KIT | KIT-Bibliothek | Impressum | Datenschutz

Variational inference and sparsity in high-dimensional deep Gaussian mixture models

Kock, Lucas; Klein, Nadja ORCID iD icon; Nott, David J.

Abstract:

Gaussian mixture models are a popular tool for model-based clustering, and mixtures of factor analyzers are Gaussian mixture models having parsimonious factor covariance structure for mixture components. There are several recent extensions of mixture of factor analyzers to deep mixtures, where the Gaussian model for the latent factors is replaced by a mixture of factor analyzers. This construction can be iterated to obtain a model with many layers. These deep models are challenging to fit, and we consider Bayesian inference using sparsity priors to further regularize the estimation. A scalable natural gradient variational inference algorithm is developed for fitting the model, and we suggest computationally efficient approaches to the architecture choice using overfitted mixtures where unnecessary components drop out in the estimation. In a number of simulated and two real examples, we demonstrate the versatility of our approach for high-dimensional problems, and demonstrate that the use of sparsity inducing priors can be helpful for obtaining improved clustering results.


Verlagsausgabe §
DOI: 10.5445/IR/1000175295
Veröffentlicht am 21.10.2024
Originalveröffentlichung
DOI: 10.1007/s11222-022-10132-z
Scopus
Zitationen: 2
Web of Science
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2022
Sprache Englisch
Identifikator ISSN: 0960-3174, 1573-1375
KITopen-ID: 1000175295
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Statistics and Computing
Verlag Springer
Band 32
Heft 5
Seiten Art.-Nr. 70
Projektinformation ENP, 1. Förderabschnitt (DFG, DFG EIN, KL 3037/1-1)
Bemerkung zur Veröffentlichung A Correction to this article was published on 21 December 2022.
Vorab online veröffentlicht am 01.09.2022
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page