KIT | KIT-Bibliothek | Impressum | Datenschutz

Harnessing Orthogonality to Train Low-Rank Neural Networks

Coquelin, Daniel ORCID iD icon 1; Flügel, Katharina 1; Weiel, Marie ORCID iD icon 1; Kiefer, Nicholas 1; Debus, Charlotte 1; Streit, Achim ORCID iD icon 1; Götz, Markus ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

This study explores the learning dynamics of neural networks by analyzing the singular value decomposition (SVD) of their weights throughout training. Our investigation reveals that an orthogonal basis within each multidimensional weight’s SVD representation stabilizes during training. Building upon this, we introduce Orthogonality-Informed Adaptive Low-Rank (OIALR) training, a novel training method exploiting the intrinsic orthogonality of neural networks. OIALR seamlessly integrates into existing training workflows with minimal accuracy loss, as demonstrated by benchmarking on various datasets and well-established network architectures. With appropriate hyperparameter tuning, OIALR can surpass conventional training setups, including those of state-of-the-art models.


Verlagsausgabe §
DOI: 10.5445/IR/1000175301
Veröffentlicht am 18.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Scientific Computing Center (SCC)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 16.10.2024
Sprache Englisch
Identifikator ISBN: 978-1-64368-548-9
ISSN: 0922-6389
KITopen-ID: 1000175301
HGF-Programm 46.21.04 (POF IV, LK 01) HAICU
Weitere HGF-Programme 46.21.01 (POF IV, LK 01) Domain-Specific Simulation & SDLs and Research Groups
Erschienen in ECAI 2024 : 27th European Conference on Artificial Intelligence 19–24 October 2024, Santiago de Compostela, Spain Including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024 ; Proceedings. Ed.: U. Endriss
Veranstaltung 27th/13th European Conference on Artificial Intelligence including Conference on Prestigious Applications of Intelligent Systems (ECAI/PAIS 2024), Santiago de Compostela, Spanien, 19.10.2024 – 24.10.2024
Verlag IOS Press
Seiten 2106-2113
Serie Frontiers in Artificial Intelligence and Applications ; 392
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page