KIT | KIT-Bibliothek | Impressum | Datenschutz

Analytical approach for parameter identification in machine tools based on identifiable CNC reference runs

Gönnheimer, Philipp 1; Ströbel, Robin ORCID iD icon 1; Fleischer, Jürgen 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

As a result of the steadily growing importance of data-driven methods such as digital twins, approaches for automated parameter identification in production equipment are becoming increasingly important. Previous work has shown that AI-based approaches for classification are increasingly reaching their limits. As a result of new developments, CNC reference runs with a high information content that can be specifically identified via an ID can be generated. In this context, it was possible to achieve an oscillation state on a test machine that is particularly well suited for identification. In this paper, an analytical approach is presented which, in addition to classification, can assign the signal to the respective source and therefore establish interdependencies between signals. Here, on the test machine tool, with successfully excited oscillations, all signals could be classified and assigned via the ID with high accuracy. If the oscillation state cannot be reached, classification accuracies of over 90% could be achieved, depending on the motion generation.


Originalveröffentlichung
DOI: 10.1007/978-3-031-18318-8_50
Scopus
Zitationen: 2
Dimensions
Zitationen: 3
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Proceedingsbeitrag
Publikationsmonat/-jahr 10.2023
Sprache Englisch
Identifikator ISBN: 978-3-031-18318-8
ISSN: 2194-0525
KITopen-ID: 1000175285
Erschienen in Production at the Leading Edge of Technology – Proceedings of the 12th Congress of the German Academic Association for Production Technology (WGP), University of Stuttgart, October 2022. Ed.: M. Liewald
Veranstaltung 12th Congress of the German Academic Association for Production Technology (WGP) (2022), Stuttgart, Deutschland, 11.10.2022 – 14.10.2022
Verlag Springer International Publishing
Seiten 494–503
Serie Lecture Notes in Production Engineering (LNPE) : Congress of the German Academic Association for Production Technology
Vorab online veröffentlicht am 02.02.2023
Nachgewiesen in Scopus
Dimensions
Globale Ziele für nachhaltige Entwicklung Ziel 9 – Industrie, Innovation und Infrastruktur
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page