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We develop a model-based boosting approach for multivariate distributional
regression within the framework of generalized additive models for location,
scale, and shape. Our approach enables the simultaneous modeling of all dis-
tribution parameters of an arbitrary parametric distribution of a multivariate
response conditional on explanatory variables, while being applicable to poten-
tially high-dimensional data. Moreover, the boosting algorithm incorporates
data-driven variable selection, taking various different types of effects into
account. As a special merit of our approach, it allows for modeling the associ-
ation between multiple continuous or discrete outcomes through the relevant
covariates. After a detailed simulation study investigating estimation and pre-
diction performance, we demonstrate the full flexibility of our approach in
three diverse biomedical applications. The first is based on high-dimensional
genomic cohort data from the UK Biobank, considering a bivariate binary
response (chronic ischemic heart disease and high cholesterol). Here, we are
able to identify genetic variants that are informative for the association between
cholesterol and heart disease. The second application considers the demand
for health care in Australia with the number of consultations and the number
of prescribed medications as a bivariate count response. The third application
analyses two dimensions of childhood undernutrition in Nigeria as a bivariate
response and we find that the correlation between the two undernutrition scores
is considerably different depending on the child’s age and the region the child
lives in.
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1 INTRODUCTION

Many modern regression models relate certain characteristics of a univariate response distribution to explanatory vari-
ables. Examples include generalized additive models (GAMs)1,2 and quantile regression models,3 where with the former
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the conditional expectation and with the latter conditional quantiles of a univariate response distribution are modeled
by an additive decomposition of different covariate effects. In biomedical research there are often multiple endpoints
that are typically analyzed separately by univariate regression models where each endpoint serves once as response vari-
able.4 However, in practice, the components of a multivariate response are often not (conditionally) independent, so that
separate models might induce a loss of information and could even lead to potentially misleading conclusions.

A well-known approach for the analysis of multivariate responses, particularly common in the economics literature,
is called seemingly unrelated regression.5 This classical approach is restricted to linear predictors and constant covariance
matrices not depending on the covariates; however, extensions to semiparametric predictors for the marginal means exist.6
Beyond that, multiple discrete responses (eg, count data) can be analyzed using seemingly unrelated Poisson regression7

and non-linear predictors.8 Similar to the approach of Zellner5 these models are limited in their flexibility, and only the
expected value of the response is linked to the covariates.9 A more flexible framework is provided by generalized additive
models for location, scale and shape (GAMLSS),10 in which each parameter of the conditional distribution is modeled by
an additive predictor. The use of additive predictors for all distribution parameters, such as location, scale or skewness
parameters allows to incorporate different effect types for the covariates in a very flexible way. Klein et al.11 extended this
framework for multivariate responses to model the joint distribution of two or more responses in the spirit of GAMLSS
relying on a fully Bayesian approach.

In the medical literature, one common application of GAMLSS for univariate responses is the construction of reference
growth charts,12,13 where also the World Health Organization recommends to use GAMLSS.14 As the complete condi-
tional distribution is modeled based on covariates (eg, the age of a child), the corresponding quantiles can nicely adapt
to a covariate-specific skewness. For multivariate responses, these growth charts could hence not only be constructed
separately for different biometrical parameters,13 but also jointly for multiple characteristics.15

In high-dimensional data situations where the number of predictors exceeds the number of observations (p > n), clas-
sical estimation approaches are no longer directly feasible for our multivariate distributional regression settings. A few
exceptions exist where Bayesian variable selection16 and penalized regression methods17,18 have been proposed. Neverthe-
less, in terms of software implementation, GAMLSS based on penalized likelihood estimation is currently only available
for univariate response variables.

An alternative fitting approach is statistical boosting, which was originally developed in the field of machine learning
and later extended to statistical modeling.19,20 Its main features are the great flexibility regarding the effect types (eg,
spatial, smooth, or random effects) and the data-driven variable selection mechanism. The latter can be particularly useful
when the focus is on obtaining sparse models for a possibly high-dimensional covariate space.21 The concept of boosting
has already been extended to distributional regression leading to an algorithm that is able to estimate and select additive
predictors for all distribution parameters in univariate GAMLSS.22,23

In this work, we adapt the boosting algorithm for multivariate responses by combining the properties of GAMLSS and
the main features of statistical boosting. Due to the structure of the algorithm, our approach is able to simultaneously
model all distribution parameters and to select possible predictor effects in multivariate distributional regression models:
The new multivariate boosting approach allows to model not only the marginals but also the associations between multi-
ple outcomes through additive predictors without requiring the manual selection or comparison of different models. The
application of our approach is particularly suitable for exploratory analyses (hypothesis generating) where data-driven
variable selection is of special interest.

Motivated by three biomedical applications, we focus on modeling and investigating specific bivariate regression
models with emphasis on the most common parametric distributions in biomedical research: the bivariate Bernoulli dis-
tribution for binary outcomes, the bivariate Poisson distribution for count data and the bivariate Gaussian distribution
for continuous outcomes.24–26

In the first biomedical application, the joint genetic predisposition for chronic ischemic heart disease and high choles-
terol is analyzed based on a large cohort data from the UK Biobank27 via the bivariate Bernoulli distribution. The main
interest is to study the dependence of these phenotypes on the genetic variants and to discover possible joint associations
of the two outcome variables, which is not feasible via classical approaches modeling the phenotypes separately.28 In our
case, we want to gain deeper insights into the relationship between chronic ischemic heart disease and high cholesterol,
and the genetic variants affecting their association.

In the second application, we investigate effects for the demand on health care in Australia reported by Cameron and
Trivedi.29 The two considered outcomes are the number of consultations with a doctor and the number of prescribed
medications, whose association is modeled using the bivariate Poisson distribution for the covariates gender, age and
annual income. The research question is based on a previous analysis by Karlis and Ntzoufras30 however we illustrate
that our approach offers higher flexibility.

 10970258, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9699 by K
arlsruher Institut F., W

iley O
nline L

ibrary on [18/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



STRÖMER et al. 1781

In the last epidemiological application, two indicators for acute and chronic undernutrition of children in Nigeria are
jointly analyzed, which is motivated by a previous analysis by Klein et al.11 The two scores are modeled with a bivariate
Gaussian distribution, in which besides the marginal expectations also the scale parameter and the correlation parameter
depend on covariates. In addition to several covariates describing the life situation of the children, the mother and the
household they are living, spatial effects based on regional information are incorporated.

The structure of this article is as follows: Section 2 starts with a brief introduction to multivariate distributional
regression models. Then we investigate the different bivariate regression models and give an insight into statistical
boosting and the extended algorithm. In Section 3, we illustrate different data settings using a simulation study while
Section 4 illustrates the application on biomedical research questions for the considered distributional regression models
in Section 2.

2 BOOSTING MULTIVARIATE DISTRIBUTIONAL REGRESSION

2.1 The notion of multivariate distributional regression models

In multivariate structured additive distributional regression11 it is assumed that the conditional distribution PY|X=x
of a D-dimensional vector of responses Y = (Y1, … ,YD)⊤ given covariate information summarized in X = x has a
K-parametric density p(y|x) = p(y|𝜽(x)) with covariate dependent distribution parameters 𝜽(x) ≡ 𝜽 = (𝜃1, … , 𝜃K)⊤.

Each distribution parameter 𝜃k is linked to a structured additive predictor 𝜂k
31 via bijective parameter-specific link

functions gk, such that gk(𝜃k) = 𝜂k and g−1
k (𝜂k) = 𝜃k, k = 1, … ,K. The inverse link functions g−1

k ≡ hk are called response
functions and ensure potential restrictions of the parameter space of 𝜃k. The additive predictors 𝜂k depend on (possibly
different) subsets of x and are of the form

gk(𝜃k) = 𝜂k = 𝛽0k +
pk∑

j=1
fjk(x), for k = 1, … ,K,

where 𝛽0k are the intercepts and each fjk, j = 1, … , pk, represents the functional effect of covariates x. The effects of the
covariates can be specified in a very flexible manner and can correspond to linear, non-linear, random, interaction and
further effects.2,32 Motivated by our applications in Section 4, in this work we focus on the following effect types:

1. Linear effects are represented by fjk(x) = xT
jk𝜷 jk, where 𝜷 jk are the regression coefficients and xjk is a covariate subset

of x for parameter 𝜃k (xjk can be chosen individually for each parameter 𝜃k).
2. Non-linear effects can be included using smooth functions fjk(x). As basis functions we use B-Splines with second

order difference penalties.33

3. Spatial effects based on observations assigned to discrete regions are incorporated using Markov random fields for
modeling neighborhood structures fjk(x) = fjk(si), where si denotes the region si observation i is located in Reference 34.

2.2 Examples of relevant response distributions

In the following, we describe three common bivariate parametric distributions for binary, count and continuous
responses, the bivariate Bernoulli, the bivariate Poisson and the bivariate Gaussian distribution. While there are of course
other multivariate distributions for discrete and continuous data,26,35 these three bivariate distributions are arguably most
commonly used and are also relevant for our applications.

2.2.1 Bivariate Bernoulli distribution

For analyzing potentially correlated binary variables Y = (Y1,Y2)T , we consider the bivariate Bernoulli distribution with
joint probability mass function

p(y1, y2) = p(1−y1)(1−y2)
00 py1(1−y2)

10 p(1−y1)y2
01 py1y2

11 , y1, y2 ∈ {0, 1},
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T A B L E 1 Contingency table

Y2

0 1

Y1 0 p00 p01 1 − p1

1 p10 p11 p1

1 − p2 p2 1

where pij = P(Y1 = i,Y2 = j), i, j ∈ {0, 1} are the joint probabilities. Then, the contingency table with marginal proba-
bilities pd = P(Yd = 1), d = 1, 2 is given in Table 1. In a bivariate logistic regression model (logit model), the marginal
probabilities p1 = P(Y1 = 1) and p2 = P(Y2 = 1), as well as the odds ratio 𝜓 = p00p11

p01p10
, can be estimated considering several

covariates.36,37 If Y1 and Y2 are independent, then the odds ratio 𝜓 = 1. The different additive predictors in the bivariate
logit model are

logit(pi) = 𝜂pi , for i = 1, 2 and log(𝜓) = 𝜂𝜓 .

The joint probability p11 can be determined from the marginal probabilities p1, p2 and the odds ratio 𝜓 via

p11 =

{
1
2
(𝜓 − 1)−1{a −

√
a2 + b} , 𝜓 ≠ 1

p1p2 , 𝜓 = 1,

where a = 1 + (p1 + p2)(𝜓 − 1) and b = −4𝜓(𝜓 − 1)p1p2.38 The joint probabilities p10, p01 and p00 can be derived from p11
and the marginal probabilities.

An alternative approach for modeling bivariate binary responses is the bivariate probit model. However, in this work
we focus on the logit model for two reasons: First, one distribution parameter directly corresponds to the odds ratio,
which is easier to interpret and much more common in Biostatistics and biomedical research than the correlation of
a latent bivariate response Y∗ ∼ N(0,𝚺) for a probit model, where Yd = 1 if Y∗

d > 0 and 0 otherwise, d = 1, 2 and 𝚺
a correlation matrix. Second, the bivariate logit model is computationally favorable since it does not require the latent
variables Y∗.

2.2.2 Bivariate Poisson distribution

An important bivariate model for analyzing bivariate count data can be constructed from combining three random vari-
ables. If Zk, k = 1, 2, 3 follow independent Poisson distributions with parameters 𝜆k > 0, then the two random variables
Y1 = Z1 + Z3 and Y2 = Z2 + Z3 follow a bivariate Poisson distribution with joint probability function given by

p(y1, y2) = exp(−(𝜆1 + 𝜆2 + 𝜆3))
𝜆

y1
1

y1!
𝜆

y2
2

y2!

min(y1,y2)∑

k=0

(y1

k

)(y2

k

)

k!
(

𝜆3

𝜆1𝜆2

)k

, y1, y2 ∈ N0.

The marginals also follow Poisson distributions with expectations E(Y1) = 𝜆1 + 𝜆3 and E(Y2) = 𝜆2 + 𝜆3. The parameter 𝜆3
controls the dependency between Y1 and Y2 and corresponds to the covariance Cov(Y1,Y2) = 𝜆3. If the variables Y1 and
Y2 are independent, then 𝜆3 = 0 and the bivariate Poisson distribution reduces to the product of two independent Poisson
distributions. For further details on the bivariate Poisson distribution, we refer to Kocherlakota and Kocherlakota25 and
Johnson et al.35

In a bivariate Poisson regression model, each distribution parameter 𝜆k, k = 1, 2, 3 can be modeled in terms of several
explanatory variables via

log(𝜆k) = 𝜂𝜆k , k = 1, 2, 3,

where 𝜂k is the corresponding predictor for 𝜆k.
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STRÖMER et al. 1783

A drawback of this definition of the bivariate Poisson distribution is its property of modeling only data with positive
correlations. An alternative was developed in Lakshminarayana et al.39 by defining the bivariate Poisson distribution as
the product of Poisson marginals with a multiplicative factor. This definition also allows for negative correlations, but
results in more difficult interpretations. A further alternative allowing for overdispersion in the marginal distributions is
the bivariate negative binomial distribution.25,30,40

2.2.3 Bivariate Gaussian distribution

The bivariate Gaussian distribution is one of the most commonly known distributions for considering two continuous
responses. In this case, the random vector is written by Y ∼ N(𝝁,𝚺), where the density of Y = (Y1,Y2)T is given by

f (y1, y2) =
1

2𝜋
√

det(𝚺)
exp

(

−1
2
(y − 𝝁)T𝚺−1(y − 𝝁)

)

, y1, y2 ∈ R,

and 𝝁 = (𝜇1, 𝜇2)T and 𝚺 = Cov(Y1,Y2) are its mean vector and covariance matrix, respectively. The latter is defined by

𝚺 =
(

𝜎
2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎
2
2

)

with marginal variances 𝜎2
1 = Var(Y1) and 𝜎

2
2 = Var(Y2) and correlation parameter 𝜌 = Cor(Y1,Y2). All parameters of the

bivariate Gaussian distribution can be again modeled depending on covariates with parameter specific link-functions:

𝜇1 = 𝜂𝜇1 , 𝜇2 = 𝜂𝜇2 , log(𝜎1) = 𝜂𝜎1 , log(𝜎2) = 𝜂𝜎2 and 𝜌∕
√
(1 − 𝜌2) = 𝜂𝜌.

For further practical and theoretical details of the bivariate Gaussian distribution, we refer to Kotz et al.26 When the
marginal distributions exhibit heavy tails, the bivariate t-distribution is an attractive alternative to the bivariate normal
distribution (see Klein et al.11 and references therein).

2.3 Estimation via model-based boosting

Boosting originally arose from the field of supervised machine learning41 but gained increasing popularity in statistics
after the concept was adapted to fit statistical regression models.19,20 Boosting algorithms are a flexible alternative to
classical estimation approaches and have several practical advantages, such as the applicability to high-dimensional data
problems and data-driven variable selection.21,42,43 In the context of regression, there exist different types of boosting
algorithms.21,44 Here, we will focus on a component-wise gradient boosting algorithm with regression-type base-learners,
which we refer to as statistical boosting.45,46

This statistical boosting approach is based on minimizing a pre-specified loss function, which represents the regression
problem and typically corresponds to the negative log-likelihood l of the response distribution. In every iteration of the
boosting algorithm, so-called base-learners are separately fitted to the negative gradient of the loss function, and the
best-performing one is updated to the current estimate. A base-learner in our context is a regression function, and usually
corresponds to one specific covariate effect in the additive predictor (eg, a linear model as base-learner leads to a linear
effect). An overview of possible base-learners can be found in Hofner et al.47

For fitting multivariate distributional regression models, we extend the statistical boosting algorithm for generalized
additive models for location, scale and shape22 to multivariate distributions. A schematic overview of the selection of
base-learners in one iteration of the boosting algorithm for multivariate responses can be found in Figure 1.

First, for each additive predictor 𝜂k, k = 1, … ,K, a set of base-learners h1(x1), … , hpk (xpk ) has to be specified in
advance. Then, the partial derivative u = 𝜕l∕𝜕𝜃k of the negative log-likelihood function l with respect to the different distri-
bution parameters 𝜃k is calculated and each base-learner is fitted separately to the gradient of the corresponding parameter
k. For each parameter, the best performing base-learner j∗k is determined. After these best-fitting base-learners are selected
for each dimension k, only the overall best update (with the highest loss reduction) of all distribution parameters is
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1784 STRÖMER et al.

F I G U R E 1 Graphical representation of boosting multivariate structured additive distributional regression (displaying one boosting
iteration)

finally added to the corresponding additive predictor, with the estimated effect multiplied by a small fixed step-length, for
example, 𝜈 = 0.1. That means, in every iteration the best-fitting base-learner is determined for each distribution parameter
and then compared across the different dimensions. This refers to a so-called non-cyclic version of boosting for distribu-
tional regression, leading to a single update of only one distribution parameter in each iteration.23 Current best-practice
in statistical boosting is to use fixed small step-lengths like 𝜈 = 0.1 without optimization. Very recently there was work on
adaptive step-lengths, particularly for more complex and multi-dimensional models such as GAMLSS. However, so far
only the Gaussian location-scale model has been investigated empirically by Zhang et al.48 The authors propose to use a
different step-length for the two parameters, but solutions for more complex models require further research.

The main tuning parameter of the algorithm is the number of boosting iterations, which is typically chosen by
cross-validation or resampling techniques. As the algorithm is usually stopped before convergence (early stopping), the
optimization of the stopping iteration leads to the prevention of overfitting and encourages the sparsity of the resulting
model by data-driven variable selection.49 In particular, those variables, whose corresponding base-learners have never
been selected in the update process, are effectively excluded from the final model. The variable selection is simultane-
ously based on all additive predictors of the corresponding multivariate distribution. The algorithm does not impose any
hierarchy between distribution parameters, but only judges the potential predictor variables based on their performance
in increasing the joint likelihood. In addition, early stopping typically leads to an improvement in the prediction accuracy
and shrinkage of the effect estimates. We provide an implementation of statistical boosting for multivariate distributional
regression, which is integrated in the R package gamboostLSS.50

The boosting approach yields several advantages compared to existing Bayesian and likelihood-based approaches in
the context of GAMLSS.10,11 First, boosting incorporates data-driven variable selection. The issue of variable selection is
particularly important in complex model classes, for example, for multivariate distributional regression. The complexity
can further increase in settings with many distribution parameters K or high-dimensional predictors with many covari-
ates. In these cases the boosting approach could be favorable since it avoids manual selection of a large number of potential
candidate models. Second, the effect estimates are shrunken towards zero due to early stopping of the boosting algorithm.
This tends to result in more stable predictions as the variance of the estimates is reduced. Finally, the boosting algorithm
can be also applied for high-dimensional data problems, where we have more covariates than observations (p > n). Other
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STRÖMER et al. 1785

approaches, such as more classical Bayesian approaches, are no longer applicable or computationally very demanding for
these data situations.

3 SIMULATIONS

To evaluate the performance of the proposed statistical boosting approach, we conducted a detailed simulation study for
the three response distributions presented in Section 2.2. For each distribution, the particular settings are guided by the
different applications in Section 4. With our simulations, we aim to answer the following questions:

• Does the boosting approach yield accurate estimates for the corresponding distribution parameters of the bivariate
distributions?

• Can the boosting approach identify the truly informative variables and their effects?
• How do the bivariate models perform compared to univariate models that assume independence between the two

response components?

In particular, we evaluate the estimation, variable selection and predictive performance. Note that for each considered
simulation setting, different variables are informative for the distribution parameters and some of them partially overlap.
Therefore, we refer to informative and non-informative variables and do not mention all of them individually for the
different settings.

For all simulations, the step-length (learning rate) of the boosting algorithm is set to a fixed value of 𝜈 = 0.1 for each
parameter of the bivariate models, as well as for the univariate boosted models. The stopping iteration mstop is optimized
by minimizing the empirical risk on an additional validation data set with nval = 1500 observations, following the same
distribution as the training data. In addition, test data with 1000 observations were generated for the evaluation of the pre-
dictive performance (from the same distribution as the training data). As evaluation criteria, multivariate proper scoring
rules, namely the negative log-likelihood and the energy score, were used. The energy score generalizes the continuous
ranked probability score for multivariate quantities.51 In addition, univariate distribution-specific evaluation criteria were
used, that is, the mean squared error of prediction (MSEP), the area under the curve (AUC) and the Brier score. The Brier
score can be used to assess the accuracy of binary classifications and prediction models and is similar to the mean squared
error of prediction by considering the mean squared difference between the actual binary outcome and its predicted prob-
ability.52 In contrast to the AUC, which basically only measures the discriminatory power, the Brier score additionally
also considers the calibration of the prediction model. Note that the AUC and Brier score do not account for the depen-
dence between the two outcomes and are calculated separately for both outcomes, while the negative log-likelihood and
energy scores are probabilistic measures considering the entire joint outcome distribution. A total of 100 simulation runs
were performed for each simulation setting.

The corresponding R code to reproduce the results is available on GitHub https://github.com/AnnikaStr/
DistRegBoost. Further simulation results, such as comparisons with seemingly unrelated regression and Bayesian
approaches, can be found in the Appendix.

3.1 Bivariate Bernoulli distribution

3.1.1 Simulation design

For the simulation of the bivariate logit model, we considered a situation with n = 1000 observations and p = 1000 covari-
ates for each of the three distribution parameters, which corresponds to a high-dimensional situation as the number
of possible regression coefficients has tripled due to the three distribution parameters (3p > n). For data generation,
the R package VGAM53 was used, whereby the parameters p1, p2 and 𝜓 were simulated with the following linear
predictors

logit(p1) = 𝜂𝜇1 = X1 + 1.5X2 − X3 + 1.5X4, logit(p2) = 𝜂𝜇2 = 2X1 − X2 + 1.5X3,

log(𝜓) = 𝜂𝜓 = −1.5 + 1X3 + 1.5X4.
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1786 STRÖMER et al.

F I G U R E 2 Results for the estimated linear effects of the univariate (left) and bivariate Bernoulli (right) model of the first ten covariates
X1, … ,X10 from 100 simulation runs. The red horizontal lines correspond to the true values

Overall, only the first six covariates out of the p = 1000 had a relevant effect on any of the distribution parameters (four
for p1, three for p2 and two for 𝜓). The covariates were simulated from a multivariate normal distribution N(0,𝚺) with
a Toeplitz covariance structure Σij = 𝜌

|i−j| for 1 ≤ i, j ≤ p, where 𝜌 = 0.5 is the correlation between consecutive variables
Xj and Xj+1. The covariates were incorporated in the boosting approach by using simple linear models as base-learners.
As measures for the predictive performance, AUC, the Brier score, the negative log-likelihood and energy score were
considered.

3.1.2 Results

Figure 2 presents the coefficient estimates of the first ten covariates X1, … ,X10 in form of boxplots for the univari-
ate (left) and bivariate (right) model with the red horizontal lines corresponding to the true values. The univariate and
bivariate models reflect the true structure for 𝜂𝜇1 and 𝜂𝜇2 , as well as 𝜂𝜓 for the bivariate model, with both models lead-
ing to very similar results. The informative variables for 𝜇1 and 𝜇2 were correctly selected in almost every simulation
run. Specifically, we obtained overall selection rates (averaged over all informative variables) of 100% for the univari-
ate models and of 100% for 𝜇1 and 98.75% for 𝜇2 in the bivariate model. The selection rate for 𝜓 is slightly lower than
for the other parameters with a selection rate of 59.5% (see Appendix Table A3). The non-informative variables were
selected very rarely overall, resulting in sparse models and accurate model specifications that are able to recover the
ground truth.
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STRÖMER et al. 1787

T A B L E 2 Resulting predictive performance on independent test data for the linear setting of the bivariate Bernoulli distribution; mean
(SD) values from 100 simulation runs are reported for the univariate and bivariate models

Univariate Bivariate

AUC (Y1) 0.88 (0.01) 0.88 (0.01)

AUC (Y2) 0.84 (0.01) 0.84 (0.01)

Brier score (Y1) 0.14 (0.01) 0.14 (0.01)

Brier score (Y2) 0.16 (0.01) 0.16 (0.01)

Energy score 0.28 (0.21) 0.27 (0.01)

Negative log-likelihood 930.51 (24.24) 906.64 (29.24)

A comparison of the predictive performance is provided in Table 2, showing that the univariate and bivariate mod-
els were very similar in terms of AUC, Brier score, and energy score, with the bivariate model having slightly better
negative log-likelihood. In addition, the energy score for the univariate models showed a larger standard deviation. Fur-
ther simulation results of this linear setting for a low-dimensional data situation (p = 10 and n = 1000) can be found in
Appendix A.1.

3.2 Bivariate Poisson distribution

3.2.1 Simulation design

For the bivariate Poisson regression model, we investigated both linear and non-linear settings with p = 10 covariates
and n = 1000 observations for each distribution parameter. For the linear setting, the underlying true predictors were
specified as

log(𝜆1) = 𝜂𝜆1 = −X1 + 0.5X2 + 1.5X3, log(𝜆2) = 𝜂𝜆2 = 2X1 − X3 + 1.5X4 + X5,

log(𝜆3) = 𝜂𝜆3 = 0.5X5 + X6 − 0.5X7, (1)

where the covariates followed a multivariate normal distribution N(0,𝚺) with Toeplitz covariance structure and corre-
lation coefficient 𝜌 = 0.5. Thus, the first seven covariates were informative for any of the distribution parameter (three
for 𝜆1 and 𝜆3, four for 𝜆2). For this setting, simple linear models were incorporated as base-learners. For the non-linear
setting, the true additive predictors were given by

log(𝜆1) = 𝜂𝜆1 =
√

X1X1, log(𝜆2) = 𝜂𝜆2 = cos(2X2),
log(𝜆3) = 𝜂𝜆3 = sin X3, (2)

where the covariates were independently simulated from the uniform distribution U(0, 1) and only one covariate was
informative for each of the distribution parameters. As base-learners, we chose P-splines (20 equidistant knots with a
second-order difference penalty and four degrees of freedom). The R extraDistr54 package was used to simulate data
from the bivariate Poisson regression model.

3.2.2 Results

Figure 3 displays the coefficient estimates for the linear Poisson regression models (1). The boxplots present the esti-
mated coefficients for the univariate (left) and bivariate models (right). Overall, boosting the bivariate regression model
was able to identify the informative variables and to accurately estimate the true effects represented by the red hor-
izontal lines. In comparison, the univariate models for 𝜆1 and 𝜆2 resulted in much smaller estimated coefficients.
For both models, the informative variables were selected in almost every simulation run: considering 𝜆1 and 𝜆2, the
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1788 STRÖMER et al.

F I G U R E 3 Results for the estimated linear effects of the univariate (left) and bivariate Poisson model (right) from 100 simulation runs.
The horizontal lines correspond to the true values

univariate models and the bivariate model had a selection rate of almost 100% for the informative variables, whereby
also for 𝜆3 a high selection rate of 95.67% for the informative variables was achieved. On the other hand, the uni-
variate models as well as the bivariate model selected also several non-informative variables with a small coefficient
size. A more detailed overview on the selection rates for the specific parameters can be found in Table A8 of the
Appendix.

Furthermore, we considered the MSEP, the negative log-likelihood, and the energy score for the evaluation of the
predictive performance on test data (see Tables 3 and 4). The MSEP only accounts for the marginal distributions and
displays here a slightly better performance for the univariate models. The negative log-likelihood and the energy score,
which also take the association into account, showed a better performance for the bivariate model.

Figure 4 displays the effect estimates of the informative variables X1,X2 and X3 for the non-linear setting (2). Overall,
the estimated splines approximate the true effects well for each parameter of the bivariate model and clearly outperform
the univariate models for 𝜆1 and 𝜆2. The informative variables were selected in each simulation run. However, as in the
linear model, we observed also high selection rates for the non-informative variables in both models (see Appendix A.2,
Table A8).

In terms of predictive performance, similar to the linear setting, the MSEP indicated a better performance of the
univariate models, while the bivariate models, as expected, yielded better results in terms of the negative log-likelihood.
The energy score was very similar for both models but overall slightly better for the bivariate model. Further simulation
results for these settings in case of high-dimensional data with p = 1000 covariates and n = 1000 observations can be
found in Appendix A.2.
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STRÖMER et al. 1789

T A B L E 3 Resulting predictive performance on independent test data for the linear and non-linear settings of the bivariate Poisson
regression; mean (SD) values from 100 simulation runs are reported for the univariate and bivariate models

Linear model Non-linear model

Univariate Bivariate Univariate Bivariate

MSEP (Y1) 2.66 (0.18) 3.96 (0.29) 4.64 (0.25) 8.18 (0.65)

MSEP (Y2) 2.86 (0.23) 4.11 (0.34) 5.49 (0.29) 9.06 (0.68)

Energy score 1.48 (1.11) 1.36 (0.03) 1.95 (0.04) 1.95 (0.04)

Negative log-likelihood 3598.42 (54.31) 3413.68 (40.91) 4433.06 (52.06) 4246.96 (42.58)

T A B L E 4 Resulting predictive performance on independent test data of the bivariate Gaussian regression; mean (SD) values from 100
simulation runs are reported for the univariate and bivariate models

Univariate Bivariate

MSEP (Y1) 1.59 (0.11) 1.59 (0.11)

MSEP (Y2) 1.38 (0.07) 1.38 (0.07)

Energy score 1.03 (0.02) 1.01 (0.02)

Negative log-likelihood 3370.41 (89.59) 3098.11 (109.97)

F I G U R E 4 Results for the estimated non-linear effects for the univariate (left) and the bivariate Poisson model (right) of the
informative variables from 100 simulation runs. The red dotted lines correspond to the true effects
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1790 STRÖMER et al.

3.3 Bivariate Gaussian distribution

3.3.1 Simulation design

For the simulation of a bivariate Gaussian distributed outcome, we considered a setting with linear, non-linear and spatial
effects with p = 10 covariates and n = 1000 observations with the following true predictors

𝜇1 = 𝜂𝜇1 = sin(2X1)∕0.5 + X6 + 0.5X7 + fspat 𝜇2 = 𝜂𝜇2 = 2 + 3 cos(2X2) + 0.5X7 + X8 + fspat

log(𝜎1) = 𝜂𝜎1 =
√

X3X3 − 0.5X8 + fspat log(𝜎2) = 𝜂𝜎2 = cos(X4)X4 + 0.25X9 + fspat

𝜌∕
√

1 − 𝜌2 = 𝜂𝜌 = log(X2
5 ) + X10 + fspat,

where the covariates were independently simulated from the uniform distribution U(0, 1). Each included covariate
was informative for one of the distribution parameters; more precisely, for each parameter three covariates, one lin-
ear and one non-linear, and additionally the spatial effect. For the linear effects (X6, … ,X10) we used simple linear
models as base-learners and P-splines for the non-linear effects (X1, … ,X5). The spatial effects were simulated with
fspat(s) = sin(xc

s ) cos(0.5yc
s), s ∈ 1, … , S, based on the centroids of the standardized coordinates of the discrete regions in

Western Germany with overall S = 327 regions. The neighborhood structure was modeled by the spatial base-learner
using a Markov random field based on the R package BayesX.55

3.3.2 Results

Considering the linear effects (X6, … ,X10), the effect estimates for both models reflect the true structures of the linear
part of the predictors, whereby the bivariate model better approximates the true values (see Figure A6 in Appendix A.3).
The bivariate model was also able to capture the true non-linear functions well (Figure 5); only small deviations are
observed for the variance and for the correlation 𝜌 at the left border. The results for the univariate models appear to be
very similar regarding the univariate effects and can be found in the Appendix (Figure A7). For the spatial effects, the
true structure for the regions in West Germany was identified by each distribution parameter (a graphical representation
of the true structure and the estimated spatial effects are in Appendix A.3).

The informative variables for the univariate and bivariate models were selected in nearly all 100 simulation runs,
where the bivariate model also correctly selected the informative variables for the correlation between the outcomes.
Whereas, we can not examine the correlation with the univariate models. The selection rates for the non-informative
variables were slightly higher for the bivariate model (see Appendix Table A11).

Regarding predictive performance, the MSEP, the energy score, and the negative log-likelihood were considered. For
the MSEP and the energy score, similar results were observed for the univariate and the bivariate models. The negative
log-likelihood on the test set showed an improvement in predictive performance considering the bivariate model. Further
simulation results for this setting in case of high-dimensional data with p = 1000 covariates and n = 1000 observations
can be found in Appendix A.3.

3.4 Summary

Overall, we obtained promising results for all three considered distributional regression families (logistic, Poisson, and
Gaussian regression), highlighting that the boosting algorithm yields appropriate estimates for the different parameters
and is capable of identifying the most informative variables from a potentially much larger set of candidate variables.
The comparison with the univariate models showed that the estimated effects for the bivariate model were able to pro-
vide better approximations to the true structure of the predictors than the univariate models (particularly for the Poisson
and Gaussian regression models). We noticed that for the logistic regression model, the selection rates for the association
parameter, the odds ratio, tended to be lower than for the association parameter of the bivariate Poisson and Gaussian
distribution. Furthermore, the number of selected non-informative variables was higher for the univariate as well as the
bivariate models for the Poisson distribution. However, the linear low-dimensional setting for the bivariate logistic regres-
sion model (see Appendix A.1) and the low-dimensional Gaussian regression model showed higher selection rates in this
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STRÖMER et al. 1791

F I G U R E 5 Results for the estimated non-linear effects (X1, … ,X5) of the bivariate Gaussian regression model from 100 simulation
runs. The red dotted lines correspond to the true effects

situation as well (Appendix A.3). Conclusively, this highlights a tendency of the algorithm to select more non-informative
variables in low-dimensional settings.

Regarding prediction accuracy, as expected, the univariate and bivariate models performed similarly for evaluation
criteria that consider only the marginals (AUC, Brier score and MSEP). Only for the Poisson distribution, the uni-
variate model performed slightly better regarding the MSEP. This can be explained by the particular design of this
bivariate distribution, that is, the summation of the means for both outcomes (E(Y1) = 𝜆1 + 𝜆3 and E(Y2) = 𝜆2 + 𝜆3).
In Figure 3, for example, we observe that the informative variables X5,X6 and X7 for parameter 𝜆3 were selected
quite frequently with a higher estimated coefficient in the univariate models. These wrongly selected variables for the
marginals resulted in an improvement of the MSEP. In the bivariate model, we account for the association between
Y1 and Y2 by modeling the dependency in terms of the covariates. The MSEP does not account for the association
and the variables describing dependency are not reflected in the marginals as in the univariate models. Regarding
the predictive scores which account for associations between the outcomes, the energy score tended to be very simi-
lar for the univariate and bivariate models, while the negative log-likelihood was consistently better for the bivariate
models.

Overall, the bivariate models are obviously more complex because they also model the association between the two
outcomes. Regarding the marginals, however, they yield similar models as when analyzing both responses separately.
Therefore, we also get similar prediction performance for the marginals from the univariate and bivariate models. The
distributional evaluation measures like the negative log-likelihood, on the other hand, are consistently better for the
bivariate models as they consider the complete multivariate distribution.
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1792 STRÖMER et al.

4 BIOMEDICAL APPLICATIONS

In this section we consider three diverse biomedical data sets to illustrate the applicability of our extended boosting
approach for multivariate distributional regression models based on binary, count and continuous outcomes presented
in Section 2.2.

4.1 Genetic predisposition for chronic ischemic heart disease and high cholesterol

For analyzing the association between high cholesterol and chronic ischemic heart disease in dependency of different
genetic variants, we used cohort data from the UK Biobank (under application number 81202). The UK Biobank is a large
biomedical cohort study containing genetic and health information from over half a million British participants.27

In classical approaches for analyzing a potential genetic liability to a specific phenotype such as high cholesterol or
chronic heart disease, each considered genetic variant is fitted individually to the phenotype using a simple linear model.28

In this context, previous works including genome-wide association studies56,57 have investigated to find genetic variants
associated with high cholesterol and heart disease. Using our boosting algorithm for multivariate distributional regres-
sion, the main interest here is to investigate the association between chronic ischemic heart disease and high cholesterol,
both considered as binary phenotypes (high cholesterol > 6.16 mmol/l). In particular, we aim to identify genetic variants
affecting their association by estimating the two phenotypes jointly in a bivariate logistic model. That means we do not
only want to model the individual distributions of the two phenotypes, but also estimate the dependency between these
phenotypes as a function of genetic variants, which is not possible with conventional approaches.

The considered data set consists of 20,000 randomly sampled observations of individuals with white British ances-
try, with additional 10,000 observations used to validate the optimal stopping iteration. The fixed step-length was set to
𝜈 = 0.1. For each phenotype, 1000 variants were selected in a pre-screening step based on the largest marginal associa-
tions between the variants and the phenotype, which were computed with the PLINK2 function -variant-score.58,59

After pre-screening, the data set contains a total of 1865 variants (with 135 variants selected for both phenotypes). Variants
with minor allele frequency not less than 1% were randomly sampled with the-thin-count function. Missing geno-
types were imputed by the reference allele using the R package bigsnpr.60 Note that the pre-screening of 1000 genetic
variants for each phenotype and the usage of 20,000 randomly sampled observations from the much larger cohort was
performed to avoid computational memory problems. While there exists recent approaches to use boosting to fit multi-
variable regression models for single phenotypes on the complete data set, classical methods to model the genetic liability
are based on summing up univariate effects.61,62

Figure 6 shows the resulting estimated coefficients (expressed in exponential absolute values of the estimated coeffi-
cients) for the three distribution parameters. When comparing these Manhattan plots with the classical univariate ones
(based on the marginal association evaluated on the− log 10(P) scale) for high cholesterol and chronic ischemic heart dis-
ease, we find that the bivariate boosting model tended to identify variants with a higher coefficient value (stronger effect)
from similar or the same genomic locations, where the univariate models also showed large univariate associations (see
Appendix B.1).

For high cholesterol, for example, the variants with the smallest univariate p-values are located on chromosomes 18
and 19; on these chromosomes there were also the variants that had the highest estimated coefficients in the bivariate
boosting model. These findings are consistent with the location of known cholesterol-associated genes.57 Variants from
these chromosomes were also selected with our approach for the odds ratio. Our model selected several variants for
chronic ischemic heart disease that are in line with the findings of the meta-analysis of genome-wide association studies
examining DNA sequence variants associated with ischemic heart disease of Elosua and Sayols-Baixeras63 (eg, the variants
rs11206510, rs2891168, and rs4420638).

Overall, several variants were selected by the boosting approach for each distribution parameter, that is, 75 for 𝜇1, 154
for 𝜇2, and 19 variants for 𝜓 . For the marginal means, mainly those variants were selected that were primarily filtered
due to the specific phenotype (the 1000 most highly associated from the univariate screening for both phenotypes). In
particular, for 𝜇1, 63 of the 75 selected variants had been chosen in the pre-screening for ischemic heart disease, so that 12
of the 75 selected variants for𝜇1 were primarily selected for high cholesterol. Regarding high cholesterol, 110 variants were
selected from the ones that had been pre-selected for this phenotype, while 44 of the selected variants for high cholesterol
had been originally pre-selected for ischemic heart disease. The two marginal means 𝜇1 and 𝜇2 had six selected variants
in common, and both had one variant that was also selected for the odds ratio 𝜓 (namely for 𝜇1: rs10455872 and for 𝜇2:
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STRÖMER et al. 1793

F I G U R E 6 Manhattan plots for the coefficient estimates (expressed in exponential absolute values of the estimated coefficients) of the
boosted bivariate logistic regression model of the joint analysis of high cholesterol and ischemic heart disease from the UK Biobank data. The
x-axis represents the genomic location of the variants

rs77542162). The odds ratio included two variants that were among the 1000 most highly correlated pre-selected variants
for both phenotypes, namely rs505151 and rs2229094. The other 17 variants selected for the odds ratio were divided
as follows: 10 from 𝜇1 (ischemic heart disease) and 7 from 𝜇2 (high cholesterol). This means the algorithm identified
several variants that affect the dependency between the two phenotypes. The odds ratio is the most common measure for
examining the dependency between two binary outcomes in biomedical research and the interpretation in our context is
very similar. Thus, the selected variants for the association parameter have an effect on both outcomes, with a positive
effect increasing the association between heart disease and high cholesterol and conversely.

In summary, our algorithm provides the ability to study the joint genetic predisposition for chronic ischemic heart
disease and high cholesterol. With our approach we can also model the dependence of the association between these two
phenotypes on genetic variants, which is not possible with classical approaches. In addition, in line with the literature on
cardiovascular genetics, our model selected several variants in genomic regions which had been previously identified to
be relevant for the considered phenotypes.

4.2 Demand for health care in Australia

The first analysis on the demand for health care in Australia, based on the Australian health survey from 1977 to 1978,
was reported by Cameron and Trivedi.29 The considered data set consists of n = 5190 observations (which is only a subset
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1794 STRÖMER et al.

T A B L E 5 Results of the bivariate poisson model for the demand of health care for model A and model B (see Figure 7 for the non-linear
effect estimates for age and income in model B)

Covariate 𝝀consulations 𝝀medications 𝝀3

Model A Intercept −2.10 −2.20 −2.62

Gender (female) 0.05 0.59 0.61

Age 1.40 3.29 —

Income −0.31 −0.10 —

Model B Intercept −2.29 −2.22 −0.35

Gender (female) 0.13 0.60 0.19

of the overall collected survey). The bivariate count variables of interest are the number of consultations with a doctor
(in the past 2 weeks) and the number of prescribed medications (used in the last 2 days), which we model using bivariate
Poisson regression. The explanatory variables are gender (female coded as 1, male as 0), age (in years divided by 100) and
annual income (in Australian dollars; AUD; divided by 1000, measured as midpoints of coded ranges). More details on the
survey and its original analysis can be found in Cameron and Trivedi.29 The data are provided in the R package bivpois,30

which is available on GitHub (https://github.com/cran/bivpois).
In the following, we use the same representation of the bivariate Poisson distribution as introduced in Section 2.2.2.

Each distribution parameter 𝜆k, k = 1, 2, 3 is modeled based on explanatory variables. We consider the two following
models:

ModelA Gender, age and income are included as covariates for𝜆consulations (number of doctor consultations) and𝜆medications
(number of medications prescribed), but only gender is considered as a covariate for the covariance parameter
𝜆3 (corresponding to Model (b) in Karlis and Ntzoufras30).

ModelB For each model parameter, P-splines are used as base-learners for the continuous variables age and income,
while for gender linear effects are used.

The stopping iteration of both models was tuned via 25-fold bootstrapping and the step-length was set to a fixed
𝜈 = 0.1.

Considering the results of Model A presented in the upper part of Table 5, we observe that with increasing age, both
the numbers of doctor consultations and prescribed medications are estimated to increase. Income has negative marginal
effects on both responses, which means that higher income is associated with fewer prescribed medications and fewer
doctor appointments. For the covariance parameter 𝜆3, only gender was included as an explanatory variable in Model A.
The joint effect of gender on the number of doctor consultations and prescribed medications indicates that males and
females have different covariance terms. The estimated effect of 0.61 for gender suggests that the association between
numbers of consultations and medications is higher for women than for men.

The lower part of Table 5 and Figure 7 present the results for Model B. With an increasing age up to 50 years, the
number of doctor consultations is estimated to increase linearly, with a slight decrease starting around the age of 57
years. The estimated effect of age on the number of prescribed medications and the covariance parameter is linear and
is negative throughout the covariance. The income is estimated to have a U-shape effect for the medical consultation,
with a minimum between 800 AUD and 1150 AUD. The estimated effect of gender for Model A is slightly larger than for
Model B.

Overall, the estimated effects of Model A are consistent with the results of Karlis and Ntzoufras.30 In addition, we
also considered a non-linear model. Both the linear and non-linear models indicated that the expected numbers of doctor
consultations and prescribed medications increase with age. For income, the expected numbers of doctor visits and pre-
scribed medications decreases with increasing income for Model A. The expected number of doctor visits also decreases
in Model B as income increased, whereby a U-shaped effect for income can be observed.

Furthermore, because of the bivariate modeling, we also obtain information about the relationship between the out-
comes. Here, both models showed a higher association between the number of doctor consultations and prescribed
medications for women. Furthermore, Model B also included age and income as covariates for the covariance parameter
and the model suggested that the association becomes greater with increasing age.

 10970258, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9699 by K
arlsruher Institut F., W

iley O
nline L

ibrary on [18/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/cran/bivpois


STRÖMER et al. 1795

F I G U R E 7 Partial effects of age and income on the demand for health care in Australia for model B

4.3 Risk factors for undernutrition in Nigeria

To analyze childhood undernutrition, a large database is available from the Demographic and Health Survey (DHS,
https://dhsprogram.com/), containing nationally representative information about the population’s health and nutrition
status in numerous developing and transition countries. Here, we consider a data set used in Klein et al.64 which contains
data from Nigeria collected in 2013 with overall 23,042 observations (after exclusion of outliers and inconsistent obser-
vations). The bivariate responses are stunting, which is defined as stunted growth measured as the insufficient height of
the child concerning its age (chronic undernutrition), and wasting, which refers to insufficient weight for height (acute
undernutrition). We analyze the joint distribution of these two responses using the bivariate Gaussian distribution with
covariate-dependent marginal means and standard deviations as well as a covariate-dependent correlation parameter.

For continuous variables, P-splines were applied as base-learners, namely for cage (age of the child in months), edu-
partner (years of partner’s education), mage (age of the mother in years) as well as mbmi (body mass index of the mother).
Several other categorical covariates (12 covariates in total, eg, bicycle, car, cbirthorder) were included using simple lin-
ear models as base-learners. Furthermore, the neighborhood structure of the districts in Nigeria was incorporated and
modeled by the spatial base-learner using a Markov random field. For a full description of the explanatory variables, see
Appendix B.2. The stopping iteration of both models was tuned by 25-fold bootstrap and the step-length was set to 𝜈 = 0.1.

Figures 8 and 9 show the results for the non-linear and spatial effects for all parameters. The estimated linear effects are
given in Appendix Table B2. Stunting is estimated to be more affected by variables describing children’s living situation,
particularly ctwin (child is a twin) and the birth order (cbirthorder). Following our model, with higher birth order, the
stunting score decreases, with negative values indicating that the children’s growth is below the expected growth of a child
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F I G U R E 8 Non-linear effects of cage, edupartner, mage and mbmi for stunting and wasting of the bivariate Gaussian regression model
for the Nigeria data

with normal nutrition. For wasting, ctwin had the largest effect, displaying also an increased risk for acute undernutrition.
These results are in line with those of Klein et al.64

Furthermore, stunting and wasting were both influenced by cage and mbmi as well. Following our model, for mbmi, a
higher BMI of the mother indicates a higher acute and chronic undernutrition. For cage, stunting and wasting is estimated
to decrease (ie, risk increases) up to around 20 months. After 20 months, the risk for wasting is estimated to decrease
again while remaining similar for stunting.

The scale parameter for wasting, for example, indicates a higher variability for children up to around 25 months. For
children older than 25 months, the variability decreases slightly, whereby we observed a greater variability for stunting
between 20 and 40 months. The correlation is negative for children younger than 20 months and is approximately zero
after a small positive correlation between 20 and 50 months. This finding indicates an interaction between stunting and
wasting depending on the child’s age, which is non-linear and stronger for younger children. Thus, children with a greater
height in the first years of life have a lower weight for height and vice versa. The other covariates have only a minor
estimated effect on the correlation parameter. These results are consistent with previous findings,11,64 which also holds for
the spatial effects. The regional effect was selected to be informative for all distribution parameters. The effect of chronic
undernutrition, for example, showed a lower risk of stunted growth in regions in southern Nigeria due to a positive effect.
These regions also have a lower variability of chronic undernutrition compared to the average regions in the center of
the county. This means that in this part of Nigeria the score for stunting is estimated to be on average lower and its
variability is also smaller. By contrast, the regions in the north are estimated to have a higher risk for stunting. In terms
of the correlation, some regions in the north are estimated to have a negative effect, while other regions in the south are
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F I G U R E 9 Spatial structure of stunting and wasting in Nigeria for the distribution parameters of the Gaussian distribution

estimated to show a slight positive effect on the correlation. A positive effect suggests that these regions have a problem
of acute undernutrition as well as chronic undernutrition.

Overall, chronic undernutrition (stunting) is mostly affected by the living conditions of the children, for example, the
birth order. Whereby, stunting and wasting were both influenced by the mother’s BMI and particularly by the child’s age.
Additional effects of the covariates on the scale and correlation parameters also suggested greater uncertainty for younger
children for acute undernutrition through a positive effect on the standard deviation, with variability decreasing with
age. Furthermore, we observed a stronger negative correlation between stunting and wasting in younger children, that is,
as stunting increases, wasting is expected to be lower. This means that children with a greater height tend to suffer from
a lower weight for height at a younger age.
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5 DISCUSSION

We developed statistical boosting for modeling distributional regression with multivariate outcomes. Motivated by our
biomedical applications, we considered three important multivariate parametric distributions: the bivariate Bernoulli,
Poisson and Gaussian distributions. As special merits over classical maximum likelihood or Bayesian approaches to
multivariate GAMLSS, our boosting framework can directly be used for high-dimensional data problems (p > n), while
allowing for a data-driven variable selection mechanism that allows for sparse models for all parameters of a multivariate
distribution.

In simulation studies, we have illustrated that the proposed boosting approach is able to identify the correct predic-
tors in different data situations, including low- and high-dimensional settings and incorporating different effect types
such as spatial effects. A comparison with the boosted univariate models showed that the bivariate models yielded more
accurate estimates for the true structure of the effects. The wide applicability of our approach is illustrated on three dif-
ferent biomedical data sets, where we extend previous studies and also confirm findings from the literature. Applying our
approach to examine jointly the genetic predisposition for chronic ischemic heart disease and high cholesterol not only
provides information on the dependency of these phenotypes on the genetic variants, but also allows to identify the vari-
ants that affect the association between both phenotypes. This is in strong contrast to classical methods to estimate, for
example, polygenic risk scores via accumulating effects from univariate linear models with single variants as predictor
variables.65 Our approach does not only incorporate multivariable predictor models, but also considers multivariate out-
comes and hence allows to assess also the genetic predisposition for the association between several phenotypes, such as
heart disease and high cholesterol. To the best of our knowledge, this is the first time multivariate distributional regression
was adapted to model the joint genetic liability for multiple phenotypes.

In examining possible effects of patients characteristics on demand for health care, we found that age and income
are relevant predictors, but also that gender affected the association between the number of doctor consultations and
prescribed medications, with a stronger association found for women (cf. Karlis and Ntzoufras30).

In the third application analyzing the risk of undernutrition in Nigeria, an association was found between chronic
undernutrition and the child’s living condition. In addition, the age of the child had a relevant influence on all distribution
parameters related to chronic and acute undernutrition; furthermore, the regional effect was selected not only for the
margins but also for the scale and correlation parameters.

To summarize, the application of our approach to boost multivariate distributional regression is particularly beneficial
in settings where at least some of the following criteria are met: (i) multiple associated responses are of interest; (ii) the
association or other characteristics of the joint distribution depend on covariates; (iii) there are multiple explanatory
variables available without clear prior-knowledge; (iv) the aim of the analysis is exploratory, hypothesis-generating or
prediction.

A limitation regarding the considered distributions in our approach is the restriction of the Poisson distribution to
positive dependency between the two responses. A possible solution for this restriction in future research could be the use
of alternative parameterization,39 which also allow for modeling negative correlations; however, these have the disadvan-
tage that the interpretation of effects on these parameters becomes much more difficult. A limitation of our algorithm is
the relatively high selection rates for variables with only minor importance, which occurs particularly in low-dimensional
settings. In this context, Strömer et al.66 have recently proposed an approach to deselect predictors with negligible impact
to obtain sparser models with statistical boosting. We want to investigate the incorporation of this proposal in the con-
text of multivariate GAMLSS in the future. Moreover, as the number of distribution parameters and the complexity of the
model increases (eg, due to many non-linear effects), the algorithm becomes computationally more intensive. To address
this problem, also alternative approaches for early stopping could be considered. A promising approach in the future
which has been developed for univariate location models is probing, where randomly shuffled versions of the original
observed variables (probes) are added to the data set and the algorithm stopped when the first probe is selected.67 Fur-
thermore, a unique fixed step-length for all distribution parameters (as it is currently good practice in statistical boosting)
could lead in some settings to an imbalance in the updates of predictors. In the most extreme case, the algorithm stops
before some of the distribution parameters received an update at all. This could be tackled by scaling the gradient vectors
or directly the outcome variable.50 Zhang et al.48 recently proposed an approach for adaptive step-lengths in Gaussian
location and scale models to find the optimal step-length for the parameters. Further research is warranted on extending
adaptive step-lengths approaches beyond Gaussian models to the more complex multivariate regression models.

Last, our focus has been on bivariate distributional regression models, but we will consider extending the mod-
els to higher dimensional responses in future research. From an algorithmic perspective, the extension should be
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straight-forward as it only adds more distribution parameters in our proposed framework. However, not only the construc-
tion of appropriate response distributions but also the interpretation of the effect estimates becomes more challenging.
For example, for the multivariate Gaussian distribution, the main challenge is the parameterization of the covariance
matrix and a promising route here could be based on a (modified) Cholesky decomposition.68 Similar, the extension of
the bivariate Poisson distribution to higher dimensions has some difficulties due to the complicated form of the joint
probability function. The most common extension would force all the pairs of variables to have the same covariance,69

whereby Karlis and Meligkotsidou70 already discussed a model with a two-way covariance term that allows for different
covariances between the variables.
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