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1. Introduction

Industrial robots have seen a consistent surge in sales over 
recent decades. However, despite their lower cost and greater
operation reach [1], they are not yet a common alternative for 
high-precision machinery in assembly and manufacturing. One 
salient limitation is their open kinematic chain, leading to 
significantly reduced stiffness compared to alternative 
machines. This results in positioning inaccuracies and low-
frequency mode coupling chatter, which reduces the precision 
of assembly and machining processes and shortens the lifespan 
of tools and robots. [2, 3]. Significant reductions in positioning 
errors and chattering can be achieved by systematically 
selecting trajectories [4, 5] and feed rates [6].

To determine optimal machining paths and feed rates, a 
model that accurately predicts the robot's dynamic behavior 
under load is essential. While many dynamic robot models
exist, the difficulty lies in parametrizing those models, as robot

manufacturers usually withhold dynamic parameters such as 
stiffness and damping values. Current literature has yielded 
many solutions to identify the stiffness and damping 
parameters of robots [1, 7, 8]. However, the proposed solutions 
are not fully automated and rely on user expertise, making them 
impractical for non-experts.

This paper investigates methods to identify model 
parameters during a milling process. Navigating the high-
dimensional solution space is challenging, so we investigate 
multiple methods for effective parameter identification. The 
presented approach is based on only widely available data like 
kinematic chain data and operational robot data. Through this, 
we aim to eliminate human influences and make precision 
improvements available for every robot, irrespective of the 
availability of detailed machine models or user expert 
knowledge. The parametrized model is valid across multiple 
domains, such as machining, fabrication, and assembly, and is 
applicable to individual robots over their lifetime.
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2. Related Work

Identifying dynamic model parameters is intrinsically tied 
to the model being parameterized. Dynamic robot models are 
typically classified as either experimental or theoretical 
models. Experimental models function by learning transfer 
functions to mimic input-output behavior. They are based on 
fundamental building blocks that simplify the parameterization 
process due to their universality. However, experimental
models often have limitations: they are typically valid only 
within a confined working space or specific robot 
configurations. Furthermore, their parameters have no physical 
meaning and cannot be transferred to other models.

In contrast, theoretical models are grounded in tangible 
physical principles. These physical correlations not only offer
interpretability but also facilitate transferability across models.
However, accurately identifying parameters for those models 
proves challenging. [9]

Distributed element models, such as Finite Element (FE) 
models, represent one category of theoretical models. To 
perform parameter identification on them, which is very 
resource intensive, they are usually simplified using, for 
instance, model order reduction or by creating a meta-model
[10]. Distributed element models require a detailed 3D model 
of the robot, often unavailable to robot users. An alternative lies 
in multi-body models, which rely on the more commonly 
accessible kinematic chain data. Siciliano and Khatib describe 
such a robot model with rigid links connected by joints 
modeled as spring and damper systems in the freely movable
axis [11]. Yet, Moberg et al. contend that a single DOF per joint 
might not capture the entire robot dynamics [12, 13]. They
suggest an extended flexible robot model with three DOFs per 
joint - a viewpoint validated by Öhr et al., who further 
recommend adding translational DOFs as required [14].

Once the model is defined, a method must be developed to 
estimate the model's parameters. Those parameter 
identification methods can be divided into direct and iterative
methods. Direct methods like in [7] derive the equation of 
motion (EOM) of a multi-body model. To solve the EOM for 
the stiffness parameters, they simplify and linearize it and 
perform linear regression. A contrasting approach is seen in
iterative methods such as those presented by Ellinger and Zaeh
[8]. Here, parameters are optimized iteratively to minimize the 
difference between simulated and real-world robot behavior. 
They don't require a simplified model but must manage local 
optima and a sparse high-dimensional input space. 

Several methods aim at reducing the dimensionality of the 
input space to reduce the complexity of parameter 
identification. Niehues and Semm et al. sequentially assemble
the robot from the base to its TCP, conducting experiments 
after every assembly step [15, 16]. This task requires heavy 
manual input and expertise. Ellinger et al. use a global 
sensitivity analysis (GSA) and only optimizes the parameters 
above a certain threshold [17]. This is applicable when 
parameter bounds are narrowly defined. However, when they 
are not, the GSA performs poorly. Additionally, a GSA 
requires high computing time.

3. Dynamic Model Parameter Identification

Our approach differs from the state of the art in that it does 
not require the following:

1. Any model data that is not widely available or 
automatically retrievable. Our approach builds the 
model using only kinematic chains - such as DH-
Parameters - known to the robot, as well as mass and 
inertia data that can be acquired through automated 
test runs. [18].

2. Special measurements that cannot be automated. I.e., 
no impact hammer testing, no sequential assembly 
tests. We use acceleration and force data recorded 
during operation at the robot's TCP.

3. User expert knowledge, e.g., manual modeling or 
narrow parameter bounds. We use broadly defined 
parameter bounds for practical reasons.

Since finding a suitable optimization method requires 
testing many different algorithms and parameters, we use a 
simulated model as reference, subsequently called “reference 
model”, instead of measured data of a real robot. We aim to 
identify the stiffness and damping parameters of a flexible joint 
multi-body model in the following section.

3.1. Structure of the multi-body model

The kinematic chain data enables constructing a multi-body 
model. More complex models like FE or CAD models require 
data that is not widely available and can, therefore, not be 
considered. Within our multi-body model, we incorporate six 
DOFs at each joint: three rotational and three translational. Öhr
et al. validated that three rotational DOFs are sufficient to 
accurately model a robot's displacement [14]. We follow their
suggestion to add translational DOFs, ensuring the model's
suitability for all kinematics. Each DOF is modeled by a linear 
spring and a viscous damper. Each link is assumed to be a rigid 
body. Masses and inertias are assumed to be given, and the 
robot's pose is assumed to be static during a measurement 
except for any displacement caused by the robot's flexibility.
The behavior of the multi-body model is fully described by its 
equation of motion (EOM) [11]:

𝑴𝑴(𝒒𝒒)�̈�𝒒 + 𝑪𝑪(𝒒𝒒, �̇�𝒒)�̇�𝒒 + 𝑮𝑮(𝒒𝒒) + 𝑫𝑫�̇�𝒒 + 𝑲𝑲𝒒𝒒 = 𝝉𝝉

With inertia matrix 𝐌𝐌, Coriolis and centrifugal forces 𝐂𝐂, 
gravitational forces 𝐆𝐆 , joint damping 𝐃𝐃 , joint stiffness 𝐊𝐊 , 
external forces/torques 𝛕𝛕, and generalized coordinates 𝐪𝐪. We 
use a MATLAB Simscape multi-body model, automatically 
created from a urdf file, to build and run the simulation, as it 
ensures fast and reliable differential equation integration. An 
illustration of our 3-joint robot model can be seen in Fig. 1.

3.2. Design and Choice of the Optimization Algorithm 

After building the multi-body model, we aim to identify the 
values of stiffness 𝐊𝐊 and damping 𝐃𝐃. Direct solutions for 𝐊𝐊
and 𝐃𝐃 in the EOM are infeasible due to numerical limitations. 
While linearization is an option, our preferred approach uses 
iterative methods to minimize simulation discrepancies.

Given input forces, joint configurations, and stiffness and 
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damping parameters, our multi-body model simulates TCP 
displacement in three dimensions. We evaluate the parameter 
guess using a loss function that compares TCP displacements
of our model to the displacements of the reference model. The 
optimizer iteratively refines parameter guesses based on this 
loss function. One parameter guess is called a sample. This 
approach can be classified as a curve-fitting method, displayed 
in Fig. 2.

Our model contains 12 parameters (6 stiffness and 6 
damping parameters) per joint, which are coupled. The loss 
function, when mapped against the parameter space, is non-
convex. Therefore, an algorithm suitable for high-dimensional, 
non-convex optimization tasks is required. Deterministic 
methods like gradient descent risk local optima. We tested 
various stochastic algorithms, including Genetic Algorithms 
and Particle Swarm Optimization. Random Search (RS)
algorithms outperformed others, especially when combined 
with annealing, making them our chosen optimization 
technique. The general sequence of an RS with annealing
involves five key steps:

1. Sample N parameter sets within a hypersphere.
2. Compute the loss function for each sample.
3. Recenter the hypersphere at the best sample.
4. Adjust the hypersphere radius.
5. Continue steps 1-4 until a stopping criterion is met.
Fig. 3 illustrates this process. The orange triangles are the 

initial samples. The best sample is highlighted with a white 
circle, around which a new hypersphere (blue circle) is 
established for subsequent sampling. This iterative process 
refines the hypersphere and converges to an optimum.

In our application, each sample is evaluated across multiple 
joint configurations and input force profiles, called
"experiments". We evaluate each sample through three 
experiments. Each experiment simulates a real-world 
machining step, like a milling path or drilling a hole. Using 
multiple experiments enhances robustness by mitigating 
ambiguities and exciting more DOFs.

We performed optimizations using a random search
algorithm with annealing [19]. Although this algorithm is
superior to the alternatives mentioned, it encounters local 
optima. It struggles to achieve parameter deviations of less than 
25% with a mean absolute error (MAE) loss function and 
scheduled bound shrinking. To address this issue, we adapt the 
algorithm as follows. We call the unadapted algorithm 
"baseline". Each adaptation is tested separately against the 
baseline, as described in the next section. All results are shown 
in Table 1.

3.3. Adaptions to the Baseline

First, various loss functions are examined to determine their 
effectiveness in minimizing the parameter deviation. We 
review the mean absolute error (MAE), the mean squared error 
(MSE), and the Surface Similarity Parameter (SSP) as
candidate loss functions:

• MAE = 1
𝑛𝑛
∑ |𝑥𝑥𝑖𝑖 − 𝑥𝑥�̂�𝑖|𝑛𝑛
𝑖𝑖=1

• MSE = 1
n
∑ (xi − xî)2n
i=1

• SSP = 1
𝑛𝑛
∑ |ℱ(𝑥𝑥)𝑖𝑖−ℱ(�̂�𝑥)𝑖𝑖|22

|ℱ(𝑥𝑥)𝑖𝑖|22+|ℱ(�̂�𝑥)𝑖𝑖|22
𝑛𝑛
𝑖𝑖=1

With displacement of the reference model 𝑥𝑥𝑖𝑖 , and of our 
model 𝑥𝑥�̂�𝑖 and the Fourier-Operator ℱ. In our experiments, we 
find that using the SSP proposed by Wedler [20] as a loss 
function, the parameter deviation is reduced from an average 
of 26.57% after 500 iterations to 25.17% (see Table 1).

Next, we address balancing exploration and exploitation in 
the optimization process. We call the method "Look Outside."
It randomly selects a single parameter for evaluation and 
samples across its entire bound range while the other 
parameters remain constant. This targeted exploration 
mitigates the risk of local optima in high-dimensional, non-

Fig. 2. flowchart of the curve fitting optimization process.

Fig. 3. simple 2D random search algorithm with annealing.

Fig. 1. Visualization of the multi-body model with three joints.
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convex optimization tasks and serves as an exploration 
technique. The method reduces the average parameter 
deviation from 26.57% to 24.41% (see Table 1).

Finally, we compare different bound shrinking methods. 
The bounds define the parameter sample region of the next 
iteration. In detail, we investigate a scheduled, a global 
adaptive, and a local adaptive bound shrinking method. The 
scheduled approach shrinks the bound range by a factor of < 1 
after each iteration. The adaptive methods adapt the bound 
range based on the loss instead of the iteration. While the global 
approach defines one bound range for all parameters, the local 
defines the bound range for each parameter individually. 
Testing showed no advantage in using adaptive bounds against 
scheduled bound shrinking in the baseline.

The results clearly show the importance of choosing a 
suitable loss function and defining exploration methods. Rather 
surprisingly, more advanced bound shrinking methods yield no
improvements to the optimization.

Table 1: Results from adaptions of Section 3

Method Mean Parameter 
Deviation

Delta 
Baseline

Baseline 26.57 %

Mean Squared Error (MSE) 25.20 % - 1.37 %

Surface Similarity Parameter (SSP) 25.17 % - 1.40 %

Look Outside (LO) 24.41 % - 2.16 %

Adaptive Bounds Global (ABG) 27.66 % + 1.09 %

Adaptive Bound Local (ABL) 27.05 % + 0.48%

4. Sensitivity Based Optimization

The individual adaptions improve the algorithm's
performance (see Table 1), yet the parameter deviations remain 
large in the first stage of the optimization compared to 
optimizing a 1 DOF-robot. This might be due to the high 
dimensionality of the parameter space and the large span of 
parameter sensitivities. It is worth noting that this issue and the 
approach we present to mitigate it are independent of the 
optimization algorithm used. One approach to tackle this 
problem is proposed by Ellinger et al., who use a global 
sensitivity analysis (GSA) and only optimize influential 
parameters while leaving the others constant [17]. This
drastically reduces the parameter space. 

The sensitivities of a GSA represent the impact of parameter 
deviations on displacement errors. They are a combination of 
the following three influences:

1. The strength of a specific parameter. For example, a 
joint with a lower flexibility has a larger influence on 
the displacement than a stiff one, as it leads to greater 
displacements. We call this intrinsic sensitivity.

2. A parameter's influence on a specific displacement 
direction. For example, the stiffness of the first joint of 
a robot, typically the rotation around the global z-axis, 
has no influence on the TCP displacement in z-
direction. We call this directional sensitivity.

3. A parameter's influence on a given joint configuration. 
For example, a joint could be in an orientation where a 
DOF is not excited by a TCP force. Thereby, the 

parameters of this DOF do not influence the TCP 
displacement. We call this configuration sensitivity.

The GSA is suitable for cases where parameter bounds are 
narrowly defined. Since we do not require user expert 
knowledge or manual modeling, we assume minimal 
knowledge of bounds. In such scenarios, the GSA may not 
accurately capture the intrinsic sensitivity, which describes the 
strength of a parameter, because the parameter deviation is not 
linearly correlated with the loss function. Evaluating the 
sensitivity of one parameter while other parameters deviate 
significantly from their actual values can lead to incorrect 
intrinsic sensitivities. To address this potential error, we 
propose a method that provides information solely on 
directional and configuration sensitivity without requiring
knowledge of parameter bounds. This approach is based on the 
Jacobian, offering the added advantage of resource efficiency, 
as calculating the Jacobian is standard practice. Subsequently,
we present the calculation of the Jacobian and its integration 
into the optimization algorithm.

4.1. Calculation of Jacobian Sensitivities

The Jacobian can be used to relate DOF velocities to TCP 
velocities. Using the Jacobian, we aim to partially separate the 
effects of parameters on the displacement to reduce the 
dimensionality of the optimization. Since we only measure the 
translation and not the rotation of the TCP, we only use the 
translational components of the Jacobian, defined by:

𝑱𝑱𝑪𝑪 × 𝑫𝑫 = (𝝏𝝏𝒇𝒇𝒊𝒊
𝝏𝝏𝒒𝒒𝒋𝒋

)
𝒊𝒊=𝒙𝒙,𝒚𝒚,𝒛𝒛; 𝒋𝒋=𝟏𝟏,…,𝑫𝑫

( 1 )

Here 𝑓𝑓𝑖𝑖 denotes the TCP displacement in TCP coordinate 
directions. 𝑞𝑞1 to 𝑞𝑞𝐷𝐷 are the generalized coordinates of the
DOFs with D, the total number of degrees of freedom (18 in 
our case). A large entry in (1) means the DOF significantly 
influences the movement of the TCP, meaning that the effect 
of the stiffness and damping parameter of the DOF is well 
observable. In contrast, a null entry means the parameters of 
the specific DOF do not influence the movement of the TCP in 
that direction. This is directional sensitivity.

To estimate the configuration sensitivity, we extend the 
Jacobian for all our experiments. We obtain a matrix with 𝐶𝐶 ∙ 𝐸𝐸
rows and D columns. C is the number of coordinate directions 
(usually 3), and E is the number of experiments (3 in our case). 
Resulting in the formula:

𝑱𝑱𝑪𝑪⋅𝑬𝑬 × 𝑫𝑫 = (𝝏𝝏𝒇𝒇𝒊𝒊
𝝏𝝏𝒒𝒒𝒋𝒋

)
𝒊𝒊=𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏,𝒛𝒛𝟏𝟏,…,𝒙𝒙𝑬𝑬,𝒚𝒚𝑬𝑬,𝒛𝒛𝑬𝑬; 𝒋𝒋=𝟏𝟏,…,𝑫𝑫

As the Jacobian is equal for damping and stiffness values
within a DOF, we apply the same matrix to our stiffness and 
damping parameters.

4.2. Integration into the Optimization Algorithm

Including the Jacobian in the optimization process is an 
important step. After every simulation, we obtain 𝐶𝐶 ⋅ 𝐸𝐸 loss 
values. Until now, we took the mean of them to assign one loss 
value to every parameter set. Now, we calculate a custom loss 
value for every parameter of every parameter set. To do this,
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the Jacobian is normalized column-wise, i.e., for the same
parameter, the sum of all the entries is one. From now on, the 
normalized entries of the Jacobian are referred to as 
"sensitivities". Then, a weighted sum of the 𝐶𝐶 ⋅ 𝐸𝐸 loss values 
with the sensitivities as weights is performed. The weighted 
parameter loss for one sample is calculated by

𝑳𝑳1 × 𝑃𝑃 = 𝑳𝑳1 × 𝐶𝐶∙𝐸𝐸 ⋅ 𝑺𝑺𝐶𝐶∙𝐸𝐸 × 𝑃𝑃

with loss

𝑳𝑳1 × 𝐶𝐶∙𝐸𝐸 = (𝑙𝑙𝑐𝑐𝑥𝑥𝑒𝑒1 𝑙𝑙𝑐𝑐𝑦𝑦𝑒𝑒1 𝑙𝑙𝑐𝑐𝑧𝑧𝑒𝑒1 … 𝑙𝑙𝑐𝑐𝑧𝑧𝑒𝑒𝐸𝐸)

and sensitivities

𝑺𝑺𝐶𝐶∙𝐸𝐸 × 𝑃𝑃 =

(

 
 
𝑠𝑠𝑐𝑐𝑥𝑥𝑒𝑒1𝑝𝑝1 𝑠𝑠𝑐𝑐𝑥𝑥𝑒𝑒1𝑝𝑝2 … 𝑠𝑠𝑐𝑐𝑥𝑥𝑒𝑒1𝑝𝑝𝐷𝐷
𝑠𝑠𝑐𝑐𝑦𝑦𝑒𝑒1𝑝𝑝1 𝑠𝑠𝑐𝑐𝑦𝑦𝑒𝑒1𝑝𝑝2 … 𝑠𝑠𝑐𝑐𝑦𝑦𝑒𝑒1𝑝𝑝𝐷𝐷
𝑠𝑠𝑐𝑐𝑧𝑧𝑒𝑒1𝑝𝑝1 𝑠𝑠𝑐𝑐𝑧𝑧𝑒𝑒1𝑝𝑝2 … 𝑠𝑠𝑐𝑐𝑧𝑧𝑒𝑒1𝑝𝑝𝐷𝐷
… … … …

𝑠𝑠𝑐𝑐𝑧𝑧𝑒𝑒𝐸𝐸𝑝𝑝1 𝑠𝑠𝑐𝑐𝑧𝑧𝑒𝑒𝐸𝐸𝑝𝑝2 … 𝑠𝑠𝑐𝑐𝑧𝑧𝑒𝑒𝐸𝐸𝑝𝑝𝐷𝐷)

 
 

The random search algorithm draws new samples on each 
iteration in a hypersphere defined by a center point and a radius.
In the former approach, that center point would be the 
parameter value of the best sample of an iteration. Therefore,
only one sample of all drawn samples would be considered. 
Now, parameters can be chosen from individual samples
because the loss value is specific to every parameter and not 
the whole sample, providing more specific results. 

The same integration can be applied to GSA-based 
sensitivities. Using the GSA is compelling because it provides 
not only information about the directional and configuration 
sensitivity like the Jacobian but also intrinsic sensitivity. On the 
other hand, the Jacobian-based method does not require 
parameter bound knowledge and computes faster. To evaluate 
the performance of either method combination, we test them in 
the following section.

5. Results and Discussion

To assess the adaptions made in Sections 3 and 4, we 
evaluate the parameter deviations of the different method
combinations during the simulation in Section 5.1 and perform 
a validation test in Section 5.2. We perform the tests on each of 
the following method combinations:

1. Baseline: Same as Baseline of Section 3
2. Baseline adapted: Baseline with adaptions from Section 

3
3. GSA: Baseline adapted with GSA-sensitivity-based 

optimization
4. Jacobian: Baseline adapted with Jacobian-sensitivity-

based optimization

5.1. Parameter Deviations

We investigate the first stage of the algorithm, in which we 
aim for a fast reduction of the parameter deviation. Parameter 
deviation is defined as the mean absolute error between actual 
and identified parameters divided by the bound range:

𝐸𝐸 = 1
𝑛𝑛 ∙ 𝑅𝑅 ∑|𝑃𝑃𝑖𝑖 − 𝑃𝑃�̂�𝑖|

𝑛𝑛

𝑖𝑖=1

With parameter deviation 𝐸𝐸 , number of parameters 𝑛𝑛 , 
bound Range 𝑅𝑅, actual parameter 𝑃𝑃𝑖𝑖, and identified parameter
�̂�𝑃𝑖𝑖 . The mean parameter deviation over ten simulations is 
plotted against the iteration in Fig. 4 and the results after 500 
iterations are listed in Table 2. The baseline performs the 
poorest throughout the optimization. The adapted baseline with 
SSP-Loss and the additional exploration method outperforms
the baseline by 2.89%. Using sensitivities improves the 
optimization even further by another 2.02% for GSA and 
2.44% for Jacobian sensitivities. While GSA-sensitivities show 
faster parameter deviation reductions, it is outperformed by the 
Jacobian sensitivities after 320 iterations by a small margin.

Table 2: Results from sensitivity-based optimization

Method Combination Mean 
Parameter 
Deviation

Absolute 
Change
Baseline

Baseline 24.60% -

Baseline adapted 21.71% - 2.89%

Global Sensitivity Analysis (GSA) 19.69% - 4.91%

Jacobian Sensitivity (Jacobian) 19.27% - 5.33%

Even after optimization, the parameter deviations remain 
high. This can be explained by the sensitivity range of the 
parameters. Some parameters have a diminishing influence on 
the TCP displacement. As a result, the optimizer, which 
minimizes the TCP displacement, sets their value rather 
arbitrarily, deteriorating the parameter deviation significantly.

5.2. Validation Tests

To validate this claim and to test if the fitted model can 
reproduce the behavior of the reference model, we compare the 
behavior in experiments unknown to the optimizer. By this, we 
can evaluate whether the fitted model is resilient to joint 
configuration changes or just overfitted the presented joint 
configurations and forces. One exemplary test can be seen in
Fig. 5. It shows that the TCP displacement of the reference 
model in the x-direction and the displacement simulated with 

Fig. 4. course of the optimization when using the different method combinations.
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the parameters obtained by using the Jacobian-based 
sensitivities are closely approximated. We calculate the relative 
error for every direction and experiment to quantify the 
behavior similarity. Then, we compare the median over all 
experiments and directions to obtain a single error. We use the 
median instead of the mean because the relative errors are 
prone to outliers. 

The results can be obtained in Table 3. They support the 
findings of the parameter deviation analysis. Through the 
adaptions to the baseline, the median displacement error can be 
reduced from 3.67% to 2.85%. By incorporating sensitivities 
into the algorithm, the error can be reduced drastically. In the 
case of GSA sensitivities, it can be reduced to 2.03% and for 
Jacobian sensitivities to 2.27%.

Table 3: Validation results

Method Combination Median relative 
displacement error

Relative to 
Baseline

Baseline 0.0367 -

Baseline adapted 0.0285 - 22.36%

Global Sensitivity Analysis (GSA) 0.0203 - 44.69%

Jacobian Sensitivity (Jacobian) 0.0227 - 38.18%

6. Conclusion and Outlook 

Our results highlight a promising approach for improving 
optimization in robotic systems with complex, high-
dimensional parameter spaces. The adaptions, particularly 
when combined with sensitivity-based techniques such as GSA 
and Jacobian Sensitivities, yield significant reductions in 
parameter deviations relative to the baseline. Crucially, despite 
the seemingly high parameter deviations, our validation tests 
using unknown experimental data demonstrate the model's
resilience and precision. After 500 iterations, our sensitivity-
based algorithms can predict the robot's behavior with a mean 
relative displacement error of 2%. Our test shows that using 
Jacobian-based sensitivities is as good as GSA-based 
sensitivities with the advantage of no bound range knowledge 
and less computing time required.

Some aspects remain unresolved, though. While our 
existing optimization approach often results in a plateau in the 
optimization progress, introducing alternative strategies in a 

subsequent phase could further reduce parameter deviations. 
Additionally, some parameters might be challenging to discern 
due to their minimal impact. A method to assess the reliability 
of a parameter estimation is needed. Furthermore, testing this 
approach on a real robot for practical validation is essential.
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