KIT | KIT-Bibliothek | Impressum | Datenschutz

A non-stationary model for spatially dependent circular response data based on wrapped Gaussian processes

Marques, Isa ; Kneib, Thomas; Klein, Nadja ORCID iD icon

Abstract:

Circular data can be found across many areas of science, for instance meteorology (e.g., wind directions), ecology (e.g., animal movement directions), or medicine (e.g., seasonality in disease onset). The special nature of these data means that conventional methods for non-periodic data are no longer valid. In this paper, we consider wrapped Gaussian processes and introduce a spatial model for circular data that allow for non-stationarity in the mean and the covariance structure of Gaussian random fields. We use the empirical equivalence between Gaussian random fields and Gaussian Markov random fields which allows us to considerably reduce computational complexity by exploiting the sparseness of the precision matrix of the associated Gaussian Markov random field. Furthermore, we develop tunable priors, inspired by the penalized complexity prior framework, that shrink the model toward a less flexible base model with stationary mean and covariance function. Posterior estimation is done via Markov chain Monte Carlo simulation. The performance of the model is evaluated in a simulation study. Finally, the model is applied to analyzing wind directions in Germany.


Verlagsausgabe §
DOI: 10.5445/IR/1000175296
Veröffentlicht am 21.10.2024
Originalveröffentlichung
DOI: 10.1007/s11222-022-10136-9
Scopus
Zitationen: 3
Web of Science
Zitationen: 1
Dimensions
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 10.2022
Sprache Englisch
Identifikator ISSN: 0960-3174, 1573-1375
KITopen-ID: 1000175296
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Erschienen in Statistics and Computing
Verlag Springer
Band 32
Heft 5
Seiten Art.-Nr. 73
Vorab online veröffentlicht am 03.09.2022
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page