
ScienceDirect

Available online at www.sciencedirect.com

Procedia CIRP 127 (2024) 122–128

2212-8271 © 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 18th CIRP Conference on Computer Aided Tolerancing
10.1016/j.procir.2024.07.022

Keywords: Type your keywords here, separated by semicolons ;

1. Introduction

The digitization of the production landscape has led to the
proliferation of data-driven solutions in manufacturing
systems. New machines are equipped with ever more sensors
collecting data at high frequencies, this increasing availability
of data has enabled the development of advanced machine
learning (ML) models. But especially in small and medium-
sized companies, most machines do not have these so-called
Industry 4.0 capabilities [4]. This has led to a retrofitting
market, with a plethora of companies offering solutions for the
integration of additional sensor technology and software tools
for data connection to machines and their controls [13]. These
new systems can also enable the deployment of machine-

learning models. However, most of these systems are vendor-
specific and are neither transferable nor scalable. Current
development trends, therefore, try to automate the integration
into a seamless process. However, in even in these cases, the
main focus lies with established ML application areas (i.e. the
domain of ‘Big Tech‘) where computing power and data are
readily available. They do not consider the specific
requirements of machine learning models in a manufacturing
context. This paper aims to close this gap by proposing a
testing framework specifically designed to allow for risk-free
deployment of machine learning models into manufacturing
systems. The framework is designed to be easily integrated
into existing development processes and to be scalable to
different machine-learning models.

Towards a Testing Framework for Machine Learning Model Deployment
in Manufacturing Systems

I. Heidera,*, J. Baumgärtnera, A. Botta, R. Ströbela, A. Puchtaa, J. Fleischera

awbk Institute of Production Science, Kaiserstr. 12, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49 172 141 1977 ; fax: +0-000-000-0000. E-mail address: imanuel.heider@kit.edu

Abstract

The deployment of machine learning models in manufacturing systems presents unique challenges, necessitating robust testing procedures
to ensure reliable and efficient operation. This paper proposes an automated testing framework specifically designed to address these
challenges, focusing on verifying the correct utilization of data sources, validating model functionality, and assessing the compatibility of the
target machine with the deployed model. By automating the testing process, this framework aims to enhance the reliability and effectiveness of
machine learning model deployment in manufacturing systems. Through a comprehensive literature review, the paper explores existing
methodologies and identifies gaps in current practices. The proposed framework incorporates various test types, including unit tests, integration
tests, regression tests, and performance tests, each tailored to the specific requirements of manufacturing systems. Experimental results
demonstrate the framework’s effectiveness in detecting errors and failures during the deployment process. Overall, this research contributes to
advancing the field of machine learning deployment in manufacturing systems and provides practical insights for practitioners seeking to
optimize the reliability and efficiency of their deployed models.

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 18th CIRP Conference on Computer Aided Tolerancing

10th CIRP Conference on Assembly Technology and Systems (CIRP CATS 2024)

I. Heider et al. / Procedia CIRP 127 (2024) 122–128 123

2. State of the Art

When deploying machine learning models in
manufacturing systems, two factors need to be considered:
First, stable execution of the model on the target machine
must be ensured, and second, the model must be able to
handle the data from the target machine.

Especially in systems that have limitations in terms of
computing power, an examination of these aspects is relevant.
In the context of handling and assembly systems, a
deployment close to the machine on industrial PCs or even
embedded systems is conceivable. If it is not possible to
clarify without doubt in advance whether the target system
can meet the requirements of the model, a testing framework
is indispensable.

2.1 Running the model on the target machine

The first step in deploying a machine learning model is to
ensure that the model can run on the target machine. This is
one of the tasks typically handled by machine learning
deployment frameworks. One key problem that machine
learning deployment frameworks seek to solve is the seamless
integration of models into production environments.
Traditional machine learning frameworks focus primarily on
model training and evaluation [15], often overlooking the
complexities of deploying models in a scalable and efficient
manner. These are two essential prerequisites for the
deployment in manufacturing contexts especially when
deploying to edge devices with limited computing power.
Deployment frameworks bridge this gap by providing
components and APIs for model serving, enabling easy
integration with existing systems and applications. The most
popular frameworks include:

• TensorFlow Serving
• TorchServe
• MLflow
• ONNX Runtime

TensorFlow Serving is an open-source framework developed
by Google for deploying machine learning models in
production environments [15]. It provides a flexible
architecture for serving models in a variety of formats,
including TensorFlow, TensorFlow Lite, and TensorFlow.js.

TorchServe is the equivalent of TensorFlow Serving for
PyTorch models [6]. A library-agnostic framework is
represented with MLflow, an open-source platform for
managing the machine learning lifecycle, including model
deployment [19]. It provides a REST API for deploying
models in a variety of formats, including TensorFlow,
PyTorch, and scikit-learn. All of these frameworks mainly
deal with the deployment of models on servers and are not
specifically toward deployment on edge devices or embedded
systems. For this purpose, ONNX Runtime is a better fit. The
ONNX Runtime is an open-source framework developed by
Microsoft for deploying machine learning models in
production environments. It specifies a standard format for
representing machine learning models, enabling
interoperability between different frameworks and hardware
platforms. The possibility to export models of different ML
frameworks into the ONNX format as well as the lightweight
structure of the ONNX Runtime allows its use in
manufacturing contexts. For example, Beckhoff Automation
integrates the ONNX Runtime into some Industrial PCs as
standard and provides for the integration of the ML workflow
into the PLC (Programmable Logic Controller) [3]. In
summary, it can be said that there are many frameworks for
deploying machine learning models on the target machine.
However, these frameworks assume that data is readily
available.

2.2 Handling the data from the target machine

In truth, connecting data sources to machine learning
models in manufacturing systems can be challenging. The
data interfaces and application programs on controllers may
be outdated and difficult to work with. Additionally, there are
multiple communication standards in use, which can
complicate the process [13]. Different approaches to solving
these problems exist, with some requiring additional
hardware. In the following, only approaches that do not
require additional hardware are discussed.
Commercial solutions for industrial data acquisition exist,
such as PTC’s KEPServerEX and Ignition by Inductive
Automation [12, 10]. These applications provide interfaces for
conventional communication standards and PLCs, primarily
targeting SCADA applications. On the other hand, open-
source libraries like Apache Software Foundation’s PLC4X

Figure 1 The proposed testing framework

124 I. Heider et al. / Procedia CIRP 127 (2024) 122–128

and Streampipes, as well as the open62541 implementation of
OPC UA [5, 18, 17], enable connectivity for various
communication standards and streaming data handling.
While newer machines utilizing protocols like OPC UA or
MQTT tend to have consistent signal designations, this may
not be the case for retrofitted brownfield machines.
This means that the data sources must be configured for each
machine individually, and the deployment process needs to
check whether the correct data sources are used.
Even if all data sources are properly configured, they still
need to be connected to the machine learning model. This is
typically done using a data adapter. Data adapters serve as a
middle layer between the machine-specific data sources and
the machine-learning model. Typically, the data adapter deals
with data acquisition and, if needed, data preprocessing and
data transformation. For this work we will be using the
holistic approach with the working title MyGateway presented
in [9] The application can be understood as a framework of
wrappers for data source-specific libraries addressing the
ingestion of data from different sources and its provisioning to
different sinks. An advantage of this approach is the ability to
quickly incorporate new protocols. It provides templates into
which the relevant libraries, such as the above-mentioned
PLC4X, can easily be integrated. Open-source projects
offering similar functionalities exist as well. InfluxData’s
TICK stack and the Apache project Streampipes are
noteworthy examples [1, 18]. The TICK stack, which is built
around the InfluxDB time series database, focuses on
ingesting and persisting time series data. Apache Streampipes
also covers these functionalities (InfluxDB being among the
tools used by Streampipes), but in addition, offers a low-code
environment in which users can build their own data
processing pipelines.

3. Proposed Framework

To develop the proposed testing framework, a solution-
neutral representation of the ML pipeline is needed. The ML
pipeline can be divided into three parts:

• Data ingestion
• Data preprocessing
• Model execution

Each of these parts is a potential source of errors. While
the first part of the ML pipeline is handled by the data
adapter, the second part is handled by a preprocessing
pipeline with the third part being handled by the ML model.
Grouping the data adapter and preprocessing pipeline we can
define two components that need to be tested: how the data
arrives at the model and how the model processes the data.
The full framework is shown in Fig. 1. Each stage gate
consists of a test suite that checks the respective component.
The aim of the test suite is not only to provide a go / no go
decision but also to provide information about the source of
the error. As such the tests have multiple stages systematically
narrowing down the source of the error along the machine
learning pipeline. The first stage starts with traditional
deployment frameworks which solely verify the model’s
flawless execution. After these tests, we know that the system
can run. The second stage tests whether the hardware is

capable of running the pipeline with sufficient speed, i.e. if
the model output occurs within an acceptable period. The
basis for the following tests is a reference control program.
This reference control program is part of the validation set
during the training of the machine learning model. During
deployment, the reference control program is executed on the
target machine. The third stage then uses the recorded data
from the reference control program to check whether the data
adapter has been connected to the correct data sources. Once
this has been verified, the fourth stage checks whether the
data preprocessing pipeline correctly transforms the data.
Finally, a fifth stage checks whether the model behaves as
expected on the reference control program on the target
machine. If all of these tests are passed the system is ready for
deployment. Each test is explained in detail in the following
subsections. This deployment procedure rollout of machine
learning models can be grouped into three stages. The first
stage is the development of the machine learning model. The
second stage is the deployment stage in which tests are run to
verify the correct deployment of the model. The third stage is
the actual rollout of the model on the target machine. A
graphical representation of the stages is shown in Fig. 2.

3.1 Testing the Data Pipeline

An evident requirement for an ML pipeline is that the
model must be able to process its output. At this point, no

Figure 2 The stages of deployment of a machine learning model using the
proposed framework

I. Heider et al. / Procedia CIRP 127 (2024) 122–128 125

attention is paid to the correctness of the output. This merely
verifies that the incoming data can be processed. This is
checked using existing frameworks by simply checking
whether the model runs without errors. The more serious case
is when the model runs without errors but produces wrong
results due to wrong data. This can be caused by a variety of
reasons, for example:

• The data is not in the expected distribution
• The data sources are not configured correctly

The first problem is caused by the fact that the model was
trained on a different data distribution than the data from the
target machine. Most target machines are bound to have a
slightly different data distribution than the training data. This
phenomenon is known as domain shift [16]. This problem can
be detected through a comparison of the data distribution of
the training data and the data distribution on the target
machine. This requires a certain amount of data from the
target machine, which is not always immediately available.
For this reason, we propose a reference run designed in such a
way that it generates data with the same structure as the
training data. Such a reference run is to be performed on the
target machine. The difference between the two distributions
can then be used to detect a possible domain shift. A simple
metric to determine the similarity between two distributions is
the mean squared error [2]:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 1
𝑛𝑛 ∑ ‖𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖‖2𝑛𝑛

𝑖𝑖=1 (1)

Where 𝑥𝑥𝑖𝑖 is the 𝑖𝑖-th value of the reference distribution and 𝑦𝑦𝑖𝑖
is the 𝑖𝑖-th value of the target distribution. While this approach
is sufficient for simple data streams, many machine learning
models in manufacturing aggregate data from different
sensors, possibly providing measurements in different units.
While it is possible to normalize the data before training the
model, this is not always done. In this case, one needs to take
into account that the different sensors have different
amplitudes. This can be done by using a weighted mean
squared error:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 1
𝑛𝑛 ∑ (𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑇𝑇𝑊𝑊(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑛𝑛

𝑖𝑖=1 (2)

Where 𝑊𝑊 is a diagonal matrix encoding of weights for each
sensor. Note that this domain shift is to be computed for each
sensor 𝑗𝑗 separately. The total domain shift is then the sum of
the domain shift for each sensor:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 1
𝑛𝑛 ∑ (𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑦𝑦𝑖𝑖𝑖𝑖) 𝑊𝑊𝑗𝑗(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖)𝑛𝑛

𝑖𝑖=1
𝑚𝑚
𝑗𝑗=1 (3)

The weights are determined based on the sensor range as well
as its measurement unit (the latter is relevant if different
sensors measure the same physical quantity at different
scales). This can be thought of as a kind of normalization of
each sensor.
Such a normalization requires knowledge of the sensor range.
Although it is possible to determine the sensor range using the
data from the reference machine run, this data does not
necessarily reflect the full range of the sensor. To solve this
issue, we require metadata for each data source in the data
adapter. This metadata should contain the sensor range and
the physical unit of its measurements. Apart from the sensor
range and the unit, the metadata must further include
information on exactly which signal is being captured by the
sensor. For example, a CNC controller typically allows for the
logging of data on power consumption, speed, and current for
every axis. A unique identifier for each of these signals thus
has to include information on the axis it belongs to.
While such an identifier can help detect improperly
configured data sources, it does not cover all possible error
sources related to the identification of a data signal. In
practice, the data adapter is often configured using a
configuration file that might contain errors. For this reason,
we propose a second test that will check that all sensors are
properly identified and connected. Here we will investigate
each data source individually.
First, it must be verified that the correct data sources are
connected to the pipeline. If the model expects an input vector
consisting of power consumption, speed, and current, the data
sources for these values must be used in the correct places. A
correct selection of data sources can be determined through a
parameter identification approach. In this case, we propose
the analytical parameter identification method presented in
[7]. The method uses data from a reference machine run to
identify the machine’s parameters. It establishes the identity
of the parameters through the characteristics of their signal
curves. A unique movement sequence is derived for each axis
of a machine. These runs are then carried out on the machines
to be examined. A specific motion sequence for all axes is
specified in the NC code. The comparison of signals retrieved
from the NC control and the expected path of the axes is used
to identify the data sources containing the axes’ positions.
This conclusion is shown in Fig. 3.

126 I. Heider et al. / Procedia CIRP 127 (2024) 122–128

The signals occurring during the reference runs can be
recorded via MyGateway. These recordings represent the
input of the analytical approach to parameter identification.
Within the framework of the 3 pre-processing stages, trivial
signals (constant, zero, boolean, etc.) as well as signal classes
required for later identification stages, such as position
signals, are determined. Based on this, all signals related to
the spindle are put into one class and all signals belonging to
axes are determined in a two-stage approach as illustrated in
Fig. 3. The spindle and axis identification stages make use of
analytical relationships. On the one hand, the signals’ classes -
i.e. spindle or axis - are established. Then, the assignment to
their corresponding axes is carried out via the information
from the reference runs. Thus, for the respective machine
axes, the associated axes and their classes are given, which
can be checked against the input requirements of the model.
After this test, we can verify that the correct data sources are
used in the correct places. This, however, does not mean that
the data sources have been configured correctly. Often data is
preprocessed before it is fed into a machine-learning model. It
must be ensured that the data is preprocessed in the same way
as it was during model training. If one has access to the raw
data as well as the preprocessed data used in the training
phase, then this can be done by preprocessing this raw data
using the preprocessing pipeline on the target machine.
Ideally, the data preprocessed on the target machine should be
identical to the data processed during the initial model
training phase. If one only has access to the preprocessed
training data (and not the raw data), then this can be done by
preprocessing raw data on the target machine after each
sensor has been identified. The preprocessed data should now
be similar to the preprocessed training data. Each comparison
can be done using the same weighted mean squared error as in
equation (2) but applied to each sensor individually. If the
data is not preprocessed in the same way, then the difference
between the two should be large. The magnitude of an
acceptable or unacceptable difference is at the discretion of
the developer and can vary greatly depending on the
application.

4. Testing the Machine Learning Model

Even when the data adapter is working correctly and the
domain shift is within acceptable boundaries, the model
output can still be inadequate. Apart from the obvious case of
a model producing bad results, another important
consideration is the frequency at which the model can run. In
most manufacturing scenarios the model will run in a loop,
where it will be executed at a certain frequency based on the
cycle time of a production process. If the model takes longer
to execute than the cycle time of the machine, then the model
will not be able to keep up with the machine. This means we
need to test whether the model can run at the required
frequency. This can be tested by running the validation data
through the model and measuring the time it takes to execute.

4.1 Testing Model Behaviour

Inherent in model predictions is an uncertainty field around
the corresponding prediction, since the input data and model
are subject to uncertainty. Existing approaches of uncertainty
quantification in machine learning are however unsuitable as
a test of model behavior because at least a deeper
understanding of the model is required. Additionally, they
often use a complex variational process between data and
network architecture. Thus, these approaches do not apply to
proprietary black box models. Due to the existing research
gaps in the area of uncertainty determination of black box
models, we propose only a plausibility check for the
predictions as a final test of the model behavior. For this
purpose, the covariance can serve as a representation of the
relations between the input domains.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑦𝑦𝑖𝑖−𝑦̅𝑦)𝑛𝑛
𝑖𝑖=1

𝑛𝑛−1 (4)

Here, 𝑥𝑥𝑖𝑖 is also the 𝑖𝑖-th value of source domain 𝐷𝐷𝐷𝐷 and 𝑦𝑦𝑦𝑦 the
𝑖𝑖-th value of the target domain for the 𝑗𝑗-th sensor. The

Figure 3 Processes of reference runs and a signal identification [7]

I. Heider et al. / Procedia CIRP 127 (2024) 122–128 127

covariance provides a rudimentary description of the
difference between the two domains. This relation can now be
used by introducing a variation parameter to obtain similarly
distributed parameters 𝑦𝑦∗𝑖𝑖.

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)(𝑎𝑎(𝑦𝑦𝑖𝑖−𝑦𝑦)̅̅ ̅)𝑛𝑛
𝑖𝑖=1

𝑛𝑛−1 (5)

Here 𝑎𝑎 is normally distributed noise with a magnitude equal
to the covariance between the input domains. This effectively
maps the input uncertainty of the initial data to the expected
output uncertainty of the neural network. If a network
performs outside of these bounds, then it is likely that the
network is not behaving as expected. However, this
evaluation is only a plausibility check and cannot replace a
final comprehensive uncertainty analysis.

5. Sample Implementation

Since the framework is designed to be general purpose, it
can be implemented in different ways. This section will
describe a possible implementation of the proposed testing
framework for a use case in additive manufacturing. A
possible setup is adapted from [8] and shown in Fig 4. This
use case constitutes a specific condition check for the Arburg
freeformer. Due to the complexity of the process and the wide
variety of available materials, it is important to ensure proper
conditions before a printing job is started. A subfunction that
enhances operational readiness is the detection of an offset of
the discharge unit. Under particular circumstances,
inexperienced operators may succeed in causing a
misalignment of the discharge unit. ML-based detection of
such an offset is desirable. In this case, the volume flow of
discharged material serves as an indicator of a possible offset.
This offset detection method uses a reference run akin to the
one described in Section 3 A singlelayer test part is printed.
The signal curve during this reference run can be consulted if
the identity of the required parameters (here exclusively the
volume flow) is not known in advance. The data adapter is
implemented using the MyGateway framework [9] and uses
Arburg’s proprietary OPC UA server to access the data.
Although the data adapter is logically responsible for sending
data to the preprocessing stage, a message parser is typically
used in practice to parse and send the data. In this case, the
RabbitMQ message broker is used to send the data to the
preprocessing stage. The preprocessing stage is implemented
as a custom Python class object offering RabbitMQ interfaces
and metadata regarding the required data types. This serves as
a first safety check to ensure that the data adapter is sending
the correct data. From the preprocessing stage, the data is sent
to the machine learning model which is in this case an
autoencoder. The model is packaged in the same Python class
as the preprocessing stage and offers the same interfaces. This
allows the model to be tested in the same way as the
preprocessing stage. The proposed testing framework can now
be implemented using the Pytest framework [11]. Using
Pytest fixtures the data adapter and the machine learning
model can be instantiated and tested. This requires stored data
of the reference run on the new machine as well as the
training data. While it is possible to have the test trigger a

reference run, for safety reasons it is often better to trigger the
reference run manually. The test now accesses the data from
an InfluxDB database [14] and performs the checks described
in the previous section. Since the tests are implemented using
the Pytest framework, they can be run automatically using a
CI/CD pipeline. If issues occur during testing, the logs of the
test can then be used to identify the problem. Once all checks
are successful, the model can be deployed to the machine. To
make this as smooth as possible all components are packaged
in docker containers. The model can then be hooked up to a
visualization tool such as Grafana to monitor the model’s
performance. A useful side effect of the sensor
selfidentification is that the data visualization can also be
configured automatically.

6. Conclusion

In this paper, we have presented a framework that checks
whether the requirements toward a successful deployment of
ML models in manufacturing contexts are met. The
framework not only checks whether the model can run on a
target system but also checks the correctness and/or
plausibility of input data as well as model output. This was
done by testing the data adapter and the machine learning
model separately. All in all the deployment of machine
learning models in manufacturing is a complex task where
few tools exist to help developers and users. Standardized
testing frameworks like the one presented in this paper can
help to make the deployment of machine learning models in
manufacturing more robust and reliable. But to improve
deployment on the shop floor, wider adoption of such
frameworks is needed. We hope that our work has helped to
argue the need for such frameworks and that it will help to
improve the deployment of machine learning models in
manufacturing.

Figure 4 Sample implementation of the proposed testing framework

128 I. Heider et al. / Procedia CIRP 127 (2024) 122–128

Acknowledgements

This publication is based on the results of the AutoLern
research and development project. This research and
development project is funded by the German Federal
Ministry of Education and Research (BMBF) within the
funding measure ProLern (Funding Number: 02P20A025) and
managed by the Project Management Agency Karlsruhe
(PTKA). The authors are responsible for the content of this
publication. The authors of this paper thank the Ministry for
the funding.

References

[1] Gunnar Aasen. 2017. Introduction to influxdata’s influxdb and tick stack.
(Sept. 2017). https://www.influxdata.com/blog/introduction-to-
influxdatas-influx db-and-tick-stack/

[2] Kavutse Vianney Augustine and Huang Dongjun. 2009. Image similarity
for rotation invariants image retrieval system. In 2009 International
Conference on Multimedia Computing and Systems. IEEE, Ouarzazate,
Morocco, 133–137. doi: 10.1109/MMCS.2009.5256716..

[3] Beckhoff Automation. 2023. Twincat 3. machine learning- und neural
network inference engine. (June 2023).

[4] Antonella Biscione, Chiara Burlina, and Annunziata de Felice. 2023.
Knowledge flows and innovation: a pseudo-panel approach. Applied
Economics, 0, 0, 1–16.
eprint: https://doi.org/10.1080/00036846.2023.2207812.
doi: 10.1080/00036846.2 023.2207812.

[5] The Apache Software Foundation. 2017. Plc4x: the universal protocol
adapter for industrial iot. (2017). https://plc4x.apache.org/.

[6] The Linux Foundation. 2020. Torchserve master documentation. (2020).
https: //pytorch.org/serve/.

[7] Philipp Gönnheimer, Robin Ströbel, and Jürgen Fleischer. 2023.
Analytical approach for parameter identification in machine tools based
on identifiable cnc reference runs. In Production at the Leading Edge of
Technology. Mathias Liewald, Alexander Verl, Thomas Bauernhansl, and
Hans-Christian Möhring, (Eds.) Springer International Publishing, Cham,
494–503. isbn: 978-3-031-18318- 8.

[8] Imanuel Heider, Huitian Yu, Nikolai Krischke, Benjamin Wirth & Jürgen
Fleischer (2023). KI-Einsatz in KMU: Einstiegshürden ausräumen /
Clearing entry hurdles for AI deployment in SMEs – Artificial
intelligence for German SMEs. In wt Werkstattstechnik online (Vol. 113,
Issues 07–08, pp. 282–287). VDI Fachmedien GmbH and Co. KG.
https://doi.org/10.37544/1436-4980-2023-07-08-16

[9] Jonas Hillenbrand, Philipp Gönnheimer, Eduard Gerlitz, and Jürgen
Fleischer. 2021. Design and implementation of a holistic framework for
data integration in industrial machine and sensor networks. Procedia
CIRP, 104, 1771–1776. 54th CIRP CMS 2021 - Towards Digitalized
Manufacturing 4.0. doi: https://doi.org /10.1016/j.procir.2021.11.298.

[10] LLC Inductive Automation. 2022. Inductive automation. ignition: user
manual. (2022). https://docs.inductiveautomation.com/display/DOC81.

[11] Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris
Bruynooghe, Brianna Laugher, and Florian Bruhin. 2004. Pytest. (2004).
https://github.com/pyt est-dev/pytest.

[12] Sebastian Krüger. 2022. Leveraging kepware in iiot and how to mitigate
its current technical limitations. (June 2022).
https://learn.umh.app/blog/leveragi ng-kepware-in-iiot-and-how-to-
mitigate-its-shortcomings/.

[13] Juergen Lenz, Thorsten Wuest, and Engelbert Westkämper. 2018.
Holistic approach to machine tool data analytics. Journal of
Manufacturing Systems, 48, 180–191. Special Issue on Smart
Manufacturing. doi: https://doi.org/10.1016/j.j msy.2018.03.003.

[14] Jalal Mostafa, Sara Wehbi, Suren Chilingaryan, and Andreas Kopmann.
2022. Scits: a benchmark for time-series databases in scientific
experiments and industrial internet of things. In Proceedings of the 34th
International Conference on Scientific and Statistical Database
Management (SSDBM ’22) Article 12. Association for Computing
Machinery, Copenhagen, Denmark, 11 pages. isbn: 9781450396677. doi:
10.1145/3538712.3538723.

[15] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li
Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke.
2017. Tensorflowserving: flexible, high-performance ml serving. (2017).
arXiv: 1712 . 06139 [cs.DC].

[16] Felix Ott, David Rügamer, Lucas Heublein, Bernd Bischl, and
Christopher Mutschler. 2022. Domain adaptation for time-series
classification to mitigate covariate shift. In Proceedings of the 30th ACM
International Conference on Multimedia (MM ’22). Association for
Computing Machinery, Lisboa, Portugal, 5934–5943. isbn:
9781450392037. doi: 10.1145/3503161.3548167.

[17] Julius Pfrommer. 2017. Semantic interoperability at big-data scale with
the open62541 opc ua implementation. In Interoperability and Open-
Source Solutions for the Internet of Things. Ivana Podnar Žarko, Arne
Broering, Sergios Soursos, and Martin Serrano, (Eds.) Springer
International Publishing, Cham, 173–185. isbn: 978-3-319-56877-5.

[18] Dominik Riemer and Philipp Zehnder. 2023. Apache streampipes
documentation. (June 2023). https://streampipes.apache.org/docs/user-
guide-introductio n/.

[19] Matei Zaharia et al. 2018. Accelerating the machine learning lifecycle
with mlflow. IEEE Data Eng. Bull., 41, 4, 39–45.

