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ABSTRACT: A significant challenge in improving Mg and Al batteries is the limited
understanding of the solid electrolyte interphase (SEI) and its evolution under
operating conditions. Additionally, the cationic transference number of related
electrolytes is crucial for their performance as well as potential dendrite formation
yet it is only rarely determined experimentally. Here, we study Al and Mg systems using
Grignards as electrolytes for the Mg case and an ionic liquid electrolyte for the Al case.
The activation energies associated with ion transport through the SEI suggest that it
initially contains a high contribution from liquid pathways for the Mg case and is dense
for the Al case, but becomes fully dominated by liquid pathways after a longer contact with the electrolyte. The initial effective
Mg cationic transference number of the Grignards is close to zero and increases significantly after only one cyclic voltammetry
cycle.

Rechargeable multivalent batteries are promising alter-
natives to the current lithium-ion batteries.1−3 For
instance, magnesium and aluminum metal batteries

could offer a higher volumetric energy density due to their
multivalent charge.3−5 Moreover, these metals are among the
most abundant elements on Earth and, therefore, hold the
potential for a more sustainable energy storage solution.6,7

However, understanding and improving the properties of the
solid electrolyte interphase (SEI) is crucial for enabling these
technologies.8−10

For this investigation, we have used two electrolyte systems,
including the Gringard electrolytes butylmagnesium chloride
(BuMgCl) and ethylmagnesium chloride (EtMgCl), and an
ionic liquid doped with aluminum salt, 1-ethyl-3-methylimida-
zolium chloride-aluminum chloride ([EMImCl]:AlCl3).
Grignards are among the first electrolytes used for rechargeable
magnesium batteries; they are commercially available and
inexpensive.11,12 Previous electrochemical impedance spectros-
copy (EIS) investigations of Grignard electrolytes in symmetric
Mg cells showed high total resistances speculated to be related
to an adsorption layer present on the Mg anode, containing
RMg+ and RMg· species, stabilized by tetrahydrofuran, as
shown by Fourier transform infrared spectroscopy.11,13,14

Further analysis showed that a native passivation film
containing magnesium oxide, magnesium hydroxide, and
organic components like carbonates and carboxylates forms
on Mg in contact with ambient air.15,16

So far, different approaches have been proposed in the
recent literature to overcome the ion-blocking passivation layer
on top of Mg. One solution is the addition of LiPF6 or MgBr2
to the electrolyte, which was shown to positively affect the SEI
formation.17,18 Another approach is the formation of a so-
called artificial SEI. This can be composed of either organic
polymers,19,20 inorganic compounds,6,21,22 alloys,23,24 metal−
organic frameworks,25 or 3D scaffolds.26 Dou et al.27

investigated the link of the three-dimensional distribution
composition to the evolution of the SEI, suggesting that the
initial SEI is primarily composed of organic components,
leading to electronic leakage, allowing for the decomposition of
the electrolyte and continuous growth of a resistive SEI.27

[EMImCl]:AlCl3, on the other hand, is a well-established
electrolyte for rechargeable aluminium batteries.28,29 However,
it is corrosive to the aluminum, its native oxide, and other
components inside the cell.30−33 For Al metal batteries, the
native oxide layer is important since it is dense (Pilling−
Bedworth ratio of 1.29)34 and can suppress the formation of
dendrites and confine their existence at the metal/oxide
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interface.35−37 Studies of aluminum in contact with [EMIm-
Cl]:AlCl3 have shown that the interphase highly depends on
the storage conditions and surface properties like roughness
and microstructure and may also get dissolved over time.38,39

However, some corrosion of the native oxide is necessary for
adequate cell performance since, otherwise, aluminum cannot
be transported over the interface.35,37 Rahide et al. showed that
the presence of Al in an ionic liquid/AlCl3-based electrolyte
modifies the surface by creating a beneficial SEI layer
containing Al-, Cl-, and N-based compounds.39

Further important measurements for insight into the ion
transport properties of the electrolyte are related to the
determination of the cationic transference numbers and salt
diffusion coefficients. This information is essential for under-
standing dendrite growth and fast charging behavior.40,41

The cationic transference number of Grignard electrolytes
has yet to be determined. For the related electrolyte
C2H5MgCl-((C2H5)2AlCl)2/THF, the cationic transference
number was determined by potentiometric deposition of Mg
in a Hittorf cell. The effective magnesium transference number
was found to vary depending on the concentration between
0.19 (0.15 M) and 0.018 (0.4 M).42 In the case of
[EMImCl]:AlCl3, the transference numbers of expected
species, EMIm+, AlCl4−, and Cl− have already been
investigated by Hittorf and other methods, with corresponding
effective transference number values of ca. 0.70, 0.30, and 0,
respectively.43−45

In this letter, we employ in situ EIS to study bulk and
interphase ion transport using symmetrical metal cells. This is
crucial for the investigation of the SEI since its composition is
highly dependent on the environment.46 This allows us to
determine the changes in the electrolyte and SEI resistance
over time at conditions as close to open-circuit voltage as
possible.47,48 This type of analysis is well-known in the field of
corrosion.48,49 An ex situ spectroscopy method like X-ray
photoelectron spectroscopy would not deliver any necessary
information on the morphology of the interphase, while its
chemical resolution is also not good enough to determine the
distribution of different phases in the SEI, necessary for

understanding detailed ion transport properties. Further
investigation with operando reflection anisotropy spectroscopy
has shown that surfaces created under potential may not be
stable and convert within seconds.50 Furthermore, the analysis
of the activation energy of transport (Ea), as well as equivalent
circuit development, is essential for elucidating the ion
transport in the SEI, especially for determining its possible
porosity and dominant liquid conduction pathways.51 In
addition, we use the galvanostatic concentration polarization
method combined with EIS to determine the effective cationic
transference number and the salt diffusion coefficient.52 This
method coupled with semiblocking electrodes (here, Mg and
Al metal) gives access to effective cationic transference
numbers of cationic species moving in the direction of
positively charged species, which are of relevance for battery
performance. For a detailed account of the species that move
during galvanostatic polarization with semiblocking electrodes,
the reader is directed to consult refs 53−55. Specifically in
Grignard electrolytes, Mg does not exist in the form of Mg2+ in
the electrolyte but only in combination with other ions in the
form of RMg+, RMg·, MgX2, and MgX+.13,14,56−58

For a better understanding of the ionic transport properties
of the SEI and the evolution of the surface over time, the Ea of
the ionic conduction in the SEI was determined at the start of
the experiment, followed by aging of the cell under open-
circuit voltage. Figure 1a shows the evolution of the Nyquist
plot over time for the Mg|BuMgCl|Mg system upon
application of the EIS perturbation potential. We observe
that the total resistance of the semicircle increases in the first
24 h but then reaches saturation. The frequency at the vertex
of the semicircle is fmax = 0.25 Hz for the initial measurement.
This clearly shows that the vertex of the semicircle lies within
the range of change transfer reaction (<1 Hz).59 In addition,
the semicircle is also longitudinally distorted. Because of this
and according to the observed frequencies, we created an
equivalent circuit model containing the resistance of the
electrolyte, followed by the SEI’s capacity and resistance in
parallel, and finally, a Randles circuit for the charge-transfer
reaction and diffusion in series (Figure S8 in the Supporting

Figure 1. Nyquist plots related to time-dependent EIS measurements of symmetric cells in the 107−10−2 Hz frequency range: (a) Mg|
BuMgCl|Mg and (b) Al|[EMImCl]:AlCl3|Al. Insets: Arrhenius plots and Ea of (a) Mg|BuMgCl|Mg and (b) Al|[EMImCl]:AlCl3|Al. The
differently colored Nyquist plots indicate the time in hours from the start of the measurement directly after cell assembly. The red curve
shows Ea during increasing temperature; the blue curve shows Ea during decreasing temperature. The activation energy was determined from
a freshly assembled cell.
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Information (SI)). A comparison of the obtained parameters
from the fitting shows that the charge-transfer resistance
increases in the first 24 h from 20 to over 50 kΩ and then stays
constant. Simultaneously, the double-layer capacity decreases
from 450 to 200 μF in the first 24 h and stays relatively
constant afterward. The SEI capacity doubles in the same time
frame from 4 to 70 μF but then drops to 55 μF for the
following 24 h. For the SEI resistance, no clear trend can be
observed. The Ea of ionic conduction in the SEI lies between
0.39 and 0.42 eV, which is a clear indication of liquid pathways
playing an important role in ionic conduction through the SEI
(see the SI for details). This can be concluded since the Ea
values of ion transport in some of the best inorganic solid Mg
conductors are around 1 eV,60 while the activation energy of
ion transport in Grignard electrolyte is expected to be around
0.1 eV.61 Similar values have been found in the case of SEIs on
Li and Na, where the ion transport in the solid state is
generally less sluggish than for Mg-ion conductors.51 In this
case, the situation is even more complex since adsorbed species
might be present on the surface of the Mg electrode. However,
the ion conduction mechanism through adsorbates is not
expected to be different than that through inorganic
compounds unless they are solvated. In that case, the liquid
ion transport pathways may also be due to these, rather than
due to the porous nature of the SEI. The scenario has also
been speculated upon by Attias et al.11 The investigation was
repeated for the related Grignard electrolyte EtMgCl. The
results are shown in Figure S1. Here, the total resistance of the
semicircle also increases with time, and its vertex is around 0.1
Hz, except for the very first semicircle, where it is 3.1 Hz.
There is also a long tail in the low-frequency range in this
semicircle, which does not occur in the following semicircles,
possibly an indication of an electrochemical reaction. Despite
the outlier in the first semicircle, the same equivalent circuit
was also used to fit this data. Here, the SEI resistance is
continuously increased from 10 to 60 kΩ. The capacity of the
SEI first jumps from 75 to 95 μF in the first hour and then
increases further to 105 μF after 12 h, before it drops again to
80 μF after 47 h. The charge-transfer resistance substantially
increases in the first 6 h before fluctuating between 30 and 50
kΩ. The increase in SEI resistance and capacity for both
Grignards is assigned to the SEI growth on top of the
nondense initial oxide.

The equivalent investigation for aluminum with the
[EMImCl]:AlCl3 electrolyte is shown in Figure 1b. Here, a
strong increase in the total resistance is observed in the first 6
h, followed by a slighter increase up to 18 h, before it decreases
again. The data obtained from [EMImCl]:AlCl3-containing
cells were fitted with the previously mentioned equivalent
circuit (Figure S8). The reasons for using the same equivalent
circuit are, first, the existence of a small semicircle below 1 kΩ
and the fact that the vertex of the second semicircle lies with
the value of 0.12 Hz. The analysis of the fit shows that the SEI
resistance increases strongly in the first 6 h from 200 to 1200
Ω. Afterward, it slightly decreases to around 1000 Ω. In the
SEI capacity, there is only a jump in the first hour from 140 to
230 μF before it contentiously increases to 350 μF. The
charge-transfer resistance increases in the first 12 h from 0.7 to
40 kΩ and stays relatively constant. The activation energy of
ionic conduction in the SEI is around 0.8 eV, indicating a
relatively dense SEI.

For aluminum in contact with [EMImCl]:AlCl3, the strong
increase of the SEI resistance and capacity in the first few

hours, as well as the high Ea of ionic conduction in the SEI at
the beginning, is a strong indication of corrosion happening at
the interface, leading to a partial removal of the native oxide
layer on top of the aluminum.32,62 Since the native oxide layer
is partially removed, the double-layer capacity and the charge-
transfer resistance change in this time frame. In situ optical
measurements by Guidat et al.32 show that the partial removal
of the native oxide already happens within the first hour after
immersion into the electrolyte. This couples well with our
investigation.

The magnesium used in the previous section exhibited a
blackish surface layer. In the following, this surface was
mechanically activated by scratching it with a spatula. Figure 2

compares the EIS response of mechanically activated
magnesium with that of the pristine one. A comparison
shows that the total resistance of the semicircle of the
mechanically activated magnesium is larger than that with
native oxide. Fits of both plots are available in Figure S15.

This indicates that the ions face a lower resistance when
migrating through the native oxide to the Mg surface than
without it. There are two possible explanations for this
behavior. A possible explanation could be the change of near-
surface composition with exposure to ambient conditions, as
the first 10 nm of the Mg surface transform from Mg metal to a
mixture of amorphous MgO/OH and then crystalline
Mg(OH)2 over a time period of several weeks.15

If the crystalline layer performs better with respect to ion
transport than the amorphous oxide, its removal by
“mechanical activation” would be detrimental to the ion
transport through the interphase. This information is crucial
for further investigation of magnesium anodes since, in most
studies, the native oxide is mechanically removed, expecting
improved electrode performance.

The cationic transference numbers for Grignards and the
ionic liquid electrolyte were determined by galvanostatic
concentration polarization. This type of polarization method
was first established63,64 for the separation of ionic and
electronic conductivity and popularized for lithium polymer
electrolytes.65 In contrast to the typical method, we used
galvanostatic polarization to determine the initial IR response
more precisely.52,66 Therefore, we applied a constant current
and recorded the voltage over time until a steady state was
reached. In our system, the steady state was reached relatively
quickly in under 2 min. The transference number can be
calculated via eq 1:

=t
IR IR

U IRpol
tot,0 SEI,0

SEI, (1)

Figure 2. Nyquist plot (107−10−2 Hz) of Mg with native oxide
(red) and mechanically activated Mg (blue) in contact with
BuMgCl.
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where U∞ is the steady-state voltage, RSEI,0 and RSEI,∞ are the
resistances of the SEI before and after polarization,
respectively, Rtot,0 is the total resistance before polarization,
and I is the applied current during polarization.

In the case of the impedance spectra after cyclic
voltammetry (CV), it is also possible to determine the
transference number with the low-frequency EIS approach.
This considers the electrolyte’s resistance (the first intersection
between the curve and the x-axis) and the impedance of the
polarization (the potential intersection of the right-hand side
of the second semicircle):67

=
+

t
1

1 Z
R

eis d

el (2)

where Zd is the impedance of the polarization and Rel is the
resistance of the electrolyte. In order to obtain the impedance
of the polarization from the Nyquist plots in Figure 3, they
were fitted with the equivalent circuit described in Figure S8.
Before CV, the impedance of the polarization is Zd = 7625 Ω,
and the resistance of the electrolyte is Rel = 43.9 Ω; this results
in a transference number of tEIS,Mg = 0.0057. After CV, the
transference number is tEIS,Mg = 0.37 (Zd = 72.69 Ω and Rel =
43.16 Ω).

Figure 3 shows the Nyquist plot and concentration
polarization of BuMgCl in contact with magnesium before
and after one CV cycle. The total resistance of the BuMgCl-
containing cell is relatively high, over 10 kΩ (Figure 3a). Also,
the resulting effective cationic transference number is very
small, tMg,eff = 0.006 (Figure 3b). However, both bulk and
interfacial properties change abruptly after only one CV cycle
between -0.5 and 1 V (vs Mg). The resistance is significantly
reduced to less than 90 Ω, and two semicircles can now be
observed. The most striking change, however, is in the cationic
transference number, which is significantly increased to tMg,eff =
0.34. Similar behavior is observed with ethylmagnesium
chloride, where the transference number increases from tMg,eff
= 0.004 before CV to 0.41 after CV (see plots in Figure S3). As
shown by Benmayza et al.42 for the C2H5MgCl-
((C2H5)2AlCl)2 electrolyte, the low tMg is expected at higher
concentrations due to the lower mobility of the Mg dimer ion
and the presence of many counter- and non-magnesium ions.42

The change of tMg,eff upon the CV run, with values of the same

order of magnitude as those of well-performing lithium liquid
electrolytes, indicates a drastic change of magnesium speciation
or its mobility. We have shown that this is possible in lithium
liquid electrolytes with a high concentration of neutral ion
pairs.55 Here, we can speculate that the increase of cationic
transference number is again a consequence of the interplay
between the existence of a high number of noncharged ion
pairs and a smaller amount of magnesium in the positively
charged aggregates.

The cationic transference number was also determined for
[EMImCl]:AlCl3 (Figure S6). Here, a value of tAl,eff = 0.063
was observed, which aligns well with a previous study showing
a nonexistent effective transport of aluminum and dominant
aluminum transport in negatively charged species, tAlCl− = 0.30
± 0.02.43 In this case, after one CV cycle, the tAl,eff decreases
even further to 0.0004, indicating a nonbeneficial change in
speciation/mobility. In addition to the effective transference
number values, it is also possible to extract the ambipolar
diffusion coefficient of all species, Dδ, from the polarization
curve at short polarization times. Therefore, eq 3 was used:

=D
L2

2 (3)

where L is the thickness of the separator and τδ is the time
constant. The latter can be obtained by plotting the voltage of
the chronopotentiometry from the polarization experiment
against the square root of the time, with the slope of the linear
part being the polarization constant (Figure 4). For BuMgCl, a
value of Dδ = 1.2 × 10−7 cm2 s−1 was obtained, and for

Figure 3. (a) EIS spectra (106−10−1 Hz) of Mg|BuMgCl|Mg before galvanostatic polarization (black) and after galvanostatic polarization
(red). (b) DC polarization curve for I = 9 × 10−8 A. (c) EIS spectra (106−10−1 Hz) of Mg|BuMgCl|Mg after one CV cycle from −0.5 to 1 V
with 10 mV s−1 before galvanostatic polarization (black) and after galvanostatic polarization (red). (d) DC polarization curve after the CV
cycle for I = 1 × 10−4 A.

Figure 4. Ambipolar salt diffusion coefficient obtained from the
square-root dependence of time vs voltage in the short-time
regime of DC polarization for (a) BuMgCl and (b) [EMIm-
Cl]:AlCl3.
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EtMgCl, a value of Dδ = 1.0 × 10−7 cm2 s−1 was obtained. For
[EMImCl]:AlCl3, salt diffusion coefficient of 1.1 × 10−6 cm2

s−1 was observed, which is an order of magnitude higher
compared to the literature value.68

For a better understanding of the processes taking place at
the electrode−electrolyte interphase, both magnesium and
aluminum were investigated with atomic force microscopy
(AFM) in the pristine state as well as after prolonged contact
with their respective electrolyte. The AFM images in Figure
5a,b show that the roughness of the magnesium electrode
remained unchanged. The pristine foil displays grooves, likely
resulting from the manufacturing process. The small spikes
observed on the electrode after contact with the BuMgCl
electrolyte are probably scanning artifacts. For Al, Figure 5c,d
shows that the surface roughness increases after prolonged
contact. Here, two processes take place; first, small Al
structures are removed due to the corrosiveness of the
electrolyte. Second, pitting of the surface and salt deposition
from the electrolyte can also occur, leading to areas with higher
differential altitudes and features of several micrometers in
height. This results in a smoother surface with some additional
larger structures. We also quantitatively assessed the surface
roughness of both surfaces. For the pristine Al-foil, the root-
mean-square value for the roughness is 197 nm, while it is 309
nm after prolonged contact with the electrolyte. Compared to
the research by Sabi et al.,33 where no effective change was
observed after 18 h of exposure, we experience an increase in
the surface roughness while immersing the sample in the
electrolyte.

In summary, the evolution of the interphase of symmetric
Mg and Al cells with Grignard and [EMImCl]:AlCl3 as
respective electrolytes was investigated by EIS. The evolution
of the shape of the Nyquist plots and the Ea associated with ion
transport through the SEI indicates that the interphase of
magnesium and aluminum is dominated by liquid ion transport
pathways for magnesium and is already dense in the case of

aluminum at the beginning. Liquid ion transport pathways
remain relevant for both interphases over time. AFM
investigations additionally show that the roughness of the
magnesium surface stays about the same while immersed in the
Grignard. However, the roughness increases for Al due to the
electrolyte’s corrosiveness. For the Grignards, the cationic
transference number increase from tMg,eff = 0.006 to tMg,eff =
0.34 after only one CV cycle, indicating a profound change in
the transport properties of the electrolyte. For [EMIm-
Cl]:AlCl3, the cationic transference number stays relatively
low with tAl,eff = 0.063 and does not increase upon
electrochemical cycling.

The drastic change in the transference numbers of the
Grignard electrolytes after one cycle is related to the change in
speciation and/or the related mobility of species. Nuclear
magnetic resonance and infrared measurements might be
beneficial here. Further, we want to encourage the community
of multivalent batteries to do more research on the
transference numbers of their electrolytes since they are one
of the critical factors for improving electrolytes, as shown by us
in this work by a simple setup.
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