
ScienceDirect

Available online at www.sciencedirect.com

Procedia CIRP 127 (2024) 122–128

2212-8271 © 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 18th CIRP Conference on Computer Aided Tolerancing
10.1016/j.procir.2024.07.022

Keywords: Type your keywords here, separated by semicolons ; 

1. Introduction

The digitization of the production landscape has led to the 
proliferation of data-driven solutions in manufacturing 
systems. New machines are equipped with ever more sensors 
collecting data at high frequencies, this increasing availability 
of data has enabled the development of advanced machine 
learning (ML) models. But especially in small and medium-
sized companies, most machines do not have these so-called 
Industry 4.0 capabilities [4]. This has led to a retrofitting 
market, with a plethora of companies offering solutions for the 
integration of additional sensor technology and software tools 
for data connection to machines and their controls [13]. These 
new systems can also enable the deployment of machine-

learning models. However, most of these systems are vendor-
specific and are neither transferable nor scalable. Current 
development trends, therefore, try to automate the integration 
into a seamless process. However, in even in these cases, the 
main focus lies with established ML application areas (i.e. the 
domain of ‘Big Tech‘) where computing power and data are 
readily available. They do not consider the specific 
requirements of machine learning models in a manufacturing 
context. This paper aims to close this gap by proposing a 
testing framework specifically designed to allow for risk-free 
deployment of machine learning models into manufacturing 
systems. The framework is designed to be easily integrated 
into existing development processes and to be scalable to 
different machine-learning models.
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2. State of the Art

When deploying machine learning models in 
manufacturing systems, two factors need to be considered: 
First, stable execution of the model on the target machine 
must be ensured, and second, the model must be able to 
handle the data from the target machine.

Especially in systems that have limitations in terms of 
computing power, an examination of these aspects is relevant.
In the context of handling and assembly systems, a 
deployment close to the machine on industrial PCs or even 
embedded systems is conceivable. If it is not possible to 
clarify without doubt in advance whether the target system 
can meet the requirements of the model, a testing framework 
is indispensable.

2.1 Running the model on the target machine

The first step in deploying a machine learning model is to 
ensure that the model can run on the target machine. This is 
one of the tasks typically handled by machine learning 
deployment frameworks. One key problem that machine 
learning deployment frameworks seek to solve is the seamless 
integration of models into production environments. 
Traditional machine learning frameworks focus primarily on 
model training and evaluation [15], often overlooking the 
complexities of deploying models in a scalable and efficient 
manner. These are two essential prerequisites for the 
deployment in manufacturing contexts especially when 
deploying to edge devices with limited computing power. 
Deployment frameworks bridge this gap by providing 
components and APIs for model serving, enabling easy 
integration with existing systems and applications. The most 
popular frameworks include:

• TensorFlow Serving
• TorchServe
• MLflow
• ONNX Runtime

TensorFlow Serving is an open-source framework developed 
by Google for deploying machine learning models in 
production environments [15]. It provides a flexible 
architecture for serving models in a variety of formats, 
including TensorFlow, TensorFlow Lite, and TensorFlow.js. 

TorchServe is the equivalent of TensorFlow Serving for 
PyTorch models [6]. A library-agnostic framework is 
represented with MLflow, an open-source platform for 
managing the machine learning lifecycle, including model 
deployment [19]. It provides a REST API for deploying 
models in a variety of formats, including TensorFlow, 
PyTorch, and scikit-learn. All of these frameworks mainly 
deal with the deployment of models on servers and are not 
specifically toward deployment on edge devices or embedded 
systems. For this purpose, ONNX Runtime is a better fit. The 
ONNX Runtime is an open-source framework developed by 
Microsoft for deploying machine learning models in 
production environments. It specifies a standard format for 
representing machine learning models, enabling 
interoperability between different frameworks and hardware 
platforms. The possibility to export models of different ML 
frameworks into the ONNX format as well as the lightweight 
structure of the ONNX Runtime allows its use in 
manufacturing contexts. For example, Beckhoff Automation 
integrates the ONNX Runtime into some Industrial PCs as 
standard and provides for the integration of the ML workflow 
into the PLC (Programmable Logic Controller) [3]. In 
summary, it can be said that there are many frameworks for 
deploying machine learning models on the target machine. 
However, these frameworks assume that data is readily 
available.

2.2 Handling the data from the target machine

In truth, connecting data sources to machine learning 
models in manufacturing systems can be challenging. The 
data interfaces and application programs on controllers may 
be outdated and difficult to work with. Additionally, there are 
multiple communication standards in use, which can 
complicate the process [13]. Different approaches to solving 
these problems exist, with some requiring additional 
hardware. In the following, only approaches that do not 
require additional hardware are discussed.
Commercial solutions for industrial data acquisition exist, 
such as PTC’s KEPServerEX and Ignition by Inductive 
Automation [12, 10]. These applications provide interfaces for 
conventional communication standards and PLCs, primarily 
targeting SCADA applications. On the other hand, open-
source libraries like Apache Software Foundation’s PLC4X 

Figure 1 The proposed testing framework
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and Streampipes, as well as the open62541 implementation of 
OPC UA [5, 18, 17], enable connectivity for various 
communication standards and streaming data handling.
While newer machines utilizing protocols like OPC UA or 
MQTT tend to have consistent signal designations, this may 
not be the case for retrofitted brownfield machines.
This means that the data sources must be configured for each 
machine individually, and the deployment process needs to 
check whether the correct data sources are used.
Even if all data sources are properly configured, they still 
need to be connected to the machine learning model. This is 
typically done using a data adapter. Data adapters serve as a 
middle layer between the machine-specific data sources and 
the machine-learning model. Typically, the data adapter deals 
with data acquisition and, if needed, data preprocessing and 
data transformation. For this work we will be using the 
holistic approach with the working title MyGateway presented 
in [9] The application can be understood as a framework of 
wrappers for data source-specific libraries addressing the 
ingestion of data from different sources and its provisioning to 
different sinks. An advantage of this approach is the ability to 
quickly incorporate new protocols. It provides templates into 
which the relevant libraries, such as the above-mentioned 
PLC4X, can easily be integrated. Open-source projects 
offering similar functionalities exist as well. InfluxData’s 
TICK stack and the Apache project Streampipes are 
noteworthy examples [1, 18]. The TICK stack, which is built 
around the InfluxDB time series database, focuses on 
ingesting and persisting time series data. Apache Streampipes 
also covers these functionalities (InfluxDB being among the 
tools used by Streampipes), but in addition, offers a low-code 
environment in which users can build their own data 
processing pipelines.

3. Proposed Framework

To develop the proposed testing framework, a solution-
neutral representation of the ML pipeline is needed. The ML 
pipeline can be divided into three parts:

• Data ingestion
• Data preprocessing
• Model execution

Each of these parts is a potential source of errors. While 
the first part of the ML pipeline is handled by the data 
adapter, the second part is handled by a preprocessing 
pipeline with the third part being handled by the ML model. 
Grouping the data adapter and preprocessing pipeline we can 
define two components that need to be tested: how the data 
arrives at the model and how the model processes the data. 
The full framework is shown in Fig. 1. Each stage gate 
consists of a test suite that checks the respective component. 
The aim of the test suite is not only to provide a go / no go 
decision but also to provide information about the source of 
the error. As such the tests have multiple stages systematically 
narrowing down the source of the error along the machine 
learning pipeline. The first stage starts with traditional 
deployment frameworks which solely verify the model’s 
flawless execution. After these tests, we know that the system 
can run. The second stage tests whether the hardware is 

capable of running the pipeline with sufficient speed, i.e. if 
the model output occurs within an acceptable period. The 
basis for the following tests is a reference control program. 
This reference control program is part of the validation set 
during the training of the machine learning model. During 
deployment, the reference control program is executed on the 
target machine. The third stage then uses the recorded data 
from the reference control program to check whether the data 
adapter has been connected to the correct data sources. Once 
this has been verified, the fourth stage checks whether the 
data preprocessing pipeline correctly transforms the data. 
Finally, a fifth stage checks whether the model behaves as 
expected on the reference control program on the target 
machine. If all of these tests are passed the system is ready for 
deployment. Each test is explained in detail in the following 
subsections. This deployment procedure rollout of machine 
learning models can be grouped into three stages. The first 
stage is the development of the machine learning model. The 
second stage is the deployment stage in which tests are run to 
verify the correct deployment of the model. The third stage is 
the actual rollout of the model on the target machine. A 
graphical representation of the stages is shown in Fig. 2.

3.1 Testing the Data Pipeline

An evident requirement for an ML pipeline is that the 
model must be able to process its output. At this point, no 

Figure 2 The stages of deployment of a machine learning model using the 
proposed framework
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attention is paid to the correctness of the output. This merely 
verifies that the incoming data can be processed. This is 
checked using existing frameworks by simply checking 
whether the model runs without errors. The more serious case 
is when the model runs without errors but produces wrong 
results due to wrong data. This can be caused by a variety of 
reasons, for example:

• The data is not in the expected distribution
• The data sources are not configured correctly

The first problem is caused by the fact that the model was 
trained on a different data distribution than the data from the 
target machine. Most target machines are bound to have a 
slightly different data distribution than the training data. This 
phenomenon is known as domain shift [16]. This problem can 
be detected through a comparison of the data distribution of 
the training data and the data distribution on the target 
machine. This requires a certain amount of data from the 
target machine, which is not always immediately available. 
For this reason, we propose a reference run designed in such a 
way that it generates data with the same structure as the 
training data. Such a reference run is to be performed on the 
target machine. The difference between the two distributions 
can then be used to detect a possible domain shift. A simple 
metric to determine the similarity between two distributions is 
the mean squared error [2]:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆ℎ𝐷𝐷𝑖𝑖𝑖𝑖 = 1
𝑛𝑛 ∑ ‖𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖‖2𝑛𝑛

𝑖𝑖=1 (1)

Where 𝑥𝑥𝐷𝐷 is the 𝐷𝐷-th value of the reference distribution and 𝑦𝑦𝐷𝐷
is the 𝐷𝐷-th value of the target distribution. While this approach 
is sufficient for simple data streams, many machine learning 
models in manufacturing aggregate data from different 
sensors, possibly providing measurements in different units. 
While it is possible to normalize the data before training the 
model, this is not always done. In this case, one needs to take 
into account that the different sensors have different 
amplitudes. This can be done by using a weighted mean 
squared error:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆ℎ𝐷𝐷𝑖𝑖𝑖𝑖 = 1
𝑛𝑛 ∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑇𝑇𝑊𝑊(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛

𝑖𝑖=1 (2)

Where 𝑊𝑊 is a diagonal matrix encoding of weights for each 
sensor. Note that this domain shift is to be computed for each 
sensor 𝑗𝑗 separately. The total domain shift is then the sum of 
the domain shift for each sensor:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆ℎ𝐷𝐷𝑖𝑖𝑖𝑖 = ∑ 1
𝑛𝑛 ∑ (𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑦𝑦𝑖𝑖𝑖𝑖) 𝑊𝑊𝑖𝑖(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖)𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑖𝑖=1  (3)

The weights are determined based on the sensor range as well 
as its measurement unit (the latter is relevant if different 
sensors measure the same physical quantity at different 
scales). This can be thought of as a kind of normalization of 
each sensor.
Such a normalization requires knowledge of the sensor range. 
Although it is possible to determine the sensor range using the 
data from the reference machine run, this data does not 
necessarily reflect the full range of the sensor. To solve this 
issue, we require metadata for each data source in the data 
adapter. This metadata should contain the sensor range and 
the physical unit of its measurements. Apart from the sensor 
range and the unit, the metadata must further include 
information on exactly which signal is being captured by the 
sensor. For example, a CNC controller typically allows for the 
logging of data on power consumption, speed, and current for 
every axis. A unique identifier for each of these signals thus 
has to include information on the axis it belongs to.
While such an identifier can help detect improperly 
configured data sources, it does not cover all possible error 
sources related to the identification of a data signal. In
practice, the data adapter is often configured using a 
configuration file that might contain errors. For this reason, 
we propose a second test that will check that all sensors are 
properly identified and connected. Here we will investigate 
each data source individually.
First, it must be verified that the correct data sources are 
connected to the pipeline. If the model expects an input vector 
consisting of power consumption, speed, and current, the data 
sources for these values must be used in the correct places. A 
correct selection of data sources can be determined through a 
parameter identification approach. In this case, we propose 
the analytical parameter identification method presented in 
[7]. The method uses data from a reference machine run to 
identify the machine’s parameters. It establishes the identity 
of the parameters through the characteristics of their signal 
curves. A unique movement sequence is derived for each axis 
of a machine. These runs are then carried out on the machines 
to be examined. A specific motion sequence for all axes is 
specified in the NC code. The comparison of signals retrieved 
from the NC control and the expected path of the axes is used 
to identify the data sources containing the axes’ positions. 
This conclusion is shown in Fig. 3.
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The signals occurring during the reference runs can be 
recorded via MyGateway. These recordings represent the 
input of the analytical approach to parameter identification. 
Within the framework of the 3 pre-processing stages, trivial 
signals (constant, zero, boolean, etc.) as well as signal classes 
required for later identification stages, such as position 
signals, are determined. Based on this, all signals related to 
the spindle are put into one class and all signals belonging to 
axes are determined in a two-stage approach as illustrated in 
Fig. 3. The spindle and axis identification stages make use of 
analytical relationships. On the one hand, the signals’ classes -
i.e. spindle or axis - are established. Then, the assignment to 
their corresponding axes is carried out via the information 
from the reference runs. Thus, for the respective machine 
axes, the associated axes and their classes are given, which 
can be checked against the input requirements of the model. 
After this test, we can verify that the correct data sources are 
used in the correct places. This, however, does not mean that 
the data sources have been configured correctly. Often data is 
preprocessed before it is fed into a machine-learning model. It 
must be ensured that the data is preprocessed in the same way 
as it was during model training. If one has access to the raw 
data as well as the preprocessed data used in the training 
phase, then this can be done by preprocessing this raw data 
using the preprocessing pipeline on the target machine. 
Ideally, the data preprocessed on the target machine should be 
identical to the data processed during the initial model 
training phase. If one only has access to the preprocessed 
training data (and not the raw data), then this can be done by 
preprocessing raw data on the target machine after each 
sensor has been identified. The preprocessed data should now 
be similar to the preprocessed training data. Each comparison 
can be done using the same weighted mean squared error as in 
equation (2) but applied to each sensor individually. If the 
data is not preprocessed in the same way, then the difference 
between the two should be large. The magnitude of an 
acceptable or unacceptable difference is at the discretion of 
the developer and can vary greatly depending on the 
application.

4. Testing the Machine Learning Model

Even when the data adapter is working correctly and the 
domain shift is within acceptable boundaries, the model 
output can still be inadequate. Apart from the obvious case of 
a model producing bad results, another important 
consideration is the frequency at which the model can run. In 
most manufacturing scenarios the model will run in a loop, 
where it will be executed at a certain frequency based on the 
cycle time of a production process. If the model takes longer 
to execute than the cycle time of the machine, then the model 
will not be able to keep up with the machine. This means we 
need to test whether the model can run at the required 
frequency. This can be tested by running the validation data 
through the model and measuring the time it takes to execute.

4.1 Testing Model Behaviour

Inherent in model predictions is an uncertainty field around 
the corresponding prediction, since the input data and model 
are subject to uncertainty. Existing approaches of uncertainty 
quantification in machine learning are however unsuitable as 
a test of model behavior because at least a deeper 
understanding of the model is required. Additionally, they 
often use a complex variational process between data and 
network architecture. Thus, these approaches do not apply to 
proprietary black box models. Due to the existing research 
gaps in the area of uncertainty determination of black box 
models, we propose only a plausibility check for the 
predictions as a final test of the model behavior. For this 
purpose, the covariance can serve as a representation of the 
relations between the input domains.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 = ∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)(𝑦𝑦𝑖𝑖−�̅�𝑦)𝑛𝑛
𝑖𝑖=1

𝑛𝑛−1  (4)

Here, 𝑥𝑥𝑅𝑅 is also the 𝑅𝑅-th value of source domain 𝐷𝐷𝑖𝑖 and 𝑦𝑦𝑅𝑅 the 
𝑅𝑅-th value of the target domain for the 𝑗𝑗-th sensor. The 

Figure 3 Processes of reference runs and a signal identification [7]
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covariance provides a rudimentary description of the 
difference between the two domains. This relation can now be 
used by introducing a variation parameter to obtain similarly 
distributed parameters 𝑦𝑦∗𝑖𝑖.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅 𝑏𝑏𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑅𝑅𝑅𝑅 𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖 = ∑ (𝑥𝑥𝑖𝑖−�̅�𝑥)(𝑎𝑎(𝑦𝑦𝑖𝑖−𝑦𝑦)̅̅ ̅)𝑛𝑛
𝑖𝑖=1

𝑛𝑛−1  (5)

Here 𝑅𝑅 is normally distributed noise with a magnitude equal 
to the covariance between the input domains. This effectively 
maps the input uncertainty of the initial data to the expected 
output uncertainty of the neural network. If a network 
performs outside of these bounds, then it is likely that the 
network is not behaving as expected. However, this 
evaluation is only a plausibility check and cannot replace a 
final comprehensive uncertainty analysis.

5. Sample Implementation

Since the framework is designed to be general purpose, it 
can be implemented in different ways. This section will 
describe a possible implementation of the proposed testing 
framework for a use case in additive manufacturing. A 
possible setup is adapted from [8] and shown in Fig 4. This 
use case constitutes a specific condition check for the Arburg 
freeformer. Due to the complexity of the process and the wide 
variety of available materials, it is important to ensure proper 
conditions before a printing job is started. A subfunction that 
enhances operational readiness is the detection of an offset of 
the discharge unit. Under particular circumstances, 
inexperienced operators may succeed in causing a 
misalignment of the discharge unit. ML-based detection of 
such an offset is desirable. In this case, the volume flow of 
discharged material serves as an indicator of a possible offset. 
This offset detection method uses a reference run akin to the 
one described in Section 3 A singlelayer test part is printed. 
The signal curve during this reference run can be consulted if 
the identity of the required parameters (here exclusively the 
volume flow) is not known in advance. The data adapter is 
implemented using the MyGateway framework [9] and uses 
Arburg’s proprietary OPC UA server to access the data. 
Although the data adapter is logically responsible for sending 
data to the preprocessing stage, a message parser is typically 
used in practice to parse and send the data. In this case, the 
RabbitMQ message broker is used to send the data to the 
preprocessing stage. The preprocessing stage is implemented 
as a custom Python class object offering RabbitMQ interfaces 
and metadata regarding the required data types. This serves as 
a first safety check to ensure that the data adapter is sending 
the correct data. From the preprocessing stage, the data is sent 
to the machine learning model which is in this case an 
autoencoder. The model is packaged in the same Python class 
as the preprocessing stage and offers the same interfaces. This 
allows the model to be tested in the same way as the 
preprocessing stage. The proposed testing framework can now 
be implemented using the Pytest framework [11]. Using 
Pytest fixtures the data adapter and the machine learning 
model can be instantiated and tested. This requires stored data 
of the reference run on the new machine as well as the 
training data. While it is possible to have the test trigger a 

reference run, for safety reasons it is often better to trigger the 
reference run manually. The test now accesses the data from 
an InfluxDB database [14] and performs the checks described 
in the previous section. Since the tests are implemented using 
the Pytest framework, they can be run automatically using a 
CI/CD pipeline. If issues occur during testing, the logs of the 
test can then be used to identify the problem. Once all checks 
are successful, the model can be deployed to the machine. To 
make this as smooth as possible all components are packaged 
in docker containers. The model can then be hooked up to a 
visualization tool such as Grafana to monitor the model’s 
performance. A useful side effect of the sensor 
selfidentification is that the data visualization can also be 
configured automatically.

6. Conclusion

In this paper, we have presented a framework that checks 
whether the requirements toward a successful deployment of 
ML models in manufacturing contexts are met. The 
framework not only checks whether the model can run on a 
target system but also checks the correctness and/or 
plausibility of input data as well as model output. This was 
done by testing the data adapter and the machine learning 
model separately. All in all the deployment of machine 
learning models in manufacturing is a complex task where
few tools exist to help developers and users. Standardized 
testing frameworks like the one presented in this paper can 
help to make the deployment of machine learning models in 
manufacturing more robust and reliable. But to improve 
deployment on the shop floor, wider adoption of such 
frameworks is needed. We hope that our work has helped to 
argue the need for such frameworks and that it will help to 
improve the deployment of machine learning models in 
manufacturing.

Figure 4 Sample implementation of the proposed testing framework
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