ran 220 experiments in total.

0 2 5 7 10
Time [days]

0
1
2
3
4
5
6
7
8
9

10

Us
er

send action
1s
21s

7m34s
2h41m
2 days

Figure 4: Applying exponentially increasing online margins
to a chat from the messaging dataset. For each user, the send
action is depicted, with the different online periods below.

6 Evaluation
We compare ReP2P Matrix to pure P2P Matrix without relays, based
on the generated traffic scenarios described in the previous sec-
tion. We provide an automated evaluation setup [15] that allows
reproducible experiments for multiple peers and relays, and run
our real-world proof-of-concept implementation [16]. Moreover,
the setup can be used for experiments on future P2P Matrix archi-
tectures.

6.1 ReP2P Matrix Implementation
Current P2P Matrix implementations utilize the existing Matrix
architecture, by having each peer run a local homeserver. Therefore,
protocol changes required to transform federated Matrix into a P2P
version are kept to a minimum, as communication between peers
in P2P Matrix resembles communication between homeservers in
federated Matrix. Existing P2P Matrix demos extend the Dendrite
[3] homeserver with P2P functionality, and use various P2P net-
works [1, 5, 7].

We base the implementation of both peers and relays on the
latest P2P Matrix demo, that uses Pinecone [1] as a routing scheme.
Because not only peers, but also relays inherit the functionality
of Pinecone, relays are also part of Pinecone’s overlay topology
and can exchange packets with peers or other relays via the same
routing scheme.

6.2 Evaluation Setup
The automated evaluation setup allows running traffic scenarios
for a configurable number of peers and relays, and evaluating their
actions, e.g., sending/receiving events, or online state changes. The
P2P network is emulated by running peers and relays in separate
Docker containers, which are connected by a network bridge of the
host system. As the proof-of-concept builds upon an existing P2P
Matrix demo, the peers establish a Pinecone P2P network. The peers
can then exchange Matrix events via Pinecone. Peers and relays
log their actions during experiments, and the experiment log file is
evaluated subsequently. We note that the obtained results are based
on artificially generated online periods as explained in Section 5.1
due to lack of real data. Although these online periods model a



DIN ’24, December 9–12, 2024, Los Angeles, CA, USA Benjamin Schichtholz, Roland Bless, Florian Jacob, Hannes Hartenstein, and Martina Zitterbart

short medium long
Online Margins

1.0

0.75

0.5

0.25Sh
ar

e 
of

 re
ce

iv
in

g 
pe

er
s

0.0

0.0

0.03

0.11

0.06

0.16

0.44

0.58

0.09

0.23

0.63

0.85

0.11

0.29

0.83

0.95

0.29

0.53

0.91

0.99

P2P

short medium long
Online Margins

1.0

0.75

0.5

0.25

0.23

0.57

0.9

0.97

0.19

0.57

0.9

0.97

0.19

0.58

0.91

0.98

0.2

0.59

0.92

0.98

0.36

0.68

0.94

0.99

ReP2P

Figure 5: Comparison of successfully delivered events in P2P
and ReP2P Matrix by share of peers and online margin, e.g.,
the bottom row shows the share of events received by 25 % of
peers for the five online margins.

range of different overlapping online period frequencies, real online
periods may substantially differ from the modeled periods, and
depend on various factors such as location, cellular connectivity,
daily activity, and the like.

6.3 Successful Event Delivery
We evaluate the overall share of delivered events and summarize the
results in Figure 5. An event is considered delivered successfully, if a
certain share of peers (e.g., 25 %) has received the event (y-axis). The
share of delivered events by the share of receiving peers is evaluated
for each five online margins (x-axis) per chat. The results show that
ReP2P Matrix Matrix increases the share of delivered events by 28 %
points on average. For the medium online margin, 63 % of all events
are received by half the number of peers in P2PMatrix, while ReP2P
Matrix increases the share of delivered events to 91 %. Even for the
longest margin, where peers are often online simultaneously, ReP2P
Matrix increases the share of delivered events. This accounts to
the fact that in P2P Matrix, peers may not receive missing events
despite being online simultaneously, as described in Section 3.4.
We note that in both P2P and ReP2P Matrix only few events are
delivered to all peers. This is because some members in the chat are
inactive, rarely send messages and have only limited online periods,
which reduces their chances of receiving any messages.

6.4 Event Delivery Latencies
We evaluate the times between a peer returning online and receiving
the first event (if any). We name this metric Event Delivery Latency.
This latency indicates how long it takes for a peer to obtain the first
event from other peers/relays after returning online. We collected
the event delivery latencies for all selected chats and measured the
time from the peer coming online until it receives the first event
within the online period. The cumulative distribution of delivery
latencies of returning online for the medium-length online margins
of all chats is shown in Fig. 6. For peers in ReP2P Matrix, 76 % of the
delivery latencies are shorter or equal 2 s, compared to only 26%
for peers in P2P. This shows that relays do not only improve the
successful delivery of events, they also reduce the delivery latency
of the first events after returning online.

10
1

10
0

10
1

10
2

10
3

10
4

10
5

Delivery Latency [s]

0.00

0.25

0.50

0.75

1.00

CD
F

ReP2P
P2P

Figure 6: Share of event delivery latencies for first event
received after returning online for medium online margins
in each chat. These online margins range from 15 s to 3 h.

7 Conclusion
In this work, we introduce ReP2P Matrix [16], enabling asynchro-
nous delivery between peers while maintaining the advantages of
P2P Matrix over the federated architecture. The designed relay con-
cept reuses existing Matrix authorization mechanisms and allows
for using different relays over time so that relays get less informa-
tion on user’s IP addresses and how often peers are active/online.
A proof of concept is implemented and evaluated in a reproducible
setup, allowing future experiments on P2P Matrix.

We evaluate the performance of ReP2P Matrix compared to P2P
Matrix without relays by applying a real-world WhatsApp group
traffic dataset. Due to the lack of user on-/offline period datasets,
we extend the dataset by deriving ranges of different online periods
from the sending times. Our evaluation results show that in groups
with up to 30 members, relays increase the number of successfully
delivered messages and reduce the event delivery latency for peers
coming back online. The advantage over P2P Matrix without relays
depends on the peers’ online durations and is more pronounced
for small chat groups. Future work may consider designing more
efficient inter-relay dissemination mechanisms (e.g., multicast).

Acknowledgments
This work was funded by the KiKIT (The Pilot Program for Core-
Informatics at the KIT) of the Helmholtz Association.

References
[1] Neil Alexander. 2023. Pinecone. https://matrix-org.github.io/pinecone/ Accessed:

2024-08-03.
[2] Berty Technologies. 2023. Wesh Protocol. Berty Documentation. https://berty.

tech/docs/protocol Accessed: 2024-08-04.
[3] Neil Alexander et al. 2024. Dendrite (v0.13.8). GitHub Repository. https://github.

com/matrix-org/dendrite/tree/v0.13.8 Accessed: 2024-09-20.
[4] fiatjaf et al. 2024. Nostr: Basic Protocol Flow Description. https://github.com/nostr-

protocol/nips/blob/master/01.md Accessed: 2024-08-04.
[5] Timothée Floure. 2019. Experimenting with Matrix Federation over Yg-

gdrasil. https://www.epfl.ch/labs/dedis/wp-content/uploads/2020/01/report-
2019-2-Timothee-Floure-Matrix-federation-over-Yggdrasil.pdf Accessed: 2024-
08-03.

[6] Yossi Gilad. 2019. Metadata-private communication for the 99%. Commun. ACM
62, no. 9 (2019), 86–93. https://doi.org/10.1145/3338537

[7] Matthew Hodgson. 2020. The Path to Peer-to-Peer Matrix. FOSDEM Presentation.
https://archive.fosdem.org/2020/schedule/event/dip_p2p_matrix/ Accessed: 2024-
08-03.

https://matrix-org.github.io/pinecone/
https://berty.tech/docs/protocol
https://berty.tech/docs/protocol
https://github.com/matrix-org/dendrite/tree/v0.13.8
https://github.com/matrix-org/dendrite/tree/v0.13.8
https://github.com/nostr-protocol/nips/blob/master/01.md
https://github.com/nostr-protocol/nips/blob/master/01.md
https://www.epfl.ch/labs/dedis/wp-content/uploads/2020/01/report-2019-2-Timothee-Floure-Matrix-federation-over-Yggdrasil.pdf
https://www.epfl.ch/labs/dedis/wp-content/uploads/2020/01/report-2019-2-Timothee-Floure-Matrix-federation-over-Yggdrasil.pdf
https://doi.org/10.1145/3338537
https://archive.fosdem.org/2020/schedule/event/dip_p2p_matrix/


ReP2P Matrix: Decentralized Relays to Improve Reliability and Performance of Peer-to-Peer Matrix DIN ’24, December 9–12, 2024, Los Angeles, CA, USA

[8] Devon Hudson. 2023. Relay Server Architecture. Dendrite GitHub Doc-
umentation. https://github.com/matrix-org/dendrite/blob/v0.13.8/relayapi/
ARCHITECTURE.md Accessed: 2024-08-05.

[9] Florian Jacob, Luca Becker, Jan Grashöfer, and Hannes Hartenstein. 2020. Matrix
Decomposition: Analysis of an Access Control Approach on Transaction-based
DAGs without Finality. In Proceedings of the 25th ACM Symposium on Access
Control Models and Technologies (Barcelona, Spain) (SACMAT ’20). Association
for Computing Machinery, New York, NY, USA, 81–92. https://doi.org/10.1145/
3381991.3395399

[10] Florian Jacob, Jan Grashöfer, and Hannes Hartenstein. 2019. A Glimpse of
the Matrix: Scalability issues of a new message-oriented data synchronization
middleware. In Proceedings of the 20th International Middleware Conference De-
mos and Posters, Middleware 2019, Davis, CA, USA, December 9-13, 2019. 5–6.
https://doi.org/10.1145/3366627.3368106

[11] New Vector Ltd. 2024. Element. A sovereign and secure communications platform.
https://element.io Accessed: 2024-10-12.

[12] Yevgeniy Dodis Max Skibinsky. 2015. Asynchronous Mobile Peer-to-peer Relay.
(2015). https://s3-us-west-1.amazonaws.com/vault12/crypto_relay.pdf Accessed:
2024-08-04.

[13] Nico Alt. 2023. Briar Wiki. Briar Project Documentation. https://code.briarproject.
org/briar/briar/-/wikis/home Accessed: 2024-08-04.

[14] Nostr. 2024. A decentralized social network with a chance of working. https:
//nostr.com/ Accessed: 2024-03-09.

[15] Benjamin Schichtholz. 2024. ReP2P Evaluation. GitLab Repository. https://gitlab.
kit.edu/kit/tm/telematics/rep2p-matrix/rep2p-experiments.

[16] Benjamin Schichtholz. 2024. ReP2P Peer/Relay Implementation. GitLab Reposi-
tory. https://gitlab.kit.edu/kit/tm/telematics/rep2p-matrix/rep2p.

[17] Anika Seufert, Fabian Poignée, Michael Seufert, and Tobias Hoßfeld. 2023. Share
and Multiply: Modeling Communication and Generated Traffic in Private Whats-
AppGroups. IEEE Access 11 (2023), 25401–25414. https://doi.org/10.1109/ACCESS.
2023.3254913

[18] Dominic Tarr, Erick Lavoie, Aljoscha Meyer, and Christian Tschudin. 2019. Se-
cure Scuttlebutt: An Identity-Centric Protocol for Subjective and Decentralized
Applications. In Proceedings of the 6th ACMConference on Information-Centric Net-
working (Macao, China) (ICN ’19). 1–11. https://doi.org/10.1145/3357150.3357396

[19] The Matrix.org Foundation CIC. 2024. Matrix – An Open Network for Secure,
Decentralised Communication. https://matrix.org/ Accessed: 2024-08-08.

[20] The Matrix.org Foundation CIC. 2024. Matrix Specification: Server-Server API.
https://spec.matrix.org/v1.11/server-server-api Accessed: 2024-08-06.

[21] The Matrix.org Foundation CIC. 2024. Matrix Specification: Server-Server API. 3.
Authentication. https://spec.matrix.org/v1.11/server-server-api/#authentication
Accessed: 2024-10-07.

[22] The Matrix.org Foundation CIC. 2024. Matrix Specification: Server-Server
API. 5.1.2 Authorization Rules. https://spec.matrix.org/v1.11/server-server-
api/#authentication Accessed: 2024-10-12.

[23] Torsten Grote and Michael Rogers. 2023. Briar Mailbox released to improve
connectivity. Briar Project. https://briarproject.org/news/2023-briar-mailbox-
released/ Accessed: 2024-08-04.

https://github.com/matrix-org/dendrite/blob/v0.13.8/relayapi/ARCHITECTURE.md
https://github.com/matrix-org/dendrite/blob/v0.13.8/relayapi/ARCHITECTURE.md
https://doi.org/10.1145/3381991.3395399
https://doi.org/10.1145/3381991.3395399
https://doi.org/10.1145/3366627.3368106
https://element.io
https://s3-us-west-1.amazonaws.com/vault12/crypto_relay.pdf
https://code.briarproject.org/briar/briar/-/wikis/home
https://code.briarproject.org/briar/briar/-/wikis/home
https://nostr.com/
https://nostr.com/
https://gitlab.kit.edu/kit/tm/telematics/rep2p-matrix/rep2p-experiments
https://gitlab.kit.edu/kit/tm/telematics/rep2p-matrix/rep2p-experiments
https://gitlab.kit.edu/kit/tm/telematics/rep2p-matrix/rep2p
https://doi.org/10.1109/ACCESS.2023.3254913
https://doi.org/10.1109/ACCESS.2023.3254913
https://doi.org/10.1145/3357150.3357396
https://matrix.org/
https://spec.matrix.org/v1.11/server-server-api
https://spec.matrix.org/v1.11/server-server-api/#authentication
https://spec.matrix.org/v1.11/server-server-api/#authentication
https://spec.matrix.org/v1.11/server-server-api/#authentication
https://briarproject.org/news/2023-briar-mailbox-released/
https://briarproject.org/news/2023-briar-mailbox-released/

	Abstract
	1 Introduction
	2 System Model and Requirements
	2.1 System Model
	2.2 Functional Requirements
	2.3 Qualitative Requirements

	3 ReP2P Matrix
	3.1 Trust Assumptions
	3.2 Authorizing Peers and Relays
	3.3 Caching Events on Behalf of Peers
	3.4 Benefits over P2P Matrix

	4 Related Work: Relay-enhanced P2P
	5 Generating Traffic Scenarios
	5.1 Deriving Online Periods from Sending Times
	5.2 Interarrival Times
	5.3 Selecting Data from the Dataset

	6 Evaluation
	6.1 ReP2P Matrix Implementation
	6.2 Evaluation Setup
	6.3 Successful Event Delivery
	6.4 Event Delivery Latencies

	7 Conclusion
	Acknowledgments
	References

