
R E S E A R CH AR T I C L E

Accounting for time dependency in meta-analyses
of concordance probability estimates

Matthias Schmid1 | Tim Friede2 | Nadja Klein3 | Leonie Weinhold1

1Department of Medical Biometry,
Informatics, and Epidemiology, University
Hospital Bonn, Bonn, Germany
2Department of Medical Statistics,
University Medical Center Göttingen,
Göttingen, Germany
3Research Center for Trustworthy Data
Science and Security, UA Ruhr/
Department of Statistics,
Technische Universität Dortmund,
Dortmund, Germany

Correspondence
Matthias Schmid, Department of Medical
Biometry, Informatics, and Epidemiology,
University Hospital Bonn,
VenusbergCampus 1, 53127 Bonn,
Germany.
Email: matthias.c.schmid@uni-bonn.de

Funding information
Volkswagen Foundation, Grant/Award
Number: 98 948

Abstract

Recent years have seen the development of many novel scoring tools for

disease prognosis and prediction. To become accepted for use in clinical

applications, these tools have to be validated on external data. In practice,

validation is often hampered by logistical issues, resulting in multiple

small-sized validation studies. It is therefore necessary to synthesize

the results of these studies using techniques for meta-analysis. Here we

consider strategies for meta analyzing the concordance probability for time-

to-event data (“C-index”), which has become a popular tool to evaluate the

discriminatory power of prediction models with a right-censored outcome.

We show that standard meta-analysis of the C-index may lead to biased

results, as the magnitude of the concordance probability depends on the

length of the time interval used for evaluation (defined e.g., by the follow-

up time, which might differ considerably between studies). To address this

issue, we propose a set of methods for random-effects meta-regression that

incorporate time directly as covariate in the model equation. In addition to

analyzing nonlinear time trends via fractional polynomial, spline, and

exponential decay models, we provide recommendations on suitable trans-

formations of the C-index before meta-regression. Our results suggest that

the C-index is best meta-analyzed using fractional polynomial meta-

regression with logit-transformed C-index values. Classical random-effects

meta-analysis (not considering time as covariate) is demonstrated to be a

suitable alternative when follow-up times are small. Our findings have

implications for the reporting of C-index values in future studies, which

should include information on the length of the time interval underlying

the calculations.
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Highlights

What is already known?
Prognostic factor research is a rapidly evolving field with an increased need for
meta-analysis. In this field, studies aim at analyzing the associations of risk factors
with a time-to-event outcome. The concordance probability for time-to-event data
(“C-index”) has become a popular tool to evaluate the discriminatory power of
prognostic models. It is often used in the meta-analysis of validation studies.

What is new?
We show that standard meta-analysis of the C-index may lead to biased results,
as the magnitude of the C-index depends on the length of the time interval
used for evaluation. To address this issue, we propose a set of methods for
random-effects meta-regression incorporating time directly as covariate in the
model equation. Our methods are able to account for nonlinear relationships
between the C-index and time.

Potential impact for readers outside the authors' field
The proposed methods improve the interpretability of meta-analyzed prognos-
tic models, enabling users of these models to better judge their prognostic
power. They also point at a possible overoptimism in the interpretation of
prognostic models, which—if evaluated by the C-index—could indicate a
strong performance simply because the time interval for evaluation has been
(too) short. Furthermore, our results have implications for the reporting of
future validation studies. These should present the full C-index curve, along
with the time interval used for evaluation.

1 | INTRODUCTION

During the past decades, the volume of published
research has increased dramatically.1 Even before the
COVID-19 pandemic, the number of research articles has
been estimated to grow by 8%–9% each year, including
more than 1 million papers per year in the biomedical
field alone.2 At the same time, hundreds of newly ranked
journals have appeared, with the estimated total amount
of active peer-reviewed journals exceeding 30,000.1,3 In
view of this “information overload”,2 there is an obvious
need for evidence synthesis to “clarify what is known
from research evidence to inform policy, practice and
personal decision making and improved methods for
meta-analysis”.4

Prognostic factor research5 is a rapidly evolving field
with an increased need for meta-analysis. In this field,
studies aim at analyzing the associations of one or several
factors (often termed “risk factors”) with a time-to-event
outcome T �ℝþ. In medicine and epidemiology, for
instance, prognostic factors are often given by patient
characteristics (e.g. age, sex, smoking behavior, blood pres-
sure) collected at the baseline examination of a longitudinal
study. These variables might then be used to predict the

occurrence of events such as death, tumor progression, or
adverse events. Often, several prognostic factors are summa-
rized by a multivariable risk score (defined, e.g., by a linear
combination of the factors). Popular examples of risk scores
are the European System for Cardiac Operative Risk Evalua-
tion (EuroSCORE) II to predict mortality after cardiac sur-
gery and the Framingham Risk Score for predicting
coronary heart disease.6 Score development is usually based
on a statistical modeling technique applied to a set of train-
ing data, yielding a prediction model that is defined by a
(univariable or multivariable) prognostic score η�ℝ.

A key issue for the acceptability of a prognostic score
is its repeated validation on externally collected test
data.7,8 These validation steps have become a gold stan-
dard in prognostic modeling, as they provide a much
more realistic assessment of the score's performance than
would have been possible using the training data only.
Importantly, the results of external validation steps are
often found to be heterogeneous, showing a high variabil-
ity in prognostic performance. Validation studies involv-
ing external test data might, for instance, be affected by
small sample sizes and differences in the characteristics
of the patient population compared to the training
data.6,9 As a consequence, systematic reviews and meta-
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analyses are “urgently needed to summarize [the] evi-
dence [of prediction models] and to better understand
under what circumstances developed models perform
adequately or require further adjustments”.6

In this paper, we consider strategies for meta
analyzing the concordance probability for time-to-event data
(“C-index”), which is a widely used measure to evaluate pre-
diction models with a time-to-event outcome.10–12 The C-
index is a discrimination measure that compares the rank-
ings of the individual score values ηi and the event times
Ti, i¼ 1,…,n, in a test sample of size n. It is defined12 by

C τð Þ¼ P ηi > ηj jTi <Tj,Ti ≤ τ
� �

, ð1Þ

where i, j denote two independent observations in the
test data and τ>0 is a truncation time (e.g., the maxi-
mum follow-up time of a clinical study). Setting τ¼∞
yields the unrestricted concordance probability
P ηi > ηj jTi <Tj

� �
. Generally, C ∞ð Þ takes the value 1 if

the rankings of �ηi and Ti agree perfectly. Conversely,
C ∞ð Þ¼ 0:5 if η does not predict better than chance alone.
In the absence of censoring, the concordance probability
can readily be evaluated by comparing all pairs Ti,Tj and
by estimating the conditional probability in (1) by its
respective relative frequency in the test data. If censoring
is present, however, a comparison of all pairs Ti,Tj is no
longer possible, and estimation of the concordance prob-
ability requires additional assumptions on the data-
generating process,11–14 also see Schmid and Potapov15

for a comparison of estimators.
For meta-analysis, Debray et al.6 recently introduced

a framework that includes, among other techniques, a
method to summarize estimates of the C-index obtained
from multiple validation studies. Based on earlier work
by Snell et al., who meta-analyzed the QRISK2 model to
predict 10-year cardiovascular disease risk,16 the authors
proposed to transform estimates to the logit scale before
meta-analysis. This strategy has also been adopted in sev-
eral recent systematic reviews and meta-analyses,17–19

including evaluations of the CHA2DS2-VASc rule for
estimating stroke risk in patients with atrial fibrillation
and various scores for the prediction of survival outcomes
in colorectal cancer with surgical resection. In other stud-
ies, which included meta-analyses of models for survival
after resection of intrahepatic cholangiocarcinoma, the
C-index was meta-analyzed on the original (untrans-
formed) probability scale.20,21 Meta-analysis of the
C-index using individual participant data has been stud-
ied by Pennells et al.22 Hattori and Zhou23 proposed to
construct a synthesized C-index from an estimate of the
summary cumulative ROC curve obtained by analyzing
study-specific Kaplan–Meier curves.

Despite numerous methodological advances, which
have led to the publication of several guidance papers,6,9

meta-analysis of prognostic validation studies remains a
challenging task. This is, in particular, due to the fact that
measures of prediction accuracy in prognostic research are
often related to a specific time point or time span.5 Conse-
quently, meta-analysis of validation studies becomes
intrinsically difficult when study-specific performance esti-
mates refer to different time points or spans. As seen from
(1), this time dependency also affects the C-index studied
in this paper: Since the magnitude of C depends on the
truncation time τ, C-index estimates may not be compa-
rable across studies if they relate to different values of τ.
Specifically, since the value of τ is often determined by
the duration of the study generating the test data,
different study durations may implicitly lead to system-
atic differences between the resulting C-index estimates.
Consider, for instance, the simulated meta-analysis in
Figure 1: In this example, we considered 30 hypothetical
studies, generating event times from a Weibull acceler-
ated failure time model of the form log Tð Þ¼X�ϵ. In
each study, X was a normally distributed covariate with
zero mean and standard deviation 0.5, and ϵ followed a
standard Gumbel distribution. Censoring times were
independent of T and followed an exponential distribu-
tion with rate 0.5 each. Sample sizes of the studies were
generated randomly and ranged between 100 and 1000.
After data generation, the observed event times were
truncated at study-specific truncation (=maximum fol-
low-up) times τk, k¼ 1,…,30, which were sampled from a
uniform distribution on 0:1,2½ �. Study-specific C-index
estimates were calculated using the estimator by Uno
et al.14 As demonstrated in Figure 1, C τð Þ is seen to
decrease with τ, and the pooled estimate obtained from
standard meta-analysis relates to an implicitly defined
truncation time. Thus, if not accounted for, the time
dependency of C τð Þ may compromise both the specifica-
tion of a properly defined estimand and the validity of
the pooled estimate. While the simulated meta-analysis
in Figure 1 serves as an illustrative example to motivate
the methods proposed here, very similar effects have
also been found in real-world studies (see e.g., our analy-
sis of the German Chronic Kidney Disease Study24 data
in Section 4 of this paper). Another recent example is
given by the C-index estimates presented in Zacharias
et al.,25 who evaluated two prediction models for the
progression of chronic kidney disease to kidney failure.
Although the authors considered a slightly different
setting than the one introduced above (allowing for the
presence of a competing event), the resulting C-index
estimates (computed in three external validation studies
and presented in table 2 of Zacharias et al.) show a clear
negative association with the truncation time.
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To address these issues and to improve the interpretabil-
ity of pooled C-index estimates, we consider a set of statisti-
cal techniques that incorporate the time dependency of C τð Þ
directly in a suitably specified meta-regression model.
Our proposed model is based on the frequentist modeling
approach with restricted maximum likelihood (REML)
estimation, as recommended in the recent guidance
paper by Debray et al.6 Specifically, due to the above-
mentioned heterogeneity of external validation results,
we will focus throughout on random-effects models. We
propose to model the time dependency of C τð Þ by either a
restricted cubic spline (RCS) or a 2nd degree fractional
polynomial (FP2), thereby accounting for nonlinearities
in the regression curve (cf. Figure 1). Using simulation
studies, we will compare the RCS and FP2 models to
standard random-effects meta-analysis not including τ as

covariate, and also to linear meta-regression. Further-
more, we will investigate whether meta-regression can be
improved by transforming the C-index estimates before
model fitting (for instance, using a logit transformation).

The rest of the paper is organized as follows: After
starting with the definition of relevant quantities
(Section 2.1), we provide a brief overview of existing tech-
niques to estimate the C-index (Section 2.2). The proposed
methodology is described in Sections 2.3 and 2.4. Section 3
contains a comprehensive simulation study on the proper-
ties of the proposed approach, including a comparison to
existing methods. A real-world illustration on data col-
lected for the German Chronic Kidney Disease Study is
presented in Section 4. The final section summarizes the
main findings of the article.

2 | METHODS

2.1 | Derivation and properties of the
C-index

Consider a validation study with n observations and a
time-to-event outcome that might be subject to right cen-
soring. The observations are assumed to be independent
and identically distributed. The score
values and observed event times are denoted by ηi andeTi ¼ min Ti,Zið Þ, i¼ 1,…,n, respectively, where
Z1,…,Znð ÞΤ is a vector of continuous censoring times.
The binary variables Δi ¼ I Ti ≤Zið Þ, i¼ 1,…,n, indicate
whether observations are censored (Δi ¼ 0) or not
(Δi ¼ 1). Assumptions on the censoring process are given
below. We further assume that there are no tied observa-
tions, i.e. all sample values of Ti and Zi are assumed to
be unique. As shown by Heagerty and Zheng,11 the con-
cordance probability in (1) can be derived from a set of
time-dependent sensitivities and specificities, which, at
each time point t, relate the current survival status to the
event that η exceeds a given threshold c�ℝ. More specifi-
cally, following the incident/dynamic approach,11 one
defines incident cases by observations experiencing an
event at t (i.e., Ti ¼ t) and dynamic controls by observa-
tions having the event after t (i.e., Ti > t). With these defi-
nitions, time-dependent sensitivities and specificities are
given by

sensIt cð Þ¼ P ηi > cjTi ¼ tð Þ and

specDt cð Þ¼ P ηi ≤ cjTi > tð Þ,

where the superscripts I and D refer to the terms “inci-
dent” and “dynamic”, respectively. At each time point,
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FIGURE 1 Exemplary meta-analysis with simulated test data.

The upper panel shows the expected censoring rate at each value of

the truncation time. The lower panel shows the study-specific

C-index estimates. The sizes of the bubbles are proportional to the

inverse variances of the C-index estimates. The solid black line

refers to the true C-index according to the data-generating process

whereas the horizontal gray line refers to the pooled C-index

estimate that would have been obtained from a standard random

effects meta-analysis ignoring time dependency. The vertical

dashed line shows the “implicit” truncation time corresponding to

the pooled estimate. Obviously, this model lacks a well-defined

estimand, and it is unclear how the pooled estimate should be

interpreted. The blue and red lines refer to the meta-regression

curves obtained from fitting a restricted cubic spline and a

fractional polynomial model to the logit-transformed C-index

estimates. For details on model specification, see Section 3. [Colour

figure can be viewed at wileyonlinelibrary.com]
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sensIt cð Þ and specDt cð Þ can be summarized by an incident/
dynamic receiver operating characteristic (ROC) curve,
which is defined as

ROCI=D
t pð Þ¼ sensIt 1� specDt

� ��1
pð Þ

h i
, p� 0,1½ �: ð2Þ

Incident/dynamic ROC curves can further be summa-
rized by the incident/dynamic AUC curve

AUCI=D
t ¼

Z 1

0
ROCI=D

t pð Þdp,

which equals the probability P ηi > ηj jTi ¼ t,Tj > t
� �

for
independent observations i and j. Finally, denoting the
probability density function of T by f tð Þ, the concordance
probability C τð Þ is derived as the area under a weighted
version of the incident/dynamic AUC curve. More specif-
ically, it can be shown that

C τð Þ¼ P ηi > ηj jTi <Tj,Ti ≤ τ
� �

¼
Z τ

0
wτ
t �AUCI=D

t dt ð3Þ

with weights wτ
t ¼ f tð Þ �P T > tð Þ=R τ

0 f uð Þ �P T >uð Þdu (see
Heagerty and Zheng11 for a formal proof ).

A related quantity is the cumulative/dynamic ROC
curve, which is defined in the same way as (2) but with
sensIt cð Þ replaced by time-dependent sensitivities of the
form sensCt cð Þ¼P ηi > cjTi ≤ tð Þ, where the superscript
C refers to the term “cumulative”. With this approach,
cumulative cases are defined by observations experiencing
an event at or before t (i.e., Ti ≤ t). Correspondingly, the
cumulative/dynamic AUC curve is given by the areas
under the cumulative/dynamic ROC curves, i.e. by

AUCC=D
t ¼ P ηi > ηj jTi ≤ t,Tj > t

� �
. Defining a generalized

version of AUCC=D
t by AUCC=D

s,t ¼P ηi > ηj jTi ≤ s,Tj > t
� �

,

it can further be shown23 that

AUCI=D
t ¼ ∂

∂s
AUCC=D

s,t

���
s¼t

� P T ≤ tð Þ
f tð Þ þAUCC=D

t : ð4Þ

Thus, combining Equations (3) and (4), the C-index
can be derived using either incident or cumulative case
definitions.

In practice, C τð Þ is often observed to decrease mono-
tonically with τ (e.g., Figure 1). This behavior could, for
example, be caused by a monotonically decreasing AUC
curve, which tends to take smaller values as t increases.26

Note, however, that the monotonicity of C τð Þ does not
hold in general and that it is possible to construct scenar-
ios where C τð Þ shows a distinctly non-monotonic behav-
ior (see Figure 2).

2.2 | Estimation of the C-index

In the absence of censoring, C τð Þ is naturally estimated
by the relative frequency

bCRF τð Þ¼

P
i≠ j

I ηi > ηj

� �
� I eTi < eTj

� �
� eTi ≤ τ
� �

P
i≠ j

I eTi < eTj

� �
� I eTi ≤ τ
� � ,

which compares the orderings of eTi and ηi in an observa-
tion-wise manner. When applied to right-censored data,
this approach is no longer appropriate, as pairs of obser-
vations where the shorter observed event time is censored
(eTi < eTj and Δi ¼ 0) cannot be compared in a meaningful
way. An obvious way to incorporate censoring is to dis-
card all pairs of non-comparable observations, yielding
the estimator

bCHarrell τð Þ¼

P
i≠ j

I ηi > ηj

� �
� I eTi < eTj

� �
� I eTi ≤ τ
� �

�Δi

P
i≠ j

I eTi < eTj

� �
� I eTi ≤ τ
� �

�Δi

:

During the past decades, this estimator (also termed
“Harrell's C”) has become the most popular way to evalu-
ate C τð Þ. However, it shows a notable upward bias if cen-
soring rates are high.12,15 To address this issue, Uno et al.
proposed an inverse-probability-of-censoring-weighted
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FIGURE 2 Example of a concordance probability with non-

monotonic behavior. The black line (depicting the C-index as a

function τ) was derived by averaging 100 estimates of C τð Þ using the
method of Uno et al.14 Estimates were obtained from

100 independent samples with exponentially distributed event

times (n¼ 1000, rate= 1, no censoring). The true underlying model

was given by η¼�sin 8 �Tð Þ2. The gray lines refer to the

100 sample-specific curves. Although this example has been

designed for illustrative purposes only and would be rarely

encountered in practice, it shows that monotonicity of C τð Þ cannot
be assumed in general.
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version of Harrell's C (termed “Uno's C”) that is
defined by

bCUno τð Þ¼

P
i≠ j

I ηi > ηj

� �
� I eTi < eTj

� �
� I eTi ≤ τ
� �

�Δi=bG eTi

� �2

P
i≠ j

I eTi < eTj

� �
� I eTi ≤ τ
� �

�Δi=bG eTi

� �2 ,

ð5Þ

where bG �ð Þ is a consistent estimator of the censoring sur-
vival function G tð Þ¼P Zi > tð Þ obtained from the valida-
tion data.14 Usually, G �ð Þ is estimated by the Kaplan–
Meier method, although more complex models (e.g.
depending on a set of covariates) might be considered.
Assuming conditionally independent censoring (i.e. inde-
pendence of Ti and Zi 8i given the covariates) and a cor-
rectly specified censoring model with G tð Þ> δ>0 8t,
Uno et al.14 showed that bCUno τð Þ is weakly consistent for
C τð Þ as n!∞.

Remark: The estimator considered by Gerds et al. is

slightly different from (5) in that is bG eTi

� �2
replaced by

bG eTi

� �
� bG eTi�

� �
in both the numerator and the denomi-

nator, where eTi� refers to a time point that is infinitesi-

mally smaller than eTi.
12 Clearly, this difference is only

relevant when bG �ð Þ is not continuous in t (for instance
when the Kaplan–Meier method is used to estimatebG �ð Þ). In our analysis we will use the R add-on package
pec27 that implements the method by Gerds et al.12 but
refer to this estimator as “Uno's C”.

A major advantage of Harrell's C and Uno's C is that
both estimators are non-parametric in the sense that they
do not make any assumptions on the distribution of T.
An alternative way to deal with non-comparable pairs of
observations is to specify a parametric or semi-parametric
working model for T (e.g., a Cox regression model) and
to derive estimators of C τð Þ based on the characteristics
of this model.11,13,28 It is also possible to apply a model-
free estimator of the incident/dynamic AUC curve29 and
to estimate the C-index via numerical integration of the
AUC estimate. In this paper we will consider Harrell's C
and Uno's C throughout.

2.3 | On the role of the truncation time τ

As stated in Section 1, the unrestricted C-index
Pðηi > ηj jTi <TjÞ comes with an intuitive probabilistic
interpretation, comparing the rankings of the values ηi
and Ti, i¼ 1,…,n. This interpretation is considerably less
intuitive if an additional truncation time τ<∞ is
included in the definition of the C-index. Nonetheless,

there exist both conceptual and technical reasons to pre-
fer a restricted version of the concordance probability
over the unrestricted one: First, the sample valueseTi,Δi,ηi
� �

, i¼ 1,…,n, are often obtained from a valida-

tion study with a limited follow-up time. In this case, the
maximum possible time horizon τ is naturally given by
the length of the follow-up time, implying that any
estimate of the concordance probability derived from the
validation data is a restricted one.30 Second, the censor-
ing model used in the definition of Uno's C usually
assumes G tð Þ> δ>0 8t, posing a problem if non- or
semi-parametric methods are applied to estimate G �ð Þ
beyond τ≔ max i eTi

� �
. In particular, the Kaplan–Meier

estimator (being the predominant estimator of G �ð Þ in

practice) is zero beyond max i eTi

� �
if the longest observed

event time corresponds to a censored observation (and

does not even exist beyond max i eTi

� �
if this observation

has Δi ¼ 1). These problems can be avoided if a restricted
version of the C-index (with a suitably defined value of

τ< max i eTi

� �
) is considered for analysis.

2.4 | Meta-regression of C-index
estimates

In this section we describe a set of models to account for
the time dependency of the restricted C-index in meta-
regression. We start with the classical model for time-
independent meta-analysis, also discussing possible trans-
formations of C-index estimates before model fitting.

Random-effects meta-analysis. Consider a set of K
independent validation studies with reported study-spe-
cific estimates bC1,…,bCK and reported variance estimatesbσ21,…,bσ2K . As argued above, each of these estimates relates
to a study-specific truncation time τk, k¼ 1,…,K . Classi-
cal parametric meta-analysis ignores this time depen-
dency, assuming that bC1,…,bCK are estimates of some
study-specific unrestricted concordance probabilities
C1,…,CK . We further assume (here and in all other
models, following standard procedures) that each bσ2k cor-
responds to the true variance σ2k of the respective residual
term ϵk ¼ bCk�Ck. The corresponding model is given by

bCk ¼Ckþϵk, ϵk �N 0,σ2k
� �

,

Ck ¼Cpopþak,ak �N 0,σ2a
� �

, k¼ 1,…,K, ð6Þ

where the aim is to obtain a “pooled” estimate of the pop-
ulation value Cpop. The study-specific deviations ak are
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assumed to be independent of ϵk and to follow a normal
distribution with between-study variance σ2a.

If homogeneity of studies is assumed, i.e. σ2a ¼ 0 and
C1 ¼…¼Ck ¼Cpop, then this is referred to as common-
effect meta-analysis. In contrast, random-effects meta-
analysis assumes σ2a ≠ 0, accounting for study-specific
heterogeneity. Results of validation studies are usually
expected to vary between studies, as these may differ in
sample selection and many other design aspects. There-
fore, and in line with the recommendation of Debray
et al.,6 we will restrict our analysis to random-effects
models for the purpose of our study. In the literature,
numerous methods to estimate σ2a have been proposed.31

Here we follow the recommendation by Debray et al.6

and consider methods based on restricted maximum like-
lihood (REML) estimation. With this approach, estima-
tion of σ2a and Cpop is performed jointly using a model
with inverse variance weights 1=bσ2k.

Transformations of C-index estimates. The classical
approach to meta-analyze C-index values is based on the
untransformed estimates bC1,…,bCK . This approach, which
relies on the asymptotic normality of estimators like
Uno's C, has been followed e.g. by Büttner et al.20 and
Waldron et al.32 Other authors have argued that the con-
cordance probability is bounded between 0 and 1, so that
the normality and homoscedasticity assumptions in
(6) are unlikely to hold. To address these issues, they
transformed C-index estimates before meta-analysis,
using e.g. the logistic transformation

g bCk

� �
¼ log bCk= 1� bCk

� �� �
33 or the arcsine square root

transformation g bCk

� �
¼ sin�1 bC1=2

k

� �
.
34 After model fit-

ting, the estimate of Cpop is usually back-transformed to
the original probability scale.

Linear meta-regression. As argued above, classical
meta-analysis does not account for the implicit time
dependency of the estimates bC1,…,bCK . As a consequence,
it is unclear how to interpret the population value Cpop in
Equation (6). In particular, Cpop will not be a meaningful
approximation of the unrestricted C-index if C τð Þ
decreases with τ (see Figure 1).

A more appropriate approach to account for the time
dependency of C τð Þ is to consider a meta-regression
model of the form

g bCk

� �
¼ f τk;γð Þþakþϵk, ak �N 0,σ2a

� �
, ϵk �N 0,σ2k

� �
,

ð7Þ

k¼ 1,…,K, where g �ð Þ is a pre-specified transformation
(for instance, the logistic transformation) and τk is
included as a covariate. The relationship between bCk and

τk is modeled by the (possibly nonlinear) function f �ð Þ
depending on a coefficient vector γ �ℝp. Instead of calcu-
lating a one-dimensional pooled estimate of Cpop, the
idea is to first estimate the coefficient vector γ and to sub-
sequently approximate the full curve C τð Þ by the esti-
mated function g�1 f τ;bγð Þð Þ.

The simplest way of specifying a model of the form
(7) is to consider the linear function f τk;γð Þ¼ γ0þ τk � γ1,
yielding the linear meta-regression model with
γ¼ γ0,γ1ð ÞΤ �ℝ2. Estimation of γ is performed in the
same way as above, i.e. using REML with inverse vari-
ance weights 1=bσ2k.

Spline meta-regression. Although the linear meta-
regression model accounts for the time dependency of
C τð Þ, it does not capture nonlinear functional relation-
ships as the ones presented in Figures 1 and 2. This might
be a problem even when the values of bCk are transformed
before model fitting. A convenient approach to address
nonlinearity is to represent f τk;γð Þ by a restricted cubic
spline, as implemented in the R packages metafor and
rms.35,36 With this approach, f τk;γð Þ is specified as a
weighted sum of truncated power basis functions
(defined using a pre-specified set of interior knots), and γ
is set equal to the vector of weights. Regarding the
number and placement of the knots, we follow the
recommendations in section 2.4.6 of Harrell Jr.,37 using
four knots (= basis functions) if K ≥ 30 and three knots if
K <30. Obviously, the spline meta-regression model
depends on a larger number of coefficients than the
linear meta-regression model, increasing its flexibility but
also being more prone to overfitting (especially when the
number of studies is small).

Fractional polynomial meta-regression. An alternative to
spline regression is fractional polynomial (FP) modeling,
which is based on transformations of τk by a weighted sum
of power functions. Following Royston and Sauerbrei,38

we consider fractional polynomials of degree 2 (“FP2”),
which are defined by f τk;γð Þ¼ γ0þ γ1 � τp1k þ γ2 � τp2k , where
p1 and p2 are chosen from the predefined set of powers
S¼ �2,�1, �0:5,0,0:5,1,2,3f g with τ0k ≔ log τkð Þ. In case
p1 ¼ p2 ≕ p�, the function f �ð Þ is defined by
f τk;γð Þ¼ γ0þ γ1 � τp

�
k þ γ2 � τp

�
k � log τkð Þ. As demonstrated

by Royston and Sauerbrei38 and Royston and Altman,39

FP2 models are able to capture a wide variety of nonlinear
trends, providing “enough flexibility for modelling many
of the types of continuous function we encounter in the
health sciences and elsewhere” (Royston & Sauerbrei,38

p. 73). For meta-regression of the C-index we propose to
use a function of the form f τk;γð Þ¼ γ0þ γ1 � τ�0:5

k þ γ2 � τ0:5k ,
i.e. p1 and p2 are set to �0:5 and 0:5, respectively. The lat-
ter values are inspired by the “typical” shape of C τð Þ in
Figure 1 and by the fact that this shape closely resembles
the respective FP2 plot in Figure 1 of Royston.40 Section 4
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presents a detailed empirical analysis of the choice of the
power values.

Exponential decay meta-regression. In addition to the
aforementioned meta-regression models, we consider the
exponential decay meta-regression model, which employs
an alternative regression function that requires the time-
restricted concordance index to be monotone decreasing
with τ. This approach might be suitable when there
is strong evidence of a monotonic trend in C τð Þ (as the
one shown in Figure 1). The exponential decay meta-
regression model is specified as

g bCk

� �
¼ θþakþ R0� θþakð Þð Þ � exp �exp βð Þ � τkð Þ

þϵk, ak �N 0,σ2a
� �

, ϵk �N 0,σ2k
� �

,
ð8Þ

with parameter vector γ¼ θ,β,R0ð ÞT . By definition,
g bCk

� �
converges to θþakþϵk as τk !∞, implying that

the unrestricted C-index might be estimated by the fitted
value of θ. (Note that this is not possible with the linear,
spline, and fractional polynomial regression approaches
described above.) The value of R0 corresponds to an
approximation of C τkð Þ at τk ¼ 0, and β determines the
rate of decay. Further note that the random-effects struc-
ture of the exponential decay model is slightly different
from the respective structure in (7), as the random effect
ak enters (8) in a nonlinear way.

3 | SIMULATION STUDY

3.1 | Experimental setup

Here we present the results of a simulation study that we con-
ducted to analyze the properties of the models discussed in
Section 2. The aims of our study were (i) to investigate the
benefit of incorporating the truncation times τk in meta-
regression models for the concordance probability, (ii) to
compare the performance of the meta-regression
approaches discussed in Section 2 with regard to estimation
accuracy and numerical stability, and (iii) to investigate the
use of variable transformations before model fitting.

Our simulation study was based on a Weibull model
of the form

log Tið Þ¼ ηi�σWi, ηi �N 0,0:52
� �

, i¼ 1,…,n, ð9Þ

with normally distributed score values ηi and noise vari-
ables Wi that followed a standard Gumbel distribution
(independent of ηi). The parameter σ was set to 0.5, yield-
ing the C-index curve presented in Figure S1. For

example, we obtained C τkð Þ¼ 0:79, 0:77 and 0:74 for
τk ¼ 0:2, 0:7 and 1:5, respectively.

Based on Model (9), we considered four scenarios for
meta-regression, setting the number of validation studies
to K ¼ 10, 15, 30, and 50. For each K we simulated study
data sets with nk observations (k¼ 1,…,K), generating
the sample sizes nk randomly from the grid
100,110,120,…,990,1000f g. The censoring times Zi were
sampled from an exponential distribution with rate
parameter 0:5. The truncation times τk of the studies
were generated as follows: First, we defined a joint maxi-
mum follow-up time (denoted by τmax ) for all studies.
Afterwards we sampled the values τk from a truncated
gamma distribution on the interval 0:1;τmax½ �. The shape
and rate parameters of this distribution were set to 1.5
and 1, respectively. Subsequently, event times witheTi > τk were censored at τk (study-wise). We considered
three values of τmax , namely τmax ¼ 0:7 (“short follow-
up”), τmax ¼ 0:9 (“medium follow-up”), and τmax ¼ 2
(“long follow-up”), yielding average censoring rates of
0.92, 0.86 and 0.64, respectively. Estimates of the C-index
were obtained using Uno's C, as implemented in the R
package pec. To introduce study-specific heterogeneity,
we added normally distributed random numbers ak to
the C-index estimates. These numbers were drawn from
a normal distribution with zero mean and variance σ2a.
Again we considered three values, setting σ2a ¼ 0 (“no het-
erogeneity”), σ2a ¼ 0:012 (“moderate heterogeneity”), and
σ2a ¼ 0:032 (“large heterogeneity”). The choice of these
numbers was inspired by our work in Zacharias et al.,25

where differences in C-index values varied between 0.002
and 0.06 across validation studies (the latter number
corresponding to two standard deviations of our “large
heterogeneity” setting).

In each of the 4�3�3¼ 36 scenarios (defined by the
values of K, τmax and σ2a) we set the number of Monte
Carlo replications to 1000 and fitted the following models to
the simulated study data: (i) meta-analysis, (ii) linear meta-
regression, (iii) spline meta-regression, (iv) fractional poly-
nomial meta-regression, and (v) exponential decay meta-
regression, as described in Section 2. Model fitting was car-
ried out using the metamean, metareg and rma functions of
the R packages meta and metafor,35,41 except for the expo-
nential decay model for which the function nlme of the R
package nlme42 was used. For sensitivity analysis, we addi-
tionally carried out random-effects meta-analyses using the
30% and 50% of studies with largest values of τk only.
This approach was inspired by the shape of C τð Þ in Fig-
ure 1, assuming that studies with a long follow-up time
would be less affected by time dependency due to the
convergence behavior of C τð Þ. Standard errors of the C-
index estimates (needed to calculate the weights 1=bσ2k)
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were computed using 1000 bootstrap samples with
replacement.

Transformation functions included the identity trans-
formation (id), the logistic transformation (logit), and the
arcsine square root transformation (asin). Another candi-
date transformation would have been the double arcsine
transformation; however, we did not consider this trans-
formation because it has recently been found unsuitable
for meta-analysis purposes.43 Comparisons of the respec-
tive C-index estimates were carried out at the population
level (setting σa ¼ 0) after back transforming the fitted
values to the original scale.

The following criteria were used to evaluate the
results of the simulation study:

1. To investigate the numerical stability of the methods,
we calculated the proportion of simulation runs in
which the respective R fitting functions issued errors
and/or warnings indicating convergence issues. These
assessments were necessary since each of the studies
entered the models with a separate random effect ak
and a separate variance term σ2k, potentially leading to
some instabilities in the REML procedure.

2. To investigate the estimation accuracy of the meta-
regression models at a fixed time point, we evaluated
the pooled estimates of the restricted concordance
probability at t¼ 0:8 � τmax and compared these esti-
mates (including their 95% confidence intervals) to
the respective true values of C 0:8 � τmaxð Þ.

3. For all methods we computed the areas enclosed by the
true and the estimated C-index curves, using min k τkð Þ
and max k τkð Þ as interval limits. All areas were divided
by the interval length max k τkð Þ�mink τkð Þð Þ, see
Figure S2 for an illustration.

3.2 | Results

Tables S1–S4 contain a summary of the failure rates that
is, the percentages of the simulation runs in which the R
fitting functions issued either an error or a warning. It is
seen that fitting the exponential decay model resulted in
a large number of convergence issues. For example, in
the scenario with K ¼ 30 studies (Table S3), failure rates
were as high as 74:3% of the simulation runs. Generally,
failure rates tended to decrease with the length of follow-
up, which can be explained by the more pronounced cur-
vature of the C-index curve in these scenarios (showing
stronger support for the shape of the exponential decay
function). Still, failure rates were high even in the most
favorable settings. We conclude that the exponential decay
method may not be recommended for meta-regression of
the concordance index, and we therefore did not consider

this model further. The failure rates of the other methods
were throughout close to zero.

In the remainder of this section, we present the
results obtained from the scenario with K ¼ 30 studies.
The results of the other three scenarios (K ¼ 10, K ¼ 15,
K ¼ 50) are presented in the Supporting Information.

Figure 3 presents the pooled concordance probability
estimates at the fixed truncation time 0:8 � τmax (logistic
transformation, K ¼ 30). It is seen that ignoring the time-
dependency of C τð Þ resulted in a bias of classical ran-
dom-effects meta-analysis. In line with Figure 1, this bias
was positive in most of the scenarios and was most pro-
nounced when the follow-up time was long. It was close
to zero on average when the follow-up time was short. As
expected, the estimates obtained from the sensitivity ana-
lyses (corresponding to random-effects analyses of the
30% and 50% of studies with largest values of τk) were
almost unbiased in the scenarios with long follow-up.
The meta-regression methods performed well in all set-
tings, with spline meta-regression showing a higher vari-
ability than linear and fractional polynomial meta-
regression. As expected, the variance of the estimates
increased as the heterogeneity between studies became
larger.

Similar results were obtained in the scenarios with
K ¼ 10, K ¼ 15 and K ¼ 50 (Figures S3–S5, respectively).
The results obtained from the untransformed and arcsine-
square-root-transformed estimates (K ¼ 30) are presented
in Figures S6 and S7, respectively. Compared to the logit-
transformed estimates, these estimates showed a slightly
increased bias, especially in the scenarios with short
follow-up. Again, spline meta-regression had a higher
variability than fractional polynomial meta-regression.

Figure 4 presents the estimated coverage probabilities
of the 95% Hartung-Knapp confidence intervals at the
fixed truncation time 0:8 � τmax (logistic transformation,
K ¼ 30). It is seen that the confidence intervals obtained
from the meta-analysis model (ignoring follow-up time)
did not reach the desired coverage probability in the sce-
nario with long follow-up. All other coverage probability
estimates were close to the 95% level. The results
obtained from the models with untransformed and
arcsine-square-root-transformed C-index estimates
(K ¼ 30) showed similar patterns (Figures S8 and S9,
respectively), except that the meta-analysis model per-
formed generally worse than the other models when
fitted to the untransformed estimates (regardless of the
length of follow-up). The estimated coverage probabilities
obtained from the scenarios with K ¼ 10, K ¼ 15 and
K ¼ 50 showed similar patterns as well, again suggesting
that the meta-analysis model is inferior to the meta-
regression models in the scenarios with long follow-up
(data not shown).

SCHMID ET AL. 815

 17592887, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jrsm

.1655 by K
arlsruher Institut F., W

iley O
nline L

ibrary on [17/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Table 1 presents the areas enclosed by the true and the
estimated C-index curves. It is seen that the areas obtained
from time-independent random-effects meta-analysis
tended to increase with increasing follow-up time, whereas
the respective areas obtained from the meta-regression
models tended to decrease with increasing follow-up time.
Random-effects meta-analysis was the overall best method
in settings with short follow-up. By contrast, linear meta-
regression of logit-transformed C-index estimates and frac-
tional polynomial meta-regression of logit-transformed C-
index estimates tended to perform best in the scenarios
with moderate and long follow-up times, respectively.
These results clearly suggest that the time-constant func-
tions obtained from random-effects meta-analysis are

reasonable approximations to C τð Þ in settings with a short
follow-up. By contrast, the benefits of modeling C-index
values by a regression function become apparent when
follow-up times are “long enough” to demonstrate possi-
ble time dependencies and nonlinear shapes of C τð Þ (for
a discussion on how to assess the relative length of the
follow-up time, see Section 4). In most cases, the areas
between the true and the estimated curves were smallest
when C-index estimates were transformed by the logistic
transformation before model fitting. Similar results were
obtained in the scenarios with K ¼ 10, K ¼ 15 and K ¼ 50
(Tables S5–S7, respectively), except that the areas
obtained from time-independent meta-analysis were con-
siderably less dependent on follow-up time when K ¼ 10.
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FIGURE 3 Results of the simulation study (K ¼ 30). The boxplots summarize the pooled estimates of the restricted concordance index

at 0:8 � τmax . All C-index estimates were transformed using a logistic transformation before model fitting. The red and the gray lines refer to

the true values of C 0:8 � τmaxð Þ and the unrestricted values of the concordance index, respectively. Note that the gray lines coincide with the

red lines in the lower three panels. [Colour figure can be viewed at wileyonlinelibrary.com]
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In addition, linear meta-regression of logit-transformed
C-index estimates tended to perform best for long follow-
up lengths in this scenario (Table S5).

In summary, our simulation study suggests that
(i) spline and fractional polynomial meta-regression
should be preferred over the exponential decay approach
to model nonlinearities in C τð Þ, (ii) pooled estimates
obtained from time-independent meta-analysis are rea-
sonable approximations of C τð Þ as long as follow-up
times short, whereas it is beneficial to consider increas-
ingly complex meta-regression models with increasing
values of τ and K, and (iii) models with logit-transformed
C-index estimates showed the overall best performance

(compared to untransformed and arcsine-square-root-
transformed estimates).

We further note that, compared to spline meta-
regression, fractional polynomial meta-regression showed
a slightly better overall performance in terms of the areas
enclosed between the true and the fitted C-index curves.
Importantly, the performance of fractional polynomial
meta-regression could be improved further by optimizing
the power values p1 and p2 (instead of considering the
fixed values �0:5 and 0:5, as done in this section). We
will investigate this issue further in Section 4. For details
on variable and power selection in fractional polynomial
regression, see Royston and Sauerbrei.38
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4 | ILLUSTRATION

To illustrate the proposed methods, we analyzed data
from the German Chronic Kidney Disease (GCKD)
Study, which is an ongoing multi-center cohort study that
enrolled 5217 patients with chronic kidney disease
(CKD). The aim of the study is to identify risk factors
associated with CKD progression, cardiovascular events
and death. For details on the inclusion/exclusion criteria
and the design of the study, see Eckardt et al.24 Baseline
data collection took place between March 2010 and
March 2012; it comprised measurements on clinical
and lifestyle variables (e.g. coronary heart disease,
smoking) and biomarker measurements obtained from
blood and urine samples. Follow-up data are collected
annually. The laboratory measurements collected for the
GCKD Study have been used previously for predictive
modeling and score development.25

An important characteristic of the GCKD Study is its
wide geographical coverage. Altogether, there are nine
study centers, each representing a specific German region
with a distinct patient population. During the past years,
it has become increasingly popular to account for such
heterogeneity by synthesizing center-specific estimates

via meta-analysis techniques.44–47 Here we followed this
approach and used the GCKD data to evaluate a prognos-
tic model in each of the nine centers, illustrating our
proposed methodology by meta analyzing the respective
center-specific C-index estimates (K ¼ 9). Note that the
availability of individual patient data allowed us to esti-
mate C τð Þ in each center at arbitrary time horizons.

For model building and evaluation we considered
the endpoint “time to cardiovascular death”. Data were
exported from the GCKD database after the 8th follow-
up examination (maximum follow-up time 2933 days,
median = 2554 days, first quartile = 2060 days, third
quartile = 2591 days, cardiovascular death rate = 200/
4455 = 4.5% after listwise deletion of patients with a miss-
ing value in at least one of the covariates). In the first step,
we split the data randomly into three equally sized parts:
The first part was used as training data for model building,
the second part was used as analysis data for prediction
and meta-regression, and the third part was used as test
data for evaluating the performance of the meta-regression
models. In the second step, we derived a prediction model
for cardiovascular death by fitting a Cox regression model
to the training data. The following (pre-selected) baseline
covariates were included in the model: C-reactive protein

TABLE 1 Results of the simulation study (K ¼ 30).

σa ¼ 0 σa ¼ 0:01 σa ¼ 0:03

Short Moderate Long Short Moderate Long Short Moderate Long

MA (id) 8.9 (4.9) 10.0 (2.0) 12.0 (1.5) 9.1 (5.1) 10.1 (2.1) 13.4 (2.5) 10.2 (6.1) 10.9 (3.3) 13.4 (2.5)

MA (id, last 50%) 8.4 (4.0) 11.7 (3.2) 11.7 (1.6) 8.6 (4.4) 11.9 (3.6) 14.1 (4.5) 10.7 (6.4) 13.4 (5.7) 14.1 (4.5)

MA (id, last 30%) 9.4 (5.0) 13.5 (4.4) 12.5 (2.5) 9.8 (5.6) 13.9 (5.1) 15.6 (5.8) 12.6 (8.3) 15.8 (8.0) 15.6 (5.8)

MA (logit) 7.9 (3.6) 10.8 (2.5) 11.4 (1.1) 8.2 (3.9) 10.8 (2.7) 12.9 (2.2) 9.7 (5.5) 11.5 (3.9) 12.9 (2.2)

MA (logit, last 50%) 9.2 (4.6) 12.7 (3.6) 11.9 (1.8) 9.5 (4.9) 12.9 (4.0) 14.1 (4.5) 11.4 (6.9) 14.1 (6.2) 14.1 (4.5)

MA (logit, last 30%) 10.4 (5.6) 14.4 (4.8) 12.7 (2.6) 10.8 (6.1) 14.7 (5.5) 15.5 (5.8) 13.5 (8.7) 16.4 (8.3) 15.5 (5.8)

MA (asin) 8.1 (4.2) 10.2 (2.1) 11.6 (1.3) 8.3 (4.4) 10.3 (2.2) 13.1 (2.3) 9.6 (5.6) 10.9 (3.3) 13.1 (2.3)

MA (asin, last 50%) 8.6 (4.2) 12.2 (3.4) 11.8 (1.7) 8.9 (4.5) 12.4 (3.8) 14.1 (4.5) 10.9 (6.5) 13.6 (5.9) 14.1 (4.5)

MA (asin, last 30%) 9.8 (5.3) 13.9 (4.6) 12.6 (2.5) 10.2 (5.8) 14.3 (5.3) 15.5 (5.8) 12.9 (8.4) 16.0 (8.1) 15.5 (5.8)

linear (id) 13.4 (7.6) 10.0 (6.2) 7.0 (2.2) 13.3 (7.6) 10.2 (6.2) 9.7 (3.8) 13.5 (7.9) 11.5 (6.4) 9.7 (3.8)

linear (logit) 9.5 (5.7) 7.4 (4.3) 6.9 (1.6) 9.7 (5.9) 7.8 (4.4) 9.5 (3.6) 11.4 (6.8) 10.2 (5.4) 9.5 (3.6)

linear (asin) 11.2 (6.7) 8.4 (5.2) 6.8 (1.7) 11.3 (6.8) 8.7 (5.3) 9.6 (3.7) 12.1 (7.2) 10.6 (5.8) 9.6 (3.7)

RCS (id) 16.0 (6.9) 12.6 (5.7) 6.9 (3.0) 16.2 (6.8) 12.9 (5.7) 11.5 (4.4) 17.6 (7.2) 15.1 (6.0) 11.5 (4.4)

RCS (logit) 13.4 (5.8) 10.8 (4.6) 6.2 (2.5) 13.7 (5.9) 11.2 (4.6) 11.2 (4.3) 16.0 (6.6) 14.1 (5.5) 11.2 (4.3)

RCS (asin) 14.5 (6.4) 11.5 (5.1) 6.4 (2.7) 14.8 (6.4) 11.9 (5.1) 11.3 (4.3) 16.6 (6.8) 14.5 (5.7) 11.3 (4.3)

FP2 (id) 14.4 (6.9) 11.2 (5.6) 6.3 (2.7) 14.6 (6.9) 11.5 (5.6) 9.8 (4.1) 15.5 (7.3) 13.2 (6.0) 9.8 (4.1)

FP2 (logit) 11.4 (5.7) 9.3 (4.4) 5.7 (2.4) 11.7 (5.9) 9.7 (4.5) 9.7 (4.1) 13.6 (6.7) 12.2 (5.3) 9.7 (4.1)

FP2 (asin) 12.7 (6.3) 10.0 (5.0) 5.9 (2.5) 12.9 (6.4) 10.4 (5.0) 9.7 (4.1) 14.3 (7.0) 12.6 (5.6) 9.7 (4.1)

Note: The table summarizes the areas enclosed by the true and the estimated C-index curves (mean [sd]), as obtained from the meta-regression models
described in Section 2. All areas were divided by the interval lengths max k τkð Þ�min k τkð Þð Þ and multiplied by 1000.
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(mg/L), cholesterol (mg/dL), calcium (mmol/L), phos-
phate (mmol/L), albumin (g/L), cystatin C (mg/L), age
(years), sex (male/female), urine albumin-to-creatinine
ratio (mg/g), hypertension (yes/no), previous coronary
heart disease (yes/no), smoking (non-smoker, former
smoker, current smoker), and estimated glomerular filtra-
tion rate (mL/min/1.73 m2). Furthermore, we generated a
random truncation time τk, k¼ 1,…,9, for each of the
study centers, restricting τk to be larger than 3.5 years in
order to obtain sufficiently large event counts. In the
third step, we used the coefficients of the Cox model to
predict the values of η in the analysis data. These values
were subsequently used to estimate the restricted concor-
dance probability in each study center at the center-spe-
cific truncation times τk. The resulting estimates bCk

(obtained by application of Uno's C) are visualized in
Figure 5a. In the fourth step, we meta-analyzed the
center-specific C-index estimates by applying the
methods presented in Section 2.4 to the pairs of values

τ1,bC1

� �
,…, τ9,bC9

� �
. Based on the results of our simula-

tion study, C-index estimates were logit-transformed

before model fitting. In the fifth step, we generated 1000

bootstrap samples from the test data and re-estimated the

concordance probabilities C τkð Þ, k¼ 1,…,9, as well as the
fitted values g�1 f τk;bγð Þð Þ (obtained from meta-regression)

in each of the samples. Furthermore, we computed

the weighted root mean squared error (RMSE, defined by

PK
k¼1nk=n bCk�g�1 f τk;bγð Þð Þ

� �2
� 	1=2

), which was used to

evaluate and compare the performance of the meta-

regression models.

The fitted curves obtained from the analysis data are
presented in Figure 5b. It is seen that the meta-regression
models (accounting for the length of follow-up) resulted
in very similar fits. Fractional polynomial meta-
regression seemed to perform best by visual inspection.
The model summaries (given in Table 2) confirm these
results, with the values of the estimated between-study
standard deviation bσa ranging between 0.708 and 0.821
on the logit scale. Boxplots of the RMSE values (obtained
from the bootstrapped test data) are shown in Figure 5c.
Again, it can be seen that the models performed simi-
larly, with the highest RMSE value observed for the
meta-analysis model and the lowest RMSE value for
the fractional polynomial meta-regression model.

In the final step, we investigated whether we could
improve the performance of fractional polynomial meta-
regression by optimizing the power values of the FP2
model. To this purpose, we repeated the bootstrap analy-
sis of the GCKD test data, this time computing the RMSE

0.6

0.7

0.8

0.9

1.0

4 5 6 7
time [y] (τk)

C
−I

nd
ex

(A)

0.6

0.7

0.8

0.9

1.0

4 5 6 7
time [y] (τk)

C
−I

nd
ex

MA
(logit)

linear
(logit)

RCS
(logit)

FP2
(logit)

(B)

0.02

0.04

0.06

0.08

0.10

MA
(logit)

linear
(logit) (logit)

RCS
(logit)
FP2

R
M

SE

(C)

FIGURE 5 Analysis of the German Chronic Kidney Disease (GCKD) Study data. (a) Nine center-specific C-index estimates at randomly

generated truncation times τk , k¼ 1,…,9. Estimates and 95% confidence intervals (represented by bars) were obtained by application of

Uno's C to the GCKD analysis data. (b) The colored lines refer to the back-transformed meta-analysis and -regression curves obtained by

fitting the models of Section 2.4 to the logit-transformed C-index estimates (FP2, fractional polynomial meta-regression; linear, linear

meta-regression; MA, standard random effects meta-analysis ignoring time dependency; RCS, restricted cubic spline meta-regression). (c)

Root mean squared error values obtained from the bootstrapped test data (1000 replications). [Colour figure can be viewed at

wileyonlinelibrary.com]
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values obtained from all possible combinations of the
powers p1,p2 � �2, �1,�0:5,0,0:5,1,2,3f g. The results of
our analysis suggest that the RMSE values were not very
sensitive to the choice of powers (Figure 6). In particular,
the performance of our initial model from Section 2.4
(p1 ¼�0:5, p2 ¼ 0:5, Figure 5c) was close to the perfor-
mance of the optimal model with p1 ¼ p2 ¼�2. In simu-
lations (based on the same design as in Section 3), we
additionally investigated the use of 3rd degree fractional
polynomials for meta-regression of the C-index. Our
results (not shown) suggest that increasing the degree of
the fractional polynomial had very little effect on the
median C-index estimates at 0:8 � τmax . Instead, this

approach tended to increase both the variance of the esti-
mates and the areas enclosed by the true and estimated
C-index curves.

5 | DISCUSSION

The development of prognostic models has become a pre-
dominant task in medical and epidemiological research.
As noted by Riley et al.,5 “prognostic factors have many
potential uses, including aiding treatment and lifestyle
decisions, improving individual risk prediction, providing
novel targets for new treatment, and enhancing the
design and analysis of randomized trials identify patients
for trials“. To this end, a large number of prognostic
scores has been developed, requiring proper validation to
become accepted for eventual use in clinical practice. The
gold standard for validation is to analyze the performance
of novel scores using large external cohorts; however, for
a variety of reasons (including confidentiality and logisti-
cal issues), this is often not possible. It is therefore impor-
tant to combine the results of smaller validation studies
using meta-analysis techniques.

In this paper we proposed and evaluated a framework
for meta-analyzing the concordance index for time-
to-event data, which has become an established measure
for the discriminative ability of prognostic scores (see
Steyerberg8 for a comprehensive introduction to predic-
tive modeling, also including other aspects of validation
like calibration and clinical usefulness). We analyzed the

TABLE 2 Analysis of the GCKD Study data.

bσa Q df p value

MA (logit) 0.708 22.3 8 0.0043

Linear (logit) 0.711 19.9 7 0.0059

RCS (logit) 0.821 18.9 6 0.0043

FP2 (logit) 0.793 18.1 6 0.0060

Note: The table summarizes the fits of the meta-analysis and -regression
models, as obtained by applying the methods of Section 2.4 to the center-
specific C-index values (estimated from the GCKD analysis data). The

logistic transformation was applied to the estimated C-index values before
model fitting. The table presents the values of the estimated between-study
standard deviation bσa (on the logit scale), the test statistic for residual
heterogeneity Q (following a Chi-squared distribution under the null
hypothesis of homogeneous residuals), its degrees of freedom (df), and the

corresponding p value.
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FIGURE 6 Analysis of the German Chronic Kidney Disease (GCKD) data. The boxplots show the root mean squared error (RMSE)

values obtained from the bootstrapped test data (1000 replications) when evaluating all possible combinations of the power values

p1,p2 � �2,�1, �0:5,0,0:5,1,2,3f g of the FP2 models. The boxplots are ordered by median RMSE value. The dark orange boxplot

corresponds to the powers of the FP2 model from Section 2.4 (p1 ¼�0:5, p2 ¼ 0:5). [Colour figure can be viewed at wileyonlinelibrary.com]
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inherent time-dependency of C-index estimates (noted
previously by Longato et al.30) and proposed methods to
account for this time-dependency using meta-regression
models. In this respect, our paper connects to Debray
et al.9 who noted that “[…] researchers often refrain from
undertaking a quantitative synthesis or meta-analysis of
the predictive performance of a specific model. Potential
reasons for this pitfall are […] or simply a lack of method-
ological guidance.”

A key result of this work is that meta-regression
models including the study-specific truncation time as
covariate perform systematically better than classical
random-effects meta-analysis when follow-up times of
validation studies are long. Conversely, pooled estimates
obtained from classical meta-analysis are reasonable
approximations of the restricted concordance probability
as long as follow-up times short. We acknowledge that,
in practice, it might be challenging to determine whether
a time horizon should be considered “short” or “long”, in
particular when observation times are affected by high
dropout rates and/or the presence of competing events.
Still, we recommend to carefully investigate this issue,
especially since C-index values often tend to decrease
with τ, implying that studies with a short follow-up time
might suggest an overly optimistic discrimination accu-
racy. Generally, the rate of administrative censoring
might be an indicator of whether follow-up times might
be considered “long” or “short”. Furthermore, we recom-
mend visual inspection of C-index estimates in order to
examine their dependency on τ.

Based on our numerical experiments, we recommend
to transform C-index values using a logistic transforma-
tion and to employ either restricted cubic splines or frac-
tional polynomials to model the functional relationship
between the truncation time and the concordance index.
We further recommend to prefer fractional polynomials
over splines in settings where the number of studies is
“small” (5≤K ≤ 10), as they typically involve fewer
degrees of freedom than restricted cubic splines. In case
of convergence problems (which might become an issue
when the number of studies is smaller than five), our
framework readily allows for switching to a simpler model
(e.g. a linear meta-regression model). We also note that our
proposed models could be extended by additional covariates
reflecting different inclusion criteria in the analyzed studies.
Along the same lines, our framework could be adapted to
models with competing events.48

Generally, by building on the framework of Debray
et al.,6,9 our methodology is designed to synthesize
C-index estimates referring to the same score (e.g., the
Framingham Risk Score). Technically, one could also
imagine using our methods for a synthesis of C-index
estimates obtained from different scores. However, such

analyses are rarely done in practice, which is likely due
to the typically high heterogeneity between the included
models (see e.g. Büttner et al.,20 who considered a total of
18 prognostic models, but meta-analyzed only those
C-index estimates referring to the same model). In view
of these aspects, our perspective on the analysis of
different scores is that performance estimates referring to
different scores should better not be synthesized directly;
instead, comparisons of different scores should be done
by computing performance estimates from the same vali-
dation data (using the same truncation time for each
score). As an alternative, one could borrow information
from the other scores when analyzing one of them. This
could be achieved by shrinkage estimation, e.g. in a
Bayesian framework.49 A key barrier to meta-analyzing
C-index values is the huge variety of estimators that have
been proposed during the past decades (such as Harrell's
C and Uno's C).15 Since each of these estimators comes
with a different set of assumptions and/or properties, it is
challenging to synthesize validation studies relying on
different kinds of estimators. Importantly, some of the
estimators are known to be systematically biased,
e.g. when they rely on a Cox model (whose assumptions
might be violated) or when they show a censoring bias
(such as Harrell's C). We argue that these systematic
deviations should not be represented in a meta-regression
model by zero-mean random effects. Instead, we suggest
to develop methodological guidance on the definition
and use of appropriate estimators for the evaluation of
discriminatory power, aiming at a unified methodology
that would become a standard in future validation stud-
ies. Work on such guidance is currently undertaken by
the STRengthening Analytical Thinking for Observa-
tional Studies (STRATOS) initiative.50

Meta-regression of C-index estimates is also compro-
mised by the lack of proper reporting. In fact, when
searching for a real-world application to be presented in
Section 4, we found that most published studies reporting
C-index estimates did not include any information on the
respective time horizon. In some cases, we were able to
approximate this time horizon by the length of the respec-
tive follow-up time; however, in many cases the time hori-
zon was not mentioned at all. Based on the findings
presented in Section 3 of this paper, we suggest to always
report the time horizons together with C-index estimates
in future validation studies. We further suggest to report
and visualize the whole estimated C-index curve whenever
a meta-regression has been performed. Ideally, reporting
would also include time-dependent sensitivities and speci-
ficities in addition to C-index estimates, allowing for the
application of bivariate meta-analysis techniques.51

We finally note that the concordance index is (by far)
not the only prognostic measure to be affected by an
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inherent time dependency. Another important example
are incidence rates, which by definition depend on the
time frames under consideration. Clearly, the lengths of
these time frames have to be considered when meta-
analyzing incidence rates (see Olaciregui-Dague et al.52

for a recent example). Further research is needed to
evaluate possible adaptions of our methodology to these
measures.
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