
Taylor Expansion in Neural Networks: How Higher Orders

Pavel Zwerschkea, Arvid Weyraucha, Markus Götza,b and Charlotte Debusa,*

aScientific Computing Center (SCC),
Karlsruhe Institute of Technology (KIT)

bHelmholtz AI
ORCID (Arvid Weyrauch): https://orcid.org/0000-0002-2684-0927, ORCID (Markus Götz):

https://orcid.org/0000-0002-2233-1041, ORCID (Charlotte Debus): https://orcid.org/0000-0002-7156-2022

Abstract. Deep learning has become a popular tool for solving
complex problems in a variety of domains. Transformers and the
attention mechanism have contributed a lot to this success. We hy-
pothesize that the enhanced predictive capabilities of the attention
mechanism can be attributed to higher-order terms in the input. Ex-
panding on this idea and taking inspiration from Taylor Series ap-
proximation, we introduce “Taylor layers” as higher order polyno-
mial layers for universal function approximation. We evaluate Taylor
layers of second and third order on the task of time series forecast-
ing, comparing them to classical linear layers as well as the attention
mechanism. Our results on two commonly used datasets demonstrate
that higher expansion orders can improve prediction accuracy given
the same amount of trainable model weights. Interpreting higher-
order terms as a form of token mixing, we further show that sec-
ond order (quadratic) Taylor layers can efficiently replace canonical
dot-product attention, increasing prediction accuracy while reducing
computational requirements.

1 Introduction

Time series analysis and forecasting is a vital part of machine learn-
ing. The ability to predict temporal behavior is the key to technologi-
cal innovation, for example in weather and climate forecasting, elec-
tricity grid monitoring or autonomous driving. For a long time, sta-
tistical approaches such as Kalman-Filters or ARIMA models were
the method of choice for analysis and prediction of temporal behav-
ior. However, recent advances in deep learning (DL) have paved the
way for neural network-based approaches [6].

The recent hype in artificial intelligence can be largely attributed
to the remarkable results produced by the Transformer architec-
ture [16]. Models like GPT-3 [1] have demonstrated not only to the
scientific community, but to the broad public, how powerful neural
networks can actually be. Recent work on large language models and
foundation models has proven that, by learning latent representations
of the input data, Transformer-based models are able to generalize
across prediction tasks. However, since its introduction, it has not
only revolutionized the field of natural language processing, but also
time series forecasting. Given their ability to deal with sequential
data, Transformer-based models are a natural fit for forecasting uni-
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and multivariate time series, and numerous model architectures have
been proposed [18].

The success of the Transformer architecture is based on its ability
to relate individual sequence elements x ∈ R

f , referred to as tokens,
with one another through the self-attention mechanism. Given an in-
put sequence X ∈ R

f×L of length L, self-attention provides a math-
ematical formalism of computing the relationship between all pairs
of tokens (token mixing). Various approaches for token mixing have
been proposed, e.g., [17, 8], with the canonical dot-product being
the most popular one. Apart from the independence of the input se-
quence length, the dot-product attention mechanism introduces a so
far under-recognized key component: while classical neural network
layers, like feedforward or convolutions, are linear in the input, the
dot-product is, from an abstract point of view, quadratic. We hypoth-
esize that this quadratic term is the true reason behind the powerful
predictive capabilities of the attention mechanism. For that, we inter-
pret neural network layers in the framework of Taylor expansions.

Taylor series approximate arbitrary smooth functions by represent-
ing them as a sum of polynomial terms with coefficients calculated
from the function’s derivatives at a single evaluation point. The more
polynomial terms are included, i.e., the higher the order, the better the
approximation. Given that Taylor series expansion is typically used
for function approximation and that a univariate time series is simply
a one-dimensional function, this approach is particularly interesting
for the task of time series forecasting.

Hence, we aim to investigate whether we can use higher-order Tay-
lor approximations to improve the degree of function approximation
in a neural network. We test this hypothesis by introducing Taylor
layers, i.e., representing neural network layers as higher-order poly-
nomials, where the learnable weights can be interpreted as approxi-
mations of the underlying function’s derivative.

Based on this abstract concept, we further introduce Taylor
Transformers, where the classical dot-product attention mechanism
is replaced by a Taylor layer of 2nd order. We evaluate the predictive
capabilities of Taylor layers and the Taylor Transformer for time
series forecasting in an experimental setup, by evaluating networks
with Taylor layers of 2nd and 3rd order, i.e., by including quadratic
and cubic terms, against classical linear feedforward layers and the
canonical dot-product Transformer.
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In summary, our contributions include:

• A theoretical interpretation of the dot-product attention mecha-
nism in the light of Taylor series approximation, thus yielding
an intuitive understanding of its predictive superiority over other
layer architectures;

• A continuation of this thought into the development of Taylor lay-
ers, i.e. feedforward neural network layers of higher order, thereby
omitting the need for a non-linear activation function while im-
proving function approximation;

• An experimental evaluation of our hypothesis and the introduced
Taylor layer architecture in the context of time series forecasting.

Our results demonstrate that with the same number of model
weights, Taylor layers yield better function approximations—and
thus, forecasting results—than their feedforward counterparts. By
evaluating Taylor Transformers against the classical Transformer, we
show that our hypothesis to interpret dot-product attention as a higher
order Taylor approximation holds empirically, and that proper Taylor
expansion in the layer can actually improve prediction results.

2 Related work

2.1 Transformers for Time Series Forecasting

Due to the sequential nature of the data, time series forecasting is a
natural fit for Transformer architectures. Hence, it is not surprising
that numerous Transformer-based models for time series forecasting
have been proposed in the last years. For a comprehensive review,
see Wen et al. [18].

However, a common obstacle is the computational complexity of
O(L2) in the sequence length L, making long sequence prediction
particularly challenging. Other works on Transformer-based time se-
ries forecasting thus focus on reducing computational complexity in
various ways. LogTrans [7] substitutes the point-wise dot-product
with causal convolutions and introduces a sparse bias to reduce com-
putational complexity. Informer [23] uses random subsampling of
attention queries for dimensionality reduction. Autoformer [21] in-
troduces a local mean-based decomposition method and replaces the
dot product attention with an auto-correlation mechanism based on
Fourier transforms for lower complexity. This idea is spun further by
the FEDformer [24], which selects a fixed number of Fourier modes
for auto-correlation. It further employs a decomposition scheme with
multiple filter lengths. Pyraformer [9] proposes a pyramidal attention
module that uses inter-scale tree structures and intra-scale neighbor-
ing connections to leverage multi-resolution representations of time
series. Crossformer [22] leverages cross-dimension dependencies for
multivariate time series through dimension-segment-wise embedding
and a two-stage attention layer. The ETSFormer [20] exploits expo-
nential smoothing attention and frequency attention to replace the
self-attention mechanism in vanilla Transformers, thus improving
both accuracy and efficiency. In PatchTST [12], the time series is seg-
mented into subseries-level patches which are used as input tokens.
Recently, inverted Transformers (iTransformer) [10] were proposed
for multivariate time series. The key idea is to embed variables from
different series at each time point into variate tokens which are uti-
lized by the attention mechanism to capture multivariate correlations.
A feedforward network is used to learn non-linear representations
for each variate token. Recent work has aimed to reduce computa-
tional complexity via rearranging the input sequence for periodical
data [19]. The proposed method ReCycle can be applied in differ-
ent architectures to achieve a notable reduction in training time and
energy consumption.

2.2 Polynomial Networks

Despite the obvious higher predictive capabilities of higher-order
polynomials, research for neural networks in this direction has been
sparse. This is likely due to the fact that the computational demand of
fitting polynomials grows exponentially. Chrysos et al. [3] proposed
Π-Nets, a new class of neural networks based on polynomial ex-
pansions. The approach implements the neural networks using high-
order tensors and estimates the coefficients through factor sharing.
Tong et al. [14] construct a three-layer feedforward neural network
which uses Taylor series as the activation function of the network.
The network is evaluated on a polynomial fitting task for synthetic
data. Kileel et al. [5] define the notion of polynomial networks as
neural networks that use polynomial activation functions and evalu-
ate their expressiveness.

Multiplicative interactions as a “unifying framework to describe a
range of classical and modern neural network architectural motifs”
have been studied by [4]. In their study, the authors argue that atten-
tion systems like the Transformer use multiplicative interactions to
scale different parts of the input sequence.

3 Theory

3.1 Transformers and Dot-Product Attention

Transformers are neural networks that belong to the class of
sequence-to-sequence models. As such, they consist of an encoder
and a decoder. The encoder processes the input sequence, transform-
ing it into a latent representation. The decoder combines this latent
representation with previous outputs and/or decoder inputs to gener-
ate an output sequence.

At the heart of both the encoder and the decoder lies the self-
attention mechanism, which relates individual sequence elements
with one another. We denote X = {x1, ...,xL} ∈ R

L×din as a se-
quence of length L, where the tokens xi = {x1, ..., xdin} ∈ R

din are
of dimension din (features). In self-attention, each token is embed-
ded into a query q ∈ R

dq , a key k ∈ R
dk and a value v ∈ R

dv via
three linear layers. The query and key must be of the same dimension
going forward; hence, we abbreviate d := dq = dk. The three lin-
ear embedding layers are defined via corresponding weight matrices
W q ∈ R

din×d, W k ∈ R
din×d and W v ∈ R

din×dv . Note that these
learnable weight matrices are independent of the sequence length L,
which is one of the remarkable features of self-attention. However, in
practice, tokens are not embedded individually in a sequential man-
ner, but in batches. Hence, we denote the three matrices Q, K, and
V as:

Q = X ·W q ∈ R
L×d (1)

K = X ·W k ∈ R
L×d (2)

V = X ·W v ∈ R
L×dv (3)

where X is a matrix with L column vectors xi. Using the query and
key, the attention matrix A ∈ R

L×L is then computed via

A = softmax

(
Q ·K�
√
dk

)
(4)

= softmax

(
X ·W q · (W k)�X�

√
dk

)
(5)

The entry Aij is the attention score between query qi and key kj . The
output sequence Y ∈ R

L×dv of the self-attention layer is computed
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as the product of the attention matrix A and the value matrix V .

Y = A · V = A ·X ·W v (6)

The sequence of output tokens yi ∈ R
dv is then concatenated along

the sequence dimension L, and passed through multiple linear lay-
ers to generate the latent representation (encoder) or the prediction
output (decoder).

3.2 Taylor Series

Taylor expansion is a mathematical concept used to approximate ar-
bitrary smooth functions. It is often used as a vehicle for mathemati-
cal proofs but also for the approximation of complex real-world func-
tions. A Taylor series T is a representation of a function f(x) as an
infinite sum of terms that are calculated from the values of the func-
tion’s nth derivatives f (n) at a single point x0:

T (x) :=
∞∑

n=0

f (n)(x0)

n!
(x− x0)

n (7)

The sum of the first k terms of a Taylor series is referred to as a
Taylor sum of order k:

Tk(x) :=

k∑
n=0

f (n)(x0)

n!
(x− x0)

n (8)

According to Taylor’s theorem [2], the asymptotic behavior of the
remainder term is of the same order as the Taylor sum.

Rk(x) := f(x)− Tk(x) = O(|x− x0|k) (9)

The concept can be generalized to multi-dimensional func-
tions [11]. Let α ∈ N

din
0 , x ∈ R

din , we define the multi-index no-
tation

|α| := α1 + . . .+ αdin ,

α! := α1! · · ·αdin ! ,

xα := xα1
1 · · ·xαdin

din
.

(10)

Based on this, we can formulate the k-th order partial derivative Dα,
|α| ≤ k of f : Rdin → R as

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαn

n
(11)

Using this notation, we can define the multivariate Taylor series of f
at x0 as

T (x) :=

∞∑
k=0

∑
|α|=k

Dαf(x0)

α!
(x− x0)

α,

where the second sum is over all α with |α| = k.

3.3 Time Series Forecasting

Let x(t) ∈ R
din be a time-dependent, continuous variable with din

features at a point in time t. A time series X is a sequence of N
measurements of x over a time span T , taken at times t0, t1, ..., tN
with a temporal resolution of Δt = T/N . H is the historic window
length and F is the forecast window length. We define the task of
time series forecasting as finding a mapping M, such that

M (x(ti−H), . . . ,x(ti−1),x(ti)) → x(ti+1, . . . , ti+F ) (12)

for every x(ti) ∈ X . We align this with the notation introduced in
Section 3.1 by abbreviating x(ti) := xi and identifying L = H.

4 Taylor layers

A classical feedforward layer in a neural network is defined as a func-
tion f that takes the output of the previous layer as input x ∈ R

din

and produces an output y ∈ R
dout . The function is usually an affine-

linear transformation f : R
din → R

dout , followed by a non-linear
activation function σ:

y := f(x) = σ(W · x+ b)

The non-linear activation function σ is essential to the learning ca-
pabilities of a neural network, as it allows the network to learn non-
linear functions. There exist a variety of activation functions, e.g.,
the rectified linear unit (ReLU) σ(x) := max(0, x) being one of the
most popular.

Without the activation function though, we can interpret such a
feedforward layer as a Taylor approximation of first order, with the
weights Wi ∈ R

dout×din merely being a learned approximation of the
derivative Dαf . Expanding upon this idea, let us have a look at the
attention mechanism. The attention matrix A is a bilinear form of the
input X with itself with a learned weight matrix

WQ · (WK)� =: (wij)ij ∈ R
din×din . (13)

Thus, we can rewrite Equation (4) as:

Aij =

din∑
k,m=1

wkm(xi)k(xj)m i, j = 1, . . . ,H (14)

Thus, the attention matrix consists of the inner products of the input
X with a learned weight matrix, leading to a quadratic term.

Considering that attention layers are more expressive than linear
feedforward layers and hypothesizing that this originates from the
higher-order quadratic term. For the full quadratic approach we can
ingore the temporal structure of the data and rewrite the input

X ∈ R
H×din → x = {x1, ..., xdtot} , (15)

where dtot = H× din. We define a quadratic layer component-wise
as

yk =

dtot∑
i,j=1

ãijkxixj+

dtot∑
i=1

aikxi+bk , k = 1, . . . ,F×dout . (16)

Note that an activation function is not necessarily needed anymore,
since the layer is already non-linear in the inputs xi. Since xixj is
symmetric, the matrix of coefficients ãijk, becomes an upper trian-
gular matrix. Thus, a quadratic layer has

F × dout ×
(
dtot

2 + dtot

2
+ 1

)
(17)

free parameters.
Expanding upon the above idea that a linear layer is a first-order

Taylor approximation with learned function derivatives, we interpret
the quadratic layer as a second order Taylor sum and hypothesize
that it provides better approximations than the linear layer. We then
generalize to a Taylor layer of order n that approximates the output y
generated by an input x by using the first n terms of the Taylor series.
Using the multi-index notation for α ∈ N

dtot
0 from Equation (10), we

can write the Taylor layer of order n as the sum over all Taylor terms
up to order n of the input features xi:
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yk =
∑

|α|≤n

akα

dtot∏
i=1

xαi
i . (18)

The trainable parameters of this layer are all akα, |α| ≤ n. Taylor
layers can be combined to form a Taylor network by simply chaining
them together, just like with other layer types.

5 Experimental Evaluation

To test our theory that linear layers and attention layers can be gen-
eralized to first- and second-order Taylor approximations, and that
higher orders provide better expressiveness, we evaluate the intro-
duced Taylor layers experimentally. Towards this end, we define a set
of model architectures that we train and validate on the task of time
series forecasting. We train these models on two separate datasets to
predict the next F time steps given the previous H time steps. We
denote this sequence tuple as (H → F ). Figure 1 shows an exem-
plary prediction for forecasting the next 24 time steps, given the last
12 time steps (H = 12 → F = 24).

5.1 Models

For one, we include Taylor networks of second and third order, i.e.,
employing quadratic and cubic layers, and evaluate them against
classical feedforward networks, consisting of linear layers with a
non-linear activation function. Note that, unlike in Transformer ar-
chitectures, the number of parameters in the network is not indepen-
dent of the sequence lengths L = H, for all three of these models.

The feedforward network and the 2nd-order Taylor network con-
sists of two quadratic layers: one mapping input to hidden layer and
one mapping hidden layer to output. For the 2nd-order Taylor net-
work, the size of the hidden layer was set to h = 10. Given different
input and output sequence lengths, this will result in different num-
bers of parameters for the networks. To compare the actual expres-
siveness of higher-order Taylor layers, the number of hidden nodes
of the linear model with ReLU activation function was chosen to
be roughly the same as the number of parameters of the quadratic
model. This is meant to exclude the effect that networks with more
parameters typically yield better fits and allows for a fairer compari-
son of the linear and the quadratic model.

The 3rd-order Taylor network consists of a single cubic layer. We
chose to use only a single layer since for cubic layers—the size of
the layer in terms of number of parameters is already larger than in
the quadratic or linear layers by orders of magnitude.

We further include a classical Transformer model into our evalua-
tion, which consists of a single encoder and decoder layer with one
self-attention layer and one feedforward layer each. The parameters
dq , dk, and dv of the self-attention layer are set to 16, and the feed-
forward dimension of the encoder and decoder is 200.

To test our theory that the dot-product attention mechanism can be
seen as a bilinear form with a learned weight matrix of the input x
with itself, and that it can be generalized to a Taylor approximation of
2nd order, we further included a Taylor Transformer. This model fol-
lows the same architecture as the classical Transformer but replaces
dot-product attention with a quadratic layer. Note that this results in
a much larger number of trainable parameters in the model.

All models were implemented using the PyTorch framework [13].
All code is publicly available on GitHub1.

1 https://github.com/RAI-SCC/ModularTransformer/

Inputs
Targets
Linear
2nd order TN
3rd order TN

Inputs
Targets
Taylor Transformer
Transformer

Figure 1. Example predictions of the 2nd- and 3rd-order Taylor network
and the classical feedforward network (top) and for the Transformer and

Taylor Transformer (bottom) compared to the target output sequence on the
ENTSO-E dataset with an (input → output)-sequence length of (12 → 24).

5.2 Datasets

We test all models on two datasets commonly used in time series
forecasting [23, 24].

The Western European Power Consumption2 dataset (ENTSO-E)
is provided by the European Network of Transmission System Op-
erators for Electricity. It contains time-resolved measurements of to-
tal electricity consumption of 14 European countries, taken between
January 2015 and August 2020 at a temporal resolution of 15min,
30min, or 1 h. For our experiments, we use the load data from Ger-
many at a resolution of 1 h. We employ a training–validation split of
70%:30% across the temporal axis.

The Electricity Transformer Temperature (ETTh2)3 dataset con-
tains measurements of power load features and oil temperature of two
electricity transformers in China, taken between July 2016 and June
2018 at a temporal resolution of 1 h. In this study, we focus on fore-
casting the oil temperature of one of the transformers (ETTh2), using
a training–validation split of 80%:20% across the temporal axis.

2 https://www.kaggle.com/datasets/francoisraucent/western-europe-power-c
onsumption

3 https://github.com/zhouhaoyi/ETDataset
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Table 1. Results of fitting the ENTSO-E and ETTh2 dataset with a linear feedforward network, a 2nd-order Taylor network (TN) and a 3rd-order Taylor
network, for three different input–output sequence lengths. The table shows mean square error MSE, mean absolute error MAE and total training time for 100
epochs, alongside the number of trainable parameters for each model. Values show the average plus–minus standard deviation over three independent training

runs.

Model H = 12 → F = 24 H = 12 → F = 6 H = 24 → F = 24

MSE MAPE Time #Param MSE MAPE Time #Param MSE MAPE Time #Param

E
N

T
SO

-E

Linear 0.255 2.46 341s 2 503 0.088 2.33 304s 1 317 0.176 2.49 385s 4 875
±0.002 ±0.03 24s ±0.002 ±0.03 ±21s ±0.001 ± 0.05 ± 30s

2nd-order TN 0.225 2.93 617s 2 494 0.077 2.30 558s 1 306 0.134 2.22 694s 4 834
±0.003 ±0.09 ± 6s ± 0.001 ± 0.06 ±12s ±0.002 ±0.02 ± 26s

3rd-order TN 0.240 2.77 421s 24 648 0.103 2.17 390s 6 162 0.128 2.00 578s 180 600
±0.001 ±0.04 ±26s ±0.001 ± 0.06 ±35s ±0.002 ±0.02 ±51s

E
T

T
h2

Linear 0.146 1.50 115s 2 503 0.067 1.02 99s 1 317 0.128 1.57 125s 4 875
±0.001 ±0.05 ±6s ±0.001 ± 0.01 ±1s ±0.001 ±0.08 ±4s

2nd-order TN 0.147 1.22 217s 2 494 0.067 0.97 188s 1 306 0.13 1.21 241s 4 834
±0.002 ±0.03 ±15s ±0.001 ±0.02 ±3s ±0.006 ±0.02 ±3s

3rd-order TN 0.144 1.16 146s 24 648 0.074 0.96 130s 6 162 0.129 1.19 202s 180 600
±0.001 ±0.06 ±12s ±0.001 ±0.01 ±4s ±0.002 ±0.03 ±4s

5.3 Training

Data was normalized using z-score normalization. All models were
trained using Stochastic Gradient Descent (SGD) as an optimizer,
with a learning rate of 0.001 and momentum of 0.3 for 100 epochs
with a batch size of 32. For training, the Mean Squared Error (MSE)
loss was used. Training runs were performed on a MacBook Pro with
an M1 Pro chip and 32 GB of RAM. Models were evaluated on the
MSE as well as the Mean Absolute Percentage Error (MAPE), which
measures the average percentage difference between the actual and
predicted values. The MAPE is scale-independent, making it a use-
ful metric for comparing the performance of different models. We
further compare total training time and number of parameters of the
models. Given that all models were trained for 100 epochs, the to-
tal training time directly reflects the time per epoch, and thus, per
forward–backward pass.

Training runs were performed three times and the average was
taken. We refrain from hyperparameter tuning, because we aim to
conduct a fair comparison between models. But, more importantly,
we are interested in the relative differences in expressiveness of the
different layer types rather than an absolute, superior model perfor-
mance. As such, we are aware that better training configurations for
the models are likely, but are not the focus of these experimental
evaluations.

5.4 Results

Table 1 shows results of fitting the two datasets with the 2nd- and
3rd-order Taylor networks and the classical feedforward network,
consisting of linear layers with a non-linear activation function.
For (input → output)-sequence lengths of (12 → 24) and (24 →
24), the MAPE decreases consistently with higher layer orders. For
(12 → 6), MAPE decreases for the ETTh2 dataset, but increases for
ENTSO-E.

These trends can only partially be observed in the MSE: the 2nd-
order Taylor network yields lower (ENTSO-E) or on-par (ETTh2)
MSE compared to the linear feedforward network, but the 3rd-order
network provides increased MSE compared to the 2nd-order Taylor
network.

Interestingly, the higher-order Taylor networks yield better predic-
tive performance for (input → output)-sequence lengths of (12 →
24) and (24 → 24) than for (12 → 6), even though the latter is the
easier prediction task. This indicates better extrapolation capabilities

of the higher-order Taylor approximations. This finding is further
supported by the observation, that the 2nd-order Taylor network al-
most consistently outperforms the linear feedforward network, even
though it has the same number of parameters. The 3rd-order Taylor
network on the other hand has up to orders of magnitude more pa-
rameters, but yields worse predictions in several cases, indicating a
strong tendency to overfit the data.

In terms of computational requirements, the time it takes to com-
plete 100 epochs increases from the linear feedforward network to
the 2nd-order Taylor network, which was to be expected. The de-
crease in training time from the 2nd- to 3rd-order Taylor networks
is likely caused by the fact that the 3rd-order Taylor network has one
fewer layer. This removes additional computations in the forward–
backward pass. Due to the sequentiality of layers, the effect out-
weighs the increased—but vectorized—computational burden from
the cubic term in the input.

We explicitly trained for 100 epochs to gain an estimate of how
the training time (per epoch) increases with the increasing computa-
tional burden from higher-order terms. However, this does not con-
sider model convergence speeds for the different models. Figure 2
shows exemplary loss curves for all three models, on the task of fit-
ting both datasets with a (12 → 24)-sequence length. We do not ob-
serve significantly different convergence behavior for the three mod-
els. However, the 2nd- and 3rd-order Taylor networks reach lower loss
values earlier, and appear to converge within the 100 epochs, while
the linear feedforward network appears to not be fully converged.

Turning to the more complex model architectures, Table 2 lists
results for fitting the two datasets with the Taylor Transformer com-
pared to the classical Transformer, that uses dot-product attention.

The Taylor Transformer, i.e., substituting dot-product attention
with a simple quadratic layer, yields consistently lower MSE and
MAPE, except for (12 → 24)-sequence lengths ENTSO-E MAPE.
But, more importantly, it requires less time per epoch, despite having
substantially more parameters to fit. This is likely caused by the fact
that the dot-product attention mechanism requires multiple, sequen-
tially performed matrix multiplications in the forward and backward
passes. To compute the attention matrix, the Transformer first needs
to compute Q = Wq · X , K = Wk · X , and V = Wv · X , even
though these computations can be performed in a batch. After that,
the attention matrix is computed via the product of Q and K, and
then multiplied with V . The Taylor Transformer, on the other hand,
only needs to compute the quadratic Taylor layer which comprises
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Figure 2. Training and validation loss for the ENTSO-E dataset (top) and
the ETTh2 dataset (bottom) with an (input → output)-sequence length of

(12 → 24). The curves show the MSE loss for the 2nd- and 3rd-order Taylor
network and the classical feedforward network.

two matrix multiplications that can be performed simultaneously.
That being said, we observed that on the ETTh2 dataset, the clas-

sical Transformer often converged after only a few epochs and even
overfit, as shown by the corresponding loss curves in Figure 3.

6 Conclusion

Transformers are without doubt one of the most relevant method-
ological developments in deep learning in the past decade and have
revolutionized the field of time series forecasting. We hypothesized
that the immense predictive capabilities result from the quadratic
functional dependency in the sequence input, taking analogy from
Taylor series expansions. We tested this hypothesis through empirical
evaluation, introducing Taylor layers as higher-order neural network
layers.

Our experimental results demonstrate the potential of using
higher-order Taylor approximations as neural network layers. Even
with the same amount of parameters, 2nd-order Taylor layers are able
to capture temporal dynamics more accurately. Using quadratic lay-
ers in the attention mechanism yields higher predictive performance
at a comparable training time, even though the number of param-

Figure 3. Training and validation loss for the ENTSO-E dataset (top) and
the ETTh2 dataset (bottom) with an (input → output)-sequence length of

(12 → 24). The curves show the MSE loss for the 2nd- and 3rd-order Taylor
network and the classical feedforward network.

eters is significantly higher. Our study provides a proof-of-concept
and, thus, did not focus on achieving state-of-the-art model training.
It is obvious that hyperparameter tuning and advanced optimization
algorithms can further improve the prediction results.

Our proposed Taylor layers have noticeably more parameters than
classical linear layers. In theory, this requires correspondingly more
resources. However, this does not necessarily result in longer training
times due to more optimal vectorization, as demonstrated by our ex-
periments on Transformer architectures. Furthermore, computational
complexity of higher-order Taylor layers grows exponentially with
input dimensionality. This can pose a significant challenge bottle-
neck, as observable in our experiments on 2nd- and 3rd-order Taylor
networks. Hence, Taylor layers are less suitable for inputs with high
feature dimensionality, such as images. For uni- and multivariate
time series, this issue might also arise with longer sequences. Yet, the
computational complexity can be attributed solely to large matrix–
matrix multiplications in the forward and backward passes. Hence,
parallel and distributed matrix multiplication algorithms, such as
SUMMA [15], may be used in the future to alleviate this bottleneck.
All in all, Taylor layers provide a promising new architecture for
neural networks and, in particular, for time series forecasting tasks.
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Table 2. Results of fitting the ENTSO-E and ETTh2 dataset with a classical Transformer (Transf.), using dot-product attention and a Taylor Transformer
(Taylor T.), for three different input–output sequence lengths. The table shows mean square error MSE, mean absolute error MAE and total training time for
100 epochs, alongside the number of trainable parameters for each model. Values show the average plus–minus standard deviation over three independent

training runs.

Model H = 12 → F = 24 H = 12 → F = 6 H = 24 → F = 24

MSE MAPE Time #Param MSE MAPE Time #Param MSE MAPE Time #Param

E
N

T
SO

-E Transf. 0.245 3.27 701s 3 569 0.108 2.56 537s 3 569 0.238 2.76 837s 3 569
±0.013 ±0.09 ±73s ±0.011 ± 0.24 ± 133s ±0.02 ±1.26 ± 123s

Taylor T. 0.213 2.11 699s 10 424 0.058 1.65 574s 2 558 0.114 1.54 825s 17 420
±0.005 ±1.38 ±59s ±0.004 ±0.39 ±85s ±0.007 ±0.59 ±90s

E
T

T
h2 Transf. 0.239 2.15 282s 3 569 0.255 2.19 202s 3 569 0.218 2.06 318s 3 569

±0.001 ±0.02 ±41s ±0.012 ±0.01 ±23s ±0.001 ±0.04 ±22s

Taylor T. 0.129 1.19 264s 10 424 0.052 0.87 206s 2 558 0.123 1.16 295s 17 420
±0.008 ±0.27 ±46s ±0.005 ±0.04 ±18s ±0.018 ±0.27 ±7s
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