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Abstract
In this work we investigate Gromov–Hausdorff limits of compact surfaces carrying length
metrics. More precisely, we consider the case where all surfaces have the same Euler char-
acteristic. We give a complete description of the limit spaces and study their topological
properties. Our investigation builds on the results of a previous work which treats the case
of closed surfaces.
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1 Introduction

Let X be a simply connected compact absolute neighborhood retract (ANR) carrying a length
metric and M be a closed connected smooth manifold of dimension larger than two. From a
result by Ferry and Okun it follows that X can be obtained as the Gromov–Hausdorff limit
of length spaces that are homeomorphic to M (cf. [5, p. 1866]). In dimension two this is not
the case. For example a sequence of length spaces that are homeomorphic to the 2-sphere
cannot converge to a space that is homeomorphic to the 3-disc (cf. [2, p. 269]).

We recall that a surface is denoted as closed if it is compact and its boundary is empty. The
aforementioned observation naturally leads to the following question: What do the Gromov–
Hausdorff limits of length spaces that are homeomorphic to a fixed closed surface look like?
An answer was given by the author in [4, pp. 13, 15].

In the present paperwe completely describe theGromov–Hausdorff limits of length spaces
that are homeomorphic to compact surfaces of fixed Euler characteristic. In particular, we
allow the possibility that the surfaces have non-empty boundary and thus generalize the main
result of the previous work [4]. Our investigation builds on the results of [4] and extends the
central concept of a generalized cactoid. As an additional technical difficulty, the limit of the
boundaries may display a rather wild behavior. Even the statement of the main result is more
complicated since new topological quantities appear.
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It will turn out that the limit spaces satisfy the following topological properties:

Theorem 1.1 Let X be a space that can be obtained as the Gromov–Hausdorff limit of length
spaces that are homeomorphic to a fixed compact surface. Then the following statements
apply:

(1) X is at most 2-dimensional.
(2) X is locally simply connected.
(3) There are finitely many compact surfaces S1, . . . , Sn and k ∈ N0 such that π1(X) is

isomorphic to the free product π1(S1) ∗ . . . ∗ π1(Sn) ∗ Z ∗ . . . ∗ Z
︸ ︷︷ ︸

k-times

.

In the 1920s, Whyburn founded the cyclic element theory, the main subject of which is a
certain decomposition of Peano spaces (cf. [11, p. 337]). With regard to the local description
of the limit spaces, we introduce a key concept of this theory: Let X be a Peano space and
A ⊂ X . If every pair of points in A can be connected by a simple closed curve in A, then
we denote A as cyclicly connected. Moreover we say that A is maximal cyclic provided it is
nondegenerate (i.e., contains more than one point), cyclicly connected and no proper subset
of a cyclicly connected subset in X .

We have the following local description of the limit spaces:

Theorem 1.2 Let X be a space that can be obtained as the Gromov–Hausdorff limit of length
spaces that are homeomorphic to a fixed compact surface. Then every point of X admits an
open neighborhood that is homeomorphic to an open subset of some Peano space whose
maximal cyclic subsets are homeomorphic to the 2-sphere or the 2-disc.

In the aforementioned theorem, as in the rest of this paper, the term “2-disc” refers to the
closed 2-disc.

Now we introduce further definitions for the global description:
A Peano space whose maximal cyclic subsets are homeomorphic to the 2-sphere is called

a cactoid. According to Whyburn, the limit of length spaces that are homeomorphic to the 2-
sphere is always a cactoid (cf. [19, p. 419]). This result motivates to consider generalizations
of cactoids: Let X be a Peano space whose maximal cyclic subsets are compact surfaces and
C ⊂ X be a subcontinuum. Then C is denoted as admissible in X provided T ∩ C is a point
or a boundary component of T for every maximal cyclic subset T ⊂ X .

Definition 1.3 Let X be a Peano space. Then X is called a generalized cactoid if the following
statements apply:

(1) All maximal cyclic subsets are compact surfaces and only finitely many of them are not
homeomorphic to the 2-sphere or the 2-disc.

(2) There are finitely many disjoint admissible subcontinua C1, . . . , Cn ⊂ X such that the
boundary components of themaximal cyclic subsets of X are covered by the subcontinua.

There exists a natural choice C1, . . . , Cn of the admissible subcontinua as above which is
uniquely defined by the following property: The number n is minimal and the union ∪n

i=1Ci

is maximal among all choices with n admissible subcontinua (see Lemma 2.16). We define
the boundary of X as ∪n

i=1Ci and denote it by ∂ X . Further we say that Ci is a boundary
component of X .

Especially we will see that the boundary components are Peano spaces whose maximal
cyclic subsets are homeomorphic to the 1-sphere (see Lemma 2.13). According to the original
definition of a generalized cactoid, all maximal cyclic subsets are supposed to be closed
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Fig. 1 A generalized cactoid with three boundary components. The boundary of the generalized cactoid
is shown in red. Moreover the space has infinitely many maximal cyclic subsets and all but one of them are
orientable. The non-orientablemaximal cyclic subset is homeomorphic to the Klein bottle which is represented
using a parametrization from [16, p. 141]

surfaces (cf. [15, p. 854]). The extension presented here, including the definition of the
boundary, is completely new.

Compact surfaces are simple examples of generalized cactoids. For compact surfaces, the
usual definition of the boundary coincides with the definition for generalized cactoids. A
more advanced example of a generalized cactoid is shown in Fig. 1.

The limit spaces we study are closely related to generalized cactoids. Our description
makes use of the following concepts: A space that is isometric to a metric quotient of X
whose underlying equivalence relation identifies exactly two points is called a metric 2-point
identification of X . If we consider a space that can be obtained by a successive application of
k > 0 metric 2-point identifications to some generalized cactoid X and p1, . . . , pk denotes
a choice of the corresponding projection maps, then pi is called a boundary identification
provided it identifies two points of (pi−1 ◦ . . . ◦ p0)(∂ X) where p0:=idX .

Finally we want to assign a topological quantity to each generalized cactoid:
The connectivity number of a compact surface S is defined as 2−χ(S). Roughly speaking,

this quantity can be calculated by adding the number of boundary components, the number
of “cross-caps” and twice the number of “holes”. If we subtract the number of boundary
components, we get the definition of the reduced connectivity number of S.

Example 1.4 Let S be a surface that can be obtained by removing two disjoint topological
open discs from theKlein bottle. Then S has two boundary components, two “cross-caps” and
no “holes”. Hence the connectivity number of S is equal to four and its reduced connectivity
number is equal to two.

We define the connectivity number of a generalized cactoid as the sum of the reduced
connectivity numbers of its maximal cyclic subsets and the number of its boundary com-
ponents. For compact surfaces, the aforementioned definition of the connectivity number
coincides with the definition for generalized cactoids. The generalized cactoid in Fig. 1 has
a connectivity number of seven.

For the sake of simplicity, we call a surface carrying a length metric a length surface.
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The main result of this work completely describes the Gromov–Hausdorff closure of the
class of compact length surfaces whose connectivity number is fixed:

Main Theorem Let c ∈ N0 and X be a compact length space. Then the following statements
are equivalent:

(1) X can be obtained as the Gromov–Hausdorff limit of compact length surfaces whose
connectivity number is equal to c.

(2) There are k, k0 ∈ N0 and a geodesic generalized cactoid Y such that the following
statements apply:

(a) X can be obtained by a successive application of k metric 2-point identifications to
Y such that k0 of them are boundary identifications.

(b) We have c0 − k0 + 2k ≤ c, where c0 denotes the connectivity number of Y.

In general the choice of the generalized cactoid Y in the second statement is not unique
and the quantity c0−k0+2k highly depends on this choice. Provided the converging surfaces
are closed, the main result of [4] implies that the boundary of Y is always empty and hence
k0 = 0. The possible appearance of a non-empty boundary in Y marks the key difference
between the main result of the present paper and that of [4].

For a better understanding of the Main Theorem, we want to discuss a simple example:

Example 1.5 Let D ⊂ R
2 be the 2-disc and Xn be a metric quotient obtained by identifying

n ∈ N distinct points of the boundary with the center of D. Then D is the only choice for the
generalized cactoid Y . In particular, we have

c0 − k0 + 2k = 1 − (n − 1) + 2n = n + 2.

As a consequence of the Main Theorem, Xn can be obtained as the Gromov–Hausdorff limit
of compact length surfaces whose connectivity number is equal to n +2. Moreover it follows
that n + 2 is the smallest value for which the statement is true.

A more advanced example is illustrated in Fig. 2.
Also somemodifications of theMain Theorem are possible: Restricting the first statement

of the Main Theorem to smooth Riemannian or polyhedral 2-manifolds, does not effect
the validity of the equivalence. This is a direct consequence of the fact that every compact
length surface S can be obtained as the limit of smooth Riemannian 2-manifolds that are
homeomorphic to S and also of polyhedral surfaces that are homeomorphic to S (cf. [12, p.
1674], [14, p. 77]). Furthermore we will investigate how the Main Theorem changes if we
restrict the first statement to orientable or non-orientable surfaces (see Theorem 3.12 and
Theorem 4.10).

Beyond the main result of [4], we are only aware of the following predecessors: In the
1930s, Whyburn described the limits of length spaces that are homeomorphic to the 2-disc
(see Theorem 2.3). Further Gromov states the first statement of Theorem 1.1 for orientable
surfaces without proof and attributes it to Ivanov (cf. [8, p. 103]). From a result by Cassorla
follows that every compact length space can be obtained as the limit of closed length surfaces
(cf. [3, p. 505]).

The latter result especially implies that the bound on the connectivity number is essential
to our investigation.

This paper is organized as follows: In the preliminary noteswe provide results onGromov–
Hausdorff convergence and the limits of closed length surfaces. Further we deal with the
topology of Peano spaces, generalized cactoids and compact surfaces. In particular, we show
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Fig. 2 An illustration of the Main Theorem. On the left hand side we see a geodesic generalized cactoid
with two boundary components whose maximal cyclic subsets are homeomorphic to the 2-sphere or the
2-disc. We note that it has a connectivity number of two. A successive application of three metric 2-point
identifications yields the space shown on the right hand side. In particular, we can do this using only one
boundary identification. As a consequence of the Main Theorem, the space on the right hand side can be
obtained as the Gromov–Hausdorff limit of compact length surfaces whose connectivity number is equal to
seven

that the boundary of a generalized cactoid is well-defined and describe the topology of the
boundary.

The aim of the third section is to show that the first statement of theMain Theorem implies
the second. To do this, we first look at sequences with additional topological control. We also
prove the first two statements of Theorem 1.1 and give a proof of Theorem 1.2.

In Sect. 4 we treat the remaining direction of the Main Theorem. At the end of the section
we show the third statement of Theorem 1.1.

We note that the final results of Sect. 3 and 4 particularly describe how the Main Theorem
changes if we restrict the first statement to orientable or non-orientable surfaces.

2 Preliminaries

2.1 Gromov–Hausdorff convergence

This subsection provides results on Gromov–Hausdorff convergence. Basic definitions and
results regarding the Gromov–Hausdorff distance can be found in [2, pp. 251–270]. A
corresponding notion of convergence for maps is discussed in [13, pp. 401–402].

With regard to Gromov–Hausdorff convergence, we note the following: For every
Gromov–Hausdorff convergent sequence of compact metric spaces there are isometric
embeddings of the spaces and their limit into some compact metric space. Moreover the
embedded sequence Hausdorff converges to the embedding of the limit. (cf. [7, pp. 64–65])

For the sake of simplicity, we will apply this statement and identify corresponding sets
without mentioning the underlying space.

Next we want to characterize Gromov–Hausdorff convergence. For this we introduce the
concept of almost isometries: Let f : X → Y be a map between metric spaces. Then its
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distortion is defined by:

dis( f ):= sup
x1,x2∈X

{|dY ( f (x1), f (x2)) − dX (x1, x2)|}.

Further we call f an ε-isometry provided dis( f ) ≤ ε and f (X) is an ε-net in Y .
We have the following convergence criterion:

Proposition 2.1 (cf. [2, p. 260]) Let X be a compact metric space and (Xn)n∈N be a sequence
of compact metric spaces. Then the following statements are equivalent:

(1) The sequence converges to X.
(2) For every n ∈ N there is an εn-isometry fn : Xn → X and εn → 0.

Moreover the equivalence remains true if we interchange Xn and X in the second statement.

The property of being a length space is stable under Gromov–Hausdorff convergence:

Proposition 2.2 (cf. [2, p. 265]) Let X be a space that can be obtained as the Gromov–
Hausdorff limit of compact length spaces. Then X is a compact length space.

As already mentioned, Whyburn already described the Gromov–Hausdorff limits of 2-
discs:

Theorem 2.3 (cf. [19, p. 422]) Let X be a space that can be obtained as the Gromov–
Hausdorff limit of length spaces (Xn)n∈N that are homeomorphic to the 2-disc. Moreover
we assume that (∂ Xn)n∈N is convergent. Then X is a compact length space satisfying the
following properties:

(1) The maximal cyclic subsets of X are homeomorphic to the 2-sphere or the 2-disc.
(2) X is a generalized cactoid with at most one boundary component.
(3) The sequence (∂ Xn)n∈N converges to a subset of ∂ X.

2.2 Limits of closed surfaces

As already mentioned, our investigation builds on the results of the previous work [4] which
deals with the limits of closed length surfaces. The aim of this subsection is to summarize
some of its key results.

The first proposition states two topological properties of the limit spaces and is a special
case of Theorem 1.1. Throughout this work the term “dimension” refers to the covering
dimension.

Proposition 2.4 (cf. [4, p. 1])Let X be a space that can be obtained as the Gromov–Hausdorff
limit of length spaces that are homeomorphic to a fixed closed surface. Then the following
statements apply:

(1) X is at most 2-dimensional.
(2) X is locally simply connected.

Our next result contains a special case of one direction of the Main Theorem:

Theorem 2.5 (cf. [4, p. 13]) Let X be a space that can be obtained as the Gromov–Hausdorff
limit of closed length surfaces (Xn)n∈N whose connectivity number is equal to c. Then X can
be obtained by a successive application of k metric 2-point identifications to some geodesic
generalized cactoid Y . Moreover the following statements apply:
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(1) The connectivity number of Y is less or equal to c − 2k and its boundary is empty.
(2) If Xn is orientable for infinitely many n ∈ N, then the maximal cyclic subsets of Y are

orientable.
(3) If Xn is non-orientable for infinitely many n ∈ N and the maximal cyclic subsets of Y

are orientable, then the connectivity number of Y is less than c.

Now we consider sequences with additional topological control: Throughout this work
we call a simple closed curve a Jordan curve. Let (Xn)n∈N be a sequence of closed length
surfaces. Then the sequence is denoted as regular provided inf{diam(Jn) : n ∈ N} is positive
for every sequence (Jn)n∈N such that Jn is a non-contractible Jordan curve in Xn .

If we restrict the last theorem to regular sequences, then we derive the following result:

Proposition 2.6 (cf. [4, p. 12]) Let X be a space that can be obtained as the Gromov–
Hausdorff limit of closed length surfaces (Xn)n∈N whose connectivity number is equal to
c > 0. If the sequence is regular, then X is a compact length space satisfying the following
property: All but one maximal cyclic subsets are homeomorphic to the 2-sphere and one
maximal cyclic subset is homeomorphic to Xn for all but finitely many n ∈ N.

We will treat the case of compact surfaces with non-empty boundary in Proposition 3.9.

2.3 Topology of Peano spaces

In this subsection we discuss results on the topology of Peano spaces. As main source on this
topic we used [20].

We call a compact connected metric space X a continuum. Further we denote a subset of
X that is a continuum as a subcontinuum of X . If X is also locally connected, then we say
that X is a Peano space.

Compact length spaces are examples of Peano spaces. Moreover the following converse
statement applies:

Proposition 2.7 (cf. [1, p. 1109]) Every Peano space is homeomorphic to a compact length
space.

As already mentioned in the introduction, the main subject of the cyclic element theory is
a certain decomposition of Peano spaces. First we want to make this statement more precise:
Let X be a Peano space and x ∈ X . Then we call x a separating point of X if X \ {x}
is disconnected. Provided the boundaries of arbitrarily small open neighborhoods of x are
singletons, we denote x as an endpoint of X . For example the set of separating points in
[0, 1] ⊂ R is given by (0, 1) and the set of its endpoints equals {0, 1}.

The aforementioned decomposition is provided by the following result:

Proposition 2.8 (cf. [20, pp. 64, 79]) Let X be a Peano space. Then every point of X is either
a separating point, an endpoint or a point of a unique maximal cyclic subset.

The maximal cyclic subsets and all singletons consisting of separating points or endpoints
are called the cyclic elements of X .

Next we state further results of the theory:

Lemma 2.9 (cf. [20, pp. 65, 69, 71, 79]) Let X be a Peano space and T ⊂ X be a maximal
cyclic subset. Then the following statements apply:
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(1) There are only countably many maximal cyclic subsets in X.
(2) There are only countably many connected components in X \ T .
(3) If (Cn)n∈N is a sequence of pairwise distinct connected components of X \ T , then

diam(Cn) → 0.
(4) If (Tn)n∈N is a sequence of pairwise distinct maximal cyclic subsets of X, then

diam(Tn) → 0.
(5) If C is a connected component of X \ T , then there is some x ∈ T such that ∂C = {x}.
(6) If T1, T2 ⊂ X are distinct maximal cyclic subsets, then |T1 ∩ T2| ≤ 1.

Let X be a continuum. Then we say that A ⊂ X separates x, y ∈ X if the points lie in
distinct connected components of X \ A. Moreover we call two distinct points of X conjugate
to each other provided no point of X separates them. For example in a wedge sum of two
circles only distinct points of the same circle are conjugate to each other.

Lemma 2.10 (cf. [20, pp. 65, 67, 79]) Let X be a Peano space. Then the following statements
apply:

(1) Every pair of conjugate points in X can be connected by a Jordan curve in X.
(2) Every non-degenerate cyclicly connected subset of X lies in some maximal cyclic subset

of X.
(3) If T ⊂ X is a maximal cyclic subset and A ⊂ T separates two points in T , then A also

separates these points in X.

Furthermore we have the following characterization of cyclic connectedness:

Proposition 2.11 (cf. [20, p. 79]) Let X be a Peano space. Then X is cyclicly connected if
and only if there is no separating point in X.

Provided all maximal cyclic subsets of a Peano space are homeomorpic to the 1-sphere,
we denote the space as a 1-cactoid.

The following criterion for 1-cactoids by Whyburn will be a helpful tool:

Proposition 2.12 (cf. [19, p. 417]) Let X be a continuum. Then the following statements are
equivalent:

(1) X is a 1-cactoid.
(2) For every pair of conjugate points x, y ∈ X the subset X \ {x, y} is disconnected.

2.4 Generalized cactoids

In this subsection we deal with generalized cactoids.
First we describe the topology of admissible subcontinua:

Lemma 2.13 Let X be a Peano space whose maximal cyclic subsets are compact surfaces
and C ⊂ X be an admissible subcontinuum. Then C is a 1-cactoid.

Proof Let x, y ∈ C be conjugate. Then the points are also conjugate in X . Due to Lemma
2.10 the points lie in somemaximal cyclic subset T ⊂ X . SinceC is admissible, there is some
boundary component b ⊂ T such that T ∩ C = b. Further we find an arc γ ⊂ T satisfying
the following property: The intersection of γ with b is given by {x, y} and γ separates two
points of b in T .

By Lemma 2.10 the arc also separates these points in X . It follows that C \ {x, y} is
disconnected. From Proposition 2.12 we derive that C is a 1-cactoid. 
�
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We have the following technical lemma:

Lemma 2.14 Let X be a Peano space whose maximal cyclic subsets are compact surfaces.
Then the following statements apply:

(1) If C1, C2 ⊂ X are admissible subcontinua intersecting exactly once, then C :=C1 ∪ C2

is an admissible subcontinuum.
(2) Let (Cn)n∈N be a sequence of subcontinua in X which intersect every maximal cyclic

subset at most once. If the sequence Hausdorff converges to some C ⊂ X, then C is a
subcontinuum which intersects every maximal cyclic subset at most once.

Proof (1) It directly follows that C is a continuum. Let T ⊂ X be a maximal cyclic subset
and x, y ∈ T ∩ C be distinct points. Then we may assume that x ∈ C1 \ C2.
For the sake of contradiction, we further assume that y ∈ C2 \ C1. By Lemma 2.13 the
subsets C1 and C2 are arcwise connected. Hence there is an arc γ ⊂ C connecting x and
y which is the union of non-degenerate arcs γ1 ⊂ C1 and γ2 ⊂ C2. From Lemma 2.9 we
get γ ⊂ T . BecauseC1 andC2 are admissible, there are boundary component b1, b2 ⊂ T
with T ∩C1 = b1 and T ∩C2 = b2. Since γ is connected,we get b1 = b2. This contradicts
the fact that |C1 ∩ C2| = 1.
We conclude that T ∩ C = T ∩ C1. Due to the fact that C1 is admissible, it follows that
T ∩ C is a boundary component of T . Therefore we derive that C is admissible.

(2) We directly get that C is a continuum. For the sake of contradiction, we assume the
existence of a maximal cyclic subset T ⊂ X and distinct points x1, x2 ∈ T ∩ C . Then
there is a sequence (xi,n)n∈N converging to xi such that xi,n ∈ Cn and x1,n �= x2,n .
By Proposition 2.7 we may assume that X is geodesic and we find a geodesic γi,n ⊂
X connecting xi,n and xi . Since x1 �= x2, we may assume that the geodesics do not
intersect. From Lemma 2.13 we derive that Cn is arcwise connected. Hence there is a
non-degenerate arc αn ⊂ Cn connecting x1,n and x2,n . Due to the fact that γ1,n and
γ2,n do not intersect, we may assume that αn intersects γ1,n ∪ γ2,n only twice. Then
γn :=γ1,n ∪ αn ∪ γ2,n is an arc and Lemma 2.9 yields γn ⊂ T . This contradicts the fact
that Cn intersects every maximal cyclic subset at most once. 
�
Nextwe introduce some definitions: Let X be a Peano spacewhosemaximal cyclic subsets

are compact surfaces. Further let C1, . . . , Cn ⊂ X be disjoint admissible subcontinua such
that the boundary components of the maximal cyclic subsets are covered by the subcontinua.
If every Ci contains a boundary component of some maximal cyclic subset, then we denote
∪n

i=1Ci as a pre-boundary of X . Provided the number n is minimal among all pre-boundaries
of X , we say that the pre-boundary is minimal.

We note that the second property of Definition 1.3 can be restated as the existence of a
pre-boundary. The following example illustrates this property:

Example 2.15 We consider a subset X ⊂ R
3 which is the union of the 2-sphere and disjoint

subsets (Dn)n∈N that are homeomorphic to the 2-disc. Further we assume that diam(Dn) →
0 and that Dn intersects the 2-sphere exactly once for every n ∈ N. Then X is a Peano space
whose maximal cyclic subsets are homeomorphic to the 2-sphere or the 2-disc. Hence the
first property of Definition 1.3 is satisfied. But X is not a generalized cactoid since there is
no pre-boundary in X .

For our second example we replace the 2-sphere in the construction above with a further
subset D ⊂ R

3 that is homeomorphic to the 2-disc. We denote this new subset by Y . Then Y
is a Peano space whose maximal cyclic subsets are homeomorphic to the 2-disc. Hence the
first property of Definition 1.3 is again satisfied. Moreover Y is a generalized cactoid if and
only if ∂ Dn intersects ∂ D for all but finitely many n ∈ N.
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Finally we show that the boundary of a generalized cactoid is well-defined:

Lemma 2.16 Let X be a generalized cactoid. Then the union of all minimal pre-boundaries
is a minimal pre-boundary.

Proof Let P ⊂ X be a minimal pre-boundary. We denote the set of all subcontinua in X
which intersect every maximal cyclic subset at most once by T . Further we define P0 as the
union of P with all subcontinua in T which intersect P exactly once.

We show that P0 is a minimal pre-boundary: Since P covers the boundary components
of the maximal cyclic subsets, the same applies to P0. Moreover P0 has at most as many
connected components as P .

We prove that every connected component C ⊂ P0 is compact: Let (xn)n∈N be a sequence
in P0 and x ∈ X with xn → x . By construction there is a subcontinuum An ∈ T which
contains xn and intersects P exactly once. After passing to a subsequence, we may assume
that the subcontinua (An)n∈N Hausdorff converge to some subcontinuum A ⊂ X .

Since P is compact, the intersection of A and P is non-empty. FromLemma 2.14 it follows
that A intersects every maximal cyclic subset at most once. In particular, A is admissible and
hence arcwise connected by Lemma 2.13. Therefore we find an arc γ ⊂ A connecting x and
P which intersects P exactly once. Especially we have γ ∈ T and we deduce γ ⊂ P0. This
yields x ∈ P0.

We conclude that P0 is closed. Because X is compact, we get that P0 is compact. Hence
C is also compact.

Due to the fact that the subcontinua in T and the connected components of P are
admissible, Lemma 2.14 yields that C is admissible. We conclude that P0 is a minimal
pre-boundary.

Next we show that every pre-boundary A ⊂ X lies in P0: For the sake of contradiction, we
assume that A is not a subset of P0. Then we find some p ∈ A \ P0. We denote the connected
component of A containing p by C . The subset C contains a boundary component of some
maximal cyclic subset. Moreover P covers the boundary components of the maximal cyclic
subsets. ThereforeC intersects P . SinceC is admissible, it is arcwise connected. Hence there
is an arc γ ⊂ C starting in p whose endpoint e is the only intersection point of γ with P .

We note that γ \ {e} does not intersect boundary components of maximal cyclic subsets.
Due to the fact that C is admissible, we have γ ∈ T . Finally we deduce γ ⊂ P0 and therefore
p ∈ P0. A contradiction. 
�

We remark that the boundary components of a generalized cactoid are 1-cactoids by
Lemma 2.13.

2.5 Curves in compact surfaces

This subsection is devoted to the classification of curves in compact surfaces.
Let γ be an arc in a compact surface S. Then γ is called simple if its endpoints lie on

boundary components and the interior of γ does not. Moreover we denote γ as separating
provided S \ γ is disconnected.

The next two results yield a classification of simple arcs in compact surfaces:

Proposition 2.17 (cf. [10, pp. 54–55]) Let S be a compact surface of connectivity number
c. Further let γ ⊂ S be a separating simple arc which does not form a contractible Jordan
curve together with a subarc of some boundary component.
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Then there are c1, c2 ∈ N≥2 with c1+c2 = c+1 and a compact surface Si of connectivity
number ci such that the topological quotient S/γ is a wedge sum of S1 and S2. Moreover the
wedge point lies in ∂S1 ∩ ∂S2.

At least one of the surfaces is non-orientable if and only if S is non-orientable.

Proposition 2.18 (cf. [10, pp. 54–55]) Let S be a compact surface of connectivity number c
and γ ⊂ S be a non-separating simple arc.

Then there is a compact surface S1 of connectivity number c − 1 such that S/γ is a
topological 2-point identification of S1. Moreover the glued points lie in ∂S1.

If S is orientable, then S1 is orientable.

We say that a Jordan curve J ⊂ S is simple provided we have |J ∩ ∂S| ≤ 1. There is also
a classification of non-contractible simple Jordan curves in compact surfaces:

Proposition 2.19 (cf. [10, pp. 54–55]) Let S be a compact surface of connectivity number
c and J ⊂ S be a non-contractible simple Jordan curve. Then the topological quotient
X :=S/J can be described in one of the following ways:

(1) There are c1, c2 ∈ N with c1 + c2 = c and a compact surface Si of connectivity number
ci such that X is a wedge sum of S1 and S2. Moreover at least one of the surfaces is
non-orientable if and only if S is non-orientable.

(2) There is a compact surface of connectivity number c − 2 such that X is a topological
2-point identification of it. Moreover the surface is orientable if S is orientable.

(3) X is a compact surface of connectivity number c − 1 and S is non-orientable.

2.6 Fundamental group formulas

We provide two fundamental group formulas.
First we consider locally simply connected Peano spaces. In the previous work [4] the

author showed the following result:

Proposition 2.20 (cf. [4, p. 10])Let X be a locally simply connected Peano space and (Tn)n∈N
be an enumeration of its maximal cyclic subsets. Then π1(X) is isomorphic to π1(T1) ∗ . . . ∗
π1(Tn) for all but finitely many n ∈ N.

Further we consider topological 2-point identifications. The next proposition is a
consequence of the HNN-Seifert-van Kampen Theorem in [6, p. 1435]:

Proposition 2.21 Let X be a locally simply connected and path-connected topological space.
Further let Y be a topological 2-point identification of X. Then π1(Y ) is isomorphic to
π1(X) ∗ Z.

Notation

M The class of compact metric spaces.
S(c) The class of compact length surfaces whose connectivity is equal to c.

S(c, b) The class of compact length surfaces with b boundary components whose reduced
connectivity number is equal to c.

G(c) The class of geodesic generalized cactoids whose connectivity number is equal c.
G(c, b) The class of geodesic generalized cactoids with b boundary components such that

the reduced connectivity numbers of their maximal cyclic subsets sum up to c.
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Fig. 3 A successive metric wedge sum of eight compact length surfaces. Since every wedge point is only
shared by two of the surfaces, the space lies inW0

W The class of successive metric wedge sums of non-degenerate cyclicly connected
compact length spaces and finite metric trees.

W0 The class of successive metric wedge sums of compact length surfaces such that
every wedge point is only shared by two of their surfaces.

With regard to the last two notations, we note the following: In every construction step
of a successive metric wedge sum we allow a change of the wedge point. An example of a
space in W0 is illustrated in Fig. 3.

3 The limit spaces

In this chapter we prove that the first statement of the Main Theorem implies the second. We
also show the first two statements of Theorem 1.1 and give a proof of Theorem 1.2.

3.1 Topological properties

First we prove that the limit spaces are at most 2-dimensional and locally simply connected.
For this we introduce some notations:

Notation 3.1 Let (Xn)n∈N be a sequence inS(c, b), where b > 0, and X ∈ Mwith Xn → X .
We denote the metric gluing of Xn � Xn along ∂ Xn by 2Xn . Then the sequence (2Xn)n∈N

is convergent and we denote its limit by 2X . Especially there are subsets X± ⊂ 2X and maps
τ± : 2X → X± such that the following statements apply:

(1) X+ ∪ X− = 2X .
(2) X± is isometric to X .
(3) The restriction of τ± to X± is the identity map and the restriction to X∓ is an isometry.

123



Annals of Global Analysis and Geometry            (2024) 66:15 Page 13 of 24    15 

(4) The restriction of τ± ◦ τ∓ to X± is the identity map.

We fix some isometries as in the second statement. For every A ⊂ X we denote its corre-
sponding subset of X± by A±. After passing to a subsequence, we may and will assume that
(∂ Xn)n∈N is convergent and we denote its limit by ∂∞ X . Finally also the following property
is satisfied:

5) X+ ∩ X− = (∂∞ X)+ = (∂∞ X)−.

Now we show that the limit spaces fulfill the two topological properties:

Proof of Theorem 1.1 (Part I) There is a sequence (Xn)n∈N of length spaces that are homeo-
morphic to a fixed compact surface such that Xn → X . If Xn is a closed surface, then X
is at most 2-dimensional and locally simply connected by Proposition 2.4. Hence we may
assume that the boundary of Xn is non-empty.

(1) We note that 2Xn is a closed surface. Hence 2X is at most 2-dimensional. Since we have
X+ ⊂ 2X , we derive that X+ is also at most 2-dimensional (cf. [17, p. 266]). Because
X and X+ are isometric, we deduce that X is at most 2-dimensional.

(2) The statements listed in Notation 3.1 imply the following: Let V ⊂ 2X be an open and
simply connected subset. Since V is open, the same applies to τ+(V ). Moreover every
loop in τ+(V ) is the composition of τ+ with some loop in V . The map τ+ is continuous.
Due to the fact that V is simply connected, we hence get that τ+(V ) is simply connected.
We further note that the diameter of τ+(V ) does not exceed that of V .

Because 2Xn is a closed surface, the space 2X is locally simply connected. It follows that
X+ is locally simply connected. Therefore the same applies to X . 
�

3.2 Regular convergence

In this subsection we consider sequences in S(c, b) with additional topological control:

Definition 3.2 Let (Xn)n∈N be a sequence in S(c, b) where b > 0. Then the sequence is
called regular provided inf{diam(Jn) : n ∈ N} is positive for every sequence (Jn)n∈N such
that Jn is a non-contractible Jordan curve in 2Xn .

In other words, the sequence (Xn)n∈N is regular if and only if the sequence (2Xn)n∈N is
regular. Provided the sequence (Xn)n∈N converges to some X ∈ M, the definition directly
implies that ∂∞ X has b connected components.

The next result states a property of non-regular sequences. We remark that Notation 3.1
can also be applied to the constant sequence (Xn, Xn, . . .). In the upcoming proof we use
this notation and denote the corresponding maps by τ±

n .

Lemma 3.3 Let (Xn)n∈N be a non-regular sequence in S(c, b) where b > 0. After passing
to a subsequence, we may assume that one of the following cases applies:

(1) There is a sequence (γn)n∈N such that γn is a non-separating simple arc in Xn. Moreover
we have diam(γn) → 0.

(2) There is a sequence (γn)n∈N such that γn is a separating simple arc in Xn which does not
form a contractible Jordan curve together with a subarc of some boundary component.
Moreover we have diam(γn) → 0.

(3) There is a sequence (γn)n∈N such that γn is a non-contractible simple Jordan curve in
Xn. Moreover we have diam(γn) → 0.
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Proof We consider the case that the first two statements of the lemma do not apply. By
non-regularity we may assume the existence of a sequence (Jn)n∈N such that Jn is a non-
contractible Jordan curve in 2Xn and diam(Jn) → 0. Since the first statement of the lemma
does not apply, we may assume that Jn intersects exactly one boundary component bn ⊂ X+

n
and the intersection is non-degenerate.

There is a homeomorphism fn : 2Xn → Yn such that Yn is a Riemannian manifold and
fn(bn) is a piecewise geodesic Jordan curve. We note that the Jordan curve fn(Jn) can be
obtained as the Hausdorff limit of piecewise geodesic Jordan curves that are homotopic to
fn(Jn) (cf. [18, p. 1794], [19, pp. 413–415]). Since Yn is a compact Riemannian manifold,
there is some εn > 0 such that every pair of points in Yn with distance less than εn can be
connected by a unique geodesic. It follows that two distinct geodesic Jordan curves in Yn

intersect at most finitely many times.
By the observations above we may assume that Jn and bn intersect only finitely many

times. Then there is a finite subdivision of Jn into simple arcs in X+
n and X−

n and arcs in bn .
Because the second statement of the lemma does not apply, we may assume that each of the
arcs is homotopic to some arc in bn . This yields that Jn is homotopic to some loop in bn .

We derive that γn :=τ+
n (Jn) is a non-contractible loop in X+

n and diam(γn) → 0. In
particular, we may assume that γn does not intersect ∂ X+

n . Moreover we find a Jordan curve
in γn which is non-contractible in X+

n (cf. [9, p. 626]). Therefore we finally may assume that
γn is a Jordan curve. 
�

3.2.1 Limits of boundary components

As a first step we investigate the limits of boundary components for regular sequences. In
the next three results we extend Whyburn’s proof ideas regarding the limits of discs (cf. [19,
pp. 421–424]):

Proposition 3.4 Let (Xn)n∈N be a regular sequence in S(c, q), where q > 0, and X ∈ M
with Xn → X. If b is a connected component of ∂∞ X, then b is a 1-cactoid.

Proof By regularity there is a sequence (bn)n∈N such that bn is a boundary component of
Xn and bn → b. Since b can be obtained as the Hausdorff limit of continua, it is also a
continuum.

For the sake of contradiction, we assume that b is not a 1-cactoid. From Proposition 2.12
it follows the existence of conjugate points x, y ∈ b such that b \ {x, y} is connected. There
are sequences (xn)n∈N and (yn)n∈N with xn, yn ∈ bn and xn �= yn such that xn → x and
yn → y. We denote the subarcs of bn connecting xn and yn by αn and βn . Moreover we may
assume that there are α, β ⊂ b such that αn → α and βn → β.

Then we have α ∪ β = b and there exists z ∈ α ∩ β\{x, y}. Further we choose sequences
(zn)n∈N and (z̃n)n∈N with zn ∈ αn and z̃n ∈ βn such that zn → z and z̃n → z.

Let γn ⊂ Xn be a geodesic between zn and z̃n . After passing to a subsequence and subarcs
of the geodesics, we may assume γn to be a simple arc. By regularity and diam(γn) → 0
we also may assume that γn is separating.

Now there are compact surfaces Un, Vn ⊂ Xn such that xn ∈ Un , yn ∈ Vn , Un ∪ Vn = Xn

andUn ∩Vn = γn . Wemay assume the corresponding sequences to be convergent with limits
U and V . This leads to U ∪ V = X and U ∩ V = {z} (cf. [19, p. 412]). Finally we derive
that z separates x and y in X and therefore also in b. A contradiction. 
�

The proof above also demonstrates the following lemma:
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Lemma 3.5 Let (Xn)n∈N be a regular sequence in S(c, q), where q > 0, and X ∈ M with
Xn → X. If b is a connected component of ∂∞ X and x, y, z ∈ b are such that z separates
x and y in b, then z separates x and y in X.

In the next two results we study the intersections with maximal cyclic subsets of 2X :

Lemma 3.6 Let (Xn)n∈N be a regular sequence in S(c, q), where q > 0, and X ∈ M with
Xn → X. If b is a connected component of ∂∞ X and T is a maximal cyclic subset of 2X
with

∣

∣T ∩ b+∣

∣ > 1, then the intersection is homeomorphic to the 1-sphere.

Proof Let x, y ∈ T ∩ b+ with x �= y. Since x, y ∈ T , the points lie on some Jordan curve in
2X . If γ ⊂ 2X is a path between x and y which does not contain a certain point of b+, then
τ+ ◦ γ is also such a path. Therefore Lemma 3.5 implies that x and y are conjugate in b+.

By Proposition 3.4 the subset b+ is a 1-cactoid. From Lemma 2.10 we derive that x and
y are contained in some maximal cyclic subset S ⊂ b+. We note that S is homeomorphic to
the 1-sphere. Using Lemmas 2.9 and 2.10, we get T ∩ b+ ⊂ S and S ⊂ T . Especially we
have S ⊂ T ∩ b+ and therefore S = T ∩ b+. 
�
Lemma 3.7 Let (Xn)n∈N be a regular sequence in S(c, q), where q > 1, and X ∈ M with
Xn → X. If b is a connected component of ∂∞ X, then there is a maximal cyclic subset of
2X which intersects b+ and a further connected component of (∂∞ X)+.

Proof By regularity there is a sequence (bn)n∈N such that bn is a boundary component of Xn

and bn → b. We choose a geodesic γn ⊂ Xn between some point of bn and some point of
∂ Xn \ bn . Then we may assume the existence of a geodesic γ ⊂ X such that γn → γ .

Due to regularity γ connects some point of b with some point of ∂∞ X \ b. After passing
to a subarc, we may assume that the interior of γ does not intersect ∂∞ X . It follows that
J :=γ + ∪ γ − is a non-degenerate Jordan curve in 2X . By Lemma 2.10 there is a maximal
cyclic subset T ⊂ 2X containing J .We conclude that T intersects b+ and a further connected
component of (∂∞ X)+. 
�

3.2.2 Regular limit spaces

Now we describe the limits of regular sequences:

Lemma 3.8 Let (Xn)n∈N be a regular sequence in S(c, b), where b > 0, and X ∈ M with
Xn → X. Further let T be a maximal cyclic subset of X+. Then one of the following cases
applies:

(1) T is a maximal cyclic subset of 2X and is a closed surface. Moreover we have
∣

∣T ∩ (∂∞ X)+
∣

∣ ≤ 1.
(2) T ∪ τ−(T ) is a maximal cyclic subset of 2X and T is a compact surface with non-empty

boundary. Moreover we have ∂T = T ∩ (∂∞ X)+.

Also the following statement applies: Every maximal cyclic subset of 2X which is not a
maximal cyclic subset of X+ or X− can be obtained as in the second case.

Proof Since the sequence is regular, Proposition 2.6 implies that every maximal cyclic subset
of 2X is a closed surface.

First we consider the case that T is a maximal cyclic subset of 2X : For the sake of
contradiction, we assume

∣

∣T ∩ (∂∞ X)+
∣

∣ > 1. Then Proposition 2.11 implies that T ∪τ−(T )
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is cyclicly connected. Further we have T �= τ−(T ) by Proposition 3.4. Hence T is a proper
subset of some cyclicly connected subset in 2X . A contradiction.

Now we consider the case that T is not a maximal cyclic subset of 2X : By Lemma 2.10
there is a maximal cyclic subset S ⊂ 2X containing T .

Let V be the closure of a connected component of S \ (∂∞ X)+. Then we may assume
V ⊂ X+. As a consequence of Lemma 3.6, the subset V is a compact surface. It also follows
that V ∩ (∂∞ X)+ is a disjoint union of ∂V and k points. In particular, ∂V is non-empty since
S is a closed surface. Due to the fact that W :=V ∪ τ−(V ) is cyclicly connected, Lemmas 2.9
and 2.10 yield W ⊂ S. Because S is a closed surface, we derive k = 0 and S = W . This
implies V = X+ ∩ S and therefore T ⊂ V . We note that V is cyclicly connected. Hence we
get T = V .

Using Lemmas 2.9 and 2.10, the paragraph above also implies the last statement of our
result. 
�
It follows the main result of this subsection:

Proposition 3.9 Let (Xn)n∈N be a regular sequence in S(c, b) where b > 0 and c + b > 1.
Further let X ∈ M with Xn → X. Then X is a compact length space satisfying the following
properties:

(1) All but one maximal cyclic subsets are homeomorphic to the 2-sphere or the 2-disc and
one maximal cyclic subset is homeomorphic to Xn for all but finitely many n ∈ N.

(2) X is a generalized cactoid with b boundary components and ∂∞ X ⊂ ∂ X.

Proof From Proposition 2.6 and Lemma 3.8 we get the following: All but onemaximal cyclic
subsets of X are homeomorphic to the 2-sphere or the 2-disc. Moreover one maximal cyclic
subset T ⊂ X is a compact surface with non-empty boundary whose connectivity number
is equal to c + b. We also have that T is orientable if and only if Xn is orientable for all but
finitely many n ∈ N.

By regularity ∂∞ X has b connected components. Combining Lemmas 3.7 and 3.8, we
derive that T has b boundary components. Hence the reduced connectivity number of T is
equal to c. This yields that T is homeomorphic to Xn for all but finitely many n ∈ N.

Moreover the connected components of ∂∞ X are disjoint subcontinua of X . Due to Lem-
mas 3.6 and 3.8 the subcontinua are admissible and they cover the maximal cyclic subsets of
X . Therefore X is a generalized cactoid.

Since T has b boundary components, the pre-boundary ∂∞ X is minimal. We conclude
that X has b boundary components and ∂∞ X ⊂ ∂ X . 
�

3.3 The general case

We already described the limits of closed length surfaces and regular sequences. Now we
investigate non-regular sequences: Let (Xn)n∈N be a non-regular sequence in S(c, b) where
b > 0. Further let X ∈ M with Xn → X .

By non-regularity we may assume that there is a sequence (γn)n∈N of simple arcs or
simple Jordan curves as in Lemma 3.3. Since the diameters of the curves vanish, the metric
quotients Xn/γn converge to X . From Proposition 2.17, Proposition 2.18 and Proposition
2.19 we get a topological description of these quotient spaces. Using this description, we
derive the following two results:

Lemma 3.10 If the curves of the sequence (γn)n∈N are simple arcs, then one of the following
cases applies:
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(1) There are c1, c2 ∈ N≥2 with c1+c2 = c+1 and a sequence (Yi,n)n∈N inS(ci ) converging
to some Yi ∈ M such that X is isometric to a metric wedge sum of Y1 and Y2. Furthermore
the wedge point lies in ∂∞Y1 ∩ ∂∞Y2 and we find a corresponding isometry p such that
p(∂∞Y1 ∪ ∂∞Y2) = ∂∞ X.
Provided Xn is non-orientable for infinitely many n ∈ N, the surfaces of at least one of
the sequences may be chosen to be non-orientable.

(2) There is a sequence (Yn)n∈N in S(c − 1) converging to some Y ∈ M such that X is
isometric to Y or a metric 2-point identification of it. Furthermore the glued points lie in
∂∞Y and we find a corresponding isometry or projection map p such that p(∂∞Y ) =
∂∞ X.

If Xn is orientable for infinitely many n ∈ N, then the surfaces of the sequences above may
be chosen to be orientable.

Lemma 3.11 If the curves of the sequence (γn)n∈N are simple Jordan curves, then one of the
following cases applies:

(1) There are c1, c2 ∈ N with c1 + c2 = c and a sequence (Yi,n)n∈N in S(ci ) converging to
some Yi ∈ M such that X is isometric to a metric wedge sum of Y1 and Y2. Furthermore
we find a corresponding isometry p such that p(∂∞Y1 ∪ ∂∞Y2) = ∂∞ X.
Provided Xn is non-orientable for infinitely many n ∈ N, the surfaces of at least one of
the sequences may be chosen to be non-orientable.

(2) There is a sequence (Yn)n∈N in S(c − 2) converging to some Y ∈ M such that X is
isometric to Y or a metric 2-point identification of it. Furthermore we find a corresponding
isometry or projection map p such that p(∂∞Y ) = ∂∞ X.

(3) There is a sequence (Yn)n∈N in S(c − 1) converging to some Y ∈ M such that X is
isometric to Y . Furthermore we find a corresponding isometry p such that p(∂∞Y ) =
∂∞ X.

If Xn is orientable for infinitely many n ∈ N, then always one of the first two cases applies
and the surfaces of the corresponding sequences may be chosen to be orientable.

Now we prove that the first statement of the Main Theorem implies the second. In par-
ticular, we describe what happens if we restrict ourselves to orientable or non-orientable
surfaces:

Theorem 3.12 Let (Xn)n∈N be a sequence in S(c) and X ∈ M with Xn → X. Then there
are k, k0 ∈ N0 and a space Y ∈ G(c0), where c0 − k0 + 2k ≤ c, such that the following
statements apply:

(1) X can be obtained by a successive application of k metric 2-point identifications to Y
such that k0 of them are boundary identifications.

(2) If Xn is orientable for infinitely many n ∈ N, then the maximal cyclic subsets of Y are
orientable.

(3) If Xn is non-orientable for infinitely many n ∈ N and the maximal cyclic subsets of Y
are orientable, then c0 < c.

Proof First we add a statement to the claim: There is a choice p1, . . . , pk of the corresponding
projection maps such that ∂∞ X ⊂ (pk ◦ . . . ◦ p0)(∂Y ) where p0:=idY .

We show the claim using an induction over the connectivity number:
The case c = 0 is a direct consequence of Theorem 2.5.
Now let c > 0. For the sake of induction, we assume that the claim is true for connectivity

numbers less than c. If the sequence (Xn)n∈N contains infinitely many closed surfaces or is
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regular, then the claim follows from Theorem 2.3, Theorem 2.5 or Proposition 3.9. Therefore
we may assume that one of the cases in Lemmas 3.10 or 3.11 applies.

The surfaces of the sequences appearing there have a connectivity number less than c.
Hence we can apply the induction hypothesis and derive the claim. 
�

Finally we are able to prove the local description of the limit spaces:

Proof of Theorem 1.2 Due to Theorem 3.12 there is some generalized cactoid Y such that
X is homeomorphic to a topological quotient of Y whose underlying equivalence relation
identifies only finitely many points. We denote the number of maximal cyclic subsets in Y
that are not homeomorphic to the 2-sphere or the 2-disc by k.

First we show the following claim: Every y ∈ Y admits an open neighborhood that is
homeomorphic to an open subset of some Peano space whose maximal cyclic subsets are
homeomorphic to the 2-sphere or the 2-disc.

In the case k = 0 the claim follows directly.
If k = 1, then we may assume that y lies in the maximal cyclic subset T ⊂ Y that is

not homeomorphic to the 2-sphere or the 2-disc. There is a neighborhood D of y in T that
is homeomorphic to the 2-disc. We denote the union of the connected components of Y \ T
whose closures intersect D by A. It follows that Z :=D ∪ A is a Peano space whose maximal
cyclic subsets are homeomorphic to the 2-sphere or the 2-disc.

Moreover there is an open neighborhood V of y in T that is contained in D. We denote the
union of the connected components of Y \ T whose closures intersect V by B. Then V ∪ B
is an open neighborhood of y in Y and Z . This yields the claim.

If k ≥ 2, then Y is a wedge sum of Peano spaces satisfying the following property: All
maximal cyclic subsets are compact surfaces and less than k of them are not homeomorphic
to the 2-sphere or the 2-disc.

Provided both spaces locally look like Peano spaces whose maximal cyclic subsets are
homeomorphic to the 2-sphere or the 2-disc, the same applies to Y . Hence the claim follows
by induction.

By the claim X locally looks like a successive wedge sum of Peano spaces whosemaximal
cyclic subsets are homeomorphic to the 2-sphere or the 2-disc.We note that such a successive
wedge sum is then also a Peano space of this kind. 
�

4 Approximation of generalized cactoids

In this chapter we show that the second statement of the Main Theorem implies the first. For
this we successively reduce the complexity of the problem.We also prove the third statement
of Theorem 1.1.

4.1 Approximation by surface gluings

The goal of this subsection is to approximate generalized cactoids by suitable spaces inW0.
Our construction extends over the next three results:

Lemma 4.1 Let X ∈ G(c, b) and (Tk)k∈N be an enumeration of its maximal cyclic subsets.
Then X can be obtained as the limit of compact length spaces (Xn)n∈N satisfying the following
properties:

(1) Xn has only finitely many maximal cyclic subsets. Moreover the maximal cyclic subsets
of Xn are in isometric one-to-one correspondence with {Tk}n

k=1.
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(2) After passing to a subsequence, we may assume the existence of a pre-boundary ∂∗ Xn ⊂
Xn with b connected components such that ∂∗ Xn → ∂ X.

Proof We extend the author’s proof in [4, p. 9]: First we define an equivalence relation on X
by: x ∼ y if and only if x and y lie in the same connected component of∪n+k

m=n+1Tm .Moreover
we denote the corresponding metric quotient by Xn,k and the corresponding projection map
by pn,k . As shown in the reference, after passing to a subsequence, we may assume that
there is a space Xn ∈ M and a map pn : X → Xn such that Xn,k → Xn and pn,k → pn

uniformly.
From the reference we also already know the following: The maximal cyclic subsets of

Xn are in isometric one-to-one correspondence with {Tk}n
k=1 via the map pn . Further we have

Xn → X .
Now we show that pn(∂ X) is a pre-boundary for infinitely many n ∈ N: Let C be a

connected component of ∂ X . Since pn is continuous, pn(C) is a subcontinuum of Xn .
Further let m ∈ {1, . . . , n} and x1, x2 ∈ pn(C) ∩ pn(Tm) with x1 �= x2. Then there are

ci ∈ C and ti ∈ T such that pn(ci ) = pn(ti ) = xi . Moreover we choose a geodesic γi ⊂ X
between ci and ti and derive pn(γi ) = {xi }. Since x1 �= x2, the geodesics do not intersect.
From Lemma 2.13 it follows that C is arcwise connected and we find a non-degenerate arc
α ⊂ C connecting c1 and c2. Because γ1 and γ2 do not intersect, we may assume that α

intersects γ1 ∪γ2 only twice. We derive that γ :=γ1 ∪α ∪γ2 is an arc and Lemma 2.9 implies
γ ⊂ T . Finally we conclude xi ∈ pn(T ∩ C).

The observation above implies the following: If the subset pn(C) ∩ pn(Tm) is non-
degenerate, then it equals pn(C ∩ Tm). Because C is admissible and pn is an isometry
on Tm , we deduce that pn(C) is admissible.

Due to the fact that C contains a boundary component of some maximal cyclic subset,
we may assume that the same applies to pn(C). Moreover pn(∂ X) covers the boundary
components of the maximal cyclic subsets as ∂ X does.

The map pn is 1-lipschitz. After passing to a subsequence, we hence may assume (pn)n∈N
to be convergent. We denote its limit by p and it follows that p is an isometry. Further we
may assume the sequence (pn(∂ X))n∈N to be convergent. Since p(∂ X) = ∂ X , we have
pn(∂ X) → ∂ X . Therefore we may assume that ∂ X has as many connected components as
pn(∂ X). We finally deduce that pn(∂ X) is a pre-boundary with b connected components. 
�
Lemma 4.2 Let X be a geodesic generalized cactoid having only finitely many maximal
cyclic subsets. Further let ∂∗ X ⊂ X be a pre-boundary with b connected components. Then
X can be obtained as the Hausdorff limit of compact subsets (Xn)n∈N satisfying the following
properties:

(1) We have Xn ∈ W and the maximal cyclic subsets of Xn are equal to those of X.
(2) There is a pre-boundary ∂∗ Xn ⊂ Xn with b connected components.
(3) The sequence (∂∗ Xn)n∈N Hausdorff converges to ∂∗ X.

Proof We extend the author’s proof in [4, p. 9]: First we define ε as the minimum of the
diameters of the maximal cyclic subsets in X . For every maximal cyclic subset T ⊂ X we
remove the connected components of X \ T whose diameters are less than ε/n. We denote
the constructed subset by Yn .

The subset Yn is a compact length space. Furthermore it is a successive metric wedge sum
of its maximal cyclic subsets and compact metric trees D1, . . . , Dk . For every metric tree Di

there is a finite metric tree Fi ⊂ Di whose Hausdorff distance to Di is less than ε/n (cf. [2,
p. 267]). In particular, we may assume that Fi intersects the same maximal cyclic subsets as
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Di . Next we define Xn as the union of the maximal cyclic subsets of Yn and the finite metric
trees. Moreover we set ∂∗ Xn :=∂∗ X ∩ Xn .

By construction we have Xn ∈ W . Further the maximal cyclic subsets of Xn are equal
to those of X and ∂∗ Xn is a pre-boundary of Xn with b connected components. Finally the
sequences (Xn)n∈N and (∂∗ Xn)n∈N Hausdorff converge to X and ∂∗ X . 
�
Lemma 4.3 Let X be a generalized cactoid in W . Further let ∂∗ X ⊂ X be a pre-boundary
with b connected components. Then there is a sequence (Xn)n∈N in W0 satisfying the
following properties:

(1) The maximal cyclic subsets of Xn are in isometric one-to-one correspondence with the
maximal cyclic subsets of X and finitely many length spaces that are homeomorphic to
the 2-sphere or the 2-disc.

(2) Xn has b boundary components.
(3) There is an εn-isometry fn : Xn → X such that fn(∂ Xn) = ∂∗ X and εn → 0.

Proof The space X is a successive metric wedge sum of its maximal cyclic subsets and
compact intervals. In particular, we may assume that the wedge points do not lie in the
interior of the intervals and that every interval whose interior intersects ∂∗ X lies in ∂∗ X .

We consider the following construction: Let e be one of thewedged intervals. Then there is
a 1/n-isometry f : D → e satisfying the following properties: The preimages of the endpoints
of e contain exactly one point. If e lies in ∂∗ X , then D is a length space that is homeomorphic
to the 2-disc and f (∂ D) = e. Otherwise D is a length space that is homeomorphic to the
2-sphere.

Now we remove the interior of e from X and paste D along f . This yields a compact
length space Y . Especially the maximal cyclic subsets of Y are in isometric one-to-one
correspondence with the set consisting of D and the maximal cyclic subsets of X .

If e lies in ∂∗ X , then we set ∂∗Y :=(∂∗ X\e)∪ ∂ D. Otherwise we set ∂∗Y :=∂∗ X . We note
that ∂∗Y is a pre-boundary of Y with b connected components. Provided Y is a successive
metric wedge sum of its maximal cyclic subsets, we have ∂∗Y = ∂Y .

Furthermore themap f naturally induces a 1/n-isometry g : Y → Xn with g(∂∗Y ) = ∂∗ X .
We successively repeat this construction until there is no wedged interval left and denote

the constructed space by Xn .
The space Xn is a successive metric wedge sum of its maximal cyclic subsets. For every

wedge point p ∈ Xn which lies inmore than onemaximal cyclic subset there is a 1/n-isometry
f : D → {p} satisfying the following properties: If p lies in ∂ Xn , then D is a length space
that is homeomorphic to the 2-disc. Otherwise D is a length space that is homeomorphic to
the 2-sphere.

Using a similar construction as above, we finally may assume that Xn ∈ W0. 
�
We note that a sequence of εn-isometries between converging spaces has a convergent

subsequence provided εn → 0. In particular, its limit is an isometry between the limit spaces.
Morever the boundary of a generalized cactoid is invariant under self-isometries. Combining
Proposition 2.1 and the last three results, we hence get the desired approximating sequence:

Corollary 4.4 Let X ∈ G(c, b) and (Tk)k∈N be an enumeration of its maximal cyclic subsets.
Then X can be obtained as the limit of spaces (Xn)n∈N in W0 satisfying the following
properties:

(1) The maximal cyclic subsets of Xn are in isometric one-to-one correspondence with
{Tk}n

k=1 and finitely many length spaces that are homeomorphic to the 2-sphere or the
2-disc.
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(2) After passing to a subsequence, we may assume that Xn has b boundary components and
∂ Xn → ∂ X.

4.2 Elementary surface gluings

Now we provide useful tools concerning the approximation of elementary surface gluings.
We start with wedge sums:

Lemma 4.5 Let S1 ∈ S(c1, b1), S2 ∈ S(c2, b2) and X be a metric wedge sum of S1 and S2.
Then the following statements apply:

(1) There is a sequence (Xn)n∈N in S(c1 + c2, b1 + b2) and an εn-isometry fn : Xn → X
such that fn(∂ Xn) = ∂ X and εn → 0.

(2) If the wedge point is contained in ∂S1 ∩ ∂S2, then there is a sequence (Xn)n∈N in
S(c1 + c2, b1 + b2 − 1) and an εn-isometry fn : Xn → X such that fn(∂ Xn) = ∂ X and
εn → 0.

If S1 and S2 are orientable, then the surfaces of the sequence may be chosen to be orientable.
Provided at least one of the wedged surfaces is non-orientable, the surfaces of the sequence
may be chosen to be non-orientable.

Proof (1) We may assume the wedge points not to lie in ∂S1 ∪ ∂S2. In [4, p. 14] the author
already showed the statement for closed surfaces. The corresponding proof does not
depend on the fact that the wedged surfaces are closed and it gives rise to a proof for the
general case.

(2) Let a1 and a2 be the intersecting boundary components of the surfaces and p be the
wedge point. We choose an arc γi,n ⊂ ai containing p in its interior. In particular, we
may assume that the arc is a geodesic of length 1/n such that p is its midpoint. Next
we define Xn as the metric gluing of X along γ1,n and γ2,n . Moreover we denote the
corresponding projection map by gn and find a map fn : Xn → X such that fn ◦ gn is the
identity map on Xn\(γ1,n ∪ γ2,n) and ( fn ◦ gn)(γ1,n) = γ1,n ∪ γ2,n . Finally we deduce
that the space Xn and the map fn satisfy the desired properties.


�
Using similar arguments as above,wederive the following result concerningmetric 2-point

identifications:

Lemma 4.6 Let S be a space in S(c) and X be a metric 2-point identification of S. Further
let p be a corresponding projection map. Then the following statements apply:

(1) There is sequence (Xn)n∈N inS(c+2) and an εn-isometry fn : Xn → X with fn(∂ Xn) =
p(∂S) and εn → 0.

(2) If p is a boundary identification, then there is a sequence (Xn)n∈N in S(c + 1) and an
εn-isometry fn : Xn → X with fn(∂ Xn) = p(∂S) and εn → 0.

The surfaces of the sequence may be chosen to be non-orientable. If S is orientable, then the
surfaces of the sequence may be chosen to be orientable.

4.3 Gluings of generalized cactoids

In this subsection we approximate spaces that can be obtained by a successive application of
k metric 2-point identifications to some generalized cactoid.

Using an induction, Corollary 4.4 and Lemma 4.5 yield the case k = 0:
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Corollary 4.7 Let X ∈ G (c, b). Then X can be obtained as the limit of spaces (Xn)n∈N in
S (c, b). Moreover the following statements apply:

(1) The sequence may be chosen such that ∂ Xn → ∂ X.
(2) If the maximal cyclic subsets of X are orientable, then the surfaces of the sequence may

be chosen to be orientable.
(3) If there is a non-orientable maximal cyclic subset in X, then the surfaces of the sequence

may be chosen to be non-orientable.

Now we show the general case:

Lemma 4.8 Let k, k0 ∈ N0 and X ∈ G(c). Further let Y be a space that can be obtained
by a successive application of k metric 2-point identifications to X such that k0 of them
are boundary identifications. Then Y can be obtained as the limit of spaces (Yn)n∈N in
S(c − k0 + 2k). Moreover the following statements apply:

(1) If the maximal cyclic subsets of X are orientable, then the surfaces of the sequence may
be chosen to be orientable.

(2) If there is a non-orientable maximal cyclic subset in X or k > 0, then the surfaces of the
sequence may be chosen to be non-orientable.

Proof First we add a statement to the claim: There is a choice p1, . . . , pk of the corresponding
projection maps such that ∂Yn → (pk ◦ . . . ◦ p0)(∂ X) where p0:=idX .

We show the claim using an induction over k:
The case k = 0 is a direct consequence of Corollary 4.7.
Now let k > 0. For the sake of induction, we assume that the claim is true if the number

of identifications is less than k. Let p1, . . . , pk be a choice of the corresponding projection
maps. We set Z :=(pk−1 ◦ . . . ◦ p0)(X) and denote the number of boundary identifications in
{pk−1, . . . , p1} by k̃0. Then Z is a space that can be obtained by a successive application of
k − 1 metric 2-point identifications to X such that k̃0 of them are boundary identifications.
Hence we can apply the induction hypothesis and derive a corresponding sequence (Zn)n∈N
in S(c − k̃0 + 2(k − 1)). In particular, we may assume that ∂ Zn → (pk−1 ◦ . . . ◦ p0)(∂ X).

Let z1, z2 ∈ Z be distinct points with pk(z1) = pk(z2). Then there is a sequence (zi,n)n∈N
with zi,n ∈ Zn and z1,n �= z2,n such that zi,n → zi . Provided pk is a boundary identification,
we may assume zi,n ∈ ∂ Zn . Further we define Wn as the metric gluing of Zn along z1,n and
z2,n . We denote the corresponding projection map by pk,n .

By construction pk,n is a boundary identification if pk is. Moreover it follows Wn → Y
and wemay assume that (pk,n)n∈N converges to somemap qk . We note that qk, pk−1, . . . , p1
is also a possible choice of the projectionmaps corresponding to the construction of Y . Hence
we may assume that pk,n(∂ Zn) → (pk ◦ . . . ◦ p0)(∂ X).

Finally we apply Lemma 4.6 to Wn and denote the corresponding sequence of surfaces by
(Yn,m)m∈N and the corresponding sequence of almost isometries by ( fn,m)m∈N. Thenwe have
fn,m(∂Yn,m) = pk,n(∂ Zn). Choosing a diagonal sequence, wemay assume that Yn :=Yn,n →
Y and that ( fn,n)n∈N converges to an isometry f . We note that ( f −1 ◦ pk), pk−1, . . . , p1 is
also a possible choice of the projection maps corresponding to the construction of Y . Hence
we finally may assume that ∂Yn → (pk ◦ . . . ◦ p0)(∂ X). 
�

Using sequences of 2-discs or real projective planes whose diameters tend to zero, we get
the following corollary of Lemma 4.5:

Corollary 4.9 Let X ∈ S(c). Then X can be obtained as the limit of spaces in S(c + 1).
Moreover the following statements apply:
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(1) If S is orientable, then the surfaces of the sequence may be chosen to be orientable.
(2) The surfaces of the sequence may be chosen to be non-orientable.

As a direct consequence of the last two results, we derive that the second statement of the
Main Theorem implies the first. In particular, we are able to describe under which conditions
the approximating surfaces may be chosen to be orientable or non-orientable:

Theorem 4.10 Let c, k, k0 ∈ N0 and X ∈ G(c0) where c0 − k0 + 2k ≤ c. Further let Y be a
space that can be obtained by a successive application of k metric 2-point identifications to
X such that k0 of them are boundary identifications. Then Y can be obtained as the limit of
spaces (Yn)n∈N in S(c). Moreover the following statements apply:

(1) If the maximal cyclic subsets of X are orientable, then the surfaces of the sequence may
be chosen to be orientable.

(2) If there is a non-orientable maximal cyclic subset in X or c0 < c, then the surfaces of
the sequence may be chosen to be non-orientable.

Finally we show the third statement of Theorem 1.1:

Proof of Theorem 1.1 (Part II) IfY is a space that can be obtained by a successive application of
metric 2-point identifications to some geodesic generalized cactoid, then the second statement
of Theorem 1.1 and Theorem 4.10 imply that Y is locally simply connected. Due to Theorem
3.12 the space X can be obtained in this way. Hence Proposition 2.20 and Proposition 2.21
finally yield the desired fundamental group formula for X .
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