KIT | KIT-Bibliothek | Impressum | Datenschutz

Improving Time Series Regression Model Accuracy via Systematic Training Dataset Augmentation and Sampling

Ströbel, Robin ORCID iD icon 1; Mau, Marcus 1; Puchta, Alexander 1; Fleischer, Jürgen 1
1 Institut für Produktionstechnik (WBK), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

This study addresses a significant gap in the field of time series regression modeling by highlighting the central role of data augmentation in improving model accuracy. The primary objective is to present a detailed methodology for systematic sampling of training datasets through data augmentation to improve the accuracy of time series regression models. Therefore, different augmentation techniques are compared to evaluate their impact on model accuracy across different datasets and model architectures. In addition, this research highlights the need for a standardized approach to creating training datasets using multiple augmentation methods. The lack of a clear framework hinders the easy integration of data augmentation into time series regression pipelines. Our systematic methodology promotes model accuracy while providing a robust foundation for practitioners to seamlessly integrate data augmentation into their modeling practices. The effectiveness of our approach is demonstrated using process data from two milling machines. Experiments show that the optimized training dataset improves the generalization ability of machine learning models in 86.67% of the evaluated scenarios. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000175286
Veröffentlicht am 18.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Produktionstechnik (WBK)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 05.2024
Sprache Englisch
Identifikator ISSN: 2504-4990
KITopen-ID: 1000175286
Erschienen in Machine Learning and Knowledge Extraction
Verlag MDPI
Band 6
Heft 2
Seiten 1072–1086
Vorab online veröffentlicht am 11.05.2024
Nachgewiesen in Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page