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Summary

Recurrent neural networks (RNNs) with rich feature vectors of past values can
provide accurate point forecasts for series that exhibit complex serial depen-
dence. We propose two approaches to constructing deep time series probabilistic
models based on a variant of RNN called an echo state network (ESN). The
first is where the output layer of the ESN has stochastic disturbances and a
Bayesian prior for regularization. The second employs the implicit copula of an
ESN with Gaussian disturbances, which is a Gaussian copula process on the fea-
ture space. Combining this copula process with a nonparametrically estimated
marginal distribution produces a distributional time series model. The resulting
probabilistic forecasts are deep functions of the feature vector and marginally
calibrated. In both approaches, Markov chain Monte Carlo methods are used to
estimate the models and compute forecasts. The proposed models are suitable
for the complex task of forecasting intraday electricity prices. Using data from
the Australian market, we show that our deep time series models provide accu-
rate short-term probabilistic price forecasts, with the copula model dominating.
Moreover, the models provide a flexible framework for incorporating probabilis-
tic forecasts of electricity demand, which increases upper tail forecast accuracy
from the copula model significantly.
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1 INTRODUCTION

Deep models with rich feature vectors are often very effective in problems that require accurate forecasts (Goodfellow
et al., 2016). These include financial applications, such as predicting equity risk premiums and returns (Feng et al., 2018;
Gu et al., 2021) and bond returns (Bianchi et al., 2021). Another financial application where deep models have high
potential is the forecasting of intraday electricity prices. Electricity prices exhibit a strong and complex nonlinear serial
dependence, quite unlike security prices, and accounting for this is key to obtaining accurate forecasts (Manner et al.,
2019; Nowotarski & Weron, 2018). Shallow neural networks (NNs) (Amjady, 2006), and more recently deep neural net-
works (DNNs) (Lago et al., 2018; Ugurlu et al., 2018), have been shown to capture these nonlinearities well and produce
accurate point forecasts. However, it is the accurate forecasting of the entire distribution of prices—variously called prob-
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abilistic, density or distributional forecasting—that is essential for both market operators and participants. Yet, to date,
probabilistic forecasts of electricity prices using DNNs are rare. In this paper, we propose a number of time series proba-
bilistic forecasting models that exploit and extend state-of-the-art deep models and apply them to data from the Australian
market.

Day-ahead wholesale electricity markets operate throughout the world, including the United States and Europe. In
these markets, generators and distributors bid for sale and purchase of electricity at an intraday resolution in an auction
one day prior to transmission. The auction clearing price is called the electricity spot price; see Kirschen and Strbac (2018)
for an introduction to such markets. Accurate price forecasts at an intraday resolution, one or more days ahead, are central
to both the efficient operation of the market and profitability of participants. Particularly important are probabilistic
forecasts of price, not just the mean, variance or other moments. This is because overall profitability of market participants
is strongly affected by prices in the tails, which are very heavy in most wholesale markets.

Recurrent neural networks (RNNs) are DNNs tailored to capture temporal behaviour and are suitable for forecast-
ing nonlinear time series (Goodfellow et al., 2016, ch. 10). However, RNNs typically have a large number of hidden
weights and are difficult to train (i.e., estimate). Therefore, we use a variant of RNNs called echo state networks (ESNs)
(Jaeger, 2007; Lukoševičius & Jaeger, 2009) that employ a form of regularization that makes them scalable to long series
and computationally stable. We build statistical time series models based on ESNs using two approaches. The first extends
that of Chatzis and Demiris (2011) and McDermott and Wikle (2017, 2019), who use ESNs within statistical models, with
the output layer coefficients of the hidden state vector estimated using Bayesian methods. In our work, we include a
shrinkage prior for the output layer coefficients to provide additional regularization, along with three different additive
error distributions for the output layer: Gaussian, skew-normal and skew-t.

Our second approach is the main methodological contribution of the paper. It uses the implicit copula of the time series
vector from a Gaussian probabilistic ESN of the type described above. By an ‘implicit copula’ we mean the copula that is
implicit in a multivariate distribution and obtained by inverting Sklar's theorem; see Smith (2022) for an introduction to
implicit copulas. This copula is both a deep function of the feature vector and also a ‘Gaussian copula process’. We combine
our proposed copula with a nonparametric marginal distribution for electricity prices, producing a time series model
that captures the complex serial dependence in the series. The accurate estimation of the marginal distribution ensures
‘marginal calibration’, which is where the long run average of the predictive distributions of the time series variable
matches its observed margin (Gneiting & Katzfuss, 2014). Importantly, the entire predictive distribution from the copula
model is a deep function of the feature vector. This copula model extends the deep distributional regression methodology
of Klein et al. (2021) to deep distributional time series and ESNs.

In both our deep time series models, the feature vector includes a rich array of past series values and possibly other
variables. To regularize these, ESNs use sparse and randomly assigned fixed weights for the hidden layers of the DNN.
For each of K random configurations of weights, Markov chain Monte Carlo (MCMC) is used to estimate the statistical
model and compute Bayesian predictive distributions. The probabilistic forecasts are then ensembles of these predictive
distributions over the K configurations of weights. We show in our empirical work that this ensemble provides for accurate
uncertainty quantification.

We use our deep time series models to forecast intraday electricity prices in the Australian National Electricity Market
(NEM). The NEM was established in 1998, comprises around 1% of Australian economic output, provides public data,
and has a design that is typical of other day-ahead markets. It has five regional price series for which forecasting has
been much studied; see Ignatieva and Trück (2016), Manner et al. (2019) and Han et al. (2020) for overviews. Using a
feature vector with lagged prices from all five regions, we compute predictions at the half-hourly resolution for a 24 h
horizon over an 8 month validation period during 2019. Serinaldi (2011), Gianfreda and Bunn (2018) and Narajewski and
Ziel (2020) show the ‘generalized additive models for location, scale and shape’ (GAMLSS) methodology of Rigby and
Stasinopoulos (2005) applied to time series provides accurate distributional forecasts of electricity prices, and we employ
this as a benchmark. Using contemporary metrics, the probabilistic ESN with skew-t errors produces more accurate point
and probabilistic forecasts than ESNs with either Gaussian or skew-normal errors, and also GAMLSS. However, the deep
copula model produces more accurate probabilistic forecasts, particularly in the tails, and has superior forecast coverage.
Thus, marginal calibration also improves calibration of the (conditional) predictive distributions.

Participants in the NEM are provided with probabilistic forecasts of electricity demand by the system operator. Recent
studies (Shah & Lisi, 2020; Ziel & Steinert, 2016) suggest that using accurate demand forecasts may further improve time
series forecasts of price. An advantage of deep models is that additional predictors are easily included in a flexible fashion
as extra elements in the feature vector. We do so here using three quantiles of the 24 h ahead demand forecasts, and find
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this increases forecast accuracy of the upper tail of the price distribution when using the deep copula model. Accurate
forecasting of the upper tail of prices impacts the profitability of participants substantially (Christensen et al., 2012).

The paper is organized as follows. Section 2 provides an overview of electricity markets and price forecasting, with a
focus on the NEM. Section 3 outlines ESNs, their probabilistic extension using additive disturbances, and Bayesian meth-
ods for their estimation and prediction. Section 4 outlines the implicit copula process and the proposed deep distributional
time series model. Section 5 compares the deep time series and benchmark model forecasts, Section 6 considers the inclu-
sion of demand forecast data, and Section 7 concludes. The Web Appendix provides key algorithms, computational details
and additional empirical results.

2 ELECTRICITY MARKETS, PRICE FORECASTING AND DATA

2.1 Wholesale markets

Wholesale electricity markets include the European Power Exchange, US regional markets (such as the PJM intercon-
nection and the Southwest Power Pool), and national markets in many countries including Australia, Chile and Turkey.
Although the designs of these markets differ, they are largely ‘day-ahead’ markets where generators and distributors place
bids for the sale and purchase of electricity at an intraday resolution up to one day prior to transmission (or ‘dispatch’).
The market is cleared at a wholesale spot price that reflects the marginal cost of supply at each intraday period. Prices also
vary at different geographic reference nodes, creating multiple related price series. Markets are overseen by system opera-
tors, which match generation with short-term demand forecasts, impose constraints to ensure system stability (i.e., avoid
load-shedding or blackouts), and enforce any price caps; see Kirschen and Strbac (2018) for an overview of wholesale
markets.

Central to the operation of day-ahead markets is the intraday electricity spot price. For market participants, accurate
short-term forecasts of the price are key to profitability. Because electricity is a flow commodity with a high cost of storage,
arbitrage opportunities are limited. This fact, along with the complexities of transmission and that short-run demand is
inelastic with respect to price, means that prices exhibit unique stylized characteristics; see Knittel and Roberts (2005),
Karakatsani and Bunn (2008), Panagiotelis and Smith (2008) and Weron (2014) for summaries of these. From a time series
perspective, this includes strong and complex nonlinear serial dependence, whereas from a distributional perspective,
prices have very heavy tails, skew and often multiple modes that correspond to different regimes (Janczura & Weron, 2010)
and economic equilibria (Smith & Shively, 2018) .

2.2 Electricity price forecasting

Many methods have been used for short-term forecasting of electricity spot prices; see Weron (2014) and Nowotarski
and Weron (2018) for overviews of point and probabilistic forecasting methods, respectively. Although shallow neural
networks (NNs) have long been popular for forecasting electricity prices, DNNs have the potential to be more accurate.
For example, Lago et al. (2018) and Ugurlu et al. (2018) both found that RNNs provide more accurate point forecasts than
a range of benchmark models. However, most previous usages of shallow and deep NNs have focused on point forecasts of
prices, and only in a few cases also quantify predictive uncertainty using bootstrap or other Monte Carlo methods (Rafiei
et al., 2016).

In contrast, a number of other methods have been used to construct probabilistic forecasts (Bunn et al., 2016; Huurman
et al., 2012; Misiorek et al., 2006; Panagiotelis & Smith, 2008). One particularly promising avenue is to extend distributional
regression methods to time series forecasting. For example, Gianfreda and Bunn (2018) and Narajewski and Ziel (2020)
do so for German electricity prices using exogenous covariates, and Serinaldi (2011) does so for Californian and Italian
electricity prices using historical prices and other variables. These papers report more accurate probabilistic forecasts. In
Section 4, we develop a copula-based model that exploits the accuracy exhibited by deep models within a distributional
time series forecasting setting, thereby combining the advantages of both approaches.

Copulas have become increasingly popular in time series models of electricity prices because they can capture complex
dependence, while also allowing for flexible margins. Smith et al. (2012), Ignatieva and Trück (2016), Manner et al. (2016),
Pircalabu and Benth (2017) and Manner et al. (2019) use low-dimensional copulas to capture cross-sectional dependence
between regional prices, price spikes and other energy series in power systems, whereas Smith (2015) and Smith and
Shively (2018) use high-dimensional copulas to capture both serial and cross-sectional dependence jointly for multiple
regional prices. However, these studies all employ copulas that are different to the copula process proposed here.
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FIGURE 1 Boxplots of the logarithm of
electricity prices in NSW for each hour of the
day. Note: Five extreme outliers greater than 7.3
that correspond to price spikes have been
removed to improve visualization. The price
data are from the period 7-Jan-19 to 31-Dec-19.

2.3 Australian electricity prices

Electricity generation in the NEM is an important component of economic activity, with 19.4bn Australian dollars of
turnover during the 2018–2019 financial year (Australian Energy Regulator, 2019). Operations in the NEM are managed
by the Australian Electricity Market Operator (AEMO), and since April 2006, it has had five regions that correspond to
the power systems in the states of New South Wales (NSW), Queensland (QLD), Victoria (VIC), South Australia (SA)
and Tasmania (TAS). Separate prices are set at a central location (or ‘node’) in each region, although they are dependent
because the state-based power systems are interconnected by high voltage direct current lines.

Participating utilities place bids for the purchase (by distributors) and sale (by generators) of electricity at 5-min inter-
vals up to one day prior to dispatch. The trading price is the average clearing price for this auction over six consecutive
5-min periods, so that it is observed at a half-hourly resolution. Re-bidding of prices is allowed before dispatch, although
not the amount of energy. Price forecasting in the NEM has been studied extensively, with contributions by Higgs (2009),
Panagiotelis and Smith (2008), Nowotarski et al. (2013), Ignatieva and Trück (2016), Rafiei et al. (2016), Smith and Shiv-
ely (2018), Apergis et al. (2019) and Manner et al. (2019) among others. Intraday forecasts over a horizon of 24 h are used
by market participants to develop effective strategies for bidding, re-bidding and managing risk. In our study, we employ
the half-hourly trading prices (measured in Australian dollars per MW/h) observed during 2019 in the five regions of the
NEM. Prices can be negative for short periods (when it is more cost-effective to sell into the market at a loss, rather than
ramp down generation temporarily) although the floor price is −$1000. There is also a maximum price that is adjusted
annually on 1 July, which was $14,500 prior to 1 July 2019 and $14,700 afterwards.

Figure A in Part E of the Web Appendix plots prices in NSW during 4 weeks corresponding to the four seasons, illustrat-
ing the strong heterogeneity based on the time of day, day of the week and season. Table A in the Web Appendix provides
a summary of the prices in each region. These have extreme positive skew, so that we follow most previous studies and
work with the logarithm of price Y = log(Price + 1001). The addition of 1001 accounts for the minimum price, at which
Y = 0. It is straightforward to construct density forecasts of the nominal price from those of Y using the Jacobian of
this transformation. Figure B in the Web Appendix plots histograms of the five price series, along with (bounded) kernel
density estimates (KDEs), showing that even the distribution of Y is both asymmetric and heavy-tailed for each series.
Figure 1 gives boxplots of Y for NSW (which is the region with the most energy demand), broken down by hour of the day.
It shows that the entire distribution varies substantially over the day. Equivalent plots for the day of the week, and month
of the year (see Figures C and D of the Web Appendix) also reveal similar heterogeneity in the distribution of prices.

3 DEEP TIME SERIES

RNNs represent complex temporal relationships between variables by allowing cycles and sequences in their hidden
layers. However, RNNs are typically computationally expensive to estimate and can be numerically unstable for long series
(Pascanu et al., 2013), both of which are issues here. One way to address this is to employ a variant called an Echo State
Network (ESN) that decreases the number of weights that need to be trained (Jaeger, 2007). The key idea of ESNs is to
only adapt the output layer in training, while keeping the weights of recurrent and input connections fixed yet randomly
assigned. This approach is called a ‘reservoir computing’ method (Lukoševičius & Jaeger, 2009) and provides flexibility
at a lower computational cost. However, classical ESNs rarely consider uncertainty quantification, and in this section we
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outline probabilistic ESNs that do so. The approach is extended in Section 4 to allow for marginal calibration of the data
distribution using a deep copula model.

3.1 Gaussian probabilistic ESN

3.1.1 Specification

We first specify the ensemble ESN proposed for spatio-temporal data by McDermott and Wikle (2017). For series with
highly nonlinear dependence, these authors demonstrate that allowing the response equation to depend on the hidden
states quadratically in an ESN can increase predictive accuracy, which we also find for the electricity price series examined
here. Let {Yt} be a stochastic process, then the ESN with Gaussian disturbances 𝜀t ∼  (0, 𝜎2) takes the following form
for t ≥ 1:

Response Equation: Yt = 𝛽0 + h′
t𝜷1 + (h′

t)◦2𝜷2 + 𝜀t ,

Hidden State Equation: ht = (1 − 𝜅)ht−1 + 𝜅h̃t

h̃t = gh

(
𝛿

𝜆V
Vht−1 + Uxt

)
.

(1)

Here, xt is an (nx × 1) feature vector that includes unity for an intercept term, ht is a (nh × 1) hidden state vector, ‘◦2’
denotes the element-wise square of a matrix, V ,U are (nh × nh) and (nh × nx) matrices of hidden layer weights, and gh is
an activation function set to gh(x) = tanh(x). The parameter 0 < 𝜅 ≤ 1 is called the ‘leaking rate’. Following McDermott
and Wikle (2017), we set 𝜅 = 1 after having checked that predictive performance is not improved when 𝜅 < 1, so that
h̃t = ht. The feature vector xt contains past values of both the response and other series, which we specify in Section 5.
The response Yt is a nonlinear function not only of xt but also of all previous values x1, … , xt−1, so the stochastic process
is not Markov.

The constant 𝜆V is the largest eigenvalue of V , and 0 < 𝛿 < 1 a scaling parameter, so that (𝛿∕𝜆V )V has spectral radius
less than one. A spectral radius greater than one can result in unstable behaviour in the latent states (Lukoševičius &
Jaeger, 2009). We follow McDermott and Wikle (2017) and set 𝛿 = 0.35 and nh = 120, although we found the forecasting
results to be insensitive to variations in these settings.

The elements of the matrices V = {vil},U = {ui𝑗} are assumed to be random, and distributed independently from
mixtures of a uniform distribution and a point mass at zero. If  (a, b) denotes a uniform distribution over domain (a, b),
(𝜋) denotes a Bernoulli distribution with mean 𝜋, and 𝛿0 is the Dirac function at zero, then the elements of V and U are

vil = 𝛾v
il (−av, av) + (1 − 𝛾v

il)𝛿0 , 𝛾v
il ∼ (𝜋v) ,

ui𝑗 = 𝛾u
i𝑗  (−au, au) + (1 − 𝛾u

i𝑗)𝛿0 , 𝛾u
i𝑗 ∼ (𝜋u) .

(2)

We follow McDermott and Wikle (2017) and set av = au = 𝜋v = 𝜋u = 0.1 after having checked the predictive performance
under several alternative settings. This provides a sparse structure that differs from popular dropout regularization (Gal
& Ghahramani, 2016) and provides computational and other advantages; see Gallicchio (2020).

Consider T time series observations Y = (Y1, … ,YT)′ of the stochastic process with corresponding (T × nx) matrix of
feature values X = [x1| … |xT]′. Denote 𝝃 = {V ,U, 𝜅, 𝛿}, H𝜉(X) = [h1| … |hT]′ as the (T × nh) matrix of hidden state
values, B𝜉(X) = [𝜾,H𝜉(X)|H𝜉(X)◦2], 𝜾 as a vector of ones, and 𝜷 = (𝛽0, 𝜷

′
1, 𝜷

′
2)′. Then (1) can be written as the linear model

Y = B𝜉(X)𝜷 + 𝜺 , 𝜺 = (𝜀1, … , 𝜀T)′ ∼  (0, 𝜎2I). (3)

Given 𝝃, X and h0 = 0, the hidden state matrix H𝜉(X) is known without error as the hidden state vectors can be computed
recursively. Only 𝜷 and 𝜎2 (which we refer to as model parameters) require estimation, for which we use their Bayesian
posterior distribution. Differing from McDermott and Wikle (2017), we regularize 𝜷 by adopting the shrinkage prior

𝜷|𝜏2 ∼  (0,P(𝜏2)−1) , 𝜎2 ∼ (a, b) , (4)

where  denotes an Inverse Gamma distribution. We found a ridge prior with P(𝜏2) = 𝜏2I, and hyper-prior 𝜏2 ∼ (ã, b̃)
with a = b = ã = b̃ = 0.001 to work well. The posterior of the model parameters 𝝑 = (𝜷, 𝜎2, 𝜏2) of this regularized
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KLEIN ET AL.

linear model can be computed using the standard MCMC sampler at Algorithm 1 in Part A of the Web Appendix. Other
shrinkage priors of the form at (4) can also be used here as discussed in Klein and Smith (2019).

3.1.2 Probabilistic forecasts

Most implementations of ESNs only draw a single set of weights from (2). Here, we follow McDermott and Wikle
(2017, 2019) and simulate K = 100 matrices {V k,Uk ; k = 1, … ,K} from (2). An ensemble is then used to integrate over
U,V when constructing the probabilistic forecasts. If 𝝃k = {V k,Uk, 𝜅, 𝛿}, then the density forecast of YT+h at time T for
each point h = 1, … , h1 in the forecast horizon is the ensemble

𝑓T+h|T(𝑦T+h) ≡ 1
K

K∑
k=1

pk(𝑦T+h|X , y) , (5)

where the subscript notation indicates 𝑓T+h|T is conditional on the filtration at time T.
The density pk in (5) is the Bayesian posterior predictive density computed for configuration 𝝃k as follows. Let X(t) ≡

[x1| … |xt]′, then this posterior predictive density is

pk(𝑦T+h|X , y) = ∫∫ p(𝑦T+h|X(T+h),𝝑)p(xT+2, … , xT+h|𝝑,X , y) p(𝝑|X , y)dxT+2 … dxT+h d𝝑 , (6)

which is an integral over any unobserved feature values and the model parameter posterior.1 From (1), the first term in
the integrand is the density of a  (h′

T+h𝜷1 + (h′
T+h)

◦2𝜷2, 𝜎
2) distribution, where hT+h is computed through the recursion

of the hidden state equation (therefore, hT+h is a deep function of x1, … , xT+h). The outer integral in 𝝑 can be evaluated
by averaging over draws from the posterior p(𝝑|X , y) obtained from running the MCMC sampler. However, plugging in
the posterior mean E(𝝑|X , y) computed from the Monte Carlo sample is much faster, yet can be almost as accurate, so we
follow this approach.2

In our empirical work, xt contains past values of both the price in the focal region and the other four regional prices,
so that x1, … , xT+1 are observed at or before time T. However, some elements of xT+2, … , xT+h are unobserved, and the
integrals over these feature vectors in (6) are with respect to their unobserved elements only. The integrals are computed
in a Monte Carlo manner by simulating all five series values sequentially from their predictive distributions. Algorithm 2
in Part B of the Web Appendix simulates from the ensemble density (5) for all five regional price series jointly and at each
time point in the forecast horizon.

3.2 Skew t probabilistic ESN

The assumption of Gaussian disturbances at (1) is inconsistent with the asymmetry in the empirical distribution of (log-
arithmic) prices. Thus, we also consider the skew-t distribution of Azzalini and Capitanio (2003) with location zero for

the disturbances, with density p(𝜀t;𝜔2, 𝛼, 𝜈) = 2
𝜔

t𝜈
(

𝜀t
𝜔

)
T𝜈+1

(
𝛼𝜀t
𝜔

√
𝜈+1
𝜈+x2

𝜀t

)
, where t𝜈 and T𝜈 are the student t density and

distribution functions. The parameters 𝜔2, 𝛼, 𝜈 are scale, skew and degrees of freedom parameters, respectively, and we
write 𝜀t ∼  (0, 𝜔2, 𝛼, 𝜈). When 𝜈 > 30 the density is effectively that of a skew-normal distribution, whereas when 𝛼 = 0
it is that of a t distribution. We fix values of 𝜈, and use the prior at (4) for 𝜷, so that the model parameters are {𝜷, 𝜏2, 𝜔2, 𝛼}.

Bayesian estimation of the model parameters uses a conditionally Gaussian representation of the skew-t. This intro-
duces latent variables 𝜁t,wt and expresses 𝜀t conditional on these values as 𝜀t = 𝜓𝜁t + 𝜖t, where

𝜖t|wt ∼  (0, 𝜎2∕wt) , wt ∼ (𝜈
2
,
𝜈

2

)
, 𝜁t|wt ∼  [0,∞) (0, 1∕wt) ,

1It is implicit that all densities in the integrand of (6) are conditional on weight configuration 𝝃k.
2Implementation requires running the MCMC sampler and computing the posterior mean a total of K times, once for each hidden weight configuration
𝝃1, … , 𝝃K .
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KLEIN ET AL.

 denotes a Gamma distribution,  [0,∞) is a Gaussian truncated to [0,∞), and {𝛼, 𝜔} are re-parameterized as {𝜓, 𝜎}
with 𝜓 = 𝛼𝜎 and 𝜎2 = 𝜔2 − 𝜓2. Integrating out 𝜁t,wt recovers the skew-t distribution 𝜀t ∼  (0, 𝜔2, 𝛼, 𝜈). Following
Frühwirth-Schnatter and Pyne (2010), the hyperpriors are 𝜓 ∼  (0,D0), 𝜎2 ∼ (c0,C0) and 𝜏2 ∼ (b0,B0), with
constants D0 = 1, c0 = 2.5, b0 = 1, B0 = 0.005, C0 = 0.5s2

𝑦 and s2
𝑦 denoting the sample variance of Yt.

Given 𝝃, the re-parameterized model parameters 𝝑 = {𝜷, 𝜏2, 𝜓, 𝜎2} are estimated using their Bayesian posterior com-
puted by an MCMC sampler that generates 𝜻 = (𝜁1, … , 𝜁T)′ and w = (w1, … ,wT)′, similar to those proposed by
Panagiotelis and Smith (2008) and Frühwirth-Schnatter and Pyne (2010). As with the Gaussian probabilistic ESN, predic-
tion is based on Monte Carlo draws from the ensemble density at (5) produced using a minor adjustment of Algorithm 2.
Details are given in Part B of the Web Appendix.

4 DEEP DISTRIBUTIONAL TIME SERIES

Although the deep time series models in Section 3 provide probabilistic forecasts they have two drawbacks: (i) the feature
vector only affects the mean of the response equation at (1), and (ii) the density forecasts are not calibrated in any manner.
In this section, a copula model is outlined that is a deep distributional time series model in which the feature vector affects
the entire predictive distribution and the probabilistic forecasts are marginally calibrated.

4.1 Marginal calibration

Gneiting et al. (2007) discuss different forms of calibration of density forecasts, including predictive marginal calibration,
which is defined as follows. For t = T + 1, … ,∞, assume a future observation of Yt has true distribution Ht|T(𝑦) and
forecast distribution Ft|T(𝑦), where the subscript indicates that both distributions are conditional on the filtration at time
T. Then, if H̄(𝑦) ≡ limh1→∞

{
1

h1

∑h1
h=1 HT+h|T(𝑦)} and F̄(𝑦) ≡ limh1→∞

{
1

h1

∑h1
h=1 FT+h|T(𝑦)}, the forecast distributions are

called marginally calibrated if and only if F̄(𝑦) = H̄(𝑦).
Gneiting et al. (2007) highlight that because Ht|T is unknown for t > T, marginal calibration can be assessed in practice

by comparing the empirical distribution function over the forecast horizon to the average of the corresponding distribu-
tional forecasts. In a study with a moving window (such as ours) and forecast origins T = Tstart, … ,Tfinish, there are a
total of N = Tfinish − Tstart + 1 sets of forecasts. Averaging over these and the forecast horizon of length h1, gives

Ĥ(𝑦) = 1
Nh1

Tfinish∑
T=Tstart

T+h1∑
t=T+1

(𝑦t ≤ 𝑦), and F̂(𝑦) = 1
Nh1

Tfinish∑
T=Tstart

T+h1∑
t=T+1

Ft|T(𝑦) , (7)

where (X) is an indicator function equal to one if X is true, and zero otherwise. The closer F̂ is to Ĥ, the greater evidence
for predictive marginal calibration.

4.2 Copula model

We adopt a copula model for the joint distribution of Y (t) = (Y1, … ,Yt)′, conditional on X(t) = [x1| … |xt]′ and weight
configuration 𝝃, with the density decomposition

p(y(t)|X(t), 𝝃) = cESN(FY (𝑦1), … ,FY (𝑦t)|X(t), 𝝃)
t∏

s=1
pY (𝑦s) , for t ≥ 2 , (8)

where y(t) = (𝑦1, … , 𝑦t)′ and u(t) = (u1, … ,ut)′. The deep copula process has t-dimensional density cESN(u(t)|X(t), 𝝃) spec-
ified below in Section 4.3. The marginal density pY and corresponding distribution function FY in (8) are time invariant,
and are estimated nonparametrically from the training data.

We stress that even though in (8) the distribution Yt|xt is assumed marginally invariant with respect to xt, the distribu-
tion Y (t)|X(t) is still related to the matrix of feature vector values X(t) though the joint distribution. A consequence is that
for t > T the predictive density of Yt can be heavily dependent on the feature vector xt, as outlined in Section 4.5.
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KLEIN ET AL.

4.3 Specification of the deep Gaussian copula process

At (8), we employ an implicit copula process with density cESN constructed from the joint distribution of a second stochas-
tic process {Z̃s} that follows the Gaussian probabilistic ESN at (1) with 𝜷 integrated out under the prior (4). We call Z̃s a
‘pseudo-response’ because it is not observed directly but is introduced only for specification of its implicit copula. The t
observations Z̃(t) = (Z̃1, … , Z̃t)′ are conditionally distributed

Z̃(t)|X(t), 𝜎
2, 𝜏2, 𝝃 ∼  (

z̃(t); 0, 𝜎2
(

I + 1
𝜏2 B𝝃(X(t))B𝝃(X(t))′

))
, (9)

with z̃(t) = (z̃1, … , z̃t)′ and the matrix B𝜉(X(t)) is specified at (3) but without an intercept term (i.e., the first column of
ones) because level is unidentified in a copula.

The implicit copula of a Gaussian distribution is called a Gaussian copula, and is constructed for (9) by standardizing the
distribution; see, for example, Smith (2022). Let Z(t) = (Z1, … ,Zt)′ = 𝜎−1SZ̃(t), where S = diag(𝜓1, … , 𝜓t) is a diagonal
scaling matrix with elements 𝜓s = (1 + b′

sbs∕𝜏2)−1∕2, and bs is the s-th row of B𝜉(X(t)). Then Z(t)|X(t), 𝜎
2, 𝜏2, 𝝃 ∼  (0,R),

where

R = S
(

I + 1
𝜏2 B𝜉(X(t))B𝜉(X(t))′

)
S,

has ones on the leading diagonal, and is a function of (X(t), 𝝃, 𝜏
2). Then the copula has density cESN(u(t)|X(t), 𝝃, 𝜏

2) =
𝜙(z(t);0,R)∏t

s=1 𝜙1(zs)
,where zt = Φ−1

1 (ut), z(t) = (z1, … , zt)′,𝜙1 is the standard normal density, and𝜙(· ; 0,R) is the density of a (0,R)
distribution. Notice that 𝜎2 does not feature in cESN, which is because copulas are scale free.

Because cESN is conditional on X(t), this is a Gaussian copula process on the feature space (Wilson & Ghahramani, 2010).
Because the copula captures the dependence structure in {Zt}, xt contains past values of this process (rather than
{Yt}), and the equivalent processes for the other four regional electricity prices. These can be computed easily as
Zt = Φ−1(FY (Yt)). We write the copula density cESN also as a function of the unknown parameter 𝜏2 and employ it in the
copula model at (8).

4.4 Estimation

Given a configuration 𝝃, the only unknown copula parameter is 𝜏2, for which we adopt the Weibull prior of Klein and
Kneib (2016) with scale parameter b𝜏2 = 2.5. Direct estimation using the likelihood at (8) is difficult because evaluation
of cESN(u|X , 𝝃, 𝜏2) requires inversion of the matrix R, which is computationally infeasible for all but small sample sizes.
This problem is solved by expressing the likelihood conditional on 𝜷 as follows. For a sample of size T, we denote the
observations as y ≡ y(T) and feature matrix as X ≡ X(T). Then the conditional likelihood is obtained by a change of
variables from y to z = (z1, … , zT)′, with elements zt = Φ−1

1 (FY (𝑦t)), so that

p(y|X , 𝜷, 𝝃, 𝜏2) = p(z|X , 𝜷, 𝝃, 𝜏2)
T∏

t=1

pY (𝑦t)
𝜙1(zt)

= 𝜙
(

z; 0, SB𝝃(X)𝜷, S2) T∏
t=1

pY (𝑦t)
𝜙1(zt)

,

which can be evaluated in O(T) operations because S is diagonal. Part C of the Web Appendix provides an MCMC sampler
to generate draws from the augmented posterior of (𝜷, 𝜏2), so that 𝜷 is integrated out in a Monte Carlo manner and direct
computation of R is avoided.

4.5 Probabilistic forecasts

As with the probabilistic ESNs in Section 3, an ensemble is used to integrate over the distribution of U,V , so that the
density forecast of YT+h is again given by (5). The ensemble components pk (i.e., the Bayesian posterior predictive densities
at (6)) are derived from the copula model where 𝝑 = {𝜷, 𝜏2}. To do so, the first term in the integrand of (6) is obtained by
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KLEIN ET AL.

a change of variables from 𝑦T+h to zT+h = Φ−1
1 (FY (𝑦T+h)), so that

p(𝑦T+h|X(T+h),𝝑) = p(zT+h|X(T+h), 𝜷, 𝜏
2)

pY (𝑦T+h)
𝜙1(zT+h)

= 1
𝜓T+h

𝜙1

(
Φ−1

1 (FY (𝑦T+h)) − 𝜇T+h

𝜓T+h

)
pY (𝑦T+h)

𝜙1
(
Φ−1

1 (FY (𝑦T+h))
) , (10)

where 𝜇T+h = bT+h𝜷, 𝜓T+h =
(

1 + 1
𝜏2 bT+hb′

T+h

)−1∕2
and bT+h = (h′

T+h, (h
2
T+h)

′) is a row vector. Notice that the entire
density at (10) is a nonlinear function of the feature vector xT+h via bT+h, so that YT+h is not marginally invariant of xT+h in
the predictive distribution. As in Section 3.1.2, the posterior mean E(𝝑|y) is computed from the Monte Carlo sample and
plugged in for 𝜷, 𝜏2 in (10). Because xt comprises past values of {Zt} for both the focal price, and the other four regional
prices, the integrals over xT+2, … , xT+h in (6) are computed by simulating values for ZT+t sequentially for all five regions.
Algorithm 4 in Part C of the Web Appendix generates iterates from the ensemble density for the copula model.

5 FORECASTING COMPARISON

We illustrate our deep model forecasts using half-hourly price data observed during 2019 in all five regions. The objective
is to identify how the different distributional assumptions affect probabilistic forecasting accuracy, and compare with
the benchmark GAMLSS method, which Serinaldi (2011) and Gianfreda and Bunn (2018) establish as a state-of-the-art
distributional forecasting method for electricity prices. Competing models were fit using a moving window of 3 months
training data, starting with the period 1 February to 30 April. (We start at February, rather than January, because the
input vector xt defined below includes lagged values of the series.) This window was advanced monthly until the period
1 September to 30 November, resulting in eight fits per model. Forecasts were constructed for an 8-month evaluation
period from 1 May to 31 December for a total of 245 days. The origin T was advanced every half hour, and out-of-sample
probabilistic forecasts constructed for a horizon of h1 = 48 half-hours.3 When constructing forecasts during each month,
the model parameter estimates obtained from the three preceding months training data were used. The reason each model
was only refit eight times (rather than for every one of 11,760 half-hourly forecast origins) was to reduce the computational
burden of the study. A forecast horizon up to 24 h is necessary for the bidding and re-bidding process in the NEM.

5.1 Probabilistic forecasting models

The following four deep time series models were applied to each of the five price series:

RNN: The Gaussian probabilistic ESN outlined in Section 3.1.
RNNST: The skew-t probabilistic ESN outlined in Section 3.2 with 𝜈 = 7.
RNNSN: A skew-normal probabilistic ESN, approximated using RNNST with 𝜈 = 30.
RNNC: The copula model outlined in Section 4 that uses the deep copula constructed from a Gaussian probabilistic

ESN, along with bounded KDE margins.

For the RNN, RNNST and RNNSN, the feature vector contains the nx = 271 elements

xt = (1,Y ALL,t−1,Y ALL,t−2, … ,Y ALL,t−48
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

prices in previous 24 h

,Y ALL,t−96,Y ALL,t−144, … ,Y ALL,t−336
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

prices at same hour 2 to 7 days previously

)′ ,

where Y ALL,t = (YNSW,t,YQLD,t,YSA,t,YTAS,t,YVIC,t) is the row vector of all five regional prices at hour t and the first entry
is the intercept. For RNNC, the xt contains values of the transformed series Zt = Φ−1

1 (FY (Yt)) for each of the five regions
at the same lagged time points as above. The choice of inputs is motivated by previous studies (Higgs, 2009; Panagiotelis
& Smith, 2008) that identify strong dependence in Australian electricity prices with those in the previous 24 h, and at

3Because there are 245 days in the evaluation period, this means there was a total of 245×48 forecast origins. At each forecast origin, a total of 48×5 = 240
probabilistic forecast densities were constructed for each model. Thus, there were a total of 2,822,400 probabilistic forecast densities for each model.
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KLEIN ET AL.

the same time during the previous 7 days. Price dependence is induced by serial dependence in both supply-side factors
and in demand (Cottet & Smith, 2003). Complex cross-sectional serial dependence in price is also well-documented (Han
et al., 2020; Higgs, 2009; Ignatieva & Trück, 2016; Panagiotelis & Smith, 2008) and is caused by inter-regional trade in
electricity between the five regions.

Although the deep time series models above are trained separately for each price series, the inclusion of lagged prices
from all regions as elements of xt forms five-dimensional multivariate deep times series models. From each model,
multi-step ahead forecast densities for the five regional prices are constructed jointly via simulation using Algorithms 2
and 5 outlined in the Web Appendix. At each forecast origin, 2000 Monte Carlo draws from (5) are obtained for each half
hour h = 1, … , 48 and region r = 1, … , 5.

The density pY was estimated for each series using the bounded KDE implemented in MATLAB function ‘ksdensity’,
with bounds set equal to the admissible prices during the forecast period. These were a floor price of -$1000 (YT+h ≥ 0),
and a maximum price of $14,500 prior to 1 July (Yt+h ≤ 9.582) and $14,700 on or after that date (Yt+h ≤ 9.596). This ensures
that the predictive densities from the copula model at (6) are constrained to the same range, which is important for the
accurate forecasting of prices near the bounds. In contrast, density forecasts from the other models are unconstrained,
and can have substantial mass outside the bounds. Thus, we simply truncate their predictive densities to the admissible
price region and normalize.

In the GAMLSS benchmark method, the response Yt has a specified parametric distribution, where the parameters are
modelled as flexible functions of covariates. We used the R package ‘gamlss’ but found the software unstable when the
ESN output layer terms were used as covariates and also for many of the candidate distributions supported by the package.
However, the four parameter Johnson's SU (JSU) distribution with xt as linear covariates worked well, and we include
forecasts from this model. Serinaldi (2011) also found the JSU distribution to work well for electricity prices, which are
a challenging series to fit because of the frequent price spikes. Details on our GAMLSS implementation and experiments
are given in Part D of the Web Appendix.

5.2 Measuring forecast accuracy

For point forecasts, the mean absolute error (MAE) and root mean square error (RMSE) are used to measure accuracy.
For a univariate probabilistic forecast distribution F, there are a growing number of measures of accuracy, many of which
are listed by Nowotarski and Weron (2018), and we compute the following four. The first is the quantile score function
QS𝛼(F−1(𝛼), 𝑦) = 2((𝑦 < F−1(𝛼))−𝛼)(𝛼−𝑦), where (A) = 1 if A is true, and zero otherwise. This is also called the ‘pinball
loss’ (Gneiting, 2011). Although the entire quantile score function is of interest, we also consider its value at 𝛼 = 0.05
and 𝛼 = 0.95 as measures of lower and upper tail accuracy, respectively. The second measure is the continuous ranked
probability score (CRPS) (Gneiting et al., 2007) defined as CRPS(F, 𝑦) = ∫ 1

0 QS𝛼(F−1(𝛼), 𝑦)d𝛼 for observed value 𝑦, where
the integral is computed numerically. It is a proper scoring rule that measures overall probabilistic forecast accuracy.

The third measure is a loss function proposed by Fissler and Ziegel (2016) that is based on the ‘value-at-risk’ and
‘expected shortfall’, which are popular measures of financial tail risk for low values (i.e., losses). To measure tail risk asso-
ciated with high values (the primary source of price risk in electricity markets), we employ the restatement of the loss
function for the upper tail given by Nolde and Ziegel (2017). For Y ∼ F and 𝛼 close to 1, let EL(𝛼) ≡ E(Y |Y ≥ F−1(𝛼)) be
the ‘expected longrise’ (analogous to the expected shortfall measure of lower tail risk). Then from (Nolde & Ziegel, 2017,
Prop. 3), the loss function is

S𝛼(F,EL, 𝑦) = (𝑦 ≥ F−1(𝛼))
(
−G1(F−1(𝛼)) + G1(𝑦) − G2(EL(𝛼))(F−1(𝛼) − 𝑦)

)
+ (1 − 𝛼)

(
G1(F−1(𝛼)) − G2(EL(𝛼))(EL(𝛼) − F−1(𝛼)) + G3(EL(𝛼))

)
,

(11)

where G1(x) = x and G2(x) = G3(x) = exp(x). We compute this score for 𝛼 = 0.975, and lower values indicate more accurate
upper tail forecasts of the price distribution. The fourth and last measure is the empirical coverage of the predictive
distributions at the 95% level.

For each of the first three metrics, we report the weighted average of their values over the evaluation period and
over regions, with weights equal to the proportion of total electricity consumption in each region.4 We call these

4These weights are 0.3687 (NSW), 0.2355 (VIC), 0.2818 (QLD), 0.0624 (SA) and 0.0516 (TAS).
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KLEIN ET AL.

FIGURE 2 Out-of-sample predictive marginal calibration. Note: Histograms are of the out-of-sample observations of Y during the
evaluation period (1 May-31 December 2019). The average predictive density for each method is given for the four deep time series models,
plus the GAMLSS benchmark. The deep time series copula model (RNNC) produces average densities close to the bounded KDEs fit to the
in-sample data found in Fig. B of the Web Appendix by construction. The panels correspond to forecast prices in (a) NSW, (b) QLD, (c) SA, (d)
TAS and (e) VIC.

‘system-weighted’ average metric values, and they reflect the differing importance of price forecasting accuracy across
regions in the NEM. For the fourth metric, the coverage is with respect to the price distributions in all five states.

5.3 Empirical results

5.3.1 Predictive distributions

Figure 2 presents histograms of the out-of-sample observations of Y for each region during the evaluation period.
Also plotted are the average predictive densities F̂ for the five forecasting methods, allowing a visual comparison of
out-of-sample marginal calibration. The copula model (RNNC) produces forecasts that are most accurately calibrated,
followed by RNNSN and RNNST. However, GAMLSS and RNN both exhibit poor predictive marginal calibration. The
exceptionally wide intervals for RNN are caused by extremely inaccurate density forecasts at horizons close to 24 h ahead
as characterized further below.

To visualize the predictive densities, Figure 3 plots the 95% prediction intervals for forecasts made during the month
of July 2019. Results from the five methods for forecasts 1, 6 and 24 h ahead are given in separate panels. RNN forecasts
are negatively biased, and for some days lack ‘sharpness’ (Gneiting et al., 2007). In contrast, skew-normal disturbances
(RNNSN) can produce a heavier upper tail through right skew but at the expense of overly sharp densities. De-coupling of
the level of asymmetry from the kurtosis through skew-t disturbances (RNNST) allows for asymmetric predictive densities
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KLEIN ET AL.

FIGURE 3 Prediction intervals for NSW prices at 12:00 during July 2019. Note: Panels correspond to forecasts from the five methods made
at 1, 6 and 24 hours ahead. In each panel, 95% prediction intervals are denoted by a vertical bar, with the predictive mean given by a grey
diamond. The true values are denoted with a red cross. Results are presented on the logarithmic scale for clarity.
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KLEIN ET AL.

with heavy tails. RNN, RNNSN and RNNST all have probabilistic forecasts that are nearly homoscedastic, because they
are ensembles of homoscedastic Bayesian predictive densities. In contrast, RNNC allows for a much heavier upper tail
for electricity prices and heteroscedasticity; the latter is because it is a distributional model. Last, the performance of the
benchmark GAMLSS model (which is also a distributional model) declines substantially over the forecast horizon.

TABLE 1 Point forecast accuracy of models during the evaluation period.

Hours ahead in the forecast horizon
Model 0.5 h 1 h 2 h 3 h 6 h 12 h 24 h

MAE
GAMLSS 0.0226∗ ∗ ∗ 0.0314∗ ∗ ∗ 0.0408∗ ∗ ∗ 0.0468∗ ∗ ∗ 0.0591∗ ∗ ∗ 0.0692∗ ∗ ∗ 0.0766∗ ∗ ∗

RNN 0.0249∗ ∗ ∗ 0.0319∗ ∗ ∗ 0.0411∗ ∗ ∗ 0.0494∗ ∗ ∗ 0.0600∗ ∗ ∗ 0.0722∗ ∗ ∗ 0.0800∗ ∗ ∗

RNNSN 0.0221∗ ∗ ∗ 0.0219∗ 0.0239 0.0252 0.0262 0.0268∗∗ 0.0278∗ ∗ ∗

RNNST 0.0189 0.0210 0.0231 0.0242 0.0250 0.0255∗ ∗ ∗ 0.0257∗ ∗ ∗

RNNC 0.0169 0.0194 0.0224 0.0238 0.0252 0.0244 0.0239
RMSE

GAMLSS 0.0340+ 0.0461++ 0.0610+++ 0.0623+++ 0.0644+++ 0.0653 0.0661
RNN 0.0537 0.0616∗∗ 0.0712 0.0797 0.0935 3.7173∗ ∗ ∗ 16.5496∗ ∗ ∗

RNNSN 0.0538 0.0572 0.0603 0.0615 0.0623 0.0629 0.0638
RNNST 0.0528+ 0.0571 0.0603 0.0612 0.0623 0.0630 0.0635
RNNC 0.0538 0.0573 0.0613 0.0638 0.0657 0.0632 0.0629

Note: Both the system-weighted mean absolute error (MAE) and root mean squared error (RMSE) are reported. Results are given for
the four deep time series models, plus GAMLSS benchmark model. Results of a two-sided Diebold–Mariano test of the equality of
the mean error of the RNNC with each of the other models are reported. Rejection of the null hypothesis of equal means at the 10%,
5% and 1% levels are denoted by ‘*’, ‘**’ and ‘***’ if favourable to the RNNC model, or by ‘+’, ‘++’ and ‘+++’ if unfavourable.

TABLE 2 Probabilistic forecast accuracy during the evaluation period.

Hours ahead in the forecast horizon
Model 0.5 h 1 h 2 h 3 h 6 h 12 h 24 h

CRPS
GAMLSS 0.0180∗ ∗ ∗ 0.0252∗ ∗ ∗ 0.0335∗ ∗ ∗ 0.0392∗ ∗ ∗ 0.0508∗ ∗ ∗ 0.0601∗ ∗ ∗ 0.0652∗ ∗ ∗

RNN 0.0203∗ ∗ ∗ 0.0235∗ ∗ ∗ 0.0299∗ ∗ ∗ 0.0364∗ ∗ ∗ 0.0449∗ ∗ ∗ 0.0574∗ ∗ ∗ 0.4061∗ ∗ ∗

RNNSN 0.0174∗ ∗ ∗ 0.0177∗∗ 0.0191 0.0201 0.0207 0.0212∗∗ 0.0219∗ ∗ ∗

RNNST 0.0157∗ ∗ ∗ 0.0172∗ ∗ ∗ 0.0187∗ ∗ ∗ 0.0195 0.0201 0.0206∗ ∗ ∗ 0.0208∗ ∗ ∗

RNNC 0.0135 0.0154 0.0177 0.0189 0.0199 0.0193 0.0187
Joint upper tail loss at 𝛼 = 0.975

GAMLSS 31.6394∗ 32.4717∗ ∗ ∗ 33.2367∗ ∗ ∗ 33.9396∗ ∗ ∗ 35.9352∗ ∗ ∗ 40.0541∗ ∗ ∗ 39.7960∗ ∗ ∗

RNN 30.8568 31.5025 33.3171 35.5605 39.2732∗∗ 41.9374∗ ∗ ∗ 33.4037∗ ∗ ∗

RNNSN 32.1052∗∗ 31.2797 31.6342 31.6492 31.7099 31.5852∗ ∗ ∗ 31.3780∗ ∗ ∗

RNNST 31.3493∗ 31.4414 31.6911 32.0056∗ 31.8607 32.2372∗ ∗ ∗ 31.8694∗ ∗ ∗

RNNC 30.1002 30.6244 31.0090 31.0934 31.1121 30.6238 29.7661
Quantile score at 𝛼 = 0.95

GAMLSS 0.0056∗ ∗ ∗ 0.0069∗ ∗ ∗ 0.0082∗ ∗ ∗ 0.0093∗ ∗ ∗ 0.0124∗ ∗ ∗ 0.0190∗ ∗ ∗ 0.0198∗ ∗ ∗

RNN 0.0050 0.0057 0.0078∗ ∗ ∗ 0.0107∗ ∗ ∗ 0.0155∗ ∗ ∗ 0.0201∗ ∗ ∗ 1.0808∗ ∗ ∗

RNNSN 0.0056 0.0050 0.0054 0.0055 0.0057 0.0058∗ 0.0060∗ ∗ ∗

RNNST 0.0048 0.0050 0.0054 0.0057∗∗ 0.0057∗ 0.0062∗ ∗ ∗ 0.0063∗ ∗ ∗

RNNC 0.0036 0.0043 0.0048 0.0050 0.0052 0.0050 0.0046
Quantile score at 𝛼 = 0.05

GAMLSS 0.0049∗ ∗ ∗ 0.0080∗ ∗ ∗ 0.0129∗ ∗ ∗ 0.0167∗ ∗ ∗ 0.0242∗ ∗ ∗ 0.0260∗ ∗ ∗ 0.0298∗ ∗ ∗

RNN 0.0047 0.0053 0.0057∗ ∗ ∗ 0.0061 0.0069∗ ∗ ∗ 0.0096∗ ∗ ∗ 0.5602∗ ∗ ∗

RNNSN 0.0046∗∗ 0.0055 0.0056 0.0062 0.0061 0.0064 0.0065
RNNST 0.0048∗ ∗ ∗ 0.0055∗ 0.0059∗∗ 0.0061 0.0064 0.0063 0.0066
RNNC 0.0039 0.0046 0.0053 0.0058 0.0061 0.0059 0.0057

Note: System-weighted metrics are reported for the four deep time series models, plus the GAMLSS benchmark, at different
points in time during a 24 h forecast horizon. Lower values suggest greater accuracy. Results of a two-sided Diebold-Mariano
test of the equality of the mean metric value for the RNNC with that of each of the other models are reported. Rejection of
the null hypothesis of equal means at the 10%, 5% and 1% levels are denoted by ‘*’, ‘**’ and ‘***’ if favourable to the RNNC
model, or by ‘+’, ‘++’ and ‘+++” if unfavourable.
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KLEIN ET AL.

5.3.2 Out-of-sample forecast accuracy

We compute the metrics outlined in Section 5.2 for each of the five methods. Table 1 reports point forecast accuracy, and
the asymmetric deep time series models RNNSN, RNNST and RNNC are more accurate than RNN and GAMLSS in terms
of MAE at all horizons but not by the RMSE metric at short horizons. At horizons of 12 or more hours, RNNC produces
the most accurate point forecasts. However, the main objective is accurate probabilistic forecasting, and Table 2 reports
metrics for this. RNN is the poorest method by all measures, which is unsurprising given the asymmetry and heavy tails
in even logarithmic prices. GAMLSS is also very poor overall. RNNST is more accurate than RNNSN, demonstrating that
allowing for heavy tails increases accuracy over-and-above allowing for asymmetry. However, it is RNNC that provides
superior forecasts, both in terms of the entire density (as measured using CRPS) and the tails (as measured by the quantile
scores and upper tail loss function). The improvement is greatest at a horizon of between 12 and 24 h, which is also the
most important for informing bidding strategies in the NEM.

Figure F in the Web Appendix plots the full quantile score functions (pinball loss). The poor calibration of the RNN
and GAMLSS probabilistic forecasts is clear, as is the superiority of the asymmetric deep time series models (in particular
RNNC). To compare the probabilistic forecasts for the two most accurate models (RNNC and RNNST), Figure 4 plots the
expected shortfall (E(Y |Y < F−1(𝛼)) for 𝛼 = 0.025) and expected longrise (E(Y |Y > F−1(𝛼)) for 𝛼 = 0.975) at 12:00 during
July 2019 for both models. The RNNC produces predictive forecasts that exhibit substantial heteroscedasticity and are
sharper (i.e., lower spread between the longrise and shortfall) than the RNNST. These differences in the two deep time
series models are because RNNC is a distributional time series model, whereas RNNST is not. Finally, Table 3 reports the
coverage of the predictive distributions at the 95% level, and there is a substantial difference between the methods, with
the predictive distributions from RNNC exhibiting superior coverage at all horizons.

6 INCORPORATING PROBABILISTIC FORECASTS OF DEMAND

We now show how to extend the deep time series models to include demand forecasts as additional information in a
flexible fashion, allowing for greater price forecast accuracy.

FIGURE 4 Tail risk for NSW prices at 12:00 during July 2019. Note: Panels (a)-(c) correspond to forecasts made 1, 6 and 24 hours ahead for
the RNNC (in blue) and RNNST (in red). In each panel, both the the expected longrise E(Y |Y > Q(𝛼)) at 𝛼 = 0.975 and the expected shortfall
E(Y |Y < Q(𝛼)) at 𝛼 = 0.025 are plotted. Results are presented on the logarithmic scale for clarity.

Hours ahead in the forecast horizon
Model 0.5 h 1 h 2 h 3 h 6 h 12 h 24 h
GAMLSS 0.9078 0.8148 0.7278 0.6928 0.6476 0.5838 0.5208
RNN 0.8715 0.8609 0.7906 0.7173 0.6336 0.5698 0.6124
RNNSN 0.8496 0.8386 0.8354 0.8187 0.8123 0.7998 0.7759
RNNST 0.8550 0.8424 0.8353 0.8216 0.8171 0.7955 0.7667
RNNC 0.9279 0.9012 0.8791 0.8741 0.8620 0.8594 0.8706

Note: Results are reported for the four deep time series models, plus the GAMLSS
benchmark, at different points in time in the 24 h forecast horizon. Values closer to 0.95
indicate improved calibration of the probabilistic forecasts.

TABLE 3 Coverage of 95% prediction intervals during
the evaluation period.
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6.1 Role of demand forecasts

Demand for electricity is almost perfectly inelastic to price in the short term because individual users face fixed tariffs. As
demand varies over time, the spot price traces out the average supply curve. This explains the occurrence of price ‘spikes’
because electricity supply curves are typically kinked, and for short periods of time demand can exceed the location of this
kink; see Clements et al. (2015) & Smith and Shively (2018) and Ziel and Steinert (2016). An implication is that including
accurate demand forecasts in a price forecasting model may increase its accuracy, particularly for the upper tail. However,
incorporating demand forecasts into most existing time series models for price is difficult for two reasons. First, aspects
of probabilistic demand forecasts beyond the point forecast may increase the accuracy of price forecasts. Second, demand
forecasts are likely to be related to future prices in a highly nonlinear fashion, particularly when combined with past price
values. However, both difficulties can be addressed by incorporating some quantiles of the demand forecast distribution
as additional elements of the feature vector of a deep time series model.

6.2 NSW demand forecasts

Methods for accurate short-term probabilistic forecasting of demand are well established, including for NSW (Cottet &
Smith, 2003) and AEMO makes real time demand forecasts publicly available. The forecasts are of the 10th, 50th (i.e.,
median) and 90th percentiles of demand at a half-hourly resolution over a horizon of one week. We employ demand
forecasts for NSW that are exactly 24 h ahead, to forecast NSW prices 24 h ahead. Thus, only demand forecasts truly
available at the forecast origin T were used. We label the three percentile forecasts of NSW demand as D10,D50 and D90.
Figure E in Part E of the Web Appendix plots actual demand against D50 during 2019, showing the high degree of point
forecast accuracy. However, empirical coverage during 2019 suggests some minor miscalibration, with 12.1%, 62.5% and
95.6% of demand observations falling below D10,D50 and D90, respectively.

6.3 NSW price forecasting study

The forecasting study was extended, where the NSW demand forecasts were included in the feature vectors of our two
best performing deep time series models, RNNST and RNNC, for forecasting NSW price. For RNNST

xt = (1,YNSW,t−1,YNSW,t−2, … ,YNSW,t−48,YNSW,t−96,YNSW,t−144, … ,YNSW,t−336,D10t,D50t,D90t)′ ,

so that nx = 58. The feature vector for RNNC contained the equivalent lagged values of the transformed series ZNSW,t =
Φ−1

1 (FY (YNSW,t)), and the three demand forecasts. For comparison, the two models without the demand forecasts (so
nx = 55) are also used.

Table 4 reports the average value of the forecast metrics over the evaluation period. Including the demand forecasts as
features decreases the accuracy of the point forecasts and the CRPS metric for both models. However, upper tail forecast
accuracy increased significantly for the RNNC. This is important in this application because short periods of very high
prices often dominate the profitability of participants in the NEM. To illustrate, Figure 5 plots the density forecast where
the inclusion of the demand forecast information greatly increased accuracy (other examples are given in Figure G of the
Web Appendix).

TABLE 4 NSW price forecast
accuracy when including
demand forecast information.

Model MAE RMSE CRPS JS QS95 QS05 C95
Point and Density Accuracy Tail Forecast Accuracy

RNNC+D 0.0192 0.0314 0.0146 30.6902 0.0045 0.0025 82.6%
RNNC 0.0188+++ 0.0311+++ 0.0144+++ 31.0350∗∗ 0.0048∗ ∗ ∗ 0.0023 84.5%
RNNST 0.0250∗ ∗ ∗ 0.0401 0.0221∗ ∗ ∗ 39.4411∗ ∗ ∗ 0.0121∗ ∗ ∗ 0.0049∗ ∗ ∗ 46.2%
RNNST+D 0.0256∗ ∗ ∗ 0.0395 0.0222∗ ∗ ∗ 39.6431∗ ∗ ∗ 0.0123∗ ∗ ∗ 0.0046∗ ∗ ∗ 53.9%

Note: Accuracy of 24 h ahead NSW (logarithmic) price forecasts during the evaluation period. Models that include 24 h
ahead demand forecast information as features are labelled as ‘+D’. The metrics are described in the text, and include
the joint score (JS) at 𝛼 = 0.975, quantile score (QS) at 𝛼 = 0.95, 0.05, and the empirical coverage of the 95% prediction
intervals (C95). Results of a two-sided Diebold–Mariano test of the equality of the mean metric values of the RNNC+D
with that of the other methods are reported. Rejection of the null hypothesis of equal means at the 10%, 5% and 1%
levels are denoted by ‘*’, ‘**’ and ‘***’ if favourable to the RNNC+D model, or by ‘+’, ‘++’ and ‘+++’ if unfavourable.
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KLEIN ET AL.

FIGURE 5 Density forecast of NSW price with and without
demand forecast information. Note: Density forecast is of NSW
electricity price on 29 September 2019 at 14:30, where the inclusion
of demand forecast information greatly improved accuracy (as
measured by CRPS). The density forecast without demand forecast
information is labelled as ‘RNNC’, and with as ‘RNNC+D’. The
actual price is marked with a blue vertical line.

Finally, we also experimented with employing the ESN at (1) without the quadratic term in the output layer but found
that this decreased forecast accuracy significantly. Moreover, including different ridge priors for the linear and quadratic
terms in the output layer had little effect on forecast accuracy; see Part F of the Web Appendix for further details.

7 CONCLUSION

This paper makes contributions to both the time series and energy economics literatures. We propose new deep time
series models that exploit the reservoir computing techniques found in ESNs for high frequency time series. Recasting
a quadratic ESN as a statistical time series model, with a shrinkage prior for regularization of the output layer weights,
allows for uncertainty quantification and probabilistic forecasting. Our first approach is to allow for different error dis-
tributions for the output layer, extending the Bayesian methodology of McDermott and Wikle (2017, 2019). However,
our main methodological contribution is the proposal of a new deep distributional time series model. This is obtained by
constructing the implicit copula of a Gaussian probabilistic ESN, and extends the deep distributional regression method
of Klein et al. (2021) to time series. This copula is a deep process on the feature space, allowing for highly adaptive
nonlinear serial dependence, and generalizing existing echo state Gaussian processes (Chatzis & Demiris, 2011). When
combined with a nonparametric estimate of pY , it allows for marginal calibration. Our empirical work suggests that accu-
rate in-sample marginal calibration also results in more accurate calibration of both the out-of-sample marginal and
predictive distributions.

Our deep time series models are not Markov. Those defined in Section 3 have additive homoscedastic errors and are
stationary. Moreover, it is straightforward to show (e.g., Smith, 2022) that the implicit copula of a stationary process is also
stationary. When this copula is combined with an invariant margin pY , as in Section 4, so is the resulting copula time series
model. Each density forecast at (5) is an ensemble of Bayesian predictive posterior densities, which are well-established
in probabilistic forecasting (Harrison & Stevens, 1976). Because the posterior predictive density from the copula model
at (10) is a function of the feature vector, the forecasts from this model are conditionally heteroscedastic.

Although the distribution of intraday electricity prices have a sizable predictable component, these time series are com-
plex (Ignatieva & Trück, 2016; Panagiotelis & Smith, 2008). Key to their accurate modelling and forecasting is to capture
jointly three features: nonlinear serial dependence, high levels of asymmetry and kurtosis, and strong time-variation in
the entire distribution (the latter feature includes heteroscedasticity and time-varying tail risk). All our proposed deep
time series models account for the first feature, while allowing for skew-normal or skew-t disturbances also accounts for
the second. However, only the deep copula model allows for all three, producing the most accurate probabilistic fore-
casts. Recent models (Shah & Lisi, 2020; Ziel & Steinert, 2016) suggest that including demand forecasts may further
increase probabilistic forecasting accuracy. We find this to be the case for the upper tail of the 24 h ahead NSW electricity
prices when including demand forecasts as features in the deep copula model. Moreover, the inclusion of other available
exogenous variables as features is straightforward and may also improve forecast accuracy as studies by Gianfreda and
Bunn (2018), Gianfreda et al. (2020) and others suggest.

Last, we highlight two areas for future work. First, estimation of our deep time series models using variational methods,
rather than MCMC, has the potential to speed up computations. Second, there are other applications of our deep time
series models. One example is macroeconomic forecasting, where large regularized time-varying parameter models are
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KLEIN ET AL.

popular (Bitto & Frühwirth-Schnatter, 2019; Carriero et al., 2019; Huber et al., 2021). The deep time series models provide
a flexible alternative, as they can incorporate feature vectors of many economic variables regularized through the reservoir
structure of the ESN, plus Bayesian shrinkage of the output layer coefficients. Moreover, the copula model produces
time-varying and asymmetric probabilistic forecasts, which is a feature of this problem.
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