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Abstract
High-resolution circumference dendrometers measure the irreversible growth and the reversible shrinking and 
swelling due to the water content of a tree stem. We propose a novel statistical method to decompose these 
measurements into a permanent and a temporary component, while explaining differences between the trees 
and years by covariates. Our model embeds Gaussian processes with parametric mean and covariance 
functions as response structures in a distributional regression framework with structured additive 
predictors. We discuss different mean and covariance functions, connections with other model classes, 
Markov chain Monte Carlo inference, and the efficiency of our sampling scheme.
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1 Introduction
Tree growth, and the growth of tree stems in particular, is a process that is of strong ecological and 
economic interest. Together with the height growth, the growth in the stem girth drives timber pro-
duction, and at the same time, plays a key role in the global carbon cycle (Mencuccini et al., 2017). 
Unfortunately, it is difficult to measure the formation of new wood and bark cells in the cambium 
resulting in permanent stem growth, and while electronic dendrometers can record the variation of 
the stem circumference on small time scales of a few minutes (Klepper et al., 1971), these measure-
ments also capture the reversible shrinking and swelling of the stem due to changes in its water 
content. Researchers have used additional measurement equipment such as sap flow sensors 
and controlled irrigation experiments to gain a better understanding of the permanent and tem-
porary components of tree stem growth (Mencuccini et al., 2017), but these experiments are either 
expensive or not feasible under open field conditions.

We describe a novel statistical method for the analysis of high-resolution dendrometer measure-
ments that does not require additional data about other tree-physiological processes. The method 
permits us to decompose the dendrometer measurements into a permanent and a temporary com-
ponent through stochastic assumptions and explanatory variables. Our dataset contains 85 de-
ciduous trees from Germany and the growing seasons 2012 and 2013. Figure 1 shows a 
subsample of the recorded growth curves between April 1 and September 30, each of which is as-
sumed to be a realisation of a Gaussian process (GP). The GPs are conditionally independent from 
each other given a set of explanatory variables. We observe that the coloured ash grows primarily 
between mid-April and mid-July, while the coloured beech grows later and more during the 
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vegetation period. These different patterns are captured in the estimated sigmoid mean functions 
of the GPs, which represent the irreversible growth of the tree stems. On the other hand, the tem-
porary shrinking and swelling, which is more pronounced in the ash than the beech, is described by 
the within-season covariance functions. The tree species is one factor that we condition the GPs on. 
Other possible explanatory variables include the diameter at breast height (DBH) and the geo-
graphical location of the trees.

The way we use GPs is different from the standard approaches in machine learning or spatial 
statistics. Models from those fields typically assume a single latent GP. For instance, in many su-
pervised learning problems in machine learning, GPs are used as priors over the hypothesis space 
of possible functions from the input to the output space (Rasmussen & Williams, 2006). GPs also 
play a key role in spatial statistics, where they are used to capture the spatial correlation of the 
data, and to avoid invalid, underestimated confidence intervals (Cressie, 1993). In contrast, we as-
sume multiple observed, conditionally independent GPs as response structures in a regression 
model.

The fact that we link multiple properties of the mean and covariance functions of the GPs to 
explanatory variables puts our model in the domain of the so-called distributional regression mod-
els, also known as generalised additive models for location, scale, and shape (GAMLSS, Rigby & 
Stasinopoulos, 2005). Usually, this model class admits multiple structured additive predictors for 
different parameters of the conditional distribution of a response variable. Standard distributional 
regression models use univariate or low-dimensional multivariate response variables. Klein and 
Kneib (2016b) discuss distributional regression models with copula-based bivariate response dis-
tributions in a Bayesian setting, and Filippou et al. (2017) propose a trivariate probit model, which 
they estimate with a frequentist penalised likelihood method. A number of bivariate and trivariate 
response distributions is also available in the vector generalised additive model framework (Yee, 
2015). Following this line of thought, we show that the distributional regression approach also 
works for more general, continuous response structures such as GPs.

The distributional regression literature offers different approaches to statistical inference. We 
build on the work of Klein et al. (2015), who propose a general Markov chain Monte Carlo 
(MCMC) algorithm for Bayesian inference in distributional regression models. To assess the pos-
terior distribution of the model parameters, they use a Metropolis-within-Gibbs sampler with it-
erative weighted least squares (IWLS) proposals (Gamerman, 1997). The algorithm was 
implemented by Umlauf et al. (2018) in the R package bamlss. However, bamlss blocks the 
model parameters in a way that performs very poorly with GPs as response structures. We describe 
a more efficient way of blocking the model parameters in Section 3, and discuss the problem in 
more detail in the simulation study in Section 4.

Figure 1. The cumulative radial growth of a subsample of the trees from our dataset over the course of one growing 
season. The coloured lines represent two exemplary trees, one beech and one ash, while the grey lines illustrate the 
diversity of the growth patterns in the dataset. The reversible shrinking and swelling is more pronounced for the 
coloured ash than the beech. The bold lines show the estimated irreversible growth.
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All computations for this paper were performed using the R software environment for statistical 
computing (R Core Team, 2020). The relevant code is available under the MIT open source license 
as a supplement and on GitHub (https://github.com/hriebl/gp-responses).

The remainder of this paper is structured as follows: in the next section, we give the precise def-
inition of our model, as well as some examples of mean and covariance functions. Structured addi-
tive predictors and the connection with a number of related statistical model classes (mixed 
models, functional data, etc.) are also discussed. In Section 3, we provide the specifics of the 
MCMC algorithm for the posterior estimation. The simulation study with three different scen-
arios is presented in Section 4, while Section 5 addresses the application to intra-annual tree 
stem growth in full detail. Finally, Section 6 concludes and discusses possible extensions and fur-
ther applications of the model.

2 Model specification
2.1 Gaussian processes as response structures
We consider GPs {Yi(t); t ∈ T} as response structures in structured additive distributional regres-
sion, where the observation index i runs from 1 to N and the index set T is a metric space that can 
represent time, space, or space-time. The GPs are assumed to be conditionally independent given 
the covariate vectors xi,

{Yi(t); t ∈ T} ∣ xi
ind.
∼
GP(mx(t; xi), cx(t, t′; xi)), (1) 

where t, t′ ∈ T. As a specific feature of distributional regression, the mean function mx and the 
covariance function cx both depend on the covariates xi, which differ between the observations 
1 to N but are constant within the index set T. An extension of the model to time or space-varying 
covariates is given below.

More precisely, the mean and the covariance function are linked to the covariates xi via their 
respective parameter vectors θm and θc,

mx(t; xi) = m(t; θm(xi)) and cx(t, t′; xi) = c(t, t′; θc(xi)).

For better readability, we use a subscript i as an abbreviation for the dependence of a variable on 
the covariates xi. Let θi = [(θm

i )⊤, (θc
i )

⊤]⊤ = [θm(xi)
⊤, θc(xi)

⊤]⊤ be the vector of all parameters of the 
GPs and K its dimension. In the terminology of distributional regression, θi is the vector of the K 
distributional parameters. Each parameter θki is linked to a structured additive predictor via a 
strictly monotonic link function (Section 2.3).

One important extension of Model (1) deals with the inclusion of time or space-varying cova-
riates zi : T→ S, which change within the index set T depending on the coordinates t (as opposed 
to the previously discussed covariates xi). The covariates zi may be understood as a mapping of the 
coordinates t into a different, more abstract metric space S, which no longer represents only space 
or time. The mean and the covariance function now depend on the coordinates t via this mapping,

{Yi(t)} ∣ zi, xi
ind.
∼
GP(mx(zi(t); xi), cx(zi(t), zi(t′); xi)). (2) 

The simulation study in Section 4 includes a proof of concept for time-varying covariates.
In practice, each GP {Yi(t)} can only be observed at a finite number of points tj ∈ T, for j = 1, …, ni. 

The collection of random variables at these points has a multivariate normal distribution,

[Yi(t1), . . . , Yi(tni )]
⊤ ∣ zi(t1), . . . , zi(tni ), xi

ind.
∼
N ni (μi, Σi), (3) 

where the elements of the mean vector μi and the covariance matrix Σi are the evaluations of the mean 
function m and the covariance function c at the observed points,

μi = [μi,j] = m(zi(tj); θm
i ) and Σi = [σi,j,j′ ] = c(zi(tj), zi(t j′ ); θc

i ) (4) 

for j, j′ = 1, …, ni. The number of observed values does not necessarily need to be the same for all GPs, 
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i.e., potentially ni ≠ ni′ for some i, i′ ∈ {1, …, N}. Furthermore, our construction leaves the basic struc-
ture of the covariance function untouched, such that even after including dependence on covariates, it 
is ensured that the covariance function and therefore also the resulting covariance matrices Σi are 
positive definite.

2.2 Examples of mean and covariance functions
The most important condition for a GP to be valid is that the covariance function needs to be posi-
tive semi-definite. For Model (1), this means that 


t,t′∈U atc(t, t′)at′ needs to be non-negative for 

all U ⊂ T and the weights at ∈ R of each linear combination 


t∈U atYi(t) (Adler, 1990, Section 
1.1). When considering Model (2) with time or space-varying covariates, the positive semi- 
definiteness of the covariance function needs to hold on the index set S instead of T. The require-
ments for the mean function of a GP are less restrictive: Essentially any function m : T→ R or 
m : S→ R is a valid mean function of a GP.

The mean and the covariance function of a GP determine its continuity and differentiability 
properties. For example, a GP is mean-square continuous if and only if its mean and its covariance 
function are continuous. Mean-square continuity, however, does not imply sample continuity 
(Rasmussen & Williams, 2006, Section 4.1.1). The concept of sample continuity is discussed in 
a rigorous and abstract fashion in Adler (1990). For most applied modelling problems, a continu-
ous mean function will be a reasonable assumption, but the same is not necessarily true for the 
covariance function: One reason for a discontinuous covariance function might be an idiosyncrat-
ic error term for each measurement. This idiosyncratic error term ‘conceals’ the GP of interest and 
is known as the ‘nugget effect’ in spatial statistics. It is usually modelled as an additive i.i.d. GP, 
rendering the resulting sum of two GPs discontinuous, even in the mean-square sense.

Note that we omit the observation index i in the following discussion of the mean and covari-
ance functions for the sake of simplicity.

2.2.1 Mean functions
Linear Mean Function. The linear mean function is defined as the dot product of the covariates 

zi(t) and the parameters θm,

ml(z(t); θm) = z(t)⊤θm. (5) 

The linear mean function is mathematically convenient and provides considerable flexibility for stat-
istical modelling. Polynomials or B-splines can be used, among others, to represent large classes of 
functions as linear combinations of basis functions. To do so, we choose z(t) = [b1(t), . . . , bM(t)]⊤, 
where b1, …, bM are the aforementioned basis functions and M is the number of basis functions or, 
equivalently, the number of distributional parameters of the mean function. This approach gives rise 
to non-parametric mean functions with very flexible shapes.

Weibull Growth Curve. The flexibility of a linear mean function with polynomials or B-splines 
comes at a cost: it requires a large number of parameters without an obvious interpretation. In 
many applications, however, interpretable distributional parameters are desirable. If prior knowl-
edge about the shape of the response processes is available, a parametric mean function might be a 
more natural choice. For example, the intra-annual tree growth curves in Section 5 have a sigmoid 
shape. Any sigmoid function such as the logistic function or the hyperbolic tangent could serve as a 
mean function in this case, but we follow Metz et al. (2020) and use the Weibull growth curve for 
this purpose. The Weibull growth curve is a scaled version of the cumulative distribution function 
of the Weibull distribution,

mw(z(t) = t; θm = [l, a, b]⊤) = l × 1 − exp −
t
b

 a
  

, (6) 

where t ≥ 0 is the point in time since the start of the growing season, and the parameters are the 
limit l > 0, the shape a > 0, and the scale b > 0. The scale parameter describes for how long a 
tree continues to grow during the summer, while the shape parameter represents the steepness 
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of the growth curve. As all parameters of the Weibull growth curve need to be positive, we use a 
log-link for these parameters.

2.2.2 Covariance functions
Throughout this paper, we use the Matérn covariance function and relate the standard deviation σ 
and the range ϕ to covariates. Without any time or space-varying covariates, it has the form

cm(z(t) = t, z(t′) = t′; θc = [σ, ϕ]⊤) = σ2 × ρ
d(t, t′)

ϕ
; ν

 

, (7) 

where ρ is the Matérn correlation function with the smoothness parameter ν, and d(t, t′) is a dis-
tance function. For ν = 1/2, the Matérn correlation function simplifies to the exponential correl-
ation function, and for ν → ∞, it converges to the squared exponential or Gaussian correlation 
function. GPs with the Matérn covariance function are ⌊ν⌋ times mean-square differentiable 
and even have differentiable sample paths (Rasmussen & Williams, 2006, Section 4.2.1; 
Paciorek, 2003, Section 2.5.4). Different values for ν can be used for different models, but we 
do not treat it as a distributional parameter in this paper. For the standard deviation and the range, 
we use a log-link, as these parameters need to be positive.

The Matérn covariance function (or any other covariance function) can be modified to include 
an additive i.i.d. measurement error, giving rise to the covariance function

c∗(t, t′; θc = [σ, ϕ, δ]⊤) = cm(t, t′; θc = [σ, ϕ]⊤) + δ2 × I(d(t, t′) = 0), 

where δ is the standard deviation of the idiosyncratic error, and I is the indicator function. In the 
distributional regression framework, δ can be interpreted as an additional distributional param-
eter of the covariance function. The estimation procedure discussed in Section 3 can be applied 
to δ in the same way as to any other distributional parameter.

It is important to note that the validity of a covariance function depends on the metric space it is 
defined on, i.e., on the distance function d(t, t′). While the Matérn covariance function is valid on 
the Euclidean space of any dimension, the situation on the sphere with the great circle distance is 
more complicated: Gneiting (2013) investigates the validity of different commonly used covari-
ance functions on the one- to three-dimensional sphere and finds that, in this case, the Matérn co-
variance function is only valid for 0 < ν ≤ 1/2.

There are no restrictions on the families of covariance functions that can be used in our model 
framework, and the number of covariance parameters can be greater than for the Matérn covari-
ance function. Examples of alternative covariance functions include the power exponential, the 
rational quadratic, and the spherical covariance functions (Rasmussen & Williams, 2006, 
Section 4.2). Some index sets with special interpretations might require more elaborate covariance 
functions such as non-stationary or non-separable space-time covariance functions (Gneiting, 
2002).

2.3 Structured additive predictors and effect priors
In the structured additive regression framework (Fahrmeir et al., 2004; Wood, 2017), each pre-
dictor ηki can be expressed as a sum of Lk smooth terms fkl,

ηki =
Lk

l=1

fkl(xi; βkl), 

where each function fkl is expanded from a basis representation as fkl =
Dkl

d=1 Bkld(xi)βkld, and βkl 

are the regression coefficients to be estimated. The predictor ηki can attain any real value and needs 
to be mapped to the (possibly constrained) parameter space of the distributional parameter θki 

with a strictly monotonic link function hk, i.e., hk(θki) = ηki or θki = h−1
k (ηki).
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A smooth term usually depends on one or two elements of the covariate vector xi, but it can also 
be of a higher dimension, e.g., in the case of simple linear covariate effects. The interpretation of a 
smooth term depends on the choice of the basis functions and the prior of the regression coeffi-
cients. In many cases, a (proper or improper) normal prior is assumed for the regression coeffi-
cients,

p(βkl ∣ τkl) ∝ exp −
1

2τ2
kl

β⊤
klPklβkl

 

, 

where τkl is a hyperparameter that controls the smoothness of the covariate effect, and Pkl is 
a penalty matrix. The hierarchical prior of the parameters of smooth term l in predictor k is 
given by p(βkl, τkl) = p(βkl ∣ τkl) × p(τkl), where p(τkl) is often an inverse gamma distribution 
with fixed hyperparameters a = b = 0.0001 or some other small value. In more complex scen-
arios, we might also have covariate effects that depend on more than just one single, scalar 
hyperparameter (e.g., to achieve adaptive smoothness) or another hierarchical prior layer 
that connects the hyperparameters (e.g., to control the overall model complexity, Klein & 
Kneib, 2016a), but we will stick to the simple case in this article. Notationally, we will as-
sume a vector of hyperparameters τkl for better generality, including the scalar case as a spe-
cial case.

The smooth terms in a structured additive predictor can represent a broad range of covariate 
effects (linear, random, non-linear, spatial, etc.). A simple non-linear effect of a single covariate 
can be constructed using a polynomial basis. Cubic or B-splines provide a numerically more sta-
ble and flexible alternative to standard polynomials. In Section 5, we use a kriging smooth to 
model a spatial effect, which we can also represent as a linear combination of basis function eval-
uations. See Fahrmeir et al. (2013) for more details on smooth terms and structured additive 
predictors.

2.4 Related model classes

Mixed models with within-group correlation structures
If the index set T reduces to a finite set, the GPs become finite collections of dependent observa-
tions. For grouped data like this, where the groups could represent longitudinal observations 
on one person, mixed models are the standard tool. Distributional regression models with GP re-
sponses are closely related to the marginal distribution implied by mixed models. For example, the 
random intercepts model corresponds to

[Yi,1, . . . , Yi,ni ]
⊤ ∣ xi

ind.
∼
N ni (μi, ξ2Eni + σ2Ini ), (8) 

where [Yi,1, . . . , Yi,ni ]
⊤ is the vector of the ni measurements on group i, Ei is a (ni × ni)-dimensional 

matrix of ones, Ini is the ni-dimensional identity matrix, and ξ2 represents the random effect vari-
ance. In this case, there are two (co-)variance parameters ξ2 and σ2. Adding random slopes to the 
model would increase the number of covariance parameters.

Some mixed model implementations (such as the nlme package for R, Pinheiro et al., 2020) al-
low for within-group correlation structures of the residuals, which means that the identity matrix 
Ini in Equation (8) can be replaced with a more complex correlation matrix. This model extension is 
useful for temporally or spatially correlated data. As in our model, the correlation matrix is defined 
in terms of a parametric correlation function such as the Matérn correlation function, but to the 
best of our knowledge, its parameters (and the further covariance parameters of mixed models) 
are usually not linked to group-specific covariates. We are also not aware of any software pack-
age that supports this model structure out of the box. Moreover, the nlme package does not 
support structured additive predictors, but other mixed model software packages like gamm4 
(Wood & Scheipl, 2020) do.
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Functional data
Our model also has a close conceptual relation with GP regression models for functional data (Shi 
& Choi, 2011). For example, consider the functional response model

Yi(t)
ind.
∼
N (μi(t) + ωi(xi(t)), σ2), 

where xi(t) are functional covariates, while a GP prior is assumed for ωi(xi(t)), which defines the 
covariance structure of Yi(t). As a major difference, Shi and Choi (2011) do not allow for the in-
clusion of group-specific covariate effects on the (hyper-)parameters of the covariance functions of 
ωi(xi(t)) and Yi(t).

Another aspect where the work of Shi and Choi (2011) is similar to that of Greven and Scheipl 
(2017) or Scheipl et al. (2015) but different from ours is the way the mean functions μi(t) are mod-
elled: while our motivation is to use mean functions whose parameters serve as distributional pa-
rameters and are linked to covariates, Greven and Scheipl (2017) focus on (non-parametric) linear 
representations of the mean functions via suitable basis expansions. Given this difference, our 
model can be considered more realistic and more stable, at least in situations where prior knowl-
edge on the shape of the mean functions such as the sigmoid shape of the Weibull growth curves in 
Section 5 is available. On the other hand, parametric mean functions might be too restrictive for 
some applications. Finally, our index set T can represent different (potentially non-Euclidean) 
metric spaces, while the functional data literature is typically concerned with time-indexed data.

3 Posterior estimation
We stack all regression coefficients in a vector β, all hyperparameters in a vector τ, and all cova-
riates in a matrix X consisting of the N rows xi. The unnormalised log-posterior is then given by

log π(β, τ ∣ y1, . . . , yN, X) ∝
N

i=1

log pN (yi ∣ xi, β) +
K

k=1

Lk

l=1

log pkl(βkl, τkl).

The first term on the right-hand side is the log-likelihood of the regression coefficients β, where the 
observed values for the ith GP are denoted by yi and the density of the multivariate normal distri-
bution by pN . The second term on the right-hand side is the joint log-prior of all parameters β and 
τ, where pkl is the density of the prior distribution of the regression coefficients and hyperpara-
meters of smooth term l in predictor k.

We perform fully Bayesian inference with an adjusted version of the generic MCMC sampler of 
Umlauf et al. (2018), which uses inverse gamma priors and Gibbs updates for each scalar element 
of the hyperparameters τ, and Metropolis–Hastings updates with locally adaptive IWLS proposals 
(Gamerman, 1997) for the regression coefficients β. As the IWLS proposals involve the observed or 
expected Fisher information matrix, the regression coefficients are sampled in blocks for numer-
ical stability and efficiency. Typically, one block consists of the regression coefficients of one 
smooth term, and the blocks are sampled in a nested loop over the distributional parameters first 
and the smooth terms second. As discussed in the next section, we sample the parameters of certain 
smooth terms in one joint block, which can reduce the autocorrelation of the MCMC chains 
substantially.

The required full conditionals for the Gibbs updates of the hyperparameters are independent of 
the specific response structure of a distributional regression model and are given e.g., in Umlauf 
et al. (2018).

3.1 Model-specific scores and Fisher information
For a general distributional regression model, the score and the Fisher information of the regres-
sion coefficients βkl are given by

s(βkl) =
N

i=1

s(θki)
∂θki

∂βkl
and I (βkl) =

N

i=1

I (θki)
∂θki

∂βkl

∂θki

∂βkl

 ⊤

, 
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where the distributional parameters θki are functions of the regression coefficients βkl composed of 
smooth terms, structured additive predictors, and inverse link functions. The derivatives ∂θki/∂βkl 
are usually easy to compute. For this reason, we only give s(θki) and I (θki), the score and the Fisher 
information of the distributional parameters with respect to the response distribution, for the par-
ticular case of GP responses in the distributional regression framework.

Using the definitions of the mean vector μi and the covariance matrix Σi from Equation (4), the 
unnormalised log-likelihood contribution of the ith GP is

log pN (yi ∣ xi, β) ∝ −
1
2

( log |Σi| + (yi − μi)
⊤Σ−1

i (yi − μi)).

For better readability, we omit the observation index i in the following formulas. Let θk be a dis-
tributional parameter of the mean function, then the score and the Fisher information of θk are

s(θk) =
∂μ
∂θk

 ⊤

Σ−1(y − μ) and I (θk) =
∂μ
∂θk

 ⊤

Σ−1 ∂μ
∂θk

.

Now, let θk be a distributional parameter of the covariance function, then the score of θk is

s(θk) = −
1
2

tr Σ−1 ∂Σ
∂θk

 

− (y − μ)⊤Σ−1 ∂Σ
∂θk

Σ−1(y − μ)
 

and the corresponding Fisher information is

I (θk) =
1
2

tr Σ−1 ∂Σ
∂θk

Σ−1 ∂Σ
∂θk

 

.

The derivatives ∂μ/∂θk and ∂Σ/∂θk depend on the specific mean and covariance function of the 
GPs. Typically, one of the distributional parameters of the covariance function will be the standard 
deviation σ (or the variance σ2, depending on the parameterisation). In this case, the covariance 
matrix is given by Σ = σ2R, where R is the correlation matrix, and the score and the Fisher infor-
mation of σ simplify to

s(σ) = −
1
σ

n − (y − μ)⊤Σ−1(y − μ)
( 

and I (σ) =
2n
σ2 .

3.2 Sampling the covariance parameters in one block
To sample the regression coefficients of the smooth terms l and l̃ in the predictors k and k̃ in one 
block, their joint Fisher information is required,

I
βkl
βk̃l̃

  

= I (βkl) Cov(s(βkl), s(βk̃l̃))
Cov(s(βk̃l̃), s(βkl)) I (βk̃l̃)

 

, 

where

Cov(s(βkl), s(βk̃l̃)) =
N

i=1

Cov(s(θki), s(θk̃i))
∂θki

∂βkl

∂θk̃i

βk̃l̃

 ⊤

.

Specifically, we want to improve the sampling performance for the covariance parameters, so we 
need the covariance of the score of the standard deviation and the range, which is given by

Cov(s(σ), s(ϕ)) =
1
σ

tr R−1 ∂R
∂ϕ

 

.
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4 Simulation study
We designed a simulation study with three scenarios: the first scenario shows that the sampling 
scheme from Section 3 can greatly improve the performance of the ‘standard’ IWLS sampler 
with separate blocks for each distributional parameter and smooth term. Scenario II resembles 
the real-world application to intra-annual tree stem growth in Section 5, extending it with an 
artificial time-varying covariate as a proof of concept. In the third scenario, we use GPs on a 
sphere, which can be understood as shapes of tree crowns. While this simulation is not imme-
diately linked to the application of analysing tree stem radial growth, it underlines that the in-
dex set of the GPs does not need to be one-dimensional or Euclidean. To communicate a clear 
message with each scenario, we refrained from adding unnecessary complexity: All scenarios 
use normal priors with mean zero and standard deviation 1,000 for the regression coefficients, 
100 replications of the data-generating process, and MCMC chains of length 1,000 after a 
burn-in of 200 iterations.

4.1 Scenario I: joint sampling
In this scenario, we use a constant mean function and the Matérn covariance function cm from 
Equation (7). The smoothness parameter ν of the Matérn covariance function is fixed to 1.5, 
and the predictors and inverse link functions are defined to be

μi = xi1, σi = exp(xi2 + xi4), and ϕi = exp(β0 + xi3 + xi4), 

where xi1, xi2, xi3, xi4
ind.

∼ U(0, 1) are the covariates. The observation index i runs from 1 to N, 
where N = 30 is the number of GPs, and ni = n = 30 is the number of observed values per GP. 
The unit interval serves as the index set of the GPs.

For β0, the intercept for the range ϕi, we use two different values: −3, such that ϕi ∈ [0.049, 
0.368], and 0, such that ϕi ∈ [1, 7.39]. We call β0 = −3 the ‘small-range scenario’ and β0 = 0 the 
‘large-range scenario.’ Figure 2 shows 30 simulated GPs from one exemplary replication of the 
simulation scenario. The realisations of the GPs in the large-range scenario seem almost linear, 
while the realisations in the small-range scenario are much more wiggly.

We ran 100 replications of this setup, both with a small and a large range. In a next step, we 
sampled the (correctly specified) model for each replication and range, one time with separate 
blocks for the regression coefficients for the standard deviation and the range, and another time 
with one joint block for these coefficients. The bias of the posterior mean estimates is negligible 
for both samplers, but in terms of the autocorrelation of the chains, there are substantial differen-
ces between them. While the autocorrelation is similar for the regression coefficients for xi2 and 
xi3, the joint sampler beats the one with separate blocks by far for the intercept and the regression 
coefficients for xi4 (the covariate with an effect on both the standard deviation and the range; see 
Figure 3 for a comparison of the trace plots). With a small range, the performance gap is less ex-
treme but still very apparent.

We conclude from Scenario I that using a joint sampler for the covariance parameters is 
much more efficient. In contrast, with the sampling scheme with separate parameter blocks 
for the covariance parameters, the resulting MCMC chains have a high autocorrelation and 
must be inspected carefully. For Scenarios II and III, similar performance differences between 
the samplers can be observed, which we demonstrate in the supplementary material to this 
article.

4.2 Scenario II: time-varying covariates
The mean function of the GPs in this scenario is constructed as the sum of the Weibull growth 
curve from Equation (6) and the linear mean function from Equation (5), yielding

m(zi(t) = [t, ui(t)]
⊤; θm

i = [li, ai, bi, wi]
⊤) = mw(t; [li, ai, bi]

⊤) + ml(ui(t); wi), 
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where ui(t) is a univariate time-varying covariate, and the parameter wi determines the effect size 
of ui(t). The covariance function of the GPs is

cs(zi(t) = t, zi(t′) = t′; θc
i = [σi, ϕi]

⊤) = q(t) × q(t′) × cm(t, t′; [σi, ϕi]
⊤), (9) 

where cm is the Matérn covariance function from Equation (7) with the smoothness parameter 
ν = 1.5. The auxiliary function q(t) is defined as

q(t) = 0.1 + 0.9
30 × t if 0 ≤ t < 30,

1 otherwise,



(10) 

and scales the standard deviation of the GPs over time, such that it increases linearly on the interval 
[0, 30] and remains constant afterwards. The motivation for this step is that the growth curves in 
the application in Section 5 are defined to start at zero on April 1 of each year (i.e., at the beginning 
of each growing season) and have little variability in the first couple of weeks after that.

We define the predictors and inverse link functions li = 1500 ≈ exp(7.313), ai = 3.5 ≈  
exp(1.253), bi = 100 ≈ exp(4.605), wi = xi, σi = 40 ≈ exp(3.689), and ϕi = 2 ≈ exp(0.693). The 
only explanatory variable xi, where i = 1, …, N, is independent and uniformly distributed on 
the interval [1, 2]. The number of GPs takes the values N = 30, 60, or 120, and the number of ob-
served values per GP is ni = n = 60 or 120. As the index set of the GPs, we use the interval [0, 182], 
representing the days during one growing season.

The focus of this scenario is on the time-varying covariate ui(t), which we simulate as i.i.d. GPs 
with mean zero and a squared exponential covariance function, scaled over time with the auxiliary 
function q(t) from Equation (10). In the context of intra-annual tree stem growth, the time-varying 
covariate ui(t) could, for example, be a mean-centred moving average over the precipitation at the 
location of a tree i. How much the precipitation affects the growth dynamics of tree i depends on 
the explanatory variable xi, which might represent the soil conditions around that tree. Figure 4
illustrates this simulation scenario.

For each possible N-n-combination, we ran 100 replications and found that the sampling 
scheme from Section 3 works very reliably. The posterior mean estimates do not show any system-
atic bias (Figure 5). They have very little variability around the true value for the parameters of the 
Weibull growth curve, while more variability is observed for the parameter of the time-varying co-
variate and the covariance parameters. As expected, the quality of the estimates improves with the 
sample size, where N has a stronger effect on the quality than n, because additional independent 
response GPs are more informative than additional dependent observations within each GP. In 

Figure 2. The GPs from one exemplary replication of Simulation Scenario I. The range takes values between 1 and 
7.39 for the GPs on the left-hand side and between 0.049 and 0.368 for those on the right-hand side.
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summary, this simulation scenario shows that our sampler has the expected properties for a cor-
rectly specified model, even if time-varying covariates are included.

Finally, we highlight that the boxplots in Figure 5 show the performance of the sampler under 
the assumption that the true smoothness parameter ν is known, which is usually not the case in 
practice. However, a misspecified smoothness parameter (ν = 0.5 or 2.5 instead of 1.5 in this scen-
ario) does not seem to have a strong adverse effects on the inferences drawn from such a model. In 
the supplementary material to this article, we show that a misspecified smoothness parameter is 
mostly compensated for by the estimated range parameter ϕ, while the other parameters remain 
essentially unaffected. Rather, we found that a reasonable choice for ν can increase the model sta-
bility and improve the MCMC mixing, as we will investigate in Section 5.

4.3 Scenario III: processes on a sphere
In this scenario, we show how our model can accommodate spatial or spatio-temporal processes as 
response structures. Generally speaking, the GPs can be defined on a one- or higher-dimensional 
Euclidean space, or even a non-Euclidean metric space when employing appropriate distances. 
The processes in this specific scenario are defined on a sphere, resembling shapes of tree crowns, 
and we use the great circle distance for quantifying distances. Figure 6 illustrates the design: the 
object on the left is an ‘average’ tree crown, from which we simulated a more realistic shape as 
a realisation of a GP with an exponential covariance function, shown on the right. In an applica-
tion, the tree species or the light availability could be used as covariates to explain the properties of 
the mean and the covariance function of the crown shapes. The mean properties are, among 
others, the average radius, and the vertical elongation, while the covariance properties are the 
size and the persistence of the deviations from the mean.

The mean function in this scenario is defined in terms of the linear mean function from Equation 
(5), which is applied to a transformed coordinate vector as follows:

m(zi(t) = [t1, t2]⊤; θm
i = [ri, hi, vi]

⊤)

=ml([1, cos (t2)( cos (t1) + 1), t2 + π/2]⊤; [ri, hi, vi]
⊤)

=ri + cos (t2)( cos (t1) + 1) × hi + (t2 + π/2) × vi.

Figure 3. Trace plots for the regression coefficients for xi4 from one exemplary replication of Simulation Scenario I. 
The left-hand side shows the sampler with separate blocks for the regression coefficients for the covariance 
parameters, whereas the right-hand side shows the sampler with one joint block for these coefficients. No thinning 
was applied to the chains.
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The coordinates t1 ∈ [ − π, π] and t2 ∈ [ − π/2, π/2] are the longitude and the latitude on the sphere 
in radians. The parameters are ri, the minimum radius of the tree crown, hi, the horizontal elong-
ation towards the south, and vi, the vertical elongation. Furthermore, we use the Matérn covari-
ance function cw from Equation (7) with the smoothness parameter ν = 0.5, i.e., an exponential 
covariance function.

The predictors and inverse link functions are defined as ri = exp(xi1), si = exp(xi2), hi = exp(1 + xi3), 
σi = exp(xi4), and ϕi = exp(xi5), where the explanatory variables xi1, xi2, xi3, xi4, and xi5 are inde-
pendent and uniformly distributed on the unit interval and the observation index is i = 1, …, N. 
The number of GPs is set to N = 30, and the number of observed values per GP is ni = n = 379. A 
regular longitude–latitude grid is used for the observations of the GPs.

With a maximum value of 0.014 for the covariate effect of xi1 on the radius ri, the average bias is 
negligible for all posterior mean estimates. The average mean squared errors (MSEs) are also very 
small, especially for the regression coefficients for the vertical elongation vi, the standard deviation 
σi, and the range ϕi. Among these regression coefficients, the maximum average MSE is 0.006 for 
the covariate effect of xi3 on vi. The average MSEs for the regression coefficients for ri and the hori-
zontal elongation hi are higher but still uncritical with values between 0.02 and 0.26 (results not 
shown graphically for this scenario). These numbers indicate that we are able to estimate the mod-
el parameters reliably with our sampling scheme, despite the fact that the GPs are defined on a 
non-Euclidean space.

5 Intra-annual tree stem growth
In this section, we apply our method to the intra-annual stem growth of 72 beeches, 6 ashes, and 7 
sycamores from three different regions in Germany. For each tree, the growing seasons 2012 and 
2013 were recorded in a high temporal resolution using electronic circumference dendrometers. 
The original purpose of the data was a study on the effect of the neighbourhood identity on the 
growth patterns of beech trees in pure and mixed stands (Metz et al., 2020), which was conducted 
in the Biodiversity Exploratories (Fischer et al., 2010). The dataset can be downloaded from the 
information system of the project (BExIS, Metz & Ammer, 2018; Ostrowski et al., 2016), thanks 
to the open data policy of the Biodiversity Exploratories. Our analysis is fully replicable with the 
code in the supplements.

A first outlook on the dataset was given in Figure 1. We compared a beech to an ash and ob-
served differences in the overall annual growth, the starting time of the growth process, and the 
shrinking and swelling. With our model, we formalise these observations and assess the effect 
of explanatory variables such as the DBH or the geographical location. We show that our model 

Figure 4. The response GPs Yi(t) (on the left-hand side) and the time-varying covariates ui(t) (on the right-hand side) 
from one exemplary replication of Simulation Scenario II with N = 30 and n = 60. The large-scale deviations of Yi(t) 
from the Weibull growth curve are mainly driven by mean shifts due to ui(t), while the small-scale variation comes 
from the covariance structure of Yi(t).
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is instructive when applied to high-resolution dendrometer data. Our statistical approach is differ-
ent from the one used by Metz et al. (2020), who estimate one Weibull curve per observed curve, 
each fitted individually by non-linear least squares, and then model the estimated parameters and 
other derived quantities. One downside of this two-step procedure is that the estimation uncer-
tainty of the parameters is not systematically taken into account in the second step. We solve 
this problem with an explicit assumption about the probability distribution of the stochastic pro-
cess of intra-annual tree stem growth and a one-step inference algorithm.

5.1 Model specification
Our analysis is based on the Weibull growth curve mw(t) from Equation (6) as a mean function and 
the scaled Matérn covariance function cs(t, t′) from Equation (9). Consequently, we have the fol-
lowing five distributional parameters: the limit l, the shape a, and the scale b of the Weibull growth 
curve, and the standard deviation σ and the range ϕ of the covariance function.

The covariance function describes the shrinking and swelling of the tree stems and does not in-
clude any additional parameters to account for potential measurement errors from the dendrom-
eters. The motivation for this approach is that electronic dendrometers are high-precision devices, 

Figure 5. Boxplots of the bias of the posterior mean estimates in Simulation Scenario II. Each boxplot represents 
100 replications for one combination of N, the number of response GPs, and n, the number of observed values per 
GP.

Figure 6. An exemplary mean function, shown on the left, and a corresponding realisation of a GP with an exponential 
covariance function, shown on the right, from one replication of Simulation Scenario III. The objects are designed to 
resemble shapes of tree crowns. The properties of the shapes can be related to explanatory variables such as the 
tree species or the light availability.
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and the individual measurement errors are on a very small scale. Large errors occur only when the 
dendrometers are touched, e.g., by an animal or a researcher. These errors were already corrected 
in our dataset with a simple post-processing step. Finally and most importantly, the data were ori-
ginally recorded in a very high temporal resolution of 30 min. As we are only working with daily 
data, a potential additive error per half-hourly measurement would average out over the 48 meas-
urements on one day. From a theoretical perspective, however, including a measurement error in 
the model would be straightforward, see the discussion in Section 2.2.2.

The predictors and inverse link functions are defined as

li = exp(βl0 + (Tree ∗ Year)i × βl1),

ai = exp(βa0 + Speciesi × βa1 + DBHi × βa2 + (Site ∗ Year)i × βa3),

bi = exp(βb0 + Speciesi × βb1 + DBHi × βb2 + (Site ∗ Year)i × βb3),

σi = exp(βσ0 + Speciesi × βσ1 + DBHi × βσ2 + fYeari
(xi, yi; βσ3)),

ϕi = exp(βϕ0 + Speciesi × βϕ1 + DBHi × βϕ2 + (Site ∗ Year)i × βϕ3), 

where β†,0 and β†,2 are scalar regression coefficients, while β†,1 and β†,3 are vectors of regression 
coefficients, and Speciesi denotes the entries of the design matrix for the dummy variable for the 
species of the tree where the ith growth curve was recorded,

Speciesi =
[0, 0] if the ith growth curve is of a beech,
[1, 0] if it is of a ash; and
[0, 1] if it is of a sycamore.

⎧
⎨

⎩

Similarly, (Tree ∗ Year)i and (Site ∗ Year)i are the entries of the design matrix for the interaction of 
two dummy variables: in the first case, of the individual tree and the year, and in the second case, of 
the field site and the year. Finally, fYeari 

denotes a year-specific spatial kriging smooth.
The tree-year-interaction in the predictor for the limit parameter implies one degree of freedom 

for the limit of each growth curve. The other variables in the dataset do not explain the overall 
annual growth sufficiently, but the limit is identified well enough for each growth curve that these 
parameters can be estimated without problems. All other predictors include the species and the 
DBH as covariates. For the shape, the scale, and the range, the site-year-interaction captures the 
spatial and temporal differences between the field sites and the years. For the standard deviation, 
the smooth term fYeari 

serves this purpose and illustrates the flexibility of structured additive pre-
dictors when used with covariance parameters in the GP framework.

For the regression coefficients β, we used uninformative N (0, 1000) priors, and an inverse gam-
ma prior with fixed hyperparameters a = b = 0.0001 for the smoothing parameter τ2 of the spatial 
kriging smooth fYeari

.

5.2 Tree physiology
The dendrometer measurements of the stem radius of a tree are composed of an irreversible growth 
component and temporary shrinking and swelling dynamics, which can be further divided into 
water potential-driven and osmotic processes (Chan et al., 2016). Water potential-driven changes 
in the stem radius are caused by sap moving radially within the xylem or between the xylem and 
the phloem from areas with a higher to areas with a lower water potential. This process give rise to 
an approximately periodic fluctuation of the dendrometer measurements over the course of 24 hr, 
while osmotic changes occur more gradually, for example, if the tree draws water from the roots.

In our case, the mean curves can be interpreted as the irreversible growth and the fluctuations 
around them as temporary shrinking and swelling. These fluctuations are characterised by the co-
variance function of the GPs. As the employed Matérn covariance function is stationary, the GPs 
keep returning to their mean. How fast they return depends on the range parameter, which is esti-
mated to be relatively small for most trees in the dataset. As we analyse the dendrometer measure-
ments in a daily resolution, the water potential-driven changes are averaged out from the data for 
the most part, and the remaining fluctuations are primarily osmotic. In fact, the deviations of the 
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growth curves from the estimated mean curves that we observe in the data do typically last a few 
days or weeks, as expected for the osmotic processes in tree stems.

If a growth curve increases faster than the mean curve, we interpret this as the tree drawing more 
water from the roots than required for the formation of new cells and the irreversible growth at a 
given moment. Conversely, if a growth curve increases slower than the mean curve, more water is 
consumed by the irreversible growth than drawn from the roots. Finally, if a growth curve decreases, 
water is released from the stem. These processes are reflected in the stochastic part of the model, 
which is characterised by the covariance parameters: the standard deviation quantifies the magnitude 
of the osmotic changes in the stem radius, and the range parameter their persistence. For example, 
some tree species might store more water in the stem than others (which would imply a higher stand-
ard deviation), or they might store it for a longer time (which would imply a higher range parameter).

Different approaches for the decomposition of dendrometer measurements have been proposed, 
among others, by Zweifel et al. (2005) and Chan et al. (2016). Zweifel et al. (2005), on the one 
hand, use a linear interpolation of the local maxima of the observed growth curves as an approxima-
tion of the irreversible growth and interpret the difference between the interpolation and the observed 
curves as the tree water deficit. They find that this measure of tree water deficit is explained well by 
soil water potential and vapour pressure deficit for pine, oak, and spruce under different environmen-
tal conditions in Switzerland. Chan et al. (2016), on the other hand, compute an estimate of the sum 
of the irreversible growth and the osmotic changes in the stem radius from dendrometer measure-
ments of both the whole stem and the xylem radial thickness. The irreversible growth is then obtained 
as the difference of the minima of this estimate on two consecutive days.

Despite the apparent similarities between our model framework and the approaches of Zweifel 
et al. (2005) and Chan et al. (2016), the scope of the methods is quite different: While the other 
approaches are motivated from ecophysiological considerations, our model takes advantage of 
statistical assumptions about the parametric form of the mean and covariance function of the 
GPs in a regression setting. It can be used to decompose dendrometer measurements into a per-
manent and a temporary component for any given point in time, but this is not our primary 
goal, and the decomposition is likely to be less accurate than the ones from the other, more spe-
cialised methods. Instead, our model does focus on the relationship between structural patterns 
of both the irreversible growth and the temporary shrinking and swelling throughout the vegeta-
tion period and a set of explanatory variables. As mentioned before, such structural patterns could 
be for example the magnitude or persistence of the osmotic changes in the stem radius. In particu-
lar, we would like to point out the following advantages of our approach:

• The model has minimal data requirements: A single circumference dendrometer per tree is suf-
ficient. Zweifel et al. (2005) and Chan et al. (2016) use one or two point dendrometers, re-
spectively. The model is also agnostic about the temporal resolution of the data, while the 
method of Chan et al. (2016) requires multiple measurements per day.

• The model can be estimated with one integrated MCMC algorithm, which estimates the de-
composition of the dendrometer measurements into irreversible growth and temporary 
shrinking and swelling, and the effects of the explanatory variables on the characteristics of 
the growth curves at the same time. The advantage is that the estimation uncertainty can 
be assessed in a sound statistical framework, and a two-step procedure can be avoided.

• The structural patterns of the growth curves that can be explained by covariates are not lim-
ited to the osmotic changes in the stem radius, but include characteristics of the overall intra- 
annual sigmoid growth curves as well, such as the total growth of a tree over an entire vege-
tation period or the steepness of a growth curve; for details, see Section 2.2.1.

The overall aim of our article is to present a model framework rather than one specific model for 
tree stem growth. The application in this section should illustrate how the different components of 
the framework can be interpreted in the context of tree stem growth. For the sake of simplicity, a 
relatively low temporal resolution and a limited number of covariates are used, but the model 
could easily be refined with a different mean or covariance function, more covariates, or a higher 
temporal resolution. In the view of this, the methods of Zweifel et al. (2005) and Chan et al. (2016)
should not be considered as competitors of our model, but their studies could serve as a basis for 
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the development of more specific models in our framework that could provide further insights into 
the ecophysiological process of tree stem growth. In fact, recent studies by Zweifel et al. (2021)
have confirmed vapour pressure deficit as an important driver of tree stem growth, so including 
it as a time-varying covariate in the mean or covariance function could be particularly instructive. 
In our application, the site-year-interactions in the predictors serve as proxies for the average wea-
ther conditions at a given site in a given year and ensure that the species and DBH effects do not 
suffer from an omitted variable bias, but the explicit inclusion of vapour pressure deficit or soil 
water potential would give rise to a more direct model.

Recent articles have addressed the question during which time of the day trees and other plants 
grow the most (Wiese et al., 2007; Zweifel et al., 2021). To investigate this problem in our model 
framework, the growth curves would need to be processed in a higher, e.g., hourly, temporal reso-
lution, which would increase the computational cost of our model and require some adjustments 
of the covariance and possibly the mean function of the GPs: to account for the daily pattern of the 
water potential-driven changes in the tree stem radius, an additive periodic kernel could be in-
cluded in the covariance function, for example, an exponential sine squared kernel (Rasmussen 
& Williams, 2006, Section 4.2). To address the question whether the irreversible growth primarily 
occurs during the day or the night, the mean function could be modified to represent a sequence of 
daily smooth step functions, where a parameter could be introduced to estimate the time of the day 
around which the steps are centred.

5.3 Estimation results
We used the sampling scheme from Section 3 to estimate our tree growth model with results pre-
sented in this section based on MCMC samples from the posterior distribution with a sample size 
of 10,000, excluding the 2,000 burn-in iterations. No thinning was applied to the chains. The ef-
fective sample size ranges from 703.169 to 8,793.660, as for some regression coefficients in the 
predictors for the mean parameters, the chains exhibit moderate to strong autocorrelation.

Table 1 summarises the posterior samples of the species effect of ash and the effect of DBH on 
the predictors. The reference category for the species effect is beech, so the negative effect on the 
scale implies that, on average, an ash stops growing earlier during the vegetation period than a 
beech. As different species allocate resources differently throughout the growing season, this is 
an expected result. The positive effect of DBH on the growth duration during the vegetation period 
might be due to the fact that trees with a greater DBH are more likely to be dominant in the stand. 
When the light availability decreases in the fall, the dominant trees still continue to grow, while the 
smaller trees cannot keep up their growth.

In terms of the covariance parameters, ash has a positive effect on the standard deviation. This is 
plausible because ash has a thicker bark than beech, which means it can store more water in the 
bark. The same argument applies for the effect of DBH on the standard deviation, as larger trees 
have a thicker bark. The effect of ash on the range parameter is estimated to be negative, which 
means that the osmosis-induced changes in the stem radius are less persistent for ash than for 
beech, possibly because the water is stored for shorter periods of time. Finally, the effect of 
DBH on the range is slightly positive, but the 95% credible interval does not exclude a zero effect.

The spatial kriging smooth in the predictor for the standard deviation is displayed in Figure 7. 
The six rectangles represent the three study regions Schwäbische Alb, Hainich-Dün, and 
Schorfheide-Chorin of the Biodiversity Exploratories and the years 2012 and 2013. The locations 
of the field sites in the study regions are marked with small crosses. A brighter colour indicates a 
higher standard deviation of the growth curves of the trees at a given location. The figure shows 
that the differences in the standard deviation are greater between than within the study regions: 
The trees on the Schwäbische Alb have the highest standard deviation, followed by those in the 
Hainich-Dün and the Schorfheide-Chorin. This pattern is stable over the years and very likely a 
result of differences in the precipitation, which are greater on a large than on a small scale. 
Note that the estimated effects are extrapolated considerably beyond areas supported by the ob-
servations, such that these parts of the rectangles in Figure 7 should be interpreted with care.

To check the robustness of the results with respect to the smoothness assumption of the correl-
ation function, we also estimated the model with the smoothness parameters ν = 0.5 and 2.5 instead 
of 1.5. We found that all three models produce similar results, both in terms of the model fit and the 
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estimated covariate effects. For ν = 0.5, we had to use informative standard normal priors for the 
regression coefficients β instead of the default N (0, 1000) priors, and still some parameters ap-
peared to be poorly identified, deteriorating the mixing of the MCMC chains. Comparing the re-
sults for ν = 1.5 and 2.5, we obtained the better DIC for ν = 1.5, making this model our preferred 
specification. The estimated covariate effects, particularly their signs and sizes, were comparable 
for all three models, such that the interpretation of the model is unaffected by the specific choice 
of the smoothness parameter. For more details, see the supplementary material to this article.

The discussion of the model results shows that our framework allows us to relate different prop-
erties of the tree growth curves to explanatory variables and complex covariate effects (such as the 
spatial kriging smooth in this example) in a very direct way. Using the methods of Zweifel et al. 
(2005) or Chan et al. (2016), similar results could be obtained by decomposing the dendrometer 
data, defining measures for the phenomena of interest, e.g., the persistence of the osmotic changes 
in the stem radius, based on the decomposition, and finally using these measures as response var-
iables in different regression models. Both approaches have benefits and drawbacks depending on 
the goal of the analysis, but if the focus is on the effect of the explanatory variables, our model is 
arguably more comprehensive.

6 Discussion
In this paper, we embedded GPs as response structures into the framework of structured additive 
distributional regression as described by Klein et al. (2015) to study intra-annual tree stem growth 
and to decompose high-resolution dendrometer measurements into irreversible growth and tem-
porary shrinking and swelling. It is of particular interest for the physiological understanding of 
stem growth that our model can explain certain properties of both components of the dendrometer 
measurements by covariates such as the tree species or the DBH. Based on a dataset of 85 individ-
ual trees from Germany, for which the variations in the stem radius were recorded during the 
growing seasons 2012 and 2013, we could identify different growth patterns for three deciduous 
tree species: for instance, ash grows more gradually and earlier during the vegetation period than 
beech, and its thick bark gives rise to a more pronounced temporary shrinking and swelling. Our 
model can quantify these differences between tree species and conditional on other explanatory 
variables with a sound and unified statistical approach.

We want to point out that the design of the structured additive predictors, that is the selection of 
the explanatory variables and their effect type, requires special care for the proposed type of mod-
el. Theoretical considerations and subject-matter expertise must be taken into account to build 
models with meaningful interpretations for the research questions at hand. Concerning the ana-
lysis of intra-annual tree stem growth, additional, more detailed models including precipitation 
data and other time-varying explanatory variables could be a promising next step, especially since 

Table 1. Summary statistics of the posterior samples of the species effect of ash (vs. beech) and the effect of DBH on 
the predictors

Ash Coefficient Mean 2.5% Median 97.5%

Shape βa1,1 −0.289 −0.363 −0.289 −0.218

Scale βb1,1 −0.426 −0.452 −0.426 −0.400

Std. dev. βσ1,1 0.602 0.529 0.602 0.678

Range βϕ1,1 −0.101 −0.157 −0.101 −0.043

DBH Coefficient Mean 2.5% Median 97.5%

Shape βa2 −0.027 −0.044 −0.027 −0.009

Scale βb2 0.050 0.045 0.050 0.055

Std. dev. βσ2 0.085 0.064 0.085 0.106

Range βϕ2 0.011 −0.004 0.011 0.027

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/72/2/414/7083835 by G

2M
 C

ancer D
rugs AG

 user on 17 O
ctober 2024

http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad015#supplementary-data


J R Stat Soc Series C: Applied Statistics, 2023, Vol. 72, No. 2                                                               431

in the light of global climate change, a comprehensive understanding of the trees’ reaction to 
drought stress is becoming more and more indispensable.

While the original use case for our model class is the analysis of intra-annual tree stem growth, 
the flexibility, and versatility of the model framework was discussed throughout the paper and 
demonstrated in particular in the simulation study. The general model class certainly deserves fur-
ther investigation in the future. To explore its full potential in many other applications, it will be 
necessary to study the various members of the model class arising from specific choices of index 
sets, mean functions, and covariance functions, and to develop applications for research questions 
in different fields.

Other aspects that deserve further attention are both theoretical and software-related. We im-
plemented an R package that can fit the models described in this paper but does not yet support 
arbitrary mean and covariance functions. The challenge will be to keep the performance cost of 
these generalisations as small as possible. To reach a greater audience, the package will also 
need a more complete documentation and a better user interface. In terms of open theoretical ques-
tions, the propriety of the posterior distribution and the ergodicity of the MCMC chains comes to 
mind. Finally, following up on the discussion in Sections 3 and 4, a more thorough investigation of 
the correlation structure of the model parameters could guide the development of more efficient 
MCMC sampling schemes.
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