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Abstract
Spatial models are used in a variety of research areas, such as environmen-
tal sciences, epidemiology, or physics. A common phenomenon in such spatial
regression models is spatial confounding. This phenomenon is observed when
spatially indexed covariates modeling the mean of the response are correlated
with a spatial random effect included in the model, for example, as a proxy of
unobserved spatial confounders. As a result, estimates for regression coefficients
of the covariates can be severely biased and interpretation of these is no longer
valid. Recent literature has shown that typical solutions for reducing spatial
confounding can lead to misleading and counterintuitive results. In this article,
we develop a computationally efficient spatial model that explicitly correlates a
Gaussian random field for the covariate of interest with the Gaussian random
field in the main model equation and integrates novel prior structures to reduce
spatial confounding. Starting from the univariate case, we extend our prior struc-
ture also to the case of multiple spatially confounded covariates. In simulation
studies, we show that our novel model flexibly detects and reduces spatial con-
founding in spatial datasets, and it performs better than typically used methods
such as restricted spatial regression. These results are promising for any applied
researcher who wishes to interpret covariate effects in spatial regression mod-
els. As a real data illustration, we study the effect of elevation and temperature
on the mean of monthly precipitation in Germany.

K E Y W O R D S

Bayesian inference, penalized complexity prior, spatial statistics, stochastic partial differential
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1 INTRODUCTION

Spatial regression data are regression data {(y(s), z(s) ∶ s ∈ }, where both the response variable y(s) and the explanatory
variables z(s) are indexed by a spatial variable s representing the location of the corresponding observational unit in a
spatial domain  . Based on observations collected at locations si ∈  , i = 1, … ,n, a standard regression model would
then be of the form
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y(si) = 𝛽0 + z(si)T𝜷 + 𝜀i (1)

with i.i.d. error terms 𝜀i ∼ N(0, 𝜎2
𝜀

). However, this model could only be applied if—after adjusting for the covariates
z(si)—no spatial dependence remains such that the residuals can indeed be assumed to be independent. This assumption
is questionable for typical, observational spatial data where spatial dependence is likely to arise, for example, due to direct
interaction between observational units of interest with spatial proximity determining the intensity of mutual interac-
tions (e.g., when studying outcomes relating to animal behavior) or due to omitted variables that themselves obey spatial
dependence. In this article, we are considering situations of the second type, that is, model (1) is assumed to represent
the true data generating mechanism, yet we only have access to a subset of covariates instead of the complete vector.

More formally, we assume that z(s) = (zobs(s)T , zunobs(s)T)T and zobs(s) is a subset of covariates that are observed, while
the remainder zunobs(s) is unobserved. This refers to the classical setup of unobserved confounders where

• naive estimation of the model relying exclusively on observed data will be biased unless observed and unobserved
covariates are uncorrelated, and

• estimation uncertainty will usually be underestimated in the naive model based on observed data only,

see Greene (1990) or Wooldridge (2015) for details. In spatial data, it is particularly unlikely that zobs(s) and zunobs(s)
are uncorrelated when both obey spatial dependence themselves. A common approach that is considered to adjust for
unobserved spatial covariates is to approximate their overall effect as 𝛾(s) ≈ zunobs(s)T𝜷unobs and to model 𝛾(s) as a spatially
correlated random effect in the model

y(si) = 𝛽0 + zobs(si)T𝜷obs + 𝛾(si) + 𝜀i. (2)

Unfortunately, this modeling strategy does not completely solve the problem since the correlation between the observed
and unobserved part of the covariates carries over to dependence between zobs(s) and 𝛾(s), which is then usually referred
to as spatial confounding. As a consequence, the problem of unobserved confounding remains but, unlike the standard
case of omitted variables, the possibility to estimate the spatial effect 𝛾(s) as a part of model (2) allows one to device
dedicated estimation approaches.

Initially, most research on spatial confounding was motivated by the empirical observation that including a corre-
lated spatial effect in model (2) could have severe (and often detrimental) impact on estimating the regression effects
𝜷obs (Hodges & Reich, 2010; Schnell & Papadogeorgou, 2020). Early approaches were notably agnostic about the under-
lying model and reasons for this behavior, and simply tried to device improved estimation approaches that allowed to
recover the true effects 𝜷obs. Whether or not spatial confounding is a relevant concern, depends both on the specific
properties of the omitted variables zunobs(s) and the purpose of the analysis. For the former, the scale at which spatial vari-
ability is observed and how this scale relates to the spatial variability in zobs(s) is of major relevance (Hefley et al., 2017;
Paciorek, 2010; Page et al., 2017).

With respect to the aim of the analysis, one can distinguish at least four situations. First, if the main goal is to obtain
point predictions for the response only, it may be sufficient to just estimate the spatial model (2) since the potential bias
in estimating 𝜷obs will usually be compensated by estimating 𝛾(s) (Page et al., 2017). This does not necessarily carry
over to the quantification of prediction uncertainty, but still spatial confounding may only be a second order problem
in this case. Second, one may be interested in evaluating whether the overall spatial variability observed in the response
of interest can be sensibly attributed to spatial risk factors by including candidate risk factors in zobs(s) and evaluating
how much spatial variation remains in 𝛾(s) after adjusting for these risk factors (Adin et al., 2021; Paciorek, 2010). In this
case, spatial confounding is a major concern since in general one will not be able to tell apart spatial variation in zobs(s)
and 𝛾(s) without further structural model assumptions. One may also be interested in evaluating the effect of a specific
treatment variable on the response while simultaneously adjusting for a number of additional confounding variables
which, together, form the vector zobs(s) (Davis et al., 2019; Guan et al., 2020; Schnell & Papadogeorgou, 2020). Here,
dealing with spatial confounding is particularly important to identify the causal effect of the treatment. When it comes
to the fourth situation, we distinguish a very significant part of the literature that is agnostic to the specific aims of the
study (Dupont et al., 2021; Hanks et al., 2015; Hefley et al., 2017; Hodges & Reich, 2010; Hughes & Haran, 2013). In this
article, we pragmatically consider dealing with spatial confounding as a way of getting a more realistic approximation of
the underlying data generating process that enables meaningful interpretation of 𝜷obs, positioning our contribution close
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to the evaluation of spatial risk factors. While our modeling approach may serve as a useful tool for exploring the presence
of spatial confounding in a first place, the prior structures can also be useful as a building block in more complex spatial
models.

The most common solution for spatial confounding is restricted spatial regression (RSR), which has been utilized
both when evaluating the effect of a specific treatment (e.g., Reich et al., 2006) or risk factors (e.g., Adin et al., 2021). This
method alleviates confounding by projecting the spatial effects into the orthogonal space spanned by the covariates and,
thus, carries strong assumptions for the fixed effects. Recent studies show that RSR has counterintuitive consequences
for causal inference and can perform worse than a nonspatial (NS) model such as the one in (1) (Khan & Calder, 2020;
Zimmerman & Ver Hoef, 2021). Several alternatives to RSR have been brought forward. In the causal inference front,
Thaden and Kneib (2018) use a three-stage structural equation model to extract the spatial structure in zobs(s) and 𝛾(s),
while Schnell and Papadogeorgou (2020) consider a joint model for zobs(s) and 𝛾(s) based on Gaussian Markov random
fields. Guan et al. (2020) explicitly address the importance of spatial scale, develop a joint model for zobs(s) and 𝛾(s) in
the spectral domain and study their correlation at different scales. On the more agnostic side, Dupont et al. (2021) use a
two-stage approach to remove the spatial structure in zobs(s) and, thus, avoid spatial confounding in the main equation (2).

Some literature has focused on simultaneously alleviating the computational bottlenecks of dealing with high dimen-
sional latent spatial effects and spatial confounding (Hughes & Haran, 2013). To address this in our setting, we develop
a Bayesian framework that allows to deal with spatial confounding in continuously indexed spatial models using a novel
prior structure. We model 𝛾(s) and zobs(s) jointly using a multivariate Gaussian random field (MGRF) distribution. For
this, we use the stochastic partial differential equation (SPDE) approach (Lindgren et al., 2011) which utilizes a Gaussian
Markov random field (GMRF) for computations. Moreover, we explore a penalized complexity (PC) prior for the corre-
lation parameter that controls the shrinkage toward a base model, that is, the case of no spatial confounding (Simpson
et al., 2017). Finally, thus far, the literature on spatial confounding does not discuss in-depth the case of multiple spatially
confounded covariates in a spatial model. In this article, we address this gap, while explicitly accounting for spatial scale
and computational complexity.

In summary, with this article, we

1. develop a new prior structure to deal with spatial confounding,
2. increase computational efficiency of the developed prior by exploiting the sparsity of the precision matrix of GMRFs

in the SPDE-approach, and
3. extend the prior structure to the case of multiple covariates being correlated with the spatial random effect.

The remainder of this article is organized as follows. In Section 2, we introduce the novel prior structure. In Section 3,
we extend the prior structure to the case of multiple spatial covariates. In Section 4, we present the details relating to the
MCMC sampling. In Section 5, we present a simulation study that investigates the sources and consequences of spatial
confounding. This simulation study compares our model with a spatial model that does not account for spatial confound-
ing (called base model), RSR and a NS model. Additionally, we present a simulation study for the multiple covariates
case. In Section 6, we demonstrate the useful properties of our prior structure in an application to precipitation data from
Germany. Section 7 discusses the results and proposes future steps to further improve upon the present work.

2 A NOVEL MGRF PRIOR FOR DEALING WITH SPATIAL CONFOUNDING
IN ONE COVARIATE

A spatial process {𝛾(s) ∶ s ∈ } is a continuously indexed GRF if all finite-dimensional distributions of the process are
Gaussian, that is, for all n ∈ N and all s1, … , sn ∈  , the vector (𝛾(s1), … , 𝛾(sn))T is multivariate Gaussian distributed.
A GRF is specified by using a mean function 𝜇𝜸(s) and a covariance function Σ𝜸(s, s′), for s, s′ ∈  . We assume 𝜇𝜸(s) = 0
for all s.

2.1 A MGRF model specification

Consider the model in (2). For notational simplicity, we will refer to zobs as z and omit the spatial index s. Let z be a
covariate having a spatial structure that can be represented by a GRF with mean 𝝁Z and covariance matrix 𝚺Z, that is,
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F I G U R E 1 Visual representation of the prior structure. Squares represent observable variables and circles represent nonobservables

z ∼ (𝝁z,𝚺z). Let 𝜸 ∼ (0,𝚺𝜸). We assume that 𝜸 and z are jointly Gaussian distributed such that

(
𝜸

z

)
∼

[(
0
𝝁z

)
,

(
𝚺𝜸 𝜌𝚺1∕2

𝜸 (𝚺1∕2
z )T

𝜌𝚺1∕2
z (𝚺1∕2

𝜸 )T 𝚺z

)]
, (3)

where 𝜌𝚺1∕2
𝜸 (𝚺1∕2

z )T = 𝚺𝜸 z, 𝚺z 𝜸 = 𝚺T
𝜸 z, and 𝜌 ∈ [−1, 1]. The matrix roots 𝚺1∕2

𝜸 and 𝚺1∕2
z satisfy 𝚺𝜸 = 𝚺1∕2

𝜸 (𝚺1∕2
𝜸 )T and 𝚺z =

𝚺1∕2
z (𝚺1∕2

z )T , and can be derived from a Cholesky decomposition or an eigenvalue decomposition. The covariance structure
is constructed such that Corr(𝛾m,Zm) = 𝜌, for all m = 1, … ,M.

The conditional distribution of 𝜸 given z is a Gaussian distribution with mean and covariance

𝝁𝜸|z = 0 + 𝚺𝜸 z𝚺−1
z (z − 𝝁z), (4)

𝚺𝜸|z = 𝚺𝜸 − 𝚺𝜸 z𝚺−1
z 𝚺z 𝜸 (5)

leading to

𝜸|z ∼ (𝝁𝜸|z,𝚺𝜸|z) and z ∼ (𝝁z,𝚺z). (6)

If 𝜌 = 0, then 𝜸|z ∼ (0,𝚺𝜸), that is, we get the typically used prior in continuously indexed spatial models, which does
not account for spatial confounding. We refer to a prior that assumes 𝜌 = 0 as the base prior, and the model associated with
it as the base model. The more general case with 𝜌 ∈ [−1, 1] in (6) is denoted here a multivariate Gaussian random field
(MGRF) prior, and the model associated with it is a MGRF model. The MGRF prior structure is illustrated graphically in
Figure 1.

2.2 GMRF reformulation

GMRFs are multivariate Gaussian distributions satisfying conditional independence assumptions, that is, they have a
sparse precision matrix, Q𝜸 = 𝚺−1

𝜸 . While GMRFs are less attractive than GRFs from a theoretical viewpoint, the sparse-
ness of the precision matrix, and potentially also of the corresponding Cholesky factorization, makes GMRFs attractive
from a computational viewpoint.

Rue and Tjelmeland (2002) demonstrated empirically that GMRFs can closely approximate most of the commonly
used covariance functions in geostatistics and proposed using them as computational replacements for GRFs for computa-
tional reasons. The stochastic partial differential equation (SPDE) approach (Lindgren et al., 2011) exploits this empirical
equivalence and obtains a model that benefits from both the computational benefits of the GMRF and a well-defined
continuous GRF counterpart.

Recently, the nearest neighbors Gaussian process (NNGP) model (Datta et al., 2016) has been presented as a compu-
tational competitor for the SPDE-approach. However, while NNGPs benefit from the construction of a sparse Cholesky
factorization of the precision matrix (and thus a GMRF specification), they do not have a well-defined continuous coun-
terpart. As a consequence, the interpretability of the resulting model, for example, in terms of concepts such as spatial
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scale, is hindered and the model is dependent on the order in which the observations are included in the model, which in
turn can lead to large discrepancies between the original covariance and the NNGP covariance (Lindgren et al., 2022). In
contrast, for full Cholesky factorization such as in the SPDE-approach, the ordering of the nodes only affects the sparsity
of the computed factorization (Lindgren et al., 2022; Rue & Held, 2005).

All spatial models in this article use the SPDE-approach (Lindgren et al., 2011). In this approach, a GRF 𝛾(s) (similarly
for z(s)) is expanded into a piecewise linear basis through

𝛾(s) =
M∑

m=1
𝜓m(s)𝛾m, (7)

where the joint distribution of the weight vector 𝜸 = (𝛾1, … , 𝛾M)T are normally distributed weights 𝜸 with mean zero and
sparse precision matrix Q𝜸 such that 𝜸 ∼ N(0,Q−1

𝜸 ), that is, the GMRF approximation to the GRF. Each basis function
𝜓m(⋅) is piecewise linear. Note that at this point 𝜸 gains a new meaning, specifically as the GMRF approximation of the
GRF 𝛾(s) via (7), that is, omitting s no longer represents a simplification of notation.

The sparse precision matrix Q𝜸 will typically reduce the cost of factorizations—such as the Cholesky
decomposition—to O(n3∕2) in spatial models, instead of O(n3) for GRFs with dense covariance matrices. Moreover, the
Cholesky decomposition of the precision Q𝜸 inherits its sparse structure in the SPDE-approach (Rue & Held, 2005). Thus,
in this article, we assume 𝚺1∕2

𝜸 (similarly for 𝚺1∕2
z ) represents the Cholesky decomposition of 𝚺𝜸 . This allows us to exploit

the sparsity of the Cholesky factor to reduce the computational complexity of the resulting prior structure.
In the SPDE-approach, the precision of the resulting GMRF depends on 𝜏𝜸 > 0, a precision parameter, 𝜅𝜸 > 0, a param-

eter related to the spatial range, and 𝜈𝜸 > 0 which is a smoothness parameter. Throughout this article, we assume  ⊆ R2.
The marginal variance 𝜎2

𝜸 of the GRF can be derived from the parameters 𝜏𝜸 and 𝜅𝜸 , via

𝜎

2
𝜸 =

Γ(𝜈𝜸)

Γ(𝛼𝜸)4𝜋𝜅
2𝜈𝜸
𝜸 𝜏

2
𝜸

.

Furthermore, by defining the range as the distance at which the spatial correlation falls to 0.05, the range parameter r
𝛾

can be written as

r𝜸 =
√

8𝜈𝜸
𝜅𝜸

.

2.2.1 Reformulation I

For positive definite Q𝜸 , there is a unique Cholesky factor L𝜸 such that L𝜸 is a lower triangular matrix with L𝜸(ii) > 0 ∀i
and Q𝜸 = L𝜸 LT

𝜸 . By exploiting the Markov graph structure of the GMRF, the Cholesky factor of the precision matrix can
be guaranteed to be sparse (Rue & Held, 2005). The same logic applies to z and we can rewrite (4) and (5) such that

𝝁𝜸|z = 0 + 𝜌 L−T
𝜸 LT

z (z − 𝝁Z), (8)

Q𝜸|z = 𝚺−1
𝜸|z = 1

1 − 𝜌2 Q𝜸 , (9)

as derived in detail in Supplement A.

2.2.2 Reformulation II

Reformulation I of the first and second order structure of the prior takes advantage of the sparse structure of Q𝜸 and
Qz, and it can lead to a considerable decrease in the computational cost of factorizations. However, to guarantee positive
definiteness, we need to avoid boundary cases |𝜌| ≈ 1.
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6 of 20 MARQUE et al.

To address this, one can consider the unconstrained GMRF, 𝜸 ∼ (0,Q−1
𝜸 ), and then compute

𝜸∗ = 𝜸 + 𝜌 L−T
𝜸 LT

z (z − 𝜸z), where 𝜸z ∼ (𝝁z,𝚺z).

The resulting 𝜸∗ has the correct conditional distribution (see Supplement B). This procedure is similar to “conditioning
by kriging” in Rue and Held (2005) and it essentially removes from the linear predictor the part of the spatial effect that
is correlated with the covariate of interest.

In comparison to reformulation I, this reformulation requires the sampling of one additional parameter, 𝜸z, of size M.
This can increase the computational costs associated with MCMC, as 𝜸z is sampled every iteration.

2.3 Prior for 𝝆

Estimating the correlation between z and 𝜸 is a complex task, namely because 𝜸 is an unobservable random effect. In this
article, we estimate 𝜌within the Bayesian hierarchical model presented in more detail in Section 4, and set a PC-prior for
𝜌.

The concept of a PC-prior was first developed by Simpson et al. (2017) and an in-depth introduction can be found
there. In short, as the name penalized complexity indicates, this prior invokes the principle of parsimony, for which a
simpler base model should be preferred until there is enough support for a more complex model. The prior density decays
at a constant decay-rate as a function of a measure of the increased complexity between the more flexible model and
the base model. The resulting prior allows for user-defined scaling: an upper bound for the parameter of interest can be
defined, which describes what is considered as “tail event” and what is the weight put on this event. Hence, the user can
describe how informative the resulting PC-prior is.

Simpson et al. (2017) developed a PC-prior for correlation parameters. Here, we consider a base model with 𝜌0 = 0,
that is, a base model that assumes no spatial confounding between fixed effects and spatial random effects. Let −1

c−1
< 𝜌 < 1

with c ≥ 2. Simpson et al. (2017) show that the PC-prior for 𝜌 has density

p(𝜌) = c − 1
2

(
1

1 − 𝜌
− 1

1 + (c − 1)𝜌

)
𝜆√
−lR(𝜌)

exp(−𝜆
√
−lR(𝜌)),

where lR(𝜌) = log(R(𝜌)) and R(𝜌) = (1 + (c − 1)𝜌)(1 − 𝜌)c−1.
The decay-rate 𝜆 can be chosen by sampling PC-priors from various values of 𝜆 and choosing a 𝜆 satisfying

Prob(|𝜌| > U) = a. (10)

The resulting PC-prior is shown in Figure 2, for c = 2 and different values of U and a. As it can be observed, the
prior can be made less informative by increasing U or a, that is, by reducing shrinkage toward the base model. For
different values of c, the left boundary for the correlation can be shifted toward zero, resulting in an asymmetric
prior distribution for 𝜌. However, throughout this article, we assume there is no information concerning the type of
correlation between the unobservable spatial random field and the covariate. Thus, we only consider the case c = 2.
Moreover, we set a = 0.05 and simply change U to get the desired prior density. We refer to the resulting PC-prior
as (U).

2.4 Full hierarchical model

In what follows, we present the full hierarchical structures of the models for reformulations I and II, respectively.
The priors on 𝜃

𝜏

𝜸 , 𝜃𝜏z , 𝜃𝜅𝜸 and 𝜃

𝜅

z for  = [0, 1] × [0, 1] are chosen such that the spatial range and marginal vari-
ance vary uniformly in the intervals [0.01, 1] and [0.01, 5], respectively, as this should cover all the variability of
the considered (scaled) responses. For 𝜎2

𝜀

, we specify an inverse-gamma distribution (c = 0.001, d = 0.001). Cases
c = d, with both values approaching zero, are widely used as a weakly informative choice for 𝜎2

𝜀

(see section 4.4
of Fahrmeir et al., 2013). Recall that 𝛾(s) =

∑M
m=1𝜓m(s)𝛾m and z(s) =

∑M
m=1𝜓m(s)zm. Moreover, 𝜽z = (𝜃𝜏z , 𝜃𝜅z )T and

𝜽𝜸 = (𝜃𝜏𝜸 , 𝜃𝜅𝜸 )T .
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F I G U R E 2 Prior densities for 𝜌 using a PC-prior with 𝜌0 = 0, c = 2 and different values for U and a

The hierarchical structure for B = 1 and reformulation I in Section 2.2.1 is

y(si) = 𝜂(si) + 𝜀i = 𝛽0 + z(si)T𝜷 + 𝛾(si) + 𝜀i with
𝜸|𝜽z,𝜽𝜸 , 𝜇z ∼ (𝝁𝜸|z,Q𝜸|z(𝜽z,𝜽𝜸)−1),

𝛽0 ∼ (𝜇
𝛽0 , 𝜎

2
𝛽0
),

𝜷 ∼ (𝝁𝜷 , diag(𝝈2
𝜷
)),

𝜺|𝜎2
𝜀
∼ (0, 𝜎2

𝜀
I),

𝜎

2
𝜀
∼ (0.001, 0.001),

𝜃

𝜏

𝜸 , 𝜃
𝜏

z ∼  (−10, 0),
𝜃

𝜅

𝜸 , 𝜃
𝜅

z ∼  (1, 5),
𝜌 ∼ (U, 0.05),
𝜇z ∼ (𝜇

𝜇z , 𝜎
2
𝜇z
),

while the hierarchical structure for B = 1 and reformulation II in Section 2.2.2 is

y(si) = 𝜂(si) + 𝜀i = 𝛽0 + z(si)T𝜷 + 𝛾∗(si) + 𝜀i

= 𝛽0 + z(si)T𝜷 +
M∑

m=1
𝜓m(si)𝛾∗m + 𝜀i with

𝜸∗ = 𝜸 + 𝜌 L−T
𝜸 LT

z (z − 𝜸z),
𝜸|𝜽𝜸 ∼ N(0,Q𝜸(𝜽𝜸)−1),
𝛽0 ∼ (𝜇

𝛽0 , 𝜎
2
𝛽0
),

𝜷 ∼ (𝝁𝜷 , diag(𝝈2
𝜷
)),

𝜺|𝜎2
𝜀
∼ (0, 𝜎2

𝜀
I),

𝜎

2
𝜀
∼ (0.001, 0.001),

𝜃

𝜏

𝜸 , 𝜃
𝜏

z ∼  (−10, 0),
𝜃

𝜅

𝜸 , 𝜃
𝜅

z ∼  (1, 5),
𝜌 ∼ (U, 0.05),
𝜇z ∼ (𝜇

𝜇z , 𝜎
2
𝜇z
),

𝜸z|𝜽z, 𝜇z ∼ N(𝜇z1M ,Qz(𝜽z)−1).
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8 of 20 MARQUE et al.

3 SPATIAL CONFOUNDING IN MULTIPLE COVARIATES

In many situations, we are interested in accounting for multiple spatially varying risk factors and, consequently, we need
to tell apart spatial variation in multiple elements of zobs(s) and the spatial effect 𝛾(s). In the spatial confounding literature,
the case of multiple spatially confounded covariates in not well explored, and the usual recommendation is to extend the
single-covariate strategy to all spatial covariates included in the model (Dupont et al., 2021; Thaden & Kneib, 2018). This
can lead the resulting model to be quite complex and, potentially, hard to estimate.

The prior structure in Section 2 exploits the sparsity of precision matrices of GMRFs for computational efficiency
purposes. In this section, we develop a novel prior structure for the case of multiple spatially confounded covariates that
explores an additional source of sparsity. Namely, we investigate the efficacy of an approach based on the preprocessing
of the matrix of spatial varying covariates z = (z1, … , zb, … , zB)T using principal component analysis (PCA; Abdi &
Williams, 2010; Pearson, 1901).

Thinking in terms of GMRFs, consider that the model includes B spatially varying covariates z1, … , zb, … , zB and
that we need to disentangle the spatial variation between these and 𝜸. Moreover, for now, ignore potential collinearity
between the different covariates. If we follow Section 2, the most direct way to disentangle spatial variation in 𝜸 and
z1, … , zb, … , zB is to model the joint (B + 1)-variate spatial distribution of (𝜸, z1, … , zb, … , zB)T in the prior for 𝜸.
Depending on how large B is, this strategy could imply a great computational burden, as well as the estimation of B(B+1)

2
correlation parameters.

The PCA methodology reduces the dimensionality of multidimensional datasets for analysis purposes. This method-
ology allows us to represent the data in a new coordinate system in which basis vectors follow the direction of greatest
variation in the data. Consider the eigendecomposition of zTz utilized in PCA. We choose the first B∗ (largest) eigenvalues
𝜆1, … , 𝜆B∗ and their respective eigenvectors, such that

∑B∗
b=1𝜆b∑B
b=1𝜆b

> 𝜓, (11)

where 𝜓 ∈ (0, 1) is the required threshold (typically, 𝜓 = 0.95). We denote the vector of variables resulting from PCA by
w = (w1, … ,wb∗ , … ,wB∗ )T . The model follows

y(si) = 𝛽0 + z(si)T𝜷 + 𝛾(si) + 𝜀i

but now the spatial effect has the prior 𝜸|w ∼ (𝝁𝜸|w,𝚺𝜸|w) that follows

⎛⎜⎜⎜⎜⎜⎝

𝜸

w1

…
wB∗

⎞⎟⎟⎟⎟⎟⎠
∼

⎡⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝

0
𝜇w1 I
…

𝜇wB∗ I

⎞⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎝

𝚺𝜸 𝜌1𝚺1∕2
𝜸 (𝚺1∕2

w1
)T … 𝜌B∗𝚺1∕2

𝜸 (𝚺1∕2
wB∗
)T

𝜌1𝚺1∕2
w1
(𝚺1∕2

𝜸 )T 𝚺w1 … 0
… … … …

𝜌B∗𝚺1∕2
𝜸 (𝚺1∕2

wB∗
)T 0 … 𝚺wB∗

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦
.

Besides dimensionality reduction, choosing the B∗ largest eigenvalues has an intuitive spatial interpreta-
tion. Spatial confounding typically biases regression coefficients when z has a larger spatial scale than 𝜸 (Adin
et al., 2021;Paciorek, 2010; Page et al., 2017), since when the spatial effect operates on a smaller scale than the covariate, it
is likely to explain the data better than the covariate. Also from a spectral analysis perspective, “unconfoundness” is typ-
ically associated with high-frequencies (small scale) of the covariate (Guan et al., 2020; Hefley et al., 2017). By choosing
the largest eigenvalues in the PCA of the (scaled) z, we can extract the large scale behavior associated with the covariate
vector. This is illustrated in Figure 3 which shows wb∗ arising from the PCA-analysis of 20 GRF covariates z1, … , z20 with
decreasing spatial range. We observe that the first eigenvalues, that is, the largest, are associated with larger spatial scales.

Our strategy does not correct for correlation between the covariates. Nonetheless, if the covariates in (z1, … , zB)T

are correlated among themselves, the user can choose common solutions against multicollinearity in linear regression
models, for example, by omitting some of the affected covariates or constructing a single combined and easily interpretable
covariate from the covariates in question. Another possibility is to use PCA also in this case (Fahrmeir et al., 2013).

The full hierarchical structure in the multiple covariates case is close to the structure in Section 2.4 and can be found
in the Supplement C.
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MARQUE et al. 9 of 20

F I G U R E 3 The PCA variables w1, w2, w5, and w19, associated with eigenvalues index 1, 2, 5, and 19

4 POSTERIOR EVALUATION

To perform posterior estimation for the full vector of model parameters 𝝑, we develop a fully Bayesian approach
using MCMC, and separate 𝝑 into smaller blocks. Of particular relevance is the separation between variables
for which we know the corresponding (full conditional) posterior distributions, and those for which the poste-
rior distribution is not available. We will use a Gibbs sampler (Gelfand, 2000) for the former and derive the
corresponding posterior distributions in Section 4.1. For the latter, we use Metropolis Hastings (MH, Metropolis
et al., 1953) steps, which are explained in more detail in Section 4.2. Section 4.3 summarizes the final structure of the
sampler.

4.1 Posterior distributions for Gibbs sampler

The priors for 𝛽0, 𝜷, 𝜸, 𝜎2
𝜀

, 𝜇z, and additionally 𝜸z in reformulation II, are conjugate priors such that Gibbs steps are
possible. For all parameters that have normal distributed priors, we can use the properties of the product of two normal
densities to derive their posterior distribution (see supplement B of Fahrmeir et al., 2013). In what follows, we start by
describing the posterior distributions that are identical for both reformulation I and reformulation II, from Sections 2.2.1
and 2.2.2, respectively. Subsequently, we derive the posteriors for the remaining parameters.

4.1.1 Posterior distributions identical for reformulations I and II

Let z̃ be matrix z with first column 1M . Consider the (B + 1) × (B + 1)matrices A = 1
𝜎

2 z̃𝝍T𝝍 z̃T and B = diag
(
𝜎

2
𝛽0
,𝚺2

𝜷

T
)−1

,
where diag denotes a diagonal matrix. Moreover, consider the (B + 1)-dimensional vectors a = z̃𝝍T(𝝍 z̃T z̃𝝍T)−1(y − 𝝍𝜸),
and b = (𝜇

𝛽0 ,𝝁
T
𝜷
)T , where y = (y(s1), … , y(sn))T . Then,

(𝛽0, 𝜷
T)T|⋅ ∼ (

(A + B)−1(Aa + Bb), (A + B)−1)
. (12)

Consider the single covariate case and Section 2.4. The posterior for 𝜇z|⋅ follows the same structure as (12), but we
instead have the scalars A = 1T

MQZ1M , B = 1
𝜎

2
𝜇z

, and the M-size vectors a = 1T
MIMz and b = 𝜇

𝜇z , with z replaced by w in the

multiple covariates case.
In the case of 𝜎2

𝜀

, the prior is inverse-gamma distributed, which combined with the normal distributed response leads
to a posterior distribution (see p. 229 of Fahrmeir et al. (2013))

𝜎

2
𝜀
|⋅ ∼ (0.001 + n

2
, 0.001 + 1

2
(y − 𝜼)T(y − 𝜼)

)
,

where 𝜼 = (𝜂(s1), … , 𝜂(sn))T and, according to Section 2.4 and Supplement C.
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10 of 20 MARQUE et al.

4.1.2 Posterior distributions not identical for reformulations I and II

In reformulation I, 𝜸|⋅ once again follows the structure in (12), but with M ×M matrices A = 1
𝜎

2𝝍
T𝝍 and B = Q−1

𝜸|z and
M-vectors a = 𝝍T(𝝍𝝍T)−1(y − 𝛽01n) − zT𝜷 and b = 𝝁𝜸|z. In the multiple covariates case, B = Q−1

𝜸|w and b = 𝝁𝜸|w.
In reformulation II, 𝜸|⋅ is sampled according to M ×M matrices A = 1

𝜎
2𝝍

T𝝍 and B = Q−1
𝜸 and M-sized vectors a =

𝝍T(𝝍𝝍T)−1(y − 𝛽01n) − zT𝜷 − 𝜌 L−T
𝜸 LT

z (z − 𝜸z) and b = 0. In the multiple covariates case, a = 𝝍T(𝝍𝝍T)−1(y − 𝛽01n) −
zT𝜷 − 𝜌 L−T

𝜸 LT
w(w − 𝜸w).

Finally, in reformulation II, 𝜸z|⋅ is sampled according to the M ×M matrices A = (𝜌 L−T
𝜸 LT

z )TQ𝜸𝜌 L−T
𝜸 LT

z , B = Qz,
a = z − (𝜌 L−T

𝜸 LT
z )−1𝜸 and b = 𝜇z1K , with all z and 𝜸z replaced by w and 𝜸w, respectively, in the multiple covariates case.

4.2 Posterior estimation for MH steps

Since parameters 𝜽𝜸 , 𝜽z, and 𝜌

∗ are highly correlated, we generally sample them in one block in a
Metropolis–Hastings (MH) step using the robust adaptive MH method from Vihola (2012) with Student t-distributed
proposal densities. This algorithm estimates the shape of the target distribution and simultaneously coerces the accep-
tance rate. Here, we use the typically desired acceptance rate of 23.4% for multidimensional settings (Roberts et al., 1997).
However, in the multiple covariates case, 𝜌∗ is updated separately as the block update led to updates that were negligible
on practical terms. In this cases, for 𝜌∗, we use RAM with the typical acceptance rate of 44% for unidimensional settings
(Roberts et al., 1997).

The t-distributed proposal densities might lead to invalid proposals for 𝜌. Consequently, in our MCMC sampler 𝜌 is
reparameterized using the general Fisher’s z-transformation (Fisher, 1958) such that

𝜌 =
exp(𝜌∗) − 1
exp(𝜌∗) + 1

and 𝜌

∗ = log
(

1 + 𝜌
1 − 𝜌

)
.

We use the change of variable theorem to correct the full conditional of 𝜌 for this reparameterization (see theorem B.1 on
supplement B.1 of Fahrmeir et al., 2013).

4.3 Sampler

With a focus in the one covariate case, the final MCMC scheme is outlined in Algorithm 1. It follows similarly for the
multiple covariates case.

Algorithm 1. Outline of the MCMC sampler for the one covariate case

Data: Starting values 𝝑0. Number of iterations T.
t = 0
while t<T do

Generate move from p(𝜇z|⋅)
Perform MH step for 𝜽z
(In reformulation II, generate move from p(𝜸z|⋅)
Generate move from p(𝜎2

𝜀

|⋅)
Generate move from p((𝛽0, 𝜷

T)T|⋅)
Perform MH step for {𝜽𝜸 , 𝜌}
Generate move from p(𝜸|⋅)
t += 1

end

5 SIMULATION STUDY

In the introduction to this article, we positioned our methodology close to the goal of evaluating risk factors in spatial
regression models. In this context, we introduced model equation (2), for which spatial confounding is a major concern
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MARQUE et al. 11 of 20

since, in general, one will not be able to tell apart spatial variation in the observed risk factors zobs(s) and the remaining
spatial variation 𝛾(s)without further structural model assumptions. Ultimately, we wish to obtain more realistic approxi-
mations of the underlying data generating process that enable meaningful interpretation of the coefficients𝜷obs associated
with the (observed) risk factors (without delving into causality aspects). Following Sections 2 and 3, we can now evaluate
how well the priors we developed perform with respect to this goal.

Thus, the aim of this simulation section is two-fold. First, we want to understand the sources and consequences of
spatial confounding in spatial models. Second, we want to investigate to which extent the priors developed in Sections 2
and 3 reduce the bias of regression coefficients when spatial confounding is present. For this, we conduct three simulation
studies: (1) a proof of concept simulation where the data generating process exactly matches with our model assumptions,
(2) a simulation study in the univariate case where we explicitly construct spatial confounding via an unobserved risk
factor, (3) a simulation study in the multiple covariate case where the multiple covariates follow our model assumptions
but we use the PCA-based dimension reduction to correct for spatial confounding. These simulation scenarios correspond
to Sections 5.1,5.2, and 5.3, respectively.

In the data analysis model (DAM), we compare four different specifications of (2): (i) a nonspatial model (NS), that
is, one that excludes 𝛾(s), (ii) a spatial model with the base prior, that is, not correcting for spatial confounding, (iii)
restricted spatial regression (RSR), and (iv) a spatial model with our novel prior structure. We sample 𝛾(s) for RSR using
conditioning kriging (see Supplement D). All 𝛾(s) are estimated using the SPDE-approach. The two-dimensional domain
considered is  = [0, 1] × [0, 1].

In all studies, we report the bias of regression coefficients and the posterior mean of 𝜌 for simulation study 1 is provided
in Supplement E. The results for each scenario are based on N = 50 replicates. Inference is based on 10,000 MCMC
samples with burn-in of 5000 and thinning of 5 in simulation study 1 and 3, and on 25,000 MCMC with burn-in of 10,000
and thinning of 15 in simulation study 2.

5.1 Simulation study 1: Proof of concept

In simulation study 1, we provide a proof of concept, by investigating the performance of the MGRF prior when the
data-generating model (DGM) and data-analysis model (DAM) are the same. This proof of concept also provides insights
on the sources of spatial confounding in DGMs based on GRFs. We assume there is only one observed risk factor zobs(s),
and test how well the prior structure in Section 2 can tell apart the spatial variation in zobs(s) and the remaining unobserved
spatial variation in the response.

5.1.1 Data generation model

Consider Equation (2), where we assume y(s) is spatially varying with two sources of spatial variability: zobs(s) and 𝛾(s). We
further assume that only one spatial risk factor zobs(s) can be observed and the remaining unobserved spatial variability
in y(s) - represented 𝛾(s) - is unobserved. Unobserved and observed spatial risk factors may be correlated, making it hard
to tell apart their spatial variability. This has been shown to be problematic when the spatial range of the observed risk
factors is larger than the unobserved counterpart, since it leads to spatial confounding bias in 𝛽obs (Paciorek, 2010; Page
et al., 2017). Consequently, besides their correlation, the spatial range of zobs(s) and 𝛾(s) is fundamental when trying to
tell apart spatial variation in these, in order to achieve a meaningful interpretation of 𝛽obs.

The data are generated additively based on (i) an observed spatial risk factor zobs(s), and (ii) unobserved spatial risk
factors summarized in 𝛾(s) such that

y(si) = −1.5 + 1 × zobs(si)T + 𝛾(si) + 𝜀i,

where the 𝜀i’s are i.i.d. and follow 𝜀i ∼ N(0, 𝜎2
𝜀

) with 𝜎

2
𝜀

= 0.1. Moreover, zobs(s) and 𝛾(s) are GRFs generated using
the SPDE-approach with mean zero and marginal variance and smoothness equal to one, that is, 𝜎2

zobs
= 𝜎2

𝜸 = 1 and
𝜈

2
zobs

= 𝜈2
𝜸 = 1, respectively. We consider nine different pairs of spatial ranges where r𝜸 , rzobs ∈ {0.1, 0.5, 0.9}. Parameters

zobs(s) and 𝛾(s) are correlated and have correlation parameter 𝜌 (see Equation (3)). We consider five different correlation
values, corresponding to five different scenarios: (1) 𝜌 = 0; (2) 𝜌 = 0.3; (3) 𝜌 = 0.7; (4) 𝜌 = −0.3; (5) 𝜌 = −0.7. Moreover,
we consider sample sizes n ∈ {200, 1000}.
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non spatial base RSR MGRF

 = 0

F I G U R E 4 Bias of posterior mean of 𝛽obs for the four models considered in Scenario 1, and based on 50 replicates. The red line
indicates bias of zero

In what follows, we refrain from presenting the results for Scenarios 4 and 5, since the behavior for the negative
correlations is identical to that of the positive correlations (just with opposite sign for the bias and, thus, adds no additional
information).

5.1.2 Prior elicitation

We use the priors 𝜇zobs ∼ (0, 0.12) and (𝛽0, 𝛽obs)T ∼ (0, diag(1004
, 1002)), where 𝛽0 is the model’s intercept. The values

of U in the shape of the PC-prior (see Equation (10)) vary between scenarios, and represent a trade-off between the
accuracy of the posterior mean of 𝛽obs over 50 replications and the dispersion of these posterior means. Concretely, we set
U high and reduce it in case we get high dispersion for the posterior mean of 𝛽obs.

5.1.3 Results

In Figure 4, our prior prevents overfitting by keeping the results close to those of the base model, except in scenar-
ios where this reduces the bias of 𝛽obs. In Figure 5, where zobs and 𝜸 are not independent, spatial confounding leads
to especially biased regression coefficients when rzobs ≥ r𝜸 . These results are in line with Paciorek (2010) and Page
et al. (2017), and they make sense because if the spatial effect operates on a smaller scale than the covariate, it is
likely to explain the data better than the covariate, and thus lead to confounding between the two. When r𝜸 = rzobs , as
expected, spatial variability cannot be told apart, as both zobs and 𝜸 have the same spatial structure. When rzobs > r𝜸 , our
prior performs considerably better than the competitors. Moreover, there is a tendency to overestimate 𝛽obs for 𝜌 > 0
(and to underestimate 𝛽obs for 𝜌 < 0) and the bias increases for higher (absolute) values of 𝜌. Finally, we can observe
a bias/uncertainty trade-off in several range combinations, such that bias reduction might be coupled with increased
uncertainty.

All in all, our novel prior either performs better or similarly well to the competitors in terms of the bias of the posterior
mean of 𝛽obs. All spatial models reach similar values of the continuous ranked probability score (CRPS) and the CRPS for
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F I G U R E 5 Bias of posterior mean of 𝛽obs for the four models considered in Scenario 2 and 3, and based on 50 replicates. The red line
indicates bias of zero

the NS model is noticeably higher (see Supplement F). A brief report on the efficiency of the MCMC sampler for RSR and
our novel prior is provided in Supplement D.

5.2 Simulation study 2: One single observed risk factor

In simulation study 2, we consider a different DGM in which the unobserved risk factor 𝛾(s) is composed of a spa-
tially structured variable which affects both the observed risk factor zobs(s) and the response y(s) linearly, as well an
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additional independent spatial process 𝜁(s) that represents the remaining spatial dependence structure in the response.
This is inspired by the simulation study in Dupont et al. (2021) and follows closely the standard set-up of an omitted vari-
able bias problem. The DAM remains the same as in simulation study 1. An additional scenario that does not include 𝜁(s)
(based on Thaden & Kneib, 2018) is presented in Supplement G.

5.2.1 Data generation model

The data are generated additively based on (i) an observed spatial risk factor zobs(s), and (ii) unobserved spatial risk factors
summarized in 𝛾(s). The unobserved risk factor affects both the observed risk factor and the response linearly such that

y(si) = −1.5 + 1 × zobs(si)T + 𝛾(si) + 𝜀i,

zobs(si) = 1 × x(si) + 𝜀z
i ,

𝛾(si) = 1 × x(si) + 1 × 𝜁(si),

where x(si) = s2
1,i + s2

2,i for si = (s1,i, s2,i)T and 𝜁(s) is a GRF generated using the SPDE-approach with mean zero, marginal
variance and smoothness equal to one and range equal to 0.5, that is, 𝜎2

𝜻
= 1, 𝜈2

𝜻
= 1, and r𝜻 = 0.5. The variables x(s) and

𝜁(s) are independent. The 𝜀z
i ’s and 𝜀i’s are i.i.d. and follow 𝜀i ∼ N(0, 𝜎2

𝜀

) and 𝜀z
i ∼ N(0, 𝜎2

z )with 𝜎2
z = 0.1, and 𝜎2

𝜀

= 0.5. The
variance parameter 𝜎z is relatively small such that the model matrix for the spatial model has nearly collinear columns
and 𝜎

𝜀
is relatively large to encourage smoothing (Dupont et al., 2021; Thaden & Kneib, 2018).

5.2.2 Prior elicitation

The choice of priors is identical to Section 5.1.

5.2.3 Results

The results in Figure 6 show that the MGRF model performs better than all the remaining models. Namely, for n = 1000
it is able to reach a bias of zero. This demonstrates the flexibility of the prior structure, beyond the proof of concept in
Section 5.1. The results are equally positive for the additional simulation study in Supplement G. All spatial models reach
similar CRPS and the CRPS of the NS model is noticeably higher (see Supplement F).

5.3 Simulation study 3: Multiple risk factors

In simulation study 3, we assume that multiple risk factors are observed and test the prior structure suggested in Section 3
in terms of the bias of the resulting coefficients 𝜷obs. The DAM follows the model from Section 3 and, consequently, the
DGM and DAM are different.

5.3.1 Data generation model

The data is based on: (1) two observed spatial risk factor zobs
1 (s) and zobs

2 (s), and (2) an unobserved spatial risk factor 𝛾(s)
such that

y(s) = −1.5 + 1 × zobs
1 (s) − 0.5 × zobs

2 (s) + 𝛾(s) + 𝜀,

where 𝜎

2
𝜀

= 0.1 and zobs
1 (s), zobs

2 (s), and 𝛾(s) are GRFs generated using the SPDE-approach with mean zero and
marginal variance and smoothness equal to one, that is, 𝜎2

zobs
1
= 𝜎2

zobs
2
= 𝜎2

𝜸 = 1 and 𝜈2
zobs

1
= 𝜈2

zobs
2
= 𝜈2

𝜸 = 1. When generat-

ing the data, we consider nine pairs of spatial ranges where r𝜸 , r2
zobs

∈ {0.1, 0.5, 0.9} and r1
zobs

= 0.5. Covariates zobs
1 (s)
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F I G U R E 6 Bias of posterior mean of 𝛽obs for the four models considered in Scenario 2, and based on 50 replicates. The red line
indicates bias of zero

and zobs
2 (s) are independent, zobs

1 (s) and 𝛾(s) are correlated and have correlation parameter 𝜌1 (corresponding to 𝜌 in
Equation (3)), and zobs

2 (s) and 𝛾(s) are correlated and have correlation parameter 𝜌2. We consider two scenarios: (1)
(𝜌1, 𝜌2) = (0.5, 0.2); (2) (𝜌1, 𝜌2) = (−0.5, 0.2). Moreover, n ∈ {200, 1000}. We use a threshold 𝜓 = 0.95 in the PCA (see
Equation (11)).

5.3.2 Prior elicitation

The choice of U follows the same strategy as in Section 5.1. We additionally consider the priors 𝜇∗z ∼ (0, 0.12) and
(𝛽0, 𝛽

obs
1 , 𝛽

obs
2 )T ∼ (0, diag(1004

, 1002
, 1002)).

5.3.3 Results

The results are shown in Figures 7 and 8, corresponding to Scenarios 1 and 2, respectively. The benefits of using
RSR in reducing the bias of the coefficients associated with (observed) risks factors becomes clearer in the multiple
covariates case. In Scenario 1, RSR never performs worse than the NS or the base models. When r𝜸 = 0.9, RSR out-
performs the latter two. Nonetheless, MGRF outperforms the competitors for almost all range combinations. Thus,
although MGRF requires more user-defined input compared to RSR, it can lead to larger reductions in bias. While
RSR is a good and stable indicator of the direction of the bias, MGRF is more successful in (further) reducing this
bias.

6 APPLICATION TO MONTHLY PRECIPITATION IN GERMANY

In this section, we analyze average monthly precipitation in Germany using open-access data from the German Mete-
orological Institute (Deutscher Wetterdienst, DWD)1. The website also contains detailed information on elevation and
climatic variation at the 280 DWD weather stations, which we can use as covariates in our models. We study the
month of October 2015 as this example clearly demonstrates the effects our prior can have on the posterior distribution
of 𝜷obs.

1https://www.dwd.de.

 1099095x, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/env.2727 by K

arlsruher Institut F., W
iley O

nline L
ibrary on [21/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.dwd.de


16 of 20 MARQUE et al.

r =0.1 r =0.5 r =0.9

rZ
2 obs=

0.1
rZ

2 obs=
0.5

rZ
2 obs=

0.9

n=200 n=1000 n=200 n=1000 n=200 n=1000

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

bi
as

 o
f 

1ob
s

1= 0.5, 2= 0.2

r =0.1 r =0.5 r =0.9

rZ
2 obs=

0.1
rZ

2 obs=
0.5

rZ
2 obs=

0.9

n=200 n=1000 n=200 n=1000 n=200 n=1000

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

bi
as

 o
f 

2ob
s

1= 0.5, 2= 0.2

non spatial base RSR MGRF

F I G U R E 7 Bias of posterior mean of 𝛽obs
1 (top) and 𝛽obs

2 (bottom) for the four models considered in Scenario 1, and based on 50
replicates. The red line indicates bias of zero. The bias of 𝛽obs

1 and 𝛽obs
2 should be analyzed together, for each spatial range combination

6.1 Model

We consider model (2), with y(si) being the standardized amount of precipitation in milliliters at weather station si ∈  ,
where  represents Germany. The covariate z1(si) is the standardized elevation in meters and z2(si) is the standardized
average monthly minimum temperature in degrees Celsius. We standardize all variables because the effects of different
marginal variances of the GRFs was not analyzed in Section 5.

We use the priors (𝛽0, 𝛽
obs
1 , 𝛽

obs
2 )T ∼ (0, diag(1004

, 1002
, 1002)) and𝜇z ∼ (0, 12). We test values of U ∈ {0.3, 0.5, 0.7}

and choose the lowest value of U for which the results for the posterior distribution of 𝛽obs
1 and 𝛽obs

2 seem to stabilize. The
remaining priors are the ones referred to in Section 3.

We test four models with different specifications for 𝛾(s), as done in the simulation studies from Section 5. Concretely:
(i) 𝛾(s) is excluded from the model, that is, NS, (ii) 𝛾(s) has a base prior, (iii) 𝛾(s) has our novel MGRF prior, (iv) 𝛾(s) is the
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F I G U R E 8 Bias of posterior mean of 𝛽obs
1 (top) and 𝛽obs

2 (bottom) for the four models considered in Scenario 2, and based on 50
replicates. The red line indicates bias of zero

spatial effect not in the span of the fixed effects, that is, RSR. We use reformulation II for sampling the GRFs. Inference
is based on 60,000 MCMC samples with burn-in of 30,000 and thinning of 10.

6.2 Results

Although linearity is a strong assumption, one would generally expect a positive association between elevation and
monthly precipitation (𝛽obs

1 > 0) and a negative association between minimum temperature and monthly precipitation
(𝛽obs

2 < 0).
Table 1 shows the posterior summaries for 𝛽obs

1 and 𝛽obs
2 and it clearly demonstrates the discrepancies in the pos-

terior distribution of 𝛽obs
1 and 𝛽

obs
2 for different models. For NS, the association between precipitation and elevation
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T A B L E 1 Mean and equal-tailed 95% credible interval (CI) for the posterior of 𝛽obs
1 and 𝛽obs

2 in the five models considered

𝜷obs
1 (elevation) 𝜷obs

2 (temperature)

Model Mean 95% CI Mean 95% CI

NS 0.024 [−0.024, 0.071] −0.381 [−0.429, −0.332]

Base model 0.641 [0.493, 0.802] −0.035 [−0.140, 0.066]

RSR 0.023 [−0.04, 0.088] −0.170 [−0.228, −0.013]

MGRF 0.165 [0.068, 0.258] −0.143 [−0.202, −0.086]

is very small and the 95% credible intervals (CI) covers zero. For temperature, we get the expected negative associ-
ation and the CI does not cover zero. When using the base model, the results are quite different: elevation has the
expected positive association and the CI does not cover zero, while temperature has a small effect and the CI covers zero.
When using RSR, similarly to NS, we get an association between elevation and precipitation that is small and the CI
covers zero, and temperature has the expected association and the CI does not cover zero. The similarity of the behav-
ior of NS and RSR in terms of the estimated 𝛽obs

1 and 𝛽obs
2 is in-line with recent literature (Adin et al., 2021; Khan &

Calder, 2020).
By using our prior, we go further into the expected direction of the association between the two covariates and monthly

precipitation: none of the CIs cover zero and both coefficients show the expected association. As a matter of example, for
our prior the interpretation would be that a standard deviation increase in the minimum temperature is associated with,
on average, a 0.143 standard deviation decrease in monthly precipitation. The posterior mean of the correlation parameter
is−0.266 and the associated 95% CI is [−0.392,−0.147]. Thus, similar to the simulation studies, the RSR seems to pull the
coefficients in the direction of the expected association, but the MGRF seems to go further. This indicates that our prior
can outperform RSR.

7 DISCUSSION

In spatial statistics, spatial confounding refers to the phenomenon where spatially varying covariates that model the mean
of a response are correlated with the spatial random field that models spatial correlations. We use the Bayesian framework
to develop a prior structure that allows to deal with spatial confounding in continuously indexed spatial models. The
MGRF prior exploits sparsity in two ways: (i) by using sparse precision matrices of GMRFs within the SPDE-approach,
and (ii) by introducing a light parameterization in the case of multiple covariates that accounts for the correlation between
a reduced-dimension covariate matrix w and the spatial random effect. Our prior can serve a building block in various
types of spatial regression models and, in particular, it can be extended to different response distributions, by using an
appropriate link function.

In a simulation study, we investigate the sources of spatial confounding with a particular focus on the spatial range.
Future simulation studies should also address the effect of different marginal variances. In both the proof-of-concept and
the simulation studies in which DGM and DAM differ, our prior outperforms the competitors in the majority of scenarios
and, at worst, it performs equally well.

In an application on monthly precipitation data in Germany, we explore the effect of using our prior on the estimated
regression coefficients of average monthly temperature and elevation. This application gives evidence that regression
coefficients can be biased if we do not account for spatial confounding and that our prior pulls coefficients toward the
expected direction of association.

Future research steps might follow two directions: (i) the model developed is used as a testing tool, or (ii) the model
stays in its current format as standalone estimation method for spatial models. In the former, the prior is used to test
for the presence of spatial confounding. Then, one could additionally use posterior evidence on the distance to the base
model to decide on the presence of spatial confounding.

In future work, since we estimate potentially multiple correlation parameters in the multiple covariates case, one
might investigate a hierarchical PC-prior structure that induces more shrinkage. Finally, one should reflect on how to
additionally address correlation between spatial covariates.
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