
ScienceDirect

Available online at www.sciencedirect.com

Procedia CIRP 127 (2024) 116–121

2212-8271 © 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 18th CIRP Conference on Computer Aided Tolerancing
10.1016/j.procir.2024.07.021

10th CIRP Conference on Assembly Technology and Systems (CIRP CATS 2024)

Keywords: robot; simulation; optimization; machine tool; milling

1. Introduction

Industrial robots have seen a consistent surge in sales over
recent decades. However, despite their lower cost and greater
operation reach [1], they are not yet a common alternative for
high-precision machinery in assembly and manufacturing. One
salient limitation is their open kinematic chain, leading to
significantly reduced stiffness compared to alternative
machines. This results in positioning inaccuracies and low-
frequency mode coupling chatter, which reduces the precision
of assembly and machining processes and shortens the lifespan
of tools and robots. [2, 3]. Significant reductions in positioning
errors and chattering can be achieved by systematically
selecting trajectories [4, 5] and feed rates [6].

To determine optimal machining paths and feed rates, a
model that accurately predicts the robot's dynamic behavior
under load is essential. While many dynamic robot models
exist, the difficulty lies in parametrizing those models, as robot

manufacturers usually withhold dynamic parameters such as
stiffness and damping values. Current literature has yielded
many solutions to identify the stiffness and damping
parameters of robots [1, 7, 8]. However, the proposed solutions
are not fully automated and rely on user expertise, making them
impractical for non-experts.

This paper investigates methods to identify model
parameters during a milling process. Navigating the high-
dimensional solution space is challenging, so we investigate
multiple methods for effective parameter identification. The
presented approach is based on only widely available data like
kinematic chain data and operational robot data. Through this,
we aim to eliminate human influences and make precision
improvements available for every robot, irrespective of the
availability of detailed machine models or user expert
knowledge. The parametrized model is valid across multiple
domains, such as machining, fabrication, and assembly, and is
applicable to individual robots over their lifetime.

Jacobian-Sensitivity Approach for Identifying Machine Dynamic Model
Parameters of Robots with Flexible Joints

Florian Oexlea,*, Achim Benfera, Alexander Puchtaa, Jürgen Fleischera

awbk Institute of Production Science, Karlsruher Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
* Corresponding author. Tel.: +49-174-330-2745 ; E-mail address: florian.oexle@kit.edu

Abstract

The versatility and large work envelope have made robots a fixture in the field of assembly for years. However, their lower stiffness and pose
dependency require robust models to find optimal trajectories even for high accuracy applications. A significant obstacle in this domain is
parametrizing such models of compliant robots during operation. Addressing this gap, and considering the trend of robots performing
manufacturing tasks in parallel with assembly, we present an automated identification process to estimate the stiffness and damping parameters
of robot joints within a milling process. This method relies solely on universally accessible kinematic chain data and force and acceleration
measurements at the tool center point, eliminating the need for specialized equipment. The approach is based on a multi-body simulation, which
includes flexible 6-DOF bushing joints. Key to our approach is using Jacobian-based sensitivities inside a Random Search (RS) algorithm to
navigate the complexities of a sparse multi-dimensional parameter space. Our approach is versatile enough to accommodate various parameter
types. We test our approach on a simulated 3-joint robot with 6 DOF per joint. By pairing the Jacobian-based sensitivities with adaptions made
to the RS algorithm, we obtain accurate predictions for unknown input data with a mean relative displacement error of 2%.
© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 18th CIRP Conference on Computer Aided Tolerancing

Florian Oexle et al. / Procedia CIRP 127 (2024) 116–121 117

2. Related Work

Identifying dynamic model parameters is intrinsically tied
to the model being parameterized. Dynamic robot models are
typically classified as either experimental or theoretical
models. Experimental models function by learning transfer
functions to mimic input-output behavior. They are based on
fundamental building blocks that simplify the parameterization
process due to their universality. However, experimental
models often have limitations: they are typically valid only
within a confined working space or specific robot
configurations. Furthermore, their parameters have no physical
meaning and cannot be transferred to other models.

In contrast, theoretical models are grounded in tangible
physical principles. These physical correlations not only offer
interpretability but also facilitate transferability across models.
However, accurately identifying parameters for those models
proves challenging. [9]

Distributed element models, such as Finite Element (FE)
models, represent one category of theoretical models. To
perform parameter identification on them, which is very
resource intensive, they are usually simplified using, for
instance, model order reduction or by creating a meta-model
[10]. Distributed element models require a detailed 3D model
of the robot, often unavailable to robot users. An alternative lies
in multi-body models, which rely on the more commonly
accessible kinematic chain data. Siciliano and Khatib describe
such a robot model with rigid links connected by joints
modeled as spring and damper systems in the freely movable
axis [11]. Yet, Moberg et al. contend that a single DOF per joint
might not capture the entire robot dynamics [12, 13]. They
suggest an extended flexible robot model with three DOFs per
joint - a viewpoint validated by Öhr et al., who further
recommend adding translational DOFs as required [14].

Once the model is defined, a method must be developed to
estimate the model's parameters. Those parameter
identification methods can be divided into direct and iterative
methods. Direct methods like in [7] derive the equation of
motion (EOM) of a multi-body model. To solve the EOM for
the stiffness parameters, they simplify and linearize it and
perform linear regression. A contrasting approach is seen in
iterative methods such as those presented by Ellinger and Zaeh
[8]. Here, parameters are optimized iteratively to minimize the
difference between simulated and real-world robot behavior.
They don't require a simplified model but must manage local
optima and a sparse high-dimensional input space.

Several methods aim at reducing the dimensionality of the
input space to reduce the complexity of parameter
identification. Niehues and Semm et al. sequentially assemble
the robot from the base to its TCP, conducting experiments
after every assembly step [15, 16]. This task requires heavy
manual input and expertise. Ellinger et al. use a global
sensitivity analysis (GSA) and only optimizes the parameters
above a certain threshold [17]. This is applicable when
parameter bounds are narrowly defined. However, when they
are not, the GSA performs poorly. Additionally, a GSA
requires high computing time.

3. Dynamic Model Parameter Identification

Our approach differs from the state of the art in that it does
not require the following:

1. Any model data that is not widely available or
automatically retrievable. Our approach builds the
model using only kinematic chains - such as DH-
Parameters - known to the robot, as well as mass and
inertia data that can be acquired through automated
test runs. [18].

2. Special measurements that cannot be automated. I.e.,
no impact hammer testing, no sequential assembly
tests. We use acceleration and force data recorded
during operation at the robot's TCP.

3. User expert knowledge, e.g., manual modeling or
narrow parameter bounds. We use broadly defined
parameter bounds for practical reasons.

Since finding a suitable optimization method requires
testing many different algorithms and parameters, we use a
simulated model as reference, subsequently called “reference
model”, instead of measured data of a real robot. We aim to
identify the stiffness and damping parameters of a flexible joint
multi-body model in the following section.

3.1. Structure of the multi-body model

The kinematic chain data enables constructing a multi-body
model. More complex models like FE or CAD models require
data that is not widely available and can, therefore, not be
considered. Within our multi-body model, we incorporate six
DOFs at each joint: three rotational and three translational. Öhr
et al. validated that three rotational DOFs are sufficient to
accurately model a robot's displacement [14]. We follow their
suggestion to add translational DOFs, ensuring the model's
suitability for all kinematics. Each DOF is modeled by a linear
spring and a viscous damper. Each link is assumed to be a rigid
body. Masses and inertias are assumed to be given, and the
robot's pose is assumed to be static during a measurement
except for any displacement caused by the robot's flexibility.
The behavior of the multi-body model is fully described by its
equation of motion (EOM) [11]:

𝑴𝑴(𝒒𝒒)�̈�𝒒 + 𝑪𝑪(𝒒𝒒, �̇�𝒒)�̇�𝒒 + 𝑮𝑮(𝒒𝒒) + 𝑫𝑫�̇�𝒒 + 𝑲𝑲𝒒𝒒 = 𝝉𝝉

With inertia matrix 𝐌𝐌, Coriolis and centrifugal forces 𝐂𝐂,
gravitational forces 𝐆𝐆 , joint damping 𝐃𝐃 , joint stiffness 𝐊𝐊 ,
external forces/torques 𝛕𝛕, and generalized coordinates 𝐪𝐪. We
use a MATLAB Simscape multi-body model, automatically
created from a urdf file, to build and run the simulation, as it
ensures fast and reliable differential equation integration. An
illustration of our 3-joint robot model can be seen in Fig. 1.

3.2. Design and Choice of the Optimization Algorithm

After building the multi-body model, we aim to identify the
values of stiffness 𝐊𝐊 and damping 𝐃𝐃. Direct solutions for 𝐊𝐊
and 𝐃𝐃 in the EOM are infeasible due to numerical limitations.
While linearization is an option, our preferred approach uses
iterative methods to minimize simulation discrepancies.

Given input forces, joint configurations, and stiffness and

118 Florian Oexle et al. / Procedia CIRP 127 (2024) 116–121

damping parameters, our multi-body model simulates TCP
displacement in three dimensions. We evaluate the parameter
guess using a loss function that compares TCP displacements
of our model to the displacements of the reference model. The
optimizer iteratively refines parameter guesses based on this
loss function. One parameter guess is called a sample. This
approach can be classified as a curve-fitting method, displayed
in Fig. 2.

Our model contains 12 parameters (6 stiffness and 6
damping parameters) per joint, which are coupled. The loss
function, when mapped against the parameter space, is non-
convex. Therefore, an algorithm suitable for high-dimensional,
non-convex optimization tasks is required. Deterministic
methods like gradient descent risk local optima. We tested
various stochastic algorithms, including Genetic Algorithms
and Particle Swarm Optimization. Random Search (RS)
algorithms outperformed others, especially when combined
with annealing, making them our chosen optimization
technique. The general sequence of an RS with annealing
involves five key steps:

1. Sample N parameter sets within a hypersphere.
2. Compute the loss function for each sample.
3. Recenter the hypersphere at the best sample.
4. Adjust the hypersphere radius.
5. Continue steps 1-4 until a stopping criterion is met.
Fig. 3 illustrates this process. The orange triangles are the

initial samples. The best sample is highlighted with a white
circle, around which a new hypersphere (blue circle) is
established for subsequent sampling. This iterative process
refines the hypersphere and converges to an optimum.

In our application, each sample is evaluated across multiple
joint configurations and input force profiles, called
"experiments". We evaluate each sample through three
experiments. Each experiment simulates a real-world
machining step, like a milling path or drilling a hole. Using
multiple experiments enhances robustness by mitigating
ambiguities and exciting more DOFs.

We performed optimizations using a random search
algorithm with annealing [19]. Although this algorithm is
superior to the alternatives mentioned, it encounters local
optima. It struggles to achieve parameter deviations of less than
25% with a mean absolute error (MAE) loss function and
scheduled bound shrinking. To address this issue, we adapt the
algorithm as follows. We call the unadapted algorithm
"baseline". Each adaptation is tested separately against the
baseline, as described in the next section. All results are shown
in Table 1.

3.3. Adaptions to the Baseline

First, various loss functions are examined to determine their
effectiveness in minimizing the parameter deviation. We
review the mean absolute error (MAE), the mean squared error
(MSE), and the Surface Similarity Parameter (SSP) as
candidate loss functions:

• MAE = 1
𝑛𝑛
∑ |𝑥𝑥𝑖𝑖 − 𝑥𝑥�̂�𝑖|𝑛𝑛
𝑖𝑖=1

• MSE = 1
n
∑ (xi − xî)2n
i=1

• SSP = 1
𝑛𝑛
∑ |ℱ(𝑥𝑥)𝑖𝑖−ℱ(�̂�𝑥)𝑖𝑖|22

|ℱ(𝑥𝑥)𝑖𝑖|22+|ℱ(�̂�𝑥)𝑖𝑖|22
𝑛𝑛
𝑖𝑖=1

With displacement of the reference model 𝑥𝑥𝑖𝑖 , and of our
model 𝑥𝑥�̂�𝑖 and the Fourier-Operator ℱ. In our experiments, we
find that using the SSP proposed by Wedler [20] as a loss
function, the parameter deviation is reduced from an average
of 26.57% after 500 iterations to 25.17% (see Table 1).

Next, we address balancing exploration and exploitation in
the optimization process. We call the method "Look Outside."
It randomly selects a single parameter for evaluation and
samples across its entire bound range while the other
parameters remain constant. This targeted exploration
mitigates the risk of local optima in high-dimensional, non-

Fig. 2. flowchart of the curve fitting optimization process.

Fig. 3. simple 2D random search algorithm with annealing.

Fig. 1. Visualization of the multi-body model with three joints.

Florian Oexle et al. / Procedia CIRP 127 (2024) 116–121 119

convex optimization tasks and serves as an exploration
technique. The method reduces the average parameter
deviation from 26.57% to 24.41% (see Table 1).

Finally, we compare different bound shrinking methods.
The bounds define the parameter sample region of the next
iteration. In detail, we investigate a scheduled, a global
adaptive, and a local adaptive bound shrinking method. The
scheduled approach shrinks the bound range by a factor of < 1
after each iteration. The adaptive methods adapt the bound
range based on the loss instead of the iteration. While the global
approach defines one bound range for all parameters, the local
defines the bound range for each parameter individually.
Testing showed no advantage in using adaptive bounds against
scheduled bound shrinking in the baseline.

The results clearly show the importance of choosing a
suitable loss function and defining exploration methods. Rather
surprisingly, more advanced bound shrinking methods yield no
improvements to the optimization.

Table 1: Results from adaptions of Section 3

Method Mean Parameter
Deviation

Delta
Baseline

Baseline 26.57 %

Mean Squared Error (MSE) 25.20 % - 1.37 %

Surface Similarity Parameter (SSP) 25.17 % - 1.40 %

Look Outside (LO) 24.41 % - 2.16 %

Adaptive Bounds Global (ABG) 27.66 % + 1.09 %

Adaptive Bound Local (ABL) 27.05 % + 0.48%

4. Sensitivity Based Optimization

The individual adaptions improve the algorithm's
performance (see Table 1), yet the parameter deviations remain
large in the first stage of the optimization compared to
optimizing a 1 DOF-robot. This might be due to the high
dimensionality of the parameter space and the large span of
parameter sensitivities. It is worth noting that this issue and the
approach we present to mitigate it are independent of the
optimization algorithm used. One approach to tackle this
problem is proposed by Ellinger et al., who use a global
sensitivity analysis (GSA) and only optimize influential
parameters while leaving the others constant [17]. This
drastically reduces the parameter space.

The sensitivities of a GSA represent the impact of parameter
deviations on displacement errors. They are a combination of
the following three influences:

1. The strength of a specific parameter. For example, a
joint with a lower flexibility has a larger influence on
the displacement than a stiff one, as it leads to greater
displacements. We call this intrinsic sensitivity.

2. A parameter's influence on a specific displacement
direction. For example, the stiffness of the first joint of
a robot, typically the rotation around the global z-axis,
has no influence on the TCP displacement in z-
direction. We call this directional sensitivity.

3. A parameter's influence on a given joint configuration.
For example, a joint could be in an orientation where a
DOF is not excited by a TCP force. Thereby, the

parameters of this DOF do not influence the TCP
displacement. We call this configuration sensitivity.

The GSA is suitable for cases where parameter bounds are
narrowly defined. Since we do not require user expert
knowledge or manual modeling, we assume minimal
knowledge of bounds. In such scenarios, the GSA may not
accurately capture the intrinsic sensitivity, which describes the
strength of a parameter, because the parameter deviation is not
linearly correlated with the loss function. Evaluating the
sensitivity of one parameter while other parameters deviate
significantly from their actual values can lead to incorrect
intrinsic sensitivities. To address this potential error, we
propose a method that provides information solely on
directional and configuration sensitivity without requiring
knowledge of parameter bounds. This approach is based on the
Jacobian, offering the added advantage of resource efficiency,
as calculating the Jacobian is standard practice. Subsequently,
we present the calculation of the Jacobian and its integration
into the optimization algorithm.

4.1. Calculation of Jacobian Sensitivities

The Jacobian can be used to relate DOF velocities to TCP
velocities. Using the Jacobian, we aim to partially separate the
effects of parameters on the displacement to reduce the
dimensionality of the optimization. Since we only measure the
translation and not the rotation of the TCP, we only use the
translational components of the Jacobian, defined by:

𝑱𝑱𝑪𝑪 × 𝑫𝑫 = (𝝏𝝏𝒇𝒇𝒊𝒊
𝝏𝝏𝒒𝒒𝒋𝒋

)
𝒊𝒊=𝒙𝒙,𝒚𝒚,𝒛𝒛; 𝒋𝒋=𝟏𝟏,…,𝑫𝑫

(1)

Here 𝑓𝑓𝑖𝑖 denotes the TCP displacement in TCP coordinate
directions. 𝑞𝑞1 to 𝑞𝑞𝐷𝐷 are the generalized coordinates of the
DOFs with D, the total number of degrees of freedom (18 in
our case). A large entry in (1) means the DOF significantly
influences the movement of the TCP, meaning that the effect
of the stiffness and damping parameter of the DOF is well
observable. In contrast, a null entry means the parameters of
the specific DOF do not influence the movement of the TCP in
that direction. This is directional sensitivity.

To estimate the configuration sensitivity, we extend the
Jacobian for all our experiments. We obtain a matrix with 𝐶𝐶 ∙ 𝐸𝐸
rows and D columns. C is the number of coordinate directions
(usually 3), and E is the number of experiments (3 in our case).
Resulting in the formula:

𝑱𝑱𝑪𝑪⋅𝑬𝑬 × 𝑫𝑫 = (𝝏𝝏𝒇𝒇𝒊𝒊
𝝏𝝏𝒒𝒒𝒋𝒋

)
𝒊𝒊=𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏,𝒛𝒛𝟏𝟏,…,𝒙𝒙𝑬𝑬,𝒚𝒚𝑬𝑬,𝒛𝒛𝑬𝑬; 𝒋𝒋=𝟏𝟏,…,𝑫𝑫

As the Jacobian is equal for damping and stiffness values
within a DOF, we apply the same matrix to our stiffness and
damping parameters.

4.2. Integration into the Optimization Algorithm

Including the Jacobian in the optimization process is an
important step. After every simulation, we obtain 𝐶𝐶 ⋅ 𝐸𝐸 loss
values. Until now, we took the mean of them to assign one loss
value to every parameter set. Now, we calculate a custom loss
value for every parameter of every parameter set. To do this,

120 Florian Oexle et al. / Procedia CIRP 127 (2024) 116–121

the Jacobian is normalized column-wise, i.e., for the same
parameter, the sum of all the entries is one. From now on, the
normalized entries of the Jacobian are referred to as
"sensitivities". Then, a weighted sum of the 𝐶𝐶 ⋅ 𝐸𝐸 loss values
with the sensitivities as weights is performed. The weighted
parameter loss for one sample is calculated by

𝑳𝑳1 × 𝑃𝑃 = 𝑳𝑳1 × 𝐶𝐶∙𝐸𝐸 ⋅ 𝑺𝑺𝐶𝐶∙𝐸𝐸 × 𝑃𝑃

with loss

𝑳𝑳1 × 𝐶𝐶∙𝐸𝐸 = (𝑙𝑙𝑐𝑐𝑥𝑥𝑒𝑒1 𝑙𝑙𝑐𝑐𝑦𝑦𝑒𝑒1 𝑙𝑙𝑐𝑐𝑧𝑧𝑒𝑒1 … 𝑙𝑙𝑐𝑐𝑧𝑧𝑒𝑒𝐸𝐸)

and sensitivities

𝑺𝑺𝐶𝐶∙𝐸𝐸 × 𝑃𝑃 =

(

𝑠𝑠𝑐𝑐𝑥𝑥𝑒𝑒1𝑝𝑝1 𝑠𝑠𝑐𝑐𝑥𝑥𝑒𝑒1𝑝𝑝2 … 𝑠𝑠𝑐𝑐𝑥𝑥𝑒𝑒1𝑝𝑝𝐷𝐷
𝑠𝑠𝑐𝑐𝑦𝑦𝑒𝑒1𝑝𝑝1 𝑠𝑠𝑐𝑐𝑦𝑦𝑒𝑒1𝑝𝑝2 … 𝑠𝑠𝑐𝑐𝑦𝑦𝑒𝑒1𝑝𝑝𝐷𝐷
𝑠𝑠𝑐𝑐𝑧𝑧𝑒𝑒1𝑝𝑝1 𝑠𝑠𝑐𝑐𝑧𝑧𝑒𝑒1𝑝𝑝2 … 𝑠𝑠𝑐𝑐𝑧𝑧𝑒𝑒1𝑝𝑝𝐷𝐷
… … … …

𝑠𝑠𝑐𝑐𝑧𝑧𝑒𝑒𝐸𝐸𝑝𝑝1 𝑠𝑠𝑐𝑐𝑧𝑧𝑒𝑒𝐸𝐸𝑝𝑝2 … 𝑠𝑠𝑐𝑐𝑧𝑧𝑒𝑒𝐸𝐸𝑝𝑝𝐷𝐷)

The random search algorithm draws new samples on each
iteration in a hypersphere defined by a center point and a radius.
In the former approach, that center point would be the
parameter value of the best sample of an iteration. Therefore,
only one sample of all drawn samples would be considered.
Now, parameters can be chosen from individual samples
because the loss value is specific to every parameter and not
the whole sample, providing more specific results.

The same integration can be applied to GSA-based
sensitivities. Using the GSA is compelling because it provides
not only information about the directional and configuration
sensitivity like the Jacobian but also intrinsic sensitivity. On the
other hand, the Jacobian-based method does not require
parameter bound knowledge and computes faster. To evaluate
the performance of either method combination, we test them in
the following section.

5. Results and Discussion

To assess the adaptions made in Sections 3 and 4, we
evaluate the parameter deviations of the different method
combinations during the simulation in Section 5.1 and perform
a validation test in Section 5.2. We perform the tests on each of
the following method combinations:

1. Baseline: Same as Baseline of Section 3
2. Baseline adapted: Baseline with adaptions from Section

3
3. GSA: Baseline adapted with GSA-sensitivity-based

optimization
4. Jacobian: Baseline adapted with Jacobian-sensitivity-

based optimization

5.1. Parameter Deviations

We investigate the first stage of the algorithm, in which we
aim for a fast reduction of the parameter deviation. Parameter
deviation is defined as the mean absolute error between actual
and identified parameters divided by the bound range:

𝐸𝐸 = 1
𝑛𝑛 ∙ 𝑅𝑅 ∑|𝑃𝑃𝑖𝑖 − 𝑃𝑃�̂�𝑖|

𝑛𝑛

𝑖𝑖=1

With parameter deviation 𝐸𝐸 , number of parameters 𝑛𝑛 ,
bound Range 𝑅𝑅, actual parameter 𝑃𝑃𝑖𝑖, and identified parameter
�̂�𝑃𝑖𝑖 . The mean parameter deviation over ten simulations is
plotted against the iteration in Fig. 4 and the results after 500
iterations are listed in Table 2. The baseline performs the
poorest throughout the optimization. The adapted baseline with
SSP-Loss and the additional exploration method outperforms
the baseline by 2.89%. Using sensitivities improves the
optimization even further by another 2.02% for GSA and
2.44% for Jacobian sensitivities. While GSA-sensitivities show
faster parameter deviation reductions, it is outperformed by the
Jacobian sensitivities after 320 iterations by a small margin.

Table 2: Results from sensitivity-based optimization

Method Combination Mean
Parameter
Deviation

Absolute
Change
Baseline

Baseline 24.60% -

Baseline adapted 21.71% - 2.89%

Global Sensitivity Analysis (GSA) 19.69% - 4.91%

Jacobian Sensitivity (Jacobian) 19.27% - 5.33%

Even after optimization, the parameter deviations remain
high. This can be explained by the sensitivity range of the
parameters. Some parameters have a diminishing influence on
the TCP displacement. As a result, the optimizer, which
minimizes the TCP displacement, sets their value rather
arbitrarily, deteriorating the parameter deviation significantly.

5.2. Validation Tests

To validate this claim and to test if the fitted model can
reproduce the behavior of the reference model, we compare the
behavior in experiments unknown to the optimizer. By this, we
can evaluate whether the fitted model is resilient to joint
configuration changes or just overfitted the presented joint
configurations and forces. One exemplary test can be seen in
Fig. 5. It shows that the TCP displacement of the reference
model in the x-direction and the displacement simulated with

Fig. 4. course of the optimization when using the different method combinations.

Florian Oexle et al. / Procedia CIRP 127 (2024) 116–121 121

the parameters obtained by using the Jacobian-based
sensitivities are closely approximated. We calculate the relative
error for every direction and experiment to quantify the
behavior similarity. Then, we compare the median over all
experiments and directions to obtain a single error. We use the
median instead of the mean because the relative errors are
prone to outliers.

The results can be obtained in Table 3. They support the
findings of the parameter deviation analysis. Through the
adaptions to the baseline, the median displacement error can be
reduced from 3.67% to 2.85%. By incorporating sensitivities
into the algorithm, the error can be reduced drastically. In the
case of GSA sensitivities, it can be reduced to 2.03% and for
Jacobian sensitivities to 2.27%.

Table 3: Validation results

Method Combination Median relative
displacement error

Relative to
Baseline

Baseline 0.0367 -

Baseline adapted 0.0285 - 22.36%

Global Sensitivity Analysis (GSA) 0.0203 - 44.69%

Jacobian Sensitivity (Jacobian) 0.0227 - 38.18%

6. Conclusion and Outlook

Our results highlight a promising approach for improving
optimization in robotic systems with complex, high-
dimensional parameter spaces. The adaptions, particularly
when combined with sensitivity-based techniques such as GSA
and Jacobian Sensitivities, yield significant reductions in
parameter deviations relative to the baseline. Crucially, despite
the seemingly high parameter deviations, our validation tests
using unknown experimental data demonstrate the model's
resilience and precision. After 500 iterations, our sensitivity-
based algorithms can predict the robot's behavior with a mean
relative displacement error of 2%. Our test shows that using
Jacobian-based sensitivities is as good as GSA-based
sensitivities with the advantage of no bound range knowledge
and less computing time required.

Some aspects remain unresolved, though. While our
existing optimization approach often results in a plateau in the
optimization progress, introducing alternative strategies in a

subsequent phase could further reduce parameter deviations.
Additionally, some parameters might be challenging to discern
due to their minimal impact. A method to assess the reliability
of a parameter estimation is needed. Furthermore, testing this
approach on a real robot for practical validation is essential.

Acknowledgements

We extend our sincere thanks to the German Federal
Ministry of Economic Affairs and Climate Action (BMWK)
and the European Union (EU) for supporting this research
project 13IK001ZF “SoftwareDefined Manufacturing for the
automotive and supplying industry” (SDM4FZI).

References

[1] Verl, A., Valente, A., Melkote, S., Brecher, C. et al., 2019. Robots in
machining 68, p. 799.

[2] Pan, Z., Zhang, H., Zhu, Z., Wang, J., 2006. Chatter analysis of robotic
machining process 173, p. 301.

[3] Abele, E., Weigold, M., Rothenbücher, S., 2007. Modeling and
Identification of an Industrial Robot for Machining Applications 56,
p. 387.

[4] Tunc, L.T., Stoddart, D., 2017. Tool path pattern and feed direction
selection in robotic milling for increased chatter-free material removal
rate 89, p. 2907.

[5] Pan, Z., Zhang, H., 2007. Analysis and suppression of chatter in robotic
machining process, p. 595.

[6] Wang, G., Dong, H., Guo, Y., Ke, Y., 2017. Chatter mechanism and
stability analysis of robotic boring 91, p. 411.

[7] Zollo, L., Lopez, E., Spedaliere, L., Garcia Aracil, N. et al., 2015.
Identification of Dynamic Parameters for Robots with Elastic Joints 7,
p. 843186.

[8] Ellinger, J., Zaeh, M.F., 2022. Automated Identification of Linear
Machine Tool Model Parameters Using Global Sensitivity Analysis 10,
p. 535.

[9] Isermann, R., 1992. Identifikation dynamischer Systeme, 2nd edn.
Springer, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong
Kong, Barcelona, Budapest.

[10] Hernandez-Vazquez, J.-M., Garitaonandia, I., Fernandes, M.H., Muñoa,
J. et al., 2018. A Consistent Procedure Using Response Surface
Methodology to Identify Stiffness Properties of Connections in Machine
Tools. Materials (Basel) 11.

[11] Siciliano, B., Khatib, O., 2016. Springer handbook of robotics, 2nd edn.
Springer, Berlin.

[12] Moberg, S., Hanssen, S. A DAE approach to Feedforward Control of
Flexible Manipulators, in p. 3439.

[13] Moberg, S., Wernholt, E., Hanssen, S., Brogårdh, T., 2014. Modeling
and Parameter Estimation of Robot Manipulators Using Extended
Flexible Joint Models 136.

[14] Öhr, J., Moberg, S., Wernholt, E., 2006. Identification of Flexibility
Parameters of 6-axis Industrial Manipulator Models.

[15] Niehues, K.K. Identifikation linearer Dämpfungsmodelle für
Werkzeugmaschinenstrukturen. Herbert Utz Verlag, München.

[16] Semm, T., Sellemond, M., Rebelein, C., Zaeh, M.F., 2020. Efficient
Dynamic Parameter Identification Framework for Machine Tools 142.

[17] Ellinger, J., Semm, T., Zaeh, M.F., 2022. Dimensionality Reduction of
High-Fidelity Machine Tool Models by Using Global Sensitivity
Analysis 144.

[18] Atkeson, C.G., An, C.H., Hollerbach, J.M., 1986. Estimation of Inertial
Parameters of Manipulator Loads and Links 5, p. 101.

[19] Zabinsky, Z.B., others, 2009. Random search algorithms.
[20] Wedler, M., Stender, M., Klein, M., Ehlers, S. et al., 2022. Surface

Similarity Parameter: A New Machine Learning Loss Metric for
Oscillatory Spatio-Temporal Data.

Fig. 5. TCP displacement in the x-direction with parameters obtained by
Jacobian-based sensitivities compared to the displacement of the reference
model.

