
Pattern-Based Logical
Isolation for Safety-Critical

Multicore Systems

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von der KIT-Fakultät für
Elektrotechnik und Informationstechnik

des Karlsruher Instituts für Technologie (KIT)
angenommene

Dissertation

von

Tobias Konstantin Dörr, M.Sc.

Tag der mündlichen Prüfung: 9. September 2024

Hauptreferent: Prof. Dr.-Ing. Dr. h. c. Jürgen Becker
Korreferent: Prof. Dr.-Ing. habil. Mario Trapp

1st edition, October 2024
Karlsruhe, Germany

https://doi.org/10.5445/IR/1000175388

https://doi.org/10.5445/IR/1000175388

Pattern-Based Logical
Isolation for Safety-Critical

Multicore Systems

Tobias Dörr

Zusammenfassung

Computerplattformen für eingebettete Systeme zeichnen sich durch stetig
wachsende Performanz und zunehmende Heterogenität aus. Unter Verwen-
dung solcher Plattformen ist es möglich, bislang getrennt realisierte Anwen-
dungen auf ein und demselben Chip zu integrieren. Eine solche Integration
bietet zahlreiche Vorteile, stellt aus Sicht der funktionalen Sicherheit aller-
dings auch eine massive Herausforderung dar. Im sicherheitskritischen Umfeld
kann das Fehlverhalten bestimmter Anwendungen katastrophale Folgen haben.
Zur Umsetzung der On-Chip-Integration ist es daher häufig unumgänglich,
kritische von weniger kritischen Anwendungen zu isolieren.

Die Literatur kennt eine Vielzahl von Ansätzen zur Realisierung räum-
licher Isolation in Multicore-Systemen. So sind Plattformen, die ein Multi-
processor System-on-Chip (MPSoC) bilden, immer häufiger durch Zugriffs-
schutzeinheiten im geteilten Interconnect ausgestattet. Diese sogenannten Ac-
cess Protection Units (APUs) sind konfigurierbar und setzen eine Partitionie-
rung relevanter On-Chip-Ressourcen um. Anders als der Hypervisor oder
das Betriebssystem, welche zur Trennung von Anwendungen auf einem be-
stimmten Prozessor zum Einsatz kommen, sind APUs für die Isolation zwi-
schen verschiedenen Prozessoren bestimmt. In der Praxis ist das Aufstellen
korrekter APU-Konfigurationen jedoch oft problematisch. Insbesondere wenn
mehrere MPSoCs miteinander verbunden werden, erfordert der Konfigurati-
onsprozess detailliertes Wissen über alle beteiligten Plattformen und die auf
den Plattformen ausgeführte Software. Derzeit verfügbare Entwurfsmethoden
berücksichtigen solche Aspekte nicht oder nur eingeschränkt.

In dieser Arbeit werden APUs als Mechanismen zur Erfüllung funktio-
naler Sicherheitsanforderungen betrachtet. Basierend auf dem Konzept des
kaskadierenden Fehlers (CF) gemäß ISO 26262 wird dafür zunächst die Abstrak-
tion der logischen Isolation eingeführt; sie beschreibt, wie APU-Konfigurationen
und ergänzende Techniken zur Einschränkung von CFs beitragen. Unter Ver-

v

vi | Zusammenfassung

wendung dieser Abstraktion wird eine neueMethodik für die strukturierte Kon-
figuration von APUs auf einem oder mehreren MPSoCs vorgestellt.

Die vorgestellte Methodik setzt eine modellbasierte Formalisierung der
angedachten Hardware-, Laufzeit- und Softwarearchitektur voraus. Sie ge-
neriert APU-Konfigurationscode und leitet das CF-Potential ab, das trotz An-
wendung dieses Konfigurationscodes auf den verschiedenen Systemschichten
verbleibt. CF-Potential, das von fehleranfälligen Systemelementen zur An-
wendungslogik führt (und so physischen Schaden hervorrufen kann), wird
automatisch bestimmt und unter Berücksichtigung relevanter Sicherheitsanfor-
derungen auf inakzeptables Risiko geprüft. In Form eines flexiblen „Patterns“
sind alle diese Schritte automatisiert und auf verschiedene MPSoCs aus einer
erweiterbaren Plattformbibliothek anwendbar.

Um die praktische Realisierbarkeit des Patterns zu demonstrieren, stellt
diese Arbeit eine vollständige Implementierung vor. Die Plattformbibliothek
wird dabei mit Modellen zweier kommerzieller MPSoCs befüllt: des i.MX 8M
von NXP sowie des Zynq UltraScale+ MPSoC von AMD/Xilinx. In Form einer
Fallstudie kommt das Pattern zum Einsatz, um APU-Konfigurationscode für
die Verwendung des Ethernet-Controllers auf dem Zynq UltraScale+ MPSoC
zu generieren und Aussagen über ausgewählte Sicherheitseigenschaften zu
treffen. Eine zweite Fallstudie untersucht, inwiefern das Patterns auf eine be-
kannte sowie eine eigens entwickelte Architektur für Fail-Operational-Systeme
anwendbar ist. Sie zeigt, dass das Pattern auch dann zur Argumentation über in-
akzeptable Risiken einsetzbar ist, wenn kein APU-Konfigurationscode erzeugt
wird und APUs daher ungenutzt bleiben.

Die Pattern-Implementierung wird durch verschiedene Entwurfs- und Ana-
lysewerkzeuge ergänzt. Dazu gehört ein Optimierungsansatz auf Basis des In-
teger Linear Programming (ILP), der zur Minimierung oder Maximierung
bestimmter Gütekriterien dient. Dieser kann beispielsweise eingesetzt wer-
den, um die Anzahl der APUs zu reduzieren, die zur Realisierung eines siche-
ren Mixed-Criticality-Systems konfiguriert werden müssen.

Das Pattern als flexible, eigenständige Komponente wird abschließend in
die akademische XANDAR-Toolchain zur Synthese eingebetteter Softwaresys-
teme integriert. Diese prototypische Integration schließt die Arbeit ab und
dient als Validierung des zugrundeliegenden Systemmodells.

Abstract

Embedded computing platforms are characterized by steadily growing per-
formance and increasing heterogeneity. Using such platforms, it is possible
to perform an on-chip integration of applications that were previously imple-
mented on separate hardware. This integration offers numerous benefits, but
it also poses a major functional safety challenge. In safety-critical environ-
ments, failures of critical applications can be catastrophic, and isolating such
applications from less critical ones is often essential.

Literature describes various approaches for spatial isolation in multicore
systems. In the context of Multiprocessor System-on-Chip (MPSoC) devices,
one such approach is the use of hardware units that operate at the on-chip
interconnect level and can be configured to partition relevant platform re-
sources. Today, such Access Protection Units (APUs) are available in most
off-the-shelf MPSoCs. Unlike hypervisors and operating systems, which are
used to separate applications on a specific processor, APUs aremeant for the iso-
lation between different processors. In practice, however, finding correct APU
configurations is often problematic. Especially when multiple MPSoCs are
interconnected, detailed knowledge about all involved platforms and the soft-
ware executed on them is required. Currently available design methods do not
fully account for these aspects.

In this work, APUs are treated as mechanisms to meet functional safety
requirements. Based on the Cascading Failure (CF) concept from ISO 26262,
the logical isolation abstraction is introduced to describe how APU configura-
tions and complementary mechanisms constrain CF potential. Building upon
this abstraction, a novel design methodology for the structured configuration
of APUs in a single or a network of MPSoCs is presented.

The presented designmethodology relies on amodel-based formalization of
the envisaged hardware, runtime, and software architecture. It generates APU
configuration code and derives remaining CF potential across all system layers.

vii

viii | Abstract

CF potential that leads from error-prone system elements to the application
logic (and may therefore cause physical harm) is automatically determined and,
considering user-provided safety requirements, checked for unreasonable risk.
In the form of a flexible pattern, these steps are fully automated and applicable
to various MPSoCs from an extensible platform library.

By presenting a full reference implementation of the pattern, this thesis
demonstrates the feasibility of the approach. As a real-world example, models
of two off-the-shelf MPSoCs are added to the platform library: the i.MX 8M
by NXP and the Zynq UltraScale+ MPSoC by AMD/Xilinx. In the form of a case
study, the pattern is applied to generate APU configuration code for Ethernet
controller usage on the Zynq UltraScale+ MPSoC and to reason about selected
safety properties of the created design. A second case study considers the
pattern’s applicability to one state-of-the-art and one custom architecture
for fail-operational systems. It shows that the methodology can also be used
to argue about unreasonable risk if no APU configurations are generated
and APUs therefore remain unused.

The pattern implementation is supplemented by various design and analy-
sis tools. This includes an optimization approach based on Integer Linear Pro-
gramming (ILP), which minimizes or maximizes certain figures of merit. It
can be applied, for example, to minimize the number of APUs that need to be
configured to construct a safe mixed-criticality system.

The pattern, as a flexible standalone component, is finally integrated into
the academic XANDAR toolchain for embedded software system synthesis.
This prototypical integration concludes the work and serves as a validation of
the underlying system model.

Preface

This work originates from my time as a researcher at the Karlsruhe Institute
of Technology (KIT). During this time, I had the opportunity to contribute to
various projects on the functional safety of embedded software systems.

In this field, the state of the art offers many standard solutions for common
design problems. Fault tree construction and software partitioning through
hypervisors are two of the various techniques used to build safe systems.

With respect to the safe on-chip integration of different applications, how-
ever, I perceived the set of available standard solutions as too limited. Especially
in the context of MPSoCs, I noticed that the manual execution of numerous
design steps was necessary to achieve a sufficient on-chip isolation.

The desire to structure and automate this process is what motivated me
to write this thesis. First and foremost, I perceive the resulting work as a
successful feasibility study. It demonstrates that in the design of safety-critical
multicore systems, it is possible to achieve a much higher degree of automation
than what is available in current state-of-the-art solutions. On a more abstract
level, I also like to think of the work as a novel and more structured way of
reasoning about failure propagation in embedded software systems.

None of these results would have been possible without the continuous
support of my advisor, Prof. Jürgen Becker from KIT. By integrating me into an
inspiring project landscape, placing a lot of trust in me early on, and providing
me with valuable feedback at any time, he played a key role in the success of
this work. For this, I owe him a great debt of gratitude.

I would also like to thank Prof. Mario Trapp from the Technical University
of Munich (TUM) for overseeing my thesis as the second examiner. His contri-
butions to the area of safety were a great help during the finalization of this
work, and I am grateful for the excellent cooperation over the past months.

All colleagues, project partners, and co-authors with whom I have worked
over the years, I would like to thank for the pleasant collaboration. I was

ix

x | Preface

always able to rely on their help and appreciate the fruitful discussions we
had. I would also like to thank the students who I was able to supervise as
part of their bachelor’s and master’s theses. For me, each supervision was a
very valuable opportunity to broaden my horizons.

While completing this thesis and preparing for the exam, I was very fortu-
nate to receive help from many people—whether by proofreading individual
passages, providing feedback on the content, or simply giving their opinion
on which variant of a figure they preferred. This help was extremely valuable
to me, and I am very grateful to have received it.

Last but not least, special thanks go to my family and my friends. Without
their support, this work would not exist.

Tobias Dörr
October 2024

Table of contents

1 Introduction 1
1.1 Context and motivation . 1
1.2 Problem formulation . 5
1.3 Contributions and outline . 7
1.4 Previous publications . 8

2 Background and related work 9
2.1 Multicore systems . 9

2.1.1 Manycore architectures 10
2.1.2 Heterogeneous computing systems 11
2.1.3 Multiprocessor System-on-Chip (MPSoC) devices . . . 12
2.1.4 On-chip isolation mechanisms 17
2.1.5 Operating systems and hypervisors 20

2.2 Mathematical foundation . 21
2.2.1 Fundamentals . 21
2.2.2 Graph theory . 22
2.2.3 Ordered sets and Hasse diagrams 24
2.2.4 Lattice theory . 24
2.2.5 Linear programs . 25

2.3 Related work . 26
2.3.1 Spatial isolation in multicore systems 26
2.3.2 Temporal isolation in multicore systems 28
2.3.3 Decoding nets and the de-facto OS 29
2.3.4 Information Flow Tracking (IFT) approaches 30
2.3.5 Model-based safety analysis 34
2.3.6 Comparison with the proposed methodology 35

xi

xii | Table of contents

3 Concept and system model 39
3.1 Overview of the logical isolation pattern 40

3.1.1 APU configuration and CF determination 41
3.1.2 Safety assessment . 45

3.2 Formal system model . 47
3.2.1 Execution platform library 50
3.2.2 Hardware architecture (layer I) 54
3.2.3 Runtime architecture (layer II) 58
3.2.4 Software architecture (layer III) 62
3.2.5 Auxiliary functions . 67

3.3 Fault model for system elements 69
3.3.1 System element mapping 69
3.3.2 Fault susceptibility . 71

4 APU configuration and CF determination procedure 73
4.1 Introduction to CF graphs . 74

4.1.1 Structure and visualization 74
4.1.2 Illustrative examples of CF potential 80

4.2 Measures for logical isolation 86
4.2.1 Isolation measure specification 86
4.2.2 APU configuration for MPSoCs 89
4.2.3 Semantics of barrier declarations 100

4.3 CF determination procedure 103
4.3.1 Formal foundation . 103
4.3.2 CF potential transfers 106
4.3.3 CF graph creation . 116

4.4 Closing remarks . 120

5 Safety assessment framework 123
5.1 Safety impact of CF potential 125

5.1.1 Safety-relevant system elements 125
5.1.2 Fault manifestation and physical harm 126

5.2 Interference whitelist approach 128
5.2.1 Safety requirements specification 128
5.2.2 Assessment algorithm 129

5.3 Integrity assignment procedure 132
5.3.1 Safety requirements specification 132
5.3.2 Assessment algorithm 135

Table of contents | xiii

5.4 Safety-aware system design using ILP 142
5.4.1 LP formulation of the safety assessment 143
5.4.2 ILP-based search and optimization framework 146

6 Implementation and evaluation 151
6.1 Language specification . 151

6.1.1 Lexical elements and top-level grammar 152
6.1.2 Grammar for system model entities 152
6.1.3 Grammar for pattern-specific annotations 156

6.2 Reference implementation . 159
6.2.1 Command-line interface 160
6.2.2 Execution platform types 160
6.2.3 Input model resolution 162
6.2.4 APU configuration procedures 164
6.2.5 Automatic visualization of CF graphs 167

6.3 Case study: Ethernet controller access 168
6.3.1 Pattern-aware memory partitioning 169
6.3.2 System element interactions 171
6.3.3 Variant I: Protected initialization 172
6.3.4 Variant II: Unprotected initialization 175

6.4 Case study: Fail-operational architecture 177
6.4.1 Mapping to cores of a single MPSoC 180
6.4.2 Mapping to distributed MPSoC instances 182
6.4.3 Background: Mirrored architecture concept 186
6.4.4 Applicability to the mirrored variant 195

6.5 Summary . 197

7 Toolchain integration 199
7.1 Overview of the XANDAR project 200

7.1.1 X-by-Construction (XbC) perspective 200
7.1.2 XANDAR development process 202
7.1.3 Safety/security pattern library 203

7.2 Behavior specification and simulation 203
7.2.1 Software architecture metamodel 204
7.2.2 Software synthesis procedure 207
7.2.3 Behavior simulation framework 210

7.3 Target-aware implementation 210
7.3.1 Deployment to Linux user space 211
7.3.2 Deployment to Linux on the i.MX 8M 214

xiv | Table of contents

7.4 Logical isolation pattern . 216
7.4.1 Pattern invocation procedure 216
7.4.2 Practical validation . 219
7.4.3 Closing remarks . 220

8 Conclusion 223
8.1 Application potential . 224
8.2 Future work . 226

Appendix 229
A.1 Total unimodularity of ILP constraints 229
A.2 XMPU/XPPU configuration library 230

A.2.1 Public interface . 230
A.2.2 XMPU configuration functions 232
A.2.3 XPPU configuration functions 234

Bibliography 237
First-author publications . 237
Co-author publications (selection) 238
Further references . 239

List of figures

1.1 Partitioning of on-chip components 3
1.2 Vertical integration of MPSoCs 4
1.3 Horizontal integration of MPSoCs 4

2.1 Generic example of a multicore chip 10
2.2 CPUs of the Zynq UltraScale+ MPSoC 11
2.3 Overview of selected AXI topologies 14
2.4 Signals of an AXI4 read transaction 16
2.5 MMU operation principle . 17
2.6 APU protection scope . 18
2.7 Components of the Zynq UltraScale+ MPSoC 19
2.8 Sample usage of local isolation units 20
2.9 Graph representation of binary relations 23
2.10 Hasse diagrams for two partially ordered sets 24

3.1 Concept of the logical isolation pattern 40
3.2 System model layers . 41
3.3 Class diagram of isolation measures 42
3.4 CF determination concept . 44
3.5 Generic example of a CF graph 45
3.6 Class diagram of safety requirements 46
3.7 Visualization of a system model instance 49
3.8 Execution platform type for the Zynq UltraScale+ MPSoC . . . 53
3.9 System model of a partitioned car server 57
3.10 Layer-I allocations in the car server example 58
3.11 Layer-II allocations in the car server example 60
3.12 Layer-III allocations in the car server example 64

xv

xvi | List of figures

3.13 Software architecture of the car server example 65
3.14 Mapping from system model entities to system elements 69
3.15 SWC decomposition principle 70

4.1 Notation for CF graph visualizations 75
4.2 Vertex labeling scheme for CF graphs 76
4.3 Repetition of Figure 3.9 . 76
4.4 CF graph for the car server example 77
4.5 Application subgraph for the car server example 80
4.6 Context subgraph for the car server example 81
4.7 Context subgraph after isolation measure specification 82
4.8 System model of an extended car server example 83
4.9 Context subgraph for the extended car server example 84
4.10 Application subgraph for the extended car server example . . . 85
4.11 Application subgraph after input barrier declaration 85
4.12 Application subgraph for a logic decomposition example 87
4.13 Interfaces in the APU configuration framework 89
4.14 Repetition of Figure 2.7 . 94
4.15 Regional control registers (XMPU/DDR and XMPU/FPD) 95
4.16 Regional control registers (XMPU/OCM) 95
4.17 Master profile registers (XPPU) 95
4.18 Aperture configuration registers (XPPU) 96
4.19 Permission granting for the Zynq UltraScale+ MPSoC 97
4.20 Code generation for the Zynq UltraScale+ MPSoC 100
4.21 Strategy for the consideration of isolation measures 100
4.22 System model of a simplified car server example 116
4.23 CF graph created from direct rule application 117
4.24 CF graph created through reduced rule application 119

5.1 CF graph for the car server with isolation measures 124
5.2 CF potential spawned by the infotainment system 130
5.3 Hasse diagrams of three integrity lattices 133
5.4 Semilattice from Figure 5.3b extended with a top element 136
5.5 Invariant to maintain during integrity propagation 138
5.6 Notation for lattice-based safety assessment results 139
5.7 Lattice-based safety assessment result for the car server 142

6.1 Command-line interface of the reference implementation 159
6.2 Repetition of Figure 3.8 . 161

List of figures | xvii

6.3 Integrity lattice resolution . 163
6.4 APU configuration report . 167
6.5 Hardware setup for the Ethernet case study 168
6.6 CF graph for Ethernet case study variant I 174
6.7 Safety assessment result for Ethernet case study variant I 174
6.8 CF graph for Ethernet case study variant II 176
6.9 Safety assessment result for Ethernet case study variant II . . . 176
6.10 Concept of the system-level simplex architecture 178
6.11 Fault-related time intervals according to ISO 26262 179
6.12 CF graph for the fail-operational on-chip architecture 183
6.13 CF graph for the distributed fail-operational architecture 185
6.14 Road vehicle with two electric wheel hub motors 187
6.15 Road vehicle use case as an inherently redundant system 188
6.16 Introduction of proxy units . 188
6.17 AURIX configuration for each ECU 190
6.18 Decomposition of the fault handling time interval 192
6.19 Fault handling durations for 𝑇cycle = 2ms and 𝑇cycle = 4ms . . . 193
6.20 Computational overhead for each AURIX instance 194
6.21 Possible application subgraph for the mirrored architecture . . 197

7.1 XANDAR development process 202
7.2 Internal structure of the XbC backend 203
7.3 Excerpt of the XbC software architecture metamodel 204
7.4 Excerpt of a sample software architecture 206
7.5 Logical activation and interaction times of SWCs 207
7.6 Trigger times and port interactions of a SWC 209
7.7 Linux implementation strategy 212
7.8 Linux user-space deployment generated by XbCgen 213
7.9 i.MX 8M implementation strategy 215
7.10 Pattern support in the i.MX 8M implementation strategy 216
7.11 i.MX 8M deployment generated by XbCgen 217
7.12 Strategy to delegate XbCgen inputs to liptool 217
7.13 Physical hardware setup for the practical validation 219
7.14 CF graph of an APU-protected i.MX 8M deployment 220

List of tables

1.1 Comparison with a representative vendor toolchain 6

2.1 AXI transaction channels . 13
2.2 Selected slave components of the Zynq UltraScale+ MPSoC . . 15
2.3 Comparison of different APU consideration scopes 35
2.4 Comparison of the proposed analysis technique 36

3.1 Explicitly instantiated system model entities 48
3.2 Inferred system model entities 48
3.3 ‘mmap’ definition for the Zynq UltraScale+ MPSoC 53
3.4 Port specification for the car server use case 66
3.5 Fault susceptibility of system elements 71

4.1 Dependency-based rules for CF potential transfers 107
4.2 Activity-based rules for CF potential transfers 112

5.1 Selected paths from a CF graph 127
5.2 CF potential with safety relevance 131
5.3 Sample assignment of inherent and required integrities 141
5.4 Vertex numbering for the car server example 144

6.1 Command-line options of the reference implementation 160
6.2 Partitioning of the Ethernet application memory 170
6.3 Accesses performed by the Ethernet application 171
6.4 Design space spanned by 𝑇cycle, 𝑇wdg, and 𝑁 191
6.5 Fault handling durations for 𝑇cycle = 1ms 192

xix

List of abbreviations

AADL: Architecture Analysis and Design Language 34

AI: Artificial Intelligence . 1

AMBA: Advanced Microcontroller Bus Architecture 12

AMP: Asymmetric Multiprocessing 10

APB: Advanced Peripheral Bus . 12

APU: Access Protection Unit . 3

ASIC: Application-Specific Integrated Circuit 178

ASIL: Automotive Safety Integrity Level 224

AUTOSAR: Automotive Open System Architecture 27

AXI: Advanced Extensible Interface 12

CbC: Correctness-by-Construction . 32

CF: Cascading Failure . 5

CPU: Central Processing Unit . 1

CSU: Configuration Security Unit . 164

DAP: Debug Access Port . 164

DDR: Double Data Rate . 15

DFS: Depth-First Search . 129

DMA: Direct Memory Access . 15

xxi

xxii | List of abbreviations

DSL: Domain-Specific Language . 151

E/E: Electrical/Electronic . 1

ECU: Electronic Control Unit . 187

ELF: Executable and Linkable Format 211

FPD: Full-Power Domain . 15

FPGA: Field-Programmable Gate Array 12

GEM: Gigabit Ethernet . 15

GIC: Generic Interrupt Controller . 164

GPU: Graphics Processing Unit . 2

HARA: Hazard Analysis and Risk Assessment 128

IC: Integrated Circuit . 9

IFT: Information Flow Tracking . 30

ILP: Integer Linear Programming . 7

I/O: Input/Output . 12

IOMMU: Input/Output Memory Management Unit 20

IP: Intellectual Property . 11

IPC: Inter-Process Communication . 212

ISA: Instruction Set Architecture . 11

LF: Lingua Franca . 59

LIP: Logical Isolation Pattern . 151

LP: Linear Programming . 25

LPD: Low-Power Domain . 15

MMU: Memory Management Unit . 2

MPSoC: Multiprocessor System-on-Chip 3

MPU: Memory Protection Unit . 17

List of abbreviations | xxiii

NoC: Network-on-Chip . 10

OS: Operating System . 20

PDF: Portable Document Format . 167

PMU: Platform Management Unit . 164

PWM: Pulse-Width Modulation . 187

RAM: Random Access Memory . 13

RDC: Resource Domain Controller . 19

RTE: Runtime Environment . 49

SAMD: Shared-Address, Multiple-Data 14

SMP: Symmetric Multiprocessing . 10

SoC: System-on-Chip . 12

SWC: Software Component . 49

TBU: Translation Buffer Unit . 20

TCM: Tightly Coupled Memory . 16

TEE: Trusted Execution Environment 18

TMR: Triple Modular Redundancy . 186

TOPS: Tera Operations per Second . 1

UART: Universal Asynchronous Receiver/Transmitter 169

VFB: Virtual Function Bus . 59

V&V: Verification & Validation . 200

XbC: X-by-Construction . 201

XMPU: Xilinx Memory Protection Unit 19

XPPU: Xilinx Peripheral Protection Unit 19

XSDB: Xilinx System Debugger . 169

Chapter 1

Introduction

A safety-critical system is one whose failure can lead to physical harm, for
example in the form of serious injury or significant property damage [15].

In various domains, the design of safety-critical systems is therefore subject
to legal or normative requirements. ISO 26262 [16], for example, is a safety
standard concerned with the Electrical/Electronic (E/E) architecture of road
vehicles. It provides guidelines on how to design, implement, verify, and
validate measures to ensure a safe system operation.

1.1 Context and motivation

In modern embedded systems, following such safety guidelines is complicated
by a steadily growing number of functional requirements.

Self-driving cars, for instance, depend on perception, localization, motion
planning, and trajectory control tasks [17]. The execution of such tasks re-
quires considerable computing power, especially due to the increasing reliance
on Artificial Intelligence (AI) algorithms. It is estimated that full self-driving
behavior requires a performance of 1000 Tera Operations per Second (TOPS)
and beyond [18]. This figure exceeds the capabilities of traditional Central Pro-
cessing Units (CPUs) by several orders of magnitude.

Difficulties to maintain the Dennard scaling process [19], which had driven
improvements in computational performance for over 30 years, turned the
exploitation of large-scale parallelism, heterogeneous cores, and hardware
accelerators into a key strategy for further performance growth [20].

1

2 | Chapter 1: Introduction

Commercially available platforms for embedded computing reflect this
paradigm shift: they are increasingly equipped with different CPU core clus-
ters, Graphics Processing Units (GPUs), and more specialized hardware acceler-
ators. To exploit these capabilities, the on-chip integration of previously sepa-
rated applications has become an appealing goal. In the automotive domain, for
example, it is possible to observe an ongoing trend toward vehicle-centralized
architectures [21]. Beyond improving performance, this trend provides other
benefits, such as reduced wiring harness weight [22].

The on-chip integration of different applications, however, means that
resources like memory or the on-chip interconnect will have to be shared
between them. Especially in mixed-criticality systems, where applications
of different criticality levels coexist, this sharing increases the likelihood of
interferences and a violation of safety requirements.

ISO 26262 considers this issue from a failure propagation perspective.
Therefore, it defines freedom from interference as follows [16]:

“absence of cascading failures between two or more elements that
could lead to the violation of a safety requirement”

An informative annex of ISO 26262-6 [23] lists three categories of anomalies
that can cause interferences between software elements:

1) timing and execution,
2) memory, and
3) exchange of information.

An example from the second category is an application writing to memory
that is actually allocated to a different application.

In modern multicore processors, the potential for such anomalies is par-
ticularly pronounced. To avoid them, controlling the access that applications
have to shared resources is of major importance. This control is generally
achieved through temporal and spatial isolation.

Temporal isolation for off-the-shelf multicore systems is a major research
topic. Approaches that contribute to this goal include statically partitioning
hypervisors, cache partitioning, and memory bandwidth management (cf. Sec-
tion 2.3.2). For the purposes of spatial isolation, most commercially available
multicore platforms are equipped with hardware-enforced access protection
features. As it will be shown in Chapter 2, these features are either built into
a CPU, e.g., as Memory Management Unit (MMU), or they operate at the level
of the shared on-chip interconnect.

Section 1.1: Context and motivation | 3

Multiprocessor System-on-Chip (MPSoC)

Spatial on-chip isolation (enforced by APU)

Figure 1.1: Informal illustration of how an APU can be used to ‘partition’ components
of an MPSoC. Each square1 visualizes an on-chip component, such as a CPU, a memory
module, or a peripheral device. Shaded polygons represent partitions of components
that are permitted to interact via the shared on-chip interconnect.

From a research point of view, access protection mechanisms that operate
at the level of the shared interconnect are interesting components. In this
thesis, they are referred to as Access Protection Units (APUs).

On modern Multiprocessor System-on-Chip (MPSoC) devices, APUs are
crucial components for the spatial isolation between different CPUs. While a
detailed introduction of their functionality is postponed to Chapter 2, a first
illustration of how an APU can be used to partition on-chip resources is shown
in Figure 1.1. By applying a particular APU configuration, it is possible to
specify which on-chip components shall be able to issue transactions directed
at a particular destination. During runtime, this specification is enforced by
the APU, which constitutes a physical part of the on-chip interconnect.

In practice, APU configurations are typically generated by semiconductor
vendor toolchains. The official toolchain for the Zynq UltraScale+ MPSoC
by AMD/Xilinx,2 for example, is described in [24]. Such toolchains deal with
low-level aspects of theAPU configuration process, but knowledge aboutwhich
components shall be able to interact must still be specified by the developer.
With the growing trend to integrate different applications on one MPSoC,
specifying this knowledge and proving that a given specification leads to the
required spatial isolation becomes a difficult task.

1Over the course of this thesis, illustrated shapes are often drawn with rounded corners. When
such shapes are referenced, the aspect of rounded corners is not explicitly mentioned. In this case,
this means that the term ‘square’ refers to a square with rounded corners.

2This platform will be introduced in more detail in Section 2.1.

4 | Chapter 1: Introduction

Operating system

Application

Operating system

Application Application

Figure 1.2: Vertical integration of an MPSoC with two operating systems and their
applications. The configuration of its APU has an impact on both of these layers.

Ethernet communication
between MPSoCs

Figure 1.3: Horizontal integration of two MPSoCs via Ethernet. The configuration of
their APUs has an impact on feasible off-chip transactions.

First, this is due to the impact that an applied APU configuration has
on vertically integrated software, such as operating systems and their ap-
plications (cf. Figure 1.2). By controlling transactions between hardware re-
sources, APUs have a significant impact on the interference potential between
the software that is deployed to an MPSoC. This hardware-software mapping
is not captured by commercially available toolchains, but it is a key factor
that needs to be considered during the APU configuration process. To date,
keeping track of this mapping is therefore the developer’s responsibility.

Second, the horizontal integration aspect of MPSoCs needs to be considered.
If multiple MPSoCs are connected using off-chip interconnects (cf. Figure 1.3),
their combined APU configurations decide over physically feasible interac-
tions. Commercially available vendor toolchains are not designed to capture
this global perspective. Especially if MPSoCs from different vendors are inter-
connected, maintaining this perspective can be difficult.

Finally, it is necessary to ensure that the combined impact of all APU con-
figurations is in line with relevant safety requirements. This assessment is a
cross-layer process that needs to consider logical application knowledge, but
it is again not covered by state-of-the-art toolchains.

Section 1.2: Problem formulation | 5

In summary, it is possible to say that APUs are essential components in the
ongoing integration trend, but a cross-layer methodology for their structured
application in safety-critical environments is currently missing.

1.2 Problem formulation

The goal of this work is to create a safety-centric methodology that closes the
identified gap. Because of the vertical integration aspect, this methodology
must consider not only hardware components of MPSoCs, but also the runtime
and application software executed on them. These system elements (cf. Defini-
tion 3.2 on page 42) are assumed to fulfill the following premise:

▶ Premise 1.1: Safety of the intended functionality

The intended functionality of system elements is safe.

Safety of the intended functional is an active field of research and the topic
of ISO 21448 [25], for instance. This work assumes that sufficient measures to
achieve this property have been applied. With this premise in place, the only
possibility for physical harm is in response to a deviation from the intended
functionality. Based on [16], this condition will be referred to as a failure:

▶ Definition 1.1: Failure

The failure of a system element is the termination of its intended behavior
in response to an abnormal condition.

For the purposes of this work, the propagation of such failures is of major
importance. Based on [16], this propagation is formalized as follows:

▶ Definition 1.2: Cascading failure

A cascading failure is the failure of a system element that then causes
one or more other system elements to fail.

In the remainder of this work, Cascading Failures (CFs) are primarily
referred to using their acronym, especially in compound terms.

6 | Chapter 1: Introduction

Property Vendor toolchain [24] Objective of this work

User interface Platform-specific Platform-independent
APU configuration Generated (single MPSoC) Generated (multiple MPSoCs)
Impact analysis Manually/externally Automatically
Safety assessment Manually/externally Automatically

Table 1.1: Comparison between a representative vendor toolchain for APU configuration
and the automated cross-layer methodology pursued by this thesis.

Spatial isolation enforced by an APU is able to eliminate the potential for
certain CFs. However, it is not the only measure to restrict how failures can
propagate. An operating system might configure the MMU of its processor
to isolate its applications from each other, for example. Such a protection
complements the underlying APU configuration and can therefore be relevant
to decide if the overall system fulfills its safety requirements. Inspired by the
terminology in [26], the following abstraction is introduced to refer to all such
measures—often, but not always, based on spatial isolation:

▶ Definition 1.3: Logical isolation

Logical isolation restricts the possible interaction between system ele-
ments to prevent CFs between them.

Based on these definitions, the primary objective of this work is to define
and evaluate a design methodology that combines the following features:

1) a platform-independent interface to describe APU configurations,
2) automatic generators for APU configuration code of different MPSoCs,
3) an automatic procedure that analyzes the impact that APU configura-

tions and other logical isolation measures have on potential CFs, and
4) an automatic procedure that decides if the resulting CF potential is

sufficiently limited to meet relevant safety requirements.

Table 1.1 shows a qualitative comparison between a state-of-the-art toolchain
and this objective. The seamless integration of impact analysis and safety
assessment steps has the potential to decrease the manual design effort, but
it needs to be evaluated if such an approach is flexible enough to create and
assess practical system implementations. To conduct this evaluation using
representative case studies is a secondary objective of this work.

Section 1.3: Contributions and outline | 7

1.3 Contributions and outline

The main contribution of this thesis is a tool-supported design methodology
built from the following key features:

1) an extensible library that stores knowledge about MPSoC architectures
and platform-specific APU configuration algorithms,

2) a formal model to describe the hardware, the runtime, and the software
architecture of an envisaged software system,

3) a platform-agnostic algorithm to auto-generate APU configuration code
for selected MPSoCs from a system model,

4) an automatic procedure that generates a directed graph to capture the
potential for CFs in an embedded software system, and

5) two alternative approaches to assess whether a particular CF potential
violates relevant safety requirements—one based on an explicit whitelist
and another one based on integrity levels.

Collectively, these features fulfill the objective outlined in Section 1.2. In
this thesis, the features are defined in the form of a universal pattern, fully
implemented, and evaluated using two practical case studies: (1) safe Ethernet
usage on the Zynq UltraScale+ MPSoC and (2) a fail-operational architecture.

To complement the pattern, this work presents an Integer Linear Pro-
gramming (ILP) approach to decide if it is necessary to apply certain isolation
measures to obtain a safe system, and it describes how the pattern was inte-
grated into the XANDAR toolchain for software system synthesis [1].

Further contributions of this thesis are (1) a cost-efficient approach to
achieve fail-operational behavior, which was relevant in the context of the
second case study, and (2) a timing-aware software development methodology,
which facilitated the toolchain integration work.

Timing interferences due to sharing of on-chip resources are mentioned
at selected locations, but their exhaustive treatment is beyond the scope of
this work. A second topic explicitly beyond the scope of this work is general
computer security. While safety-related effects of potential attacks can be ad-
dressed using the proposed design methodology, other security concerns (such
as confidentiality or privacy) cannot.

The remainder of this thesis is structured as follows: Chapter 2 summa-
rizes relevant background knowledge and reviews related work. Chapter 3
gives a high-level overview of the pattern and presents its system model,
before the next two chapters cover individual pattern steps in more de-
tail: Chapter 4 presents the logical isolation aspect and the determination

8 | Chapter 1: Introduction

of CF potential; Chapter 5 describes the safety assessment procedure and the
safety-driven ILP approach. Following this, Chapter 6 presents a full reference
implementation of the pattern and evaluates the methodology in the context
of two case studies. Chapter 7 uses the XANDAR toolchain to demonstrate a
possible integration of the pattern, before Chapter 8 closes this thesis with a
summary of application potential and directions for future work.

1.4 Previous publications

This thesis is based on several first-author publications:

1) Initial concepts for auto-generating APU configurations and using a
graph to reason about their effects were presented in [2] and [3].

2) The level-based safety assessment procedure goes back to [4].
3) Integrating the APU configuration concept into the XANDAR toolchain

was sketched in [5] and first performed in [6].
4) The timing-aware software development methodology, which was con-

tributed to the XANDAR toolchain, is covered in [7].
5) Different fail-operational architectures, which are the topic of the second

case study, were presented in [8–10].

In the broader context of this thesis, the author further contributed to [11–14].
These contributions are not directly related to the presented pattern and will
therefore not be referenced further.

Chapter 2

Background and related work

This chapter covers relevant background knowledge in two steps. It first
reviews fundamental aspects about multicore systems, which are necessary
to understand the technical component of this work. Then, it summarizes
mathematical concepts applied in the remainder of this thesis.

Based on a review of related work, this chapter closes with a comparison
between the proposed pattern and similar approaches.

2.1 Multicore systems

For the purposes of this work, a multicore processor is defined as an Inte-
grated Circuit (IC) built from multiple CPU cores. Each core implements
arithmetic, logic, branching, and data transfer functions [27, p. 15]. The multi-
core processor is a kind of multiprocessor, i.e., a computer built from tightly
coupled CPU cores. In a multicore processor, this tight coupling is achieved via
monolithic integration. Traditional multiprocessors are characterized by two
properties: the cores access a shared address space and are typically managed
by a single operating system [27, p. 345]. The physical memory organization
of multiprocessors can be either centralized or distributed.

⊲ Example 2.1: The architecture of a multicore processor with centralized shared
memory is shown in Figure 2.1. Inputs and outputs are memory-mapped and
therefore shown as logically belonging to the main memory.

A deviation from these traditional properties is becoming increasingly com-
mon. In modern architectures, the address space does not necessarily have to

9

10 | Chapter 2: Background and related work

CPU

One or more
levels of cache

CPU

One or more
levels of cache

CPU

One or more
levels of cache

CPU

One or more
levels of cache

Shared cache

Main memory Input/Output (I/O) system

Figure 2.1: Example of a multicore chip with four CPU cores and a memory-mapped
input/output system. Architecture replicated from [27].

be shared among all cores. Furthermore, it is possible to run each core indepen-
dently of others, either with or without an operating system. This method of
operation is commonly referred to as Asymmetric Multiprocessing (AMP). In
contrast, the previously discussed case of a single operating system managing
all cores is referred to as Symmetric Multiprocessing (SMP). Such deviations
are particularly common in manycore architectures and heterogeneous com-
puting systems, both of which are discussed below.

2.1.1 Manycore architectures

The manycore processor is a multicore processor with a large number of cores.
Therefore, it is particularly suited for workloads with a significant degree of
inherent parallelism. Manycore chips are often organized in clusters, where
each cluster has its own private address space and is connected to the other
clusters via a Network-on-Chip (NoC) infrastructure.

⊲ Example 2.2: Commercial manycore processors are the Kalray MPPA-256 with
a total of 256 user cores [28] and the second-generation Intel Xeon Phi with up
to 72 cores [29]. In the Kalray MPPA-256, two parallel NoCs connect 16 compute
clusters and four input/output subsystems with each other; every cluster and
subsystem has a private address space [28].

Such a memory organization is also a common choice for current manycore
implementations from academia; recent examples of such architectures can be
found in [30] and [31], respectively.

Section 2.1: Multicore systems | 11

CPU
L1

CPU
L1

CPU
L1

CPU
L1

CPU
L1

CPU
L1

L2 TCM

Cortex-A53 Cortex-R5

On-chip interconnect

OCM
On-chip memory

SLCRs
Control registers

DDR
Memory controller

Figure 2.2: CPUs of the Xilinx Zynq UltraScale+ MPSoC (EG device) according to the
block diagram in [33]. L1 and L2 refer to level-1 and level-2 cache, respectively. TCM is
low-latency memory attached to the pair of Cortex-R5 cores.

2.1.2 Heterogeneous computing systems
Computing systems can be classified as homogeneous or heterogeneous. Pro-
cessing units of a homogeneous system are identical, while heterogeneous
systems comprise different types of processing units.

In a homogeneous system, processing units are often CPU cores of the
same Instruction Set Architecture (ISA). In heterogeneous systems, CPU cores
of different ISAs may be combined. The simultaneous integration of CPU cores
and specialized coprocessors, such as a Graphics Processing Unit (GPU), is
another example of a heterogeneous system [32].

In the context of this thesis, one type of heterogeneous computing systems
is particularly relevant: multicore processors that integrate different clusters
of CPU cores. Within each cluster, the CPU cores are homogeneous and often
operated in SMP mode. Beyond cluster boundaries, however, the platform
itself is of heterogeneous nature. In literature, each such cluster is sometimes
referred to as an independent CPU of the platform.

⊲ Example 2.3: The aforementioned Zynq UltraScale+ MPSoC from Xilinx is a
common example of a heterogeneous computing system.

Figure 2.2 shows that the platform comprises two independent clusters
of CPU cores: a Cortex-A53 and a Cortex-R5 processor, both Intellectual Prop-
erty (IP) cores by Arm. The two core clusters implement different ISAs, which
makes the platform heterogeneous. The cores within each cluster, however, are
homogeneous. It is therefore possible to say that the platform comprises 6 CPU
cores organized into two independent CPUs.

12 | Chapter 2: Background and related work

2.1.3 Multiprocessor System-on-Chip (MPSoC) devices

A single IC implementing numerous functions of an electronic system is re-
ferred to as a System-on-Chip (SoC) device. In practice, a SoC device often
combines a microprocessor with peripherals such as Input/Output (I/O) con-
trollers or a Field-Programmable Gate Array (FPGA). SoCs are comparable to
microcontrollers but typically regarded as more sophisticated.

Multiprocessor System-on-Chip (MPSoC) devices are SoCs based on multi-
ple processing cores. They can again be categorized into homogeneous and
heterogeneous systems [34], where a heterogeneous MPSoC is built from pro-
cessing cores of different kinds. In emerging mixed-criticality domains, such
as autonomous driving, heterogeneous MPSoCs provide benefits in terms of
cost, area, power, and performance [35].

⊲ Example 2.4: In addition to the components that are depicted in Figure 2.2,
the Zynq UltraScale+ MPSoC implements a large variety of I/O controllers and
an FPGA [33]; it is therefore an MPSoC in the sense of the definition above.

Comparable products are i.MX 8 devices by NXP. The i.MX 8M, for example,
integrates four Cortex-A53 cores with a Cortex-M4 core on a single chip.

2.1.3.1 Bus protocols for on-chip interconnects

MPSoC resources are interconnected using dedicated on-chip protocols such
as those from the Advanced Microcontroller Bus Architecture (AMBA) stan-
dard by Arm. In individual specification documents, this standard defines, for
example, the Advanced Extensible Interface (AXI) for high-bandwidth appli-
cations and the Advanced Peripheral Bus (APB) for isolated low-bandwidth
purposes. AXI is a memory-mapped protocol that provides burst support and
backward compatibility with APB [36]. In the AXI protocol, data is transferred
between a master and a slave component using the five transaction channels
shown in Table 2.1. Each channel transfers information into one direction,
but a two-way handshake mechanism allows the receiving node to indicate
whether it is ready to receive this information at a given time.

Every transaction is initiated by a master and targeted at a slave.1 Read
transactions make use of the former two channels (AR and R), while write
transactions use the latter three channels (AW, W, and B).

1In the 2021 version of the AXI specification, this terminology has been updated. At the time of
writing, however, the master-slave terminology is still predominant in consulted MPSoC manuals
and will therefore be used in the following.

Section 2.1: Multicore systems | 13

Name Prefix Direction

Read address AR Master → Slave
Read data R Slave → Master

Write address AW Master → Slave
Write data W Master → Slave

Write response B Slave → Master

Table 2.1: AXI transaction channels and their signal prefixes according to [36]. The
direction column reports the direction of payload signals in each channel, i.e., it excludes
signals for the two-way handshake.

The data transfer direction depends on the type of the executed transaction:
a write transaction transfers data from the master to the slave, while a read
transaction transfers data into the opposite direction.

Terminology The scope of the AXI specification [36] is limited to transac-
tion channels and their interfaces. In practice, however, entire components
implementing these interfaces are often referred to as ‘master’ or ‘slave’ as well.
Therefore, a component implementing both a master and a slave interface can
be seen as both a master and a slave. This does not change the fact that such a
component comprises two fully independent AXI ports, each implementing
the respective interface. In the following, the simplified terminology is used
when applicable, while the terms master port and slave port are used when
it is necessary to emphasize that a statement refers to the AXI portion of an
on-chip component in a strict sense.

Point-to-point connection Figure 2.3a shows a point-to-point connection
from an AXI master to an AXI slave. A white square in the figure represents the
master and the slave port, respectively. These ports are the actual endpoints of
all transaction channels. However, as described above, the associated on-chip
components are labeled as master or slave as well. In a point-to-point topology,
the master is able to send transactions to only the connected slave. Using the
address channels (AR and AW), read and write transactions can be targeted at
specific locations of the address space realized by the slave. If the slave is a
region of on-chip Random Access Memory (RAM), for example, the address
transmitted via the AR or the AW channel will typically correspond to a particular
memory location. In general, however, the interpretation of such an address is
entirely controlled by the slave.

14 | Chapter 2: Background and related work

Master
(e.g., a processor)

M

Slave
(e.g., memory)

S

(a) Point-to-point

Master1
M

Slave1
S

Master2
M

Slave2
S

Master𝑚
M

Slave𝑛
S

AXI interconnect

S

M

S

M

S

M

. . .

. . .

(b) AXI interconnect

Figure 2.3: Comparison between an AXI-based point-to-point connection and a typi-
cal AXI system using an𝑚-to-𝑛 interconnect. White squares represent AXI master (M)
and slave (S) interfaces, respectively.

AXI interconnect Due to the significant number of on-chip components in
an MPSoC, implementing point-to-point connections for all master-slave pairs
is impractical. As shown in Figure 2.3b, a typical AXI system will therefore
connect masters to slaves via a shared interconnect. Such interconnects are
specifically considered by the AXI specification [36] and described as conven-
tional devices that implement symmetrical master and slave ports to forward
requests. Neither the system topology nor the arbitration scheme is prescribed
by the protocol. One topology mentioned by the specification is to use shared
address channels and multiple data channels. This topology, which is also
referred to as a Shared-Address, Multiple-Data (SAMD) architecture [37], sup-
ports multiple simultaneous data transfers. A common arbitration scheme
for practical implementations is round-robin scheduling [38]. The routing
strategy that determines which slave to forward a particular transaction to is
controlled by the interconnect itself. In typical implementations, this decision
is made based on the address transmitted via the AR or the AW channel. In this
case, every outgoing master port corresponds to one or more memory regions;
a port will then be selected whenever an address from one of its associated
memory regions is targeted.

2.1.3.2 On-chip interconnect of the Zynq UltraScale+ MPSoC

Using the AXI protocol as an example, the previous section gave a broad
overview of bus protocols for the interconnection of on-chip resources. This
section covers the interconnect of the Zynq UltraScale+ MPSoC and highlights
an implementation detail that will become relevant when on-chip isolation
mechanisms of this platform are discussed in Section 2.1.4.

Section 2.1: Multicore systems | 15

Address space

Slave Base Size

Double Data Rate (DDR) memory
→ Lower memory region 0x00000000 2GiB
→ Control registers 0xFD070000 64 KiB

On-Chip Memory (OCM) module
→Memory region 0xFFFC0000 256 KiB
→ Control registers 0xFF960000 64 KiB

System-Level Control Registers (SLCRs)
→ LPD registers (non-secure) 0xFF410000 64 KiB
→ FPD registers (non-secure) 0xFD610000 64 KiB

Controller Area Network (CAN) controller1 0xFF060000 64 KiB
Gigabit Ethernet (GEM) controller1 0xFF0B0000 64 KiB
Direct Memory Access (DMA) channels1 0xFFA80000 64 KiB
Tightly Coupled Memory (TCM) of the Cortex-R51,2 0xFFE00000 128 KiB
1 The reported address space refers to one of multiple module instances.
2 This entry assumes that the Cortex-R5 cores are operated in lockstep mode.

Table 2.2: Selected slave components attached to the hard-wired on-chip interconnect
of the Zynq UltraScale+ MPSoC along with their address space position [33, 39].

The hard-wired logic of the Zynq UltraScale+ MPSoC employs a NIC-400
by Arm [33] to implement the memory-mapped on-chip interconnect in both
the Low-Power Domain (LPD) and the Full-Power Domain (FPD) of the device.

The interconnect is primarily based on the AXI protocol, but certain pe-
ripherals are integrated via APB. It supports addresses up to 40 bits wide and,
therefore, implements a physical address space of up to 1 TiB. Sample masters
with access to this address space are:

1) The two CPUs of the platform (Arm Cortex-A53 and Arm Cortex-A5)
2) The integrated GPU (of type Arm Mali-400)
3) Direct Memory Access (DMA) functions of components such as:

(a) General-purpose devices for DMA (in both the LPD and the FPD)
(b) Each of the four Ethernet (GEM) controllers (in the LPD)
(c) The memory controller for NAND flash access (in the LPD)

Address space The address space of the Zynq UltraScale+ MPSoC is docu-
mented as a global one shared by all bus masters. Table 2.2 gives an overview

16 | Chapter 2: Background and related work

Read address channel

Read data channel

Sample values

Master
port

Slave
port

ARID
ARADDR

. . .

ARUSER
ARVALID
ARREADY

RID
RDATA

. . .

RVALID
RREADY

Target address
0x21F010C0
⇒ DDR memorySource identifier

0b0010000000
⇒ Cortex-A53

Figure 2.4: Signals involved in an AXI4 read transaction, extended with the usage
of ARADDR and ARUSER by the Zynq UltraScale+ MPSoC (dashed arrows).

of selected slaves mapped to this address space. Not every master has access
to the full address space, however. From the perspective of a particular master,
parts of it can be masked or inaccessible due to an insufficient width of the
outgoing address signals. From the perspective of the Cortex-R5, for example,
the Tightly Coupled Memory (TCM) from Table 2.2 is also mapped to the base
address 0x0 and, therefore, masks parts of the DDR memory.

Master identifiers With respect to spatial isolation, a particular aspect
about the implementation of the interconnect is important: AxUSER signals
from the AXI4 specification are used to encode and forward the source of every
transaction traversing the interconnect. AWUSER and ARUSER are signals for
user-defined extensions to write and read transactions, respectively. Every
master is associated with a fixed 10-bit identifier, which is then transmitted
using this extension mechanism of AXI4. Combined with the address, which
encodes the targeted slave component, this identifier allows the interconnect to
keep track of both the source and the destination of any transaction. Figure 2.4
visualizes this feature for a read transaction initiated by a Cortex-A53 core and
targeted at the DDR memory. It must be noted, however, that the mapping
from masters to master identifiers is not necessarily unique. In particular,
certain cache coherency transactions will carry the same master identifier as
one of the Cortex-R5 cores [24].

Section 2.1: Multicore systems | 17

CPU

MMU
Main memory

(physical addresses)

. . .

On-chip interconnect

Virtual addresses

Physical addresses

Figure 2.5: Operation principle of a Memory Management Unit (MMU). Visualization
adapted from [40, p. 195], where peripherals are shown as off-chip components.

2.1.4 On-chip isolation mechanisms

Especially in heterogeneous MPSoCs, restricting bus masters in their access
to the global address space is an important aspect of on-chip isolation. There-
fore, such platforms are generally equipped with a combination of hardware
mechanisms to achieve such restrictions. The applicability of the mechanisms
presented in the following is not limited to MPSoCs, however.

2.1.4.1 Memory Management Units (MMUs)

The primary purpose of a Memory Management Unit (MMU) is to provide
processes executed on a CPU with virtual address spaces. As shown in Fig-
ure 2.5, the MMU translates virtual addresses issued by a CPU core to physical
addresses implemented by the attached interconnect. Operating systems exe-
cuted on CPUs with an MMU often use this capability to provide every process
with a dedicated region of physical memory. An example of such a CPU is
the Cortex-A53 processor by Arm.

MMUs often implement memory protection by ensuring that a process is
only able to access those parts of the physical memory space that are explicitly
assigned to it. On platforms with a memory-mapped integration of on-chip
resources (such as the Zynq UltraScale+ MPSoC discussed in Section 2.1.3.2),
this also gives operating systems the ability to control the access that processes
have to such resources.

2.1.4.2 Memory Protection Units (MPUs)

Processors without the need for a virtualization of the physical address space
can still benefit from hardware support for memory protection. Such hard-
ware support is provided by a Memory Protection Unit (MPU). It lacks the

18 | Chapter 2: Background and related work

CPU #1
CPU #2

APU scope

Main memory

. . .

On-chip interconnect

Figure 2.6: Logical protection scope of a sample APU. Other on-chip peripherals (such
as I/O controllers) are not explicitly shown, but they are covered by the APU.

virtualization capability of MMUs, but operating systems can use it to ensure
that processes access only portions of the physical memory space explicitly
assigned to them. Examples of processors with MPUs are the Cortex-R5 or
the Cortex-M4 by Arm.

2.1.4.3 Trusted Execution Environment (TEE)

The concept of a Trusted Execution Environment (TEE) describes the pro-
visioning of protected processing environments with memory and storage
capabilities [41]. It originates from the field of trusted computing and protects
these environments against general software attacks generated in rich oper-
ating systems [42]. The implementation of such a TEE is typically based on
hardware isolation mechanisms such as the Arm TrustZone technology.

Software executed on a processor with TrustZone support runs in either
the secure or the non-secure state; these worlds are then isolated using strong
hardware-enforced separation [43]. An important property of this protection is
that its scope extends beyond the processor itself. In the sense of system-wide
security, these isolation measures are integrated into the interconnect and
on-chip peripherals as well [44]. In this regard, the TrustZone technology
complements local protection delivered by MMUs and MPUs.

2.1.4.4 Access Protection Units (APUs)

Access Protection Units (APUs) are integrated into a shared on-chip intercon-
nect of an MPSoC and enforce spatial isolation between attached resources. To
do so, they examine all the transactions that traverse the interconnect (cf. Fig-
ure 2.6) and ensure that only permitted ones reach their respective destination.
Today, they are common entities of commercially available MPSoCs.

Section 2.1: Multicore systems | 19

XPPU

CAN

SLCRs

NAND

GEM

DMA

Cortex-R5

XMPU

OCM DDR

XMPU XMPU

TBU

Cortex-A53

XMPU

SLCRs

GPU

TBU

LPD FPD

Figure 2.7: Selected components of the Zynq UltraScale+ MPSoC, including the XPPU
and four of eight XMPUs. Visualization based on the full block diagram from [33].

APUs are typically runtime-configurable and use inherent properties about
a transaction (source, target, . . .) to decide whether it is permitted. Compared
to MMUs and MPUs, their protection scope extends to the entire on-chip
interconnect; it is not limited to a particular CPU.

⊲ Example 2.5: The on-chip interconnect of the Zynq UltraScale+ MPSoC com-
prises multiple APUs: a Xilinx Peripheral Protection Unit (XPPU) and eight
instances of the Xilinx Memory Protection Unit (XMPU). Figure 2.7 shows how
this XPPU and a subset of all XMPUs are integrated into the AXI4 network. Both
types of APUs make use of master identifiers transmitted via AxUSER signals to
determine the source of a transaction. Combined with three other properties (ad-
dressed slave component, transaction type, and TrustZone state), the isolation
units consult their internal configurations and ‘poison’ requests that are not
permitted. Poisoned requests are either rejected by the designated receiver or,
alternatively, routed to a dummy receiver from the very start [24].

⊲ Example 2.6: In i.MX 8M devices, the Resource Domain Controller (RDC) is
used to assign a bus master to one of four domains and to specify the access
permissions of each domain [45]. The decision process is based on the source, the
destination, and the transaction type.

20 | Chapter 2: Background and related work

CPU CPU CPU CPU CPU CPU
Cortex-A53 Cortex-R5

Operating system Operating system

Task1 Task2 Task3 Task4 Task5

MMU scope MPU scope

Figure 2.8: Usage of local isolation units by two sample operating systems running on
the Zynq UltraScale+ MPSoC. Thick lines indicate spatial memory isolation.

2.1.4.5 Input/Output Memory Management Units (IOMMUs)

Like the APU, an Input/Output Memory Management Unit (IOMMU) oper-
ates at the level of the on-chip interconnect. Instead of partitioning on-chip
resources, however, its primary purpose is to implement address translation
for DMA-based transactions. It is typically managed by a particular CPU and
participates in the memory management of this CPU. IOMMUs can there-
fore be seen as an extension of a particular MMU. From a memory protection
perspective, their functionality is orthogonal to that provided by APUs.

⊲ Example 2.7: The Zynq UltraScale+ MPSoC features an IOMMU, which is for
instance usable from the Cortex-A53. In the block diagram (Figure 2.7), part of its
functionality is shown in the form of Translation Buffer Units (TBUs).

2.1.5 Operating systems and hypervisors

A bottom-up view of an Operating System (OS) is that it allocates processors,
memories, and other on-chip peripherals among tasks. This multiplexing of
resources can be performed in time or in space [40]. When only one CPU core
is available, processor sharing must be performed via time multiplexing. In a
multicore scenario, operating systems managing multiple cores in SMP mode
gain the ability to distribute tasks among these cores. Memory and other
on-chip peripherals are typically space-multiplexed to avoid time-consuming
swapping procedures and interferences, respectively.

For space-multiplexed memory, local protection units such as an MMU can
be used to enforce a strong memory isolation at the OS level. Figure 2.8 shows
an example of such a scenario for the Zynq UltraScale+ MPSoC. However, it is
important to emphasize that (1) not every operating system makes use of these
units and (2) the OS itself, which might not be fully trusted, will retain full

Section 2.2: Mathematical foundation | 21

access to the underlying on-chip interconnect. In such scenarios, APUs can be
employed as a global protection layer that replaces or complements the local
protection that is managed by the OS.

On platforms considered by this work, shared peripheral devices are
mapped to the global address space. The above statement that APUs can
serve as a valuable protection layer is therefore transferrable to them.

The statement can further be transferred to bare-metal hypervisors, such
as XtratuM [46]. Like an OS, bare-metal hypervisors allocate processors, mem-
ories, and other peripheral devices among their guest partitions. Depending
on the specific environment, however, the local protection they implement
might not be sufficient and can benefit from an APU configuration introducing
a global protection layer beneath.

2.2 Mathematical foundation

The purpose of this section is to introduce notations and terms that are used
for mathematical descriptions in this thesis. For a more extensive treatment of
addressed topics, the reader is referred to the references cited below.

2.2.1 Fundamentals
⊲ Remark 2.1: The following description is inspired by [47].

In this thesis, sets are denoted using capital letters, and their elements are
wrapped in curly braces: 𝐴 = {𝑎1, 𝑎2} is a set with elements 𝑎1 and 𝑎2, for
example. The cardinality of a set is denoted using vertical bars, e.g., |𝐴| = 2.
Set membership is denoted using ‘∈’, set inclusion is denoted using ‘⊆’, and
proper set inclusion using ‘⊂’. The union of sets 𝐴 and 𝐵 is denoted 𝐴 ∪ 𝐵,
and their intersection is denoted 𝐴 ∩ 𝐵. Two sets are disjoint if they share no
elements, i.e., if their intersection is equal to the empty set ∅.

ℝ is the set of real numbers, ℤ contains all integers, ℕ0 contains the natu-
rals including zero, and ℕ+ contains the naturals excluding zero.

A tuple is expressed by wrapping its elements in angular brackets: ⟨𝑥, 𝑦⟩
is the tuple built from 𝑥 and 𝑦. A tuple built from 𝑛 elements is an 𝑛-tuple.
In the context of linear algebra, an 𝑛-tuple is occasionally interpreted as a
column vector with 𝑛 rows. Vectors are denoted using a bold lowercase letter,
such as 𝒙 or 𝝈 . Matrices (as a generalization of vectors) are expressed using
ordinary capital letters. The difference between a set and a matrix is evident
from the context in which the respective symbol appears.

22 | Chapter 2: Background and related work

Given sets 𝑋 and 𝑌 , the Cartesian product 𝑋 × 𝑌 is the set of all tu-
ples ⟨𝑥, 𝑦⟩ with 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . The 𝑛-ary Cartesian product 𝑋1 × · · · × 𝑋𝑛

is the set of all ⟨𝑥1, . . . , 𝑥𝑛⟩ with 𝑥𝑘 ∈ 𝑋𝑘 for all 𝑘 = 1, . . . , 𝑛.
The Cartesian square 𝑋 2 is equal to the Cartesian product 𝑋 × 𝑋 , and

the 𝑛-ary Cartesian power 𝑋𝑛 is its generalization to 𝑋 × · · · × 𝑋 .
Set-builder notation can be used to specify elements of a set using predicates,

for example as follows: 𝑋 × 𝑌 = {⟨𝑥, 𝑦⟩ : 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 }. The power
set 𝒫(𝑆) contains all subsets of 𝑆 , i.e., 𝒫(𝑆) = {𝑆 : 𝑆 ⊆ 𝑋 }.

A (binary) relation over sets 𝑋 and 𝑌 is a fixed subset of 𝑋 × 𝑌 . In this
context, 𝑋 is the domain and 𝑌 is the codomain. Binary relations are denoted
using capital letters (such as 𝑅) or designated symbols (such as ≤). A binary
relation on set 𝑋 is a subset of 𝑋 2. If a binary relation 𝑅 holds for ⟨𝑥, 𝑦⟩, we
write 𝑥𝑅𝑦; if its symbol allows for it, we cross out the symbol to express that a
relation does not hold for a pair of elements: given relation ≤ on ℤ, e.g., 5 ≤ 10
means that ⟨5, 10⟩ ∈ (≤), and 4 ̸≤ 2 means that ⟨4, 2⟩ ∉ (≤).

A binary relation 𝑅 on 𝑋 is reflexive if 𝑥𝑅𝑥 holds for all 𝑥 ∈ 𝑋 . The relation
is antisymmetric if for all 𝑎, 𝑏 ∈ 𝑋 , 𝑎𝑅𝑏 and 𝑏𝑅𝑎 implies 𝑎 = 𝑏. Furthermore, it
is transitive if for all 𝑎, 𝑏, 𝑐 ∈ 𝑋 , 𝑎𝑅𝑏 and 𝑏𝑅𝑐 implies 𝑎𝑅𝑐 . Finally, the relation
is strongly connected if for all 𝑎, 𝑏 ∈ 𝑋 , 𝑎𝑅𝑏 or 𝑏𝑅𝑎.

A partial order on a set 𝑋 is a binary relation on 𝑋 that is (1) reflexive,
(2) antisymmetric, and (3) transitive. A total order on 𝑋 is a partial order
on 𝑋 that is also strongly connected.

Given a binary relation 𝑅 on 𝑋 , the transitive closure of 𝑅 is the smallest
relation on 𝑋 that is transitive and contains 𝑅. Its reflexive transitive closure is
the smallest relation on 𝑋 that is reflexive, transitive, and contains 𝑅.

A function from a set 𝑋 to a set 𝑌 maps each element of 𝑋 to exactly one
element of 𝑌 . Since a function is a particular kind of binary relation, 𝑋 is
called the domain and 𝑌 the codomain of this function. We write 𝑓 : 𝑋 → 𝑌

to associate a function 𝑓 with its domain and its codomain. Like common
mathematical functions (log, sin, . . .), most functions defined in this work carry
a multi-letter name instead of a single symbol.

2.2.2 Graph theory

⊲ Remark 2.2: The following definitions are adapted from [48].

A directed graph or digraph is a tuple 𝐺 = ⟨𝑉 , 𝐸⟩ in which 𝑉 is a set
of vertices, and the binary relation 𝐸 ⊆ 𝑉 ×𝑉 is a set of (directed) edges. For
a directed edge ⟨𝑢, 𝑣⟩ ∈ 𝐸, the vertex 𝑢 is its tail, the vertex 𝑣 is its head, the

Section 2.2: Mathematical foundation | 23

3 4

2

1

(a) Binary relation 𝑅

3 4

2

1

(b) Transitive closure of 𝑅

Figure 2.9: Graph representations of two binary relations on the set 𝑋 = {1, 2, 3, 4}.
First for 𝑅 = {⟨1, 2⟩, ⟨2, 3⟩, ⟨2, 4⟩, ⟨1, 3⟩}, then for the transitive closure of 𝑅.

vertex 𝑢 is a predecessor of 𝑣 , and the vertex 𝑣 is a successor of 𝑢. A loop is an
edge whose tail is equal to its head. Note that this definition does not allow
for multiple parallel edges (i.e., with the same tail and the same head).

The graphical representation of a digraph is a diagram in which vertices
are visualized as nodes (in the form of circles, rectangles, . . .), and each edge is
shown as an arrow from the tail to the head of that edge.

A binary relation 𝑅 on 𝑋 can be represented as a digraph by transforming
each 𝑥 ∈ 𝑋 into a vertex and each 𝑟 ∈ 𝑅 into an edge. Such graph representa-
tions for two sample relations are visualized in Figure 2.9.

A directed walk is a sequence of 𝑘 ≥ 1 edges𝑊 = ⟨𝑒1, 𝑒2, . . . , 𝑒𝑘⟩, where
for each 𝑖 = 1, . . . , 𝑘 − 1, the head of 𝑒𝑖 is the tail of 𝑒𝑖+1.

A directed path is a directed walk in which all involved vertices are distinct.
We say that vertex 𝑣 is reachable from vertex𝑢 if there is a directed path from𝑢

to 𝑣 . In this terminology, a vertex is not reachable from itself; there may still
exist a directed walk starting and ending at the same vertex.

Algorithmically, vertices reachable from a certain source vertex can be
determined using depth-first search. As described in [49, p. 567], depth-first
search runs with a worst-case time complexity O(|𝑉 | + |𝐸 |). The problem of
determining the reachability from all vertices can be reduced to finding the
transitive closure of a digraph; [49, p. 648] describes how the Floyd-Warshall
algorithm does so in a worst-case time of O(|𝑉 |3).

For a given digraph 𝐺 = ⟨𝑉 , 𝐸⟩, a digraph with vertex set 𝑉 ′ ⊆ 𝑉 and
edge set 𝐸′ ⊆ 𝐸 is a subgraph of 𝐺 . Given a digraph 𝐺 = ⟨𝑉 , 𝐸⟩ and a vertex
subset𝑉 ′ ⊆ 𝑉 , the subgraph induced by𝑉 ′ is denoted𝐺 [𝑉 ′], has vertex set𝑉 ′,
and its edge set contains all 𝑒 ∈ 𝐸 whose head and tail are in 𝑉 ′.

24 | Chapter 2: Background and related work

3 4

2

1

(a) 𝑋 = {1, 2, 3, 4}, partially ordered
by the reflexive transitive closure of
1 ≤ 2, 2 ≤ 3, and 2 ≤ 4.

5

3 4

1 2

(b) 𝑌 = {1, 2, 3, 4, 5}, partially ordered by the
reflexive transitive closure of 1 ≤ 3, 1 ≤ 4,
2 ≤ 3, 2 ≤ 4, 3 ≤ 5, and 4 ≤ 5.

Figure 2.10: Hasse diagrams for two partially ordered sets.

2.2.3 Ordered sets and Hasse diagrams
A partially ordered set or poset combines a set and a partial order on this set.
Analogously, a totally ordered set is the combination of a set and a total order
on this set. In both cases, we write ⟨𝑋, ≤⟩ to express that ‘≤’ is a partial or total
order on 𝑋 , respectively. A simple example of a totally ordered set is ℝ along
with its natural less-than-or-equal relation, i.e., ⟨ℝ, ≤⟩.

For a partially ordered set ⟨𝑋, ≤⟩, we occasionally use a textual description
to express that its binary relation does or does not hold for a pair 𝑎, 𝑏 ∈ 𝑋 . The
statement that ‘𝑎 is greater than or equal to 𝑏’ means 𝑏 ≤ 𝑎, for example.

A finite poset ⟨𝑋, ≤⟩ can be visualized through the use of a Hasse diagram.
This diagram is a drawing in which every 𝑥 ∈ 𝑋 is represented as a vertex,
and an upward line leads from 𝑥 ∈ 𝑋 to 𝑦 ∈ 𝑋 if 𝑦 covers 𝑥 , i.e., if 𝑥 ≠ 𝑦, 𝑥 ≤ 𝑦,
and there is no third element 𝑧 ∈ 𝑋 with 𝑥 ≤ 𝑧 ≤ 𝑦 [50, p. 1].

⊲ Example 2.8: The binary relation 𝑅 introduced in Figure 2.9 is antisymmetric.
Therefore, its reflexive transitive closure is a partial order. Referring to this partial
order as ‘≤’, we obtain the finite poset ⟨𝑋, ≤⟩. The corresponding Hasse diagram
is visualized in Figure 2.10a. A second Hasse diagram is shown in Figure 2.10b; it
describes a partial order with |≤| = 13 elements, including 3 ≤ 3 and 1 ≤ 5.

2.2.4 Lattice theory
⊲ Remark 2.3: The following definitions are borrowed from [51].

A semilattice is a poset ⟨𝑋, ≤⟩ subject to additional constraints: if the least
upper bound sup{𝑎, 𝑏} exists for all 𝑎, 𝑏 ∈ 𝑋 , it is a join-semilattice; if the
greatest lower bound inf{𝑎, 𝑏} exists for all 𝑎, 𝑏 ∈ 𝑋 , it is a meet-semilattice.

Section 2.2: Mathematical foundation | 25

Using the join operation (∨), sup{𝑎, 𝑏} is also denoted 𝑎 ∨ 𝑏. Analogously,
using the meet operation, inf{𝑎, 𝑏} is equivalent to 𝑎 ∧ 𝑏.

A poset ⟨𝑋, ≤⟩ is a lattice if both sup{𝑎, 𝑏} and inf{𝑎, 𝑏} exist for all𝑎, 𝑏 ∈ 𝑋 .
This means that both semilattice types are a special case of a lattice.

It can be shown that join (∨) and meet (∧) are idempotent, commutative,
and associative [51, p. 10]. The following rules connect these operations to the
underlying ‘≤’ relation: 𝑎 ≤ 𝑏 ⇔ 𝑎 ∨ 𝑏 = 𝑏 and 𝑎 ≤ 𝑏 ⇔ 𝑎 ∧ 𝑏 = 𝑎 [51, p. 11].
⊲ Example 2.9: The poset from Figure 2.10a is a meet-semilattice. For this poset,
selected meet results are 3 ∧ 4 = 2 and 2 ∧ 3 = 2, for example. Since the least
upper bound 3 ∨ 4 does not exist, however, it is not a join-semilattice.

Figure 2.10b shows neither a join- nor a meet-semilattice. It is not a
join-semilattice, for example, because 1 ∨ 2 does not exist: both 3 and 4 are
upper bounds of {1, 2}, but neither of them is the least upper bound.

2.2.5 Linear programs
⊲ Remark 2.4: The following definitions are based on [52].

A linear program is the problem of finding a vector 𝒙 ∈ ℝ𝑛 that maxi-
mizes (or minimizes) the value of a linear objective function, given the con-
straint that 𝒙 must satisfy a given system of linear inequalities (or equations).
Without loss of generality, the following definitions cover the maximiza-
tion such that a system of inequalities is fulfilled.

Given a vector 𝒄 ∈ ℝ𝑛 , the objective function can be formulated as the
matrix product 𝒄𝑇𝒙 = 𝑐1𝑥1 + · · · + 𝑐𝑛𝑥𝑛 . Given a matrix 𝐴 ∈ ℝ𝑚×𝑛 and
a vector 𝒃 ∈ ℝ𝑚 , the expression 𝐴𝒙 ≤ 𝒃 describes the 𝑚 inequalities to
satisfy. Linear programs can be solved in polynomial time [52, p. 105]. For the
purposes of this book, we refer to this process as Linear Programming (LP).
A widespread approach to solve a linear program is the simplex algorithm. It
is often (but not always) able to find a solution or determine that no solution
exists in polynomial time. The simplex algorithm expects a linear program to
be provided in a standard form such as the following:

maximize
𝒙∈ℝ𝑛

𝒄𝑇𝒙

subject to 𝐴𝒙 ≤ 𝒃 ,
𝒙 ≥ 0.

lp_solve 5.5 [53] is free (LGPL-licensed) software able to process this stan-
dard form and apply a variant of the simplex algorithm to solve given LP for-
mulations; it will be employed in Section 5.4 of this thesis.

26 | Chapter 2: Background and related work

An integer program constrains entries of 𝒙 to ℤ. We refer to the process of
solving this adapted formulation as Integer Linear Programming (ILP). This
thesis uses the following standard form for ILP problems:

maximize
𝒙∈ℤ𝑛

𝒄𝑇𝒙

subject to 𝐴𝒙 ≤ 𝒃 ,
𝒙 ≥ 0.

ILP problems are NP-hard [52, p. 30], i.e., they are computationally more
difficult to solve than LP problems. To date, no polynomial-time algorithm for
the solution of arbitrary ILP problems exists. The branch and bound technique
can often be applied to solve ILP problems in an acceptable time. In certain
cases, it is possible to solve an ILP problem by solving its LP relaxation, i.e.,
by replacing 𝒙 ∈ ℤ𝑛 with 𝒙 ∈ ℝ𝑛 . A sufficient condition for this is that 𝐴 is
a totally unimodular matrix and 𝒃 is an integer vector [52, p. 145].

lp_solve is able to solve ILP problems using branch and bound. Its in-
put format allows users to constrain certain 𝒙 entries to {0, 1} instead of ℤ.
Section 5.4 uses an adapted standard form to capture such formulations.

2.3 Related work

This section begins with a summary of related work. It then compares the
proposed methodology with selected approaches from this summary.

2.3.1 Spatial isolation in multicore systems
Various techniques for spatial isolation in multicore systems have been pro-
posed. They are based on specialized architectures, specialized isolation com-
ponents, or a combination of these solutions [54].

2.3.1.1 Architecture-based solutions

An example of a specialized architecture is one that associates cores with local
resources (memories, I/O controllers, . . .) that these cores have exclusive access
to; the Kalray MPPA-256 [28] features such an architecture. Similarly, Kliem
et al. [55] proposed an FPGA-based architecture that is built from local, physi-
cally segregated subsystems. Gracioli et al. [56] described a similar approach
applicable to MPSoCs that combine hard-wired logic with an FPGA: based

Section 2.3: Related work | 27

on the Zynq UltraScale+ MPSoC, they have shown how the Cortex-A53 cores
can be used to implement spatially isolated partitions, each associated with
scratchpad memory in the FPGA of the device.

2.3.1.2 Component-based solutions

Hardware virtualization through type-1 hypervisors is a common approach to
partition platform resources among applications—not only in a multicore con-
text. To control access to a shared address space, they typically leverage MMU,
MPU, and IOMMU features that are readily available on state-of-the-art plat-
forms. To partition shared (often last-level) caches, techniques such as col-
oring have been proposed; Modica et al. [57], for instance, have shown how
Arm virtualization extensions can be used to implement cache coloring for a
custom hypervisor. Examples of hypervisors with scheduling functionality
are KVM [58] and XtratuM [46]. In the multicore context, statically partition-
ing hypervisors such as Jailhouse [59] have become a popular solution for
embedded systems with mixed-criticality requirements. Jailhouse is spawned
as a Linux kernel module, which transforms the running SMP system into a
hypervisor operating in AMP mode; De Bonfils Lavernelle et al. [60] analyzed
the spatial isolation enforced by this transformation and, as a secondary con-
tribution, defined a generic methodology to reason about the spatial isolation
properties of hypervisors. A recently introduced solution similar to Jailhouse
but independent of Linux is the Bao hypervisor [61]; it was originally created
for the Armv8 architecture. As follow-up work, Sá et al. [62] developed and
released a RISC-V port of Bao.

To a certain degree, spatial isolation can also be achieved between ap-
plications of an OS. In the context of the Automotive Open System Archi-
tecture (AUTOSAR) standard, for example, an OS needs to provide certain
memory protection functions to be compliant with the Classic Platform [63]. As
part of the SIL2LinuxMP project, Allende et al. [26] investigated the applicabil-
ity of Linux in mixed-critical multicore systems. Building upon IEC 61508 [64],
they complemented the memory virtualization of Linux with separate kernel
namespaces, system-call filtering, and other protection means. To reason about
the safety of this approach, they introduced the logical isolation concept, which
also served as the inspiration for Definition 1.3 of this thesis. According to [26],
this concept describes the requirement that relevant behavior of elements can-
not be impaired by the behavior of other elements. The authors make use of
the fact that this property can be achieved without full spatial (and temporal)
isolation—it is sufficient if spatial (and temporal) interferences are reduced to

28 | Chapter 2: Background and related work

a tolerable level. Compared with the bottom-up approach traditionally used
to comply with IEC 61508, this strategy incorporates application-specific iso-
lation requirements from the beginning. The authors finally evaluated their
approach using a multicore partitioning for a safety-critical wind turbine use
case, which was proposed by Perez et al. [65].

In the approaches covered so far, partitioning components that operate at
the level of the on-chip interconnect (i.e., APUs) played no or only a marginal
role. Such components have been proposed and applied in other contexts,
however. Nojiri et al. [66] introduced a domain partitioning concept, which is
based on physical partitioning controllers at different locations of the on-chip
interconnect. These controllers are an early example of APUs available on mod-
ern MPSoCs (cf. Section 2.1.4.4). To validate their approach, the authors fabri-
cated two dual-core processors and used the partitioning controllers to achieve
spatial isolation between real-time and ‘IT’ functions in an automotive system.
In a related work, Hattendorf et al. [67] evaluated the role of shared memory
access control units and concluded that they are a lightweight solution to
achieve spatial isolation between cores.

Targeting the secure co-hosting of applications on SoCs, Porquet et al. [68]
introduced a multi-compartment model that is similar to TrustZone and uses
hardware firewalls to filter transactions traversing the on-chip interconnect. In
follow-up work [69], they employed these firewalls (as NoC-MPUs) to partition
the shared memory of a NoC-based multicore platform. In this context, the
firewalls contribute to the achievement of desired confidentiality and integrity
properties. Other solutions to achieve these properties in a NoC context
include packet tags [70] and static scheduling [71]. A security-centric solution
similar to the NoC-MPU, but not defined in the context of NoCs, was proposed
by Tan et al. [72, 73]. In their work, the authors introduced a distributed
approach tomanage and enforce access permissions in a heterogeneousMPSoC;
the approach is driven by isolation units that are able to modify the access
permissions of local and remote tasks during runtime.

2.3.2 Temporal isolation in multicore systems

As described above, the treatment of timing interferences goes beyond the
scope of this work. If the pattern is applied in a real-time context, it expects
its user to ensure that sufficient temporal isolation is achieved (cf. Premise 4.6
on page 113). Methods to do so have been studied extensively and are often
related to the Worst-Case Execution Time (WCET) concept.

Section 2.3: Related work | 29

A large variety of specialized hardware that facilitates the determination
of (tight) WCET bounds has been proposed, e.g., in the form of time-predictable
processors [74–76] and mixed-criticality memory controllers [77, 78]. Such
hardware is often complemented with tailored programming models [79, 80]
and integrated into time-predictable multicore architectures [81–83].

Off-the-shelf platforms considered by this work are not necessarily based
on such approaches, however. Their shared-resource architectures are pri-
marily designed for flexibility and average performance, which aggravates
the WCET determination process. On such platforms, timing interferences can
be reduced through statically partitioning hypervisors, such as Jailhouse [59],
or the use of fixed schedules, as they are implemented by XtratuM [46]. Other
approaches to tackle contention issues include cache partitioning [57, 61, 84],
memory bandwidth management [57, 85–87], and interrupt coloring [88]. In
the context of SIL2LinuxMP [26], spatial isolation measures were comple-
mented with CPU shielding to reduce timing interferences.

Further temporal isolation measures for multicore systems are documented
in a 2021 survey by Cerrolaza et al. [54].

2.3.3 Decoding nets and the de-facto OS

In this thesis, the on-chip topology of MPSoCs is abstracted as one global
address space.2 This view is in line with the documentation on many commer-
cially available platforms. In comparison to the actual complexity of modern
on-chip topologies, however, it is (heavily) simplified.

Therefore, Achermann et al. [89] introduced the decoding net to reason
about memory accesses and interrupts in modern computer systems. This
directed graph of hardware components (CPUs, caches, memories, . . .) is
a formal model of how the system handles addresses (including interrupt
requests) emitted by each of these components. Therefore, it is first specified
how each component handles the reception of a particular address: it can
either accept it (like a memory), it can translate it (like an MMU), or both (like
a cache). This assignment is static in the sense that it does not capture the
dynamic behavior of any component in the system. The combined description
of all static component behavior then constitutes the formal model.

Decoding nets are comparable to the Devicetree concept [90], which formal-
izes the description of system hardware and is especially prevalent in the Linux
ecosystem. In comparison, however, the Devicetree is more focused on the

2Definition 3.8 introduces the address space origin concept to facilitate this abstraction.

30 | Chapter 2: Background and related work

initialization phase of an OS and less suited to reason about the correctness of
memory accesses and interrupts during runtime.

In follow-up work, Achermann et al. have shown how an automated appli-
cation of the concept can be used to prove the correctness of a virtual memory
abstraction [91] and demonstrated that it is possible to generate page tables
and memory maps from a decoding net [92].

Considering the growing complexity of computer systems, Fiedler et al. [93]
defined the de-facto OS of System-on-Chip (SoC) platforms as the combination
of a classical OS (such as Linux), relevant firmware, and ‘hidden’ cores of
the system. Based on decoding nets [89], they created a formal model of
modern SoC hardware to derive guarantees that a particular de-facto OS
provides. Such guarantees consider the recursive nature of MMU and IOMMU
configurations, which means that these configurations are perceived as entities
whose unintended modification can lead to further bugs and vulnerabilities.
Using given trust assumptions, the approach is able to reason about both
integrity and confidentiality (excluding potential side-channel attacks).

Based on this, Fiedler et al. [94] derived the de-facto OS of the i.MX 8X
platform by NXP. As part of this model, the RDC of the device is reflected
by one decoding net per partition. In their paper, the authors report multiple
observations that are also applicable to this thesis. Adapted to the terminology
of this work, they can be summarized as follows:

1) Resource relations in modern SoCs are complex.
2) OS-enforced isolation does not lead to SoC-level guarantees.
3) APUs can tackle this issue but are not used by traditional OS kernels.

2.3.4 Information Flow Tracking (IFT) approaches
Information Flow Tracking (IFT) is a computer security technique that captures
how information moves through a system [95, 96]. One of its early occurrences
dates back to Denning [97], who created a formal model to specify informa-
tion flow requirements in computer systems. Compared with access control
mechanisms, which capture only how information is released from a source,
information flow also considers the dissemination of released information.

The information flow model by Denning [97] is a 5-tuple

⟨𝑁, 𝑃, 𝑆𝐶, ⊕, →⟩,

where 𝑁 is a set of objects, 𝑃 a set of processes, 𝑆𝐶 a set of security classes, ⊕ is
a class-combining operator, and→ a flow relation. Processes are responsible for

Section 2.3: Related work | 31

information flow between objects, and examples of objects are files or program
variables. Security classes describe classes of information, for example in
terms of their respective security clearance (unclassified, confidential, . . .).
Objects (and optionally processes) are associated with a security class. An
operation involving security classes 𝑥 and𝑦 leads to security class 𝑥 ⊕𝑦. 𝑥 → 𝑦

means that information from security class 𝑥 it permitted to flow to security
class 𝑦. Denning showed that if ⟨𝑆𝐶, →⟩ forms a universally bounded lattice
and ⊕ is the join operation, this model is particularly applicable to reasoning
about information flow. For this case, she proposed (1) run-time enforcement
and (2) compile-time certification mechanisms that ensure the fulfillment of a
specified information flow policy between objects. While the approach was
demonstrated in the context of confidentiality, it can also be applied to enforce
integrity: in earlier work, Biba [98] showed that the problem of enforcing
a (strict) integrity policy is the dual of enforcing confidentiality.

From a safety point of view, a CF that propagates from system element 𝑥 to
system element 𝑦 can be regarded as a special information flow that is trig-
gered by 𝑥 and compromises the integrity of 𝑦. This way, an adaption of the
lattice-based IFT formalism by Denning becomes applicable to the topic of this
thesis. In fact, the second safety assessment procedure in Section 5.3 is derived
from this formalism (but requires only a meet-semilattice).

Depending on the utilized verification technique, IFT approaches are of-
ten classified into static and dynamic approaches. Static approaches derive
information flows from static system knowledge, while dynamic approaches
monitor runtime behavior. In addition, IFT approaches can be categorized
according to the abstraction layer they consider. For the purposes of this work,
we distinguish hardware-agnostic from hardware-aware techniques.

2.3.4.1 Hardware-agnostic techniques

This section covers selected IFT approaches that target application software,
operating systems, and other hardware-agnostic layers. They do not neces-
sarily make use of a lattice-based information flow model—it is sufficient that
they track the propagation of information through a computing system.

The application of static IFT to programming languages has been re-
searched intensively. Leveraging the lattice model from [97], Denning et
al. [99] proposed a compile-time certification mechanism that enforces confi-
dentiality in software programs. The mechanism determines specified infor-
mation flows between storage objects (such as constants, variables, or files)
and compares these flows to statically specified security requirements (in the

32 | Chapter 2: Background and related work

form of a flow relation →). Both explicit and implicit information flow in
programs is covered, but covert channels are beyond the scope of the work.
Volpano et al. [100] built upon this approach, formulated it as a type system,
and proved the soundness of this type system. The subsequent evolution
of language-based information-flow security is summarized by Sabelfeld et
al. [101]. More recently, these language-based concepts have been combined
with the Correctness-by-Construction (CbC) paradigm for program develop-
ment: building upon the type system from [101], Schaefer et al. [102] described
a confidentiality-by-construction approach that enforces a two-level security
policy during the program construction phase.3 Based on this, Runge et al. [103]
extended the approach to arbitrary security lattices, which can also be used to
express integrity requirements. The application to an object-oriented language
was later discussed by Runge et al. [104].

The static IFT concept has further been applied at the operating system
level. Murray et al. [105], for instance, employed it to prove that given certain
restrictions (no DMA transfers, no covert channels, . . .), the seL4 separation
kernel enforces both confidentiality and integrity.

Complementing these techniques, a wide variety of dynamic approaches
for software IFT have been proposed. They are generally based on the introduc-
tion of dedicated IFT instructions, either through source code instrumentation
or binary rewriting [106]. Representative examples are TaintTrace [107], Dy-
tan [108], DTA++ [109], and TaintDroid [110]. A more extensive overview of
these and related techniques is given by Brant et al. [106]. Finally, it should be
noted that there are dynamic techniques that enforce information flow as an
inherent design property: Zeldovich et al. [111], for instance, applied such an
approach to the HiStar operating system.

2.3.4.2 Hardware-aware techniques

IFT has been used at various levels of hardware abstraction, ranging from
the analog circuit to the system level. These techniques may (but do not
necessarily need to) make use of a lattice-based security model similar to that
by Denning [97]. The following paragraphs highlight selected examples from
an extensive survey on hardware IFT [96].

At the circuit level, Guo et al. [112] presented a static IFT technique to
identify capacitor-based vulnerabilities they refer to as charge-domain Trojans.
They demonstrated the applicability of their approach using a microcontroller
design that was injected with such vulnerabilities.

3The by-construction perspective on non-functional properties is revisited in Section 7.1.1.

Section 2.3: Related work | 33

Gate-level IFT [113] complements a given network of Boolean logic
with tracking or shadow logic that monitors how digital signals propagate
through the network. The introduced logic can be used to enforce the desired
information flow policy at the level of individual bits—either during runtime
or as part of the design phase. Oberg et al. [95] applied a design-time variant of
the approach to analyze information flows in two bus protocols: I2C and USB.
Using a process of refinements and IFT-based tests, they were able to identify
and eliminate undesired information flow between bus nodes. In a comparable
work by Oberg et al. [114], design-time IFT was used to secure a Wishbone
crossbar against timing information flow. Hu et al. [115, 116] extended the
gate-level IFT approach in such a way that arbitrary security lattices can be
used to describe an information flow policy.

A notable IFT technique from the register-transfer level is to extend hard-
ware description languages in such a way that they facilitate an automatic
information flow analysis. An example of such a technique is SecVerilog, which
was presented by Zhang et al. [117]. Such static techniques are analogous to
the language-based solutions covered in Section 2.3.4.1.

The dynamic IFT approach by Suh et al. [118] is one of the first solutions
that operate at the ISA level. To eliminate attacks based on stack smashing,
string formatting, and similar techniques, Suh et al. associated each data block
with a one-bit tag to indicate its authenticity. Management of these security
tags was performed using custom hardware extensions and, optionally, instruc-
tions introduced via binary annotation. Other solutions at the architecture level
delegate IFT metadata processing to dedicated cores or coprocessors. Early
examples of this delegation strategy were proposed by Kannan et al. [119] or,
in a multicore environment, by Nagarajan et al. [120].

In the context of high-level synthesis, methods that automatically apply
static IFT or extend the synthesis result with dynamic IFT logic have been
proposed. An example of the former is ASSURE [121], and the generation of
dynamic IFT logic is for instance covered by TaintHLS [122].

Finally, IFT has also been applied to system-level scenarios. At this level,
it tracks information flows that are due to explicit transactions, for example
via a shared on-chip interconnect of a heterogeneous SoC. One example is
the WHISK architecture proposed by Porquet et al. [123]; it implements dy-
namic IFT for heterogeneous SoCs that contain one or more loosely coupled
accelerators. Also implementing dynamic IFT for loosely coupled accelerators,
but operating at a coarser granularity, is the PAGURUS methodology by Piccol-
boni et al. [124]. This technique was evaluated using a custom SoC designed
with the embedded scalable platforms methodology [125, 126]. It does not

34 | Chapter 2: Background and related work

require the accelerator architecture to be modified and is therefore applica-
ble to third-party components. Other system-level approaches are based on
the virtual prototyping concept [127, 128]: using transaction-level modeling
in SystemC, they emulate the application of dynamic IFT under consideration
of SoC-specific properties, such as the behavior of on-chip peripherals.

2.3.5 Model-based safety analysis

Shifting the focus from security back to safety, we now discuss model-based
safety analysis as the final area of related work.

With fault trees, Markov chains, and similar techniques, approaches to
conduct safety analyses have been available for decades. The structural dif-
ferences between these approaches and underlying system models are often
significant, however [129]. This can turn the information exchange between
system and safety engineers into a time-consuming task or, in the worst case,
lead to hazardous consistency issues. Model-based safety analysis is a disci-
pline that keeps safety models aligned with those describing functionality,
architecture, and other system properties.

Model-based safety analysis has been the topic of extensive research.
AltaRica [129, 130], for example, is a high-level language that uses the no-
tion of constraint automata to describe the behavior of systems; models can
then be compiled to low-level representations such as fault trees. Rauzy [131]
showed that a specifically limited subset of AltaRica can be used to describe
both functional and anomalous aspects of a system in one formal specifica-
tion. Similarly, the SAML framework proposed by Güdemann et al. [132]
allows users to capture software, hardware, environment, and failure aspects
as a single (textual) model. This model can then be used to conduct quantita-
tive and qualitative safety analyses, such as the derivation of possible failure
modes. Other examples of model-based safety analyses are the simultane-
ous creation of software architectures and fault trees [133], the derivation of
safety artifacts from SysML models [134], or an application of techniques from
the COMPASS toolset [135, 136].

A system description approach particularly related to this thesis is the Ar-
chitecture Analysis and Design Language (AADL). This modeling language
was developed for the specification and (repeated) analysis of real-time em-
bedded system [137]. It is standardized by SAE International [138] and offers
both a textual and a graphical notation. Examples of representable system
properties are processors, memories, threads, and logical data flow. To ex-
tend the core of AADL with additional modeling features, various annexes

Section 2.3: Related work | 35

APU-related activitiesa

Approach Year Design Configuration Analysis

Nojiri et al. [66] 2009
Porquet et al. [69] 2011
AMD/Xilinx [24] 2021b
Achermann et al. [89] 2017
Fiedler et al. [94] 2023

This work 2024
a Legend: explicitly covered; possible, but not explicitly covered; unaddressed.
b The underlying MPSoC was announced in 2015.

Table 2.3: Coverage of the APU-related activities by related work, a representative
off-the-self MPSoC [24], and this thesis.

have been developed. One such extension is the error modeling annex EMV2,
which is intended for fault modeling and automated safety analysis. In this
context, Delange et al. [139] presented tools that translate EMV2 annotations
into certification documents such as a fault tree analysis, and Brunel et al. [140]
studied the translation from EMV2 to AltaRica. Such analysis features coex-
ist with a rich collection of other approaches that build upon AADL. Using
the Ocarina [141] or RAMSES [142] toolchain, for example, it is possible to
transform an AADL model into executable code for embedded target platforms.

At the time of writing, discussions about the definition of limited subsets
of the AADL standard have started [143].

2.3.6 Comparison with the proposed methodology

Three contributions of this thesis are particularly related to the work out-
lined above: the consideration of APUs, the automatic analysis of hardware
interactions, and the safety assessment procedure. They are now individually
positioned in the context of state-of-the-art solutions from above.

2.3.6.1 Consideration of APUs

With respect to the APU concept, the proposed methodology is concerned with
the automation of two main activities: their configuration and the analysis of
the configuration impact. Table 2.3 shows a qualitative comparison between
this and the APU consideration scope of most closely related work.

36 | Chapter 2: Background and related work

Properties of the analysis technique

Approach Subject (what?) Scope (where?) Means (how?)

Achermann et al. [89] Memory/interrupts Computer system Formal analysis
Fiedler et al. [94] Memory/interrupts SoC (incl. devices) Formal analysis
Oberg et al. [95] Information flow Bus realization Formal analysis
Pieper et al. [128] Information flow SoC (incl. devices) Emulation

This work Cascading failures MPSoC network Formal analysis

Table 2.4: Qualitative comparison between the analysis technique of this and closest
related work. All listed approaches perform a design-time analysis.

The proposed methodology complements previous work outlined in Sec-
tion 2.3.1: while Nojiri et al. [66] and Porquet et al. [69] presented specific APU
designs, their work did not cover automated configuration or analysis tasks.
More recently, toolchains provided by MPSoC vendors have been increasingly
equipped with functions to configure APUs (cf. Section 1.1). However, the pur-
pose of these functions is only to translate platform-specific knowledge about
accepted or prohibited on-chip transactions into corresponding configuration
code; they are not concerned with an analysis of their impact.

Decoding nets (cf. Section 2.3.3) can be used to analyze the impact
of APU configurations in a fine-grained manner. The approach by Achermann
et al. [89] is applicable to do so, but this is not explicitly claimed or demonstrated
by the authors. The work by Fiedler et al. [94] reflects APU-enforced partitions
using dedicated decoding nets. Like this thesis, it therefore makes APU config-
urations accessible to a formal treatment. Unlike this thesis, it is not concerned
with automating the configuration process.

⊲ Remark 2.5: Other spatial isolation measures from Section 2.3.1, such as hyper-
visors and operating systems, are also related to the proposed methodology: they
are one of the logical isolation measures that can be considered by the pattern.
More specifically, they are possible means to achieve process isolation, which is
introduced in Chapter 3 and formalized in Chapter 4.

2.3.6.2 Automatic analysis of hardware interactions

From a hardware point of view, the analysis technique of this work is further
characterized and compared in Table 2.4. The goal of this technique is to
formally reason about CF potential in a network of MPSoCs.

Section 2.3: Related work | 37

Decoding nets by Achermann et al. [89] are also a static analysis technique,
but they are concerned with memory accesses and interrupts in general com-
puter systems. As such, they address a different (more generic) problem than
this work’s analysis technique. Most importantly, they were not tailored to the
needs of safety-critical systems and, for example, do not capture the impact of
indirect dependencies between on-chip components of MPSoCs.

Furthermore, the de-facto OS proposed by Fiedler et al. [94] and this thesis
share several properties. Both are based on a static formal model of SoC
characteristics. Furthermore, they are both based on the concept of placing a
certain level of ‘trust’ in components and running an automated procedure to
determine potentially problematic interaction potential. At the same time, the
approaches differ in their respective focus: while the de-facto OS is concerned
with a fine-grained analysis of generic isolation properties in a single SoC (and
uses decoding nets to reason about them), this work emphasizes CF potential
in an entire network of execution platforms.

Methodologically, this work’s analysis technique is further comparable to
the IFT procedure performed during design-time. Table 2.4 lists two approaches
that are particularly related: the gate-level IFT approach that Oberg et al. [95]
apply to control information flows in off-chip buses and the emulation of
dynamic IFT by Pieper et al. [128]. Both differ from this work in the fact that
they are concerned with general information flow (rather than CFs). Like this
thesis, however, Oberg et al. [95] synthesize a static representation of relevant
hardware interactions and use it to formally reason about the propagation of
undesired events (in their case: taints). The similarity with Pieper et al. [128] is
due to the fact that interactions with attached on-chip peripherals are explicitly
covered. Rather than statically reasoning about CFs, however, their work
leverages an executable SystemC model.

2.3.6.3 Safety assessment procedure

The safety assessment procedure introduced by this thesis is seamlessly in-
tegrated into the overall methodology. User intervention is needed only to
capture relevant safety requirements. Apart from that, the procedure obtains
all relevant knowledge from the system model and inferred CF potential. As
such, it is an example of model-based safety analysis in the sense of Sec-
tion 2.3.5. Instead of on fault trees or Markov chains, however, the procedure
operates on a directed graph that is inspired by the field of IFT.

Finally, there is one major similarity in the way Allende et al. [26] and this
thesis approach the safety assessment. Both works recognize that (full) spatial

38 | Chapter 2: Background and related work

and temporal isolation are not a necessary requirement to achieve safety.
Based on this, they both introduce the concept of logical isolation to reason
about interactions that have the potential to jeopardize the integrity of critical
system elements (cf. Section 1.2 and Section 2.3.1). This integrated top-down
approach constitutes a novel technique to analyze the potential of problematic
interferences in multicore systems: it takes relevant safety requirements into
account and, based on them, ensures that the system is free of dangerous failure
propagation as the primary objective.

Chapter 3

Concept and system model

This work is concerned with functional safety properties at three abstraction
levels of an embedded software system: its hardware, its runtime, and its
software layer. Execution platforms, such as MPSoCs, are the foundation of the
hardware layer. The runtime layer is concerned with runtime environments,
while the software layer considers application software.

MPSoCs are execution platforms of particular importance. On these de-
vices, CPUs and on-chip resources are often tightly integrated with each other,
which increases the risk of undesired and potentially hazardous on-chip inter-
ferences. At the same time, APUs found in commercially available MPSoCs
can be used to achieve a logical on-chip isolation and, therefore, to avoid or
constrain CFs at the hardware layer.

The concept proposed in this chapter generates APU configuration code,
evaluates its effect in the context of other specified isolation measures, de-
termines remaining CF potential in the system, and ensures that the identi-
fied CF potential does not violate a safety requirement.

These activities are guided by a system model that captures relevant design
knowledge at all three abstraction levels. Interactions at the software layer,
for instance, are considered and automatically assessed from a cross-layer
perspective. In systems without APUs, it is possible to apply the static anal-
ysis procedure in isolation; in this case, the methodology does not actively
eliminate CFs, but it still derives guarantees that can be used to reason about
the functional safety of a system.

To emphasize the automated nature of the proposed concept, it is referred
to as a pattern or, more specifically, a safety pattern for logical isolation.

39

40 | Chapter 3: Concept and system model

Logical isolation pattern

Software system synthesis >

@ Requirements, application code, . . .

A System model Ô APU code ¥ Acceptance

Software architecture
Runtime architecture
Hardware architecture

APU configuration

CF determination

Safety assessmentA Safety requirements

A Isolation measures

@ CF graph

õ
Platforms

Figure 3.1: Concept and possible toolchain integration of the logical isolation pattern.
The arrow at the top is an example of a superordinate synthesis process.

3.1 Overview of the logical isolation pattern

This section gives an informal explanation of the logical isolation pattern, its
inputs, and its outputs. A high-level overview of these aspects is depicted
in Figure 3.1, which is a generalized and refined version of results presented
by the author in [6]. The pattern itself consists of two sequentially executed
steps: (1) a combined APU configuration and CF determination process followed
by (2) a safety assessment procedure. Furthermore, the pattern defines and ex-
poses an execution platform library; this library contains all execution platform
types known to and supported by the pattern. An example of such a type is
the Zynq UltraScale+ MPSoC introduced in Example 2.3.

Without loss of generality, the pattern was designed as a reusable module
to be invoked during the partly or fully automated synthesis of software
systems. Industrial examples of such synthesis solutions are commercially
available AUTOSAR toolchains. Academic examples are RAMSES [142], Lingua

Section 3.1: Overview of the logical isolation pattern | 41

III. Software architecture
(Software components and channels)

II. Runtime architecture
(Runtime environments and communication paths)

I. Hardware architecture
(Execution platforms and off-chip interconnects)

Figure 3.2: Layer structure of system model instances, with the primary model elements
of each layer in parentheses. From the bottom up, the layers build on each other.

Franca [144], and the XANDAR toolchain [1]. A possible integration of such a
synthesis process is visualized as the large arrow in Figure 3.1. It is important
to emphasize, however, that both less and more integrated applications of the
pattern are generally feasible.

3.1.1 APU configuration and CF determination

In this step, (1) APU configuration and (2) CF determination are performed
in an integrated procedure. While its exact functionality will be the topic
of Chapter 4, the following explanations convey a first complete overview of
the step. It operates on two key inputs:

System model: The system model describes knowledge at three layers of the
embedded system stack. These layers are the hardware architecture,
which describes physical system properties; the runtime architecture
deployed to a hardware architecture; and the software architecture, which
is in turn executed by a runtime architecture. A hardware architecture
can instantiate and optionally interconnect platforms from the execution
platform library. This layer structure is visualized in Figure 3.2 and will
be thoroughly covered in Section 3.2.

Isolation measures: A possibly empty set of isolation measures describes
the applied strategy for logical isolation. As shown in Figure 3.3, an
isolation measure is either a generation request or a barrier declara-
tion. Generation requests instruct the pattern to generate configuration
code for specific APUs of the system. Barrier declarations provide the
pattern with knowledge about externally applied measures, such as
an MMU-based protection or relevant application behavior.

42 | Chapter 3: Concept and system model

Isolation measure
{abstract}

Generation request
{abstract}

Barrier declaration
{abstract}

Process isolation Application-level barrierAPU configuration

Figure 3.3: Types of isolation measures represented in the form of a class diagram. This
work considers one generation request and two barrier declarations.

Based on its inputs, the procedure handles APU configuration requests,
processes barrier declarations, and determines the remaining potential for CFs
in the system. We introduce a dedicated term for the latter concept:

▶ Definition 3.1: CF potential

CF potential from system element 𝑣 to system element 𝑣 ′ is the possibility
that a CF originates from 𝑣 and leads to a failure of 𝑣 ′.

⊲ Remark 3.1: CF potential is transitive. If it exists from 𝑣1 to 𝑣2 and simultane-
ously from 𝑣2 to 𝑣3, then it also exists from 𝑣1 to 𝑣3.

Definition 3.1 makes use of the system element notion, which has not been
formalized yet. Using the three model layers, it is possible to do so:

▶ Definition 3.2: System element

A system element is a hardware, runtime, or software element that oper-
ates in the embedded system under consideration.

In other words, system elements are physical or logical entities that exist
in a deployed system; they are not only a design-time concept.

⊲ Example 3.1: A specific MPSoC, its CPUs, and its on-chip memory are examples
of system elements at the hardware layer. An example of a system element at the
runtime layer is a Linux distribution executed on a CPU. At the software layer,
logic executed by a Linux process can be represented as a system element.

Section 3.1: Overview of the logical isolation pattern | 43

⊲ Remark 3.2: The above definition is based on ISO 26262 [16], which describes
an element as “system, components (hardware or software), hardware parts, or
software units.” This notion includes single hardware parts, such as the CPU of a
microcontroller, which are not covered by the “component” definition.

System elements are strongly related to system model entities, which serve
as an input to the pattern. However, there is not necessarily a one-to-one
correspondence between these entities and system elements according to Defi-
nition 3.2. As it will be shown in Section 3.3, selected system model entities
are translated into zero or more than one system element.

3.1.1.1 APU configuration

Generation requests are handled by the APU configuration process:

▶ Definition 3.3: APU configuration

APU configuration is the process that generates APU configuration code
for each MPSoC for which this is requested by an isolation measure.

APU configuration code generated by this process is returned to the
user invoking the logical isolation pattern. Each such configuration is a
platform-specific artifact ready to be applied to its respective MPSoC.

⊲ Example 3.2: APU configuration code for the Zynq UltraScale+ MPSoC may be
a C program that writes to XPPU and XMPU registers of the platform.

3.1.1.2 CF determination

The task of CF determination can be formalized as follows:

▶ Definition 3.4: CF determination

CF determination is a structured process that determines all CF potential
originating from each system element.

At this point, it makes sense to revisit Definition 3.1 and highlight the
fact that CF potential describes the possibility of a CF between system ele-
ments. Therefore, a trivially correct result of CF determination is the statement
that CF potential exists between all system element pairs. However, this

44 | Chapter 3: Concept and system model

Runtime scenario 1:

Runtime scenario 𝑛:

W W

W W

CF

CF

CF potential

CF potential

CF potential

.
.
.

CF determination

Figure 3.4: CF determination as a design-time concept. Circles represent system ele-
ments, while lightning bolts signify their failure. Red arrows represent a CF that occurs
in the respective runtime scenario.

pessimistic result does not carry any significance. It gains significance if in-
feasible CF potential is actively removed from the result. To achieve this, the
process combines fundamental knowledge about interactions in embedded
software systems with the specified isolation measures.

As illustrated in Figure 3.4, CF determination is a design-time process
that deals with all possible runtime scenarios. For each such scenario, its
goal is to find an accurate description of CFs that may actually occur during
system operation. The union of all these CFs is the CF potential. Knowledge
determined by the procedure is captured in the form of a graph:

▶ Definition 3.5: CF graph

CF graphs are directed graphs 𝐺𝛾 = ⟨𝑉 , 𝐸⟩, where 𝑣 ∈ 𝑉 represents a
system element, and 𝐸 contains a directed path from 𝑣 ∈ 𝑉 to 𝑣 ′ ∈ 𝑉 if
and only if CF potential leads from 𝑣 to 𝑣 ′.

Since the edge set of 𝐺𝛾 is defined in terms of its directed paths, the
transitive closure of 𝐺𝛾 is semantically equivalent to 𝐺𝛾 itself. Section 4.3
exploits this property to reduce the number of edges that are to be added.

⊲ Example 3.3: The graph in Figure 3.5 is a CF graph for a sample system with
system elements 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣14}. According to this graph, a failure of

Section 3.1: Overview of the logical isolation pattern | 45

𝑣1 𝑣2 𝑣3

𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12 𝑣13 𝑣14

CF potential origi-
nating from 𝑣4

Figure 3.5: CF graph 𝐺𝛾 = ⟨𝑉 , 𝐸⟩ with |𝑉 | = 14 system elements and |𝐸 | = 17 directed
edges. Shading shows the CF potential originating from 𝑣4.

system element 𝑣4 ∈ 𝑉 , for example, has the potential to cause a failure of 𝑣2,
𝑣3, 𝑣5, 𝑣6, 𝑣7, 𝑣8, and 𝑣11. These seven relationships might be conservative in the
sense that, in practice, they do not actually give rise to a CF. If there is a potential
for the CF, however, then there must be a directed path.

Unlike generated APU configurations, CF graphs are primarily an internal
result. As shown in Figure 3.1, they are forwarded to the safety assessment
step, which is informally described in the next section. However, a CF graph
gives users invoking the pattern detailed knowledge about CF potential in a
system. Therefore, it can be useful to return it as an additional output.

3.1.2 Safety assessment
CF potential is concerned with the propagation of all failures, not only with
the ones that can lead to the violation of a safety requirement. However, the
subset of potentially hazardous failures is the one relevant for the purposes of
this work. The safety assessment operates on a CF graph to decide whether
captured CF potential is acceptable from a functional safety point of view.

For given CF potential to actually cause harm, and therefore jeopardize
safety, three events have to occur:

1) Fault manifestation: The system element from which the CF potential
originates is affected by a fault that manifests as a failure.

2) Failure propagation: This failure propagates through the system to
cause a failure of another system element.

3) Physical harm: By interacting with the physical environment in an
unintended manner, the affected system element causes harm.

46 | Chapter 3: Concept and system model

Safety requirements
{abstract}

Interference whitelist Integrity assignment

Figure 3.6: Safety requirements input depicted in the form of a class diagram. In this
work, two alternative specification approaches are considered.

CF graphs are only concerned with failure propagation (item 2 of the list). They
apply the conservative worst-case assumption that every directed path can
actually give rise to a CF. Whether this possibility violates a safety requirement
must be assessed based on the probability of a fault manifestation (item 1 of
the list) and the severity of potential physical harm (item 3 of the list). To
decide this question for particular CF potential, these two aspects will usually
have to be considered in conjunction and relative to each other.

⊲ Example 3.4: Let 𝑣1, 𝑣2, and 𝑣3 be system elements. 𝑣1 is a CPU with a high sus-
ceptibility to faults. 𝑣2 and 𝑣3 represent software executed by this CPU. Therefore,
there is CF potential from 𝑣1 to both 𝑣2 and 𝑣3.

Under the assumption that 𝑣2 does not affect the physical environment at
all, CF potential from 𝑣1 to 𝑣2 cannot be a safety issue. If, however, 𝑣3 controls a
safety-critical actuator, the CF potential from 𝑣1 to 𝑣3 might be a safety hazard
and therefore unacceptable.

This knowledge needs to be provided to the logical isolation pattern in the
form of a third external input: the safety requirements. They specify whether
a CF between two given system elements is permitted. Based on this, safety
assessment is defined as follows:

▶ Definition 3.6: Safety assessment

The safety assessment procedure ensures that CF potential originating
from each system element is in line with the specified safety requirements;
it accepts a design if and only if this is the case.

Figure 3.6 shows two alternative approaches to specify safety requirements.
An interference whitelist is an exhaustive list of all accepted CF potential in
the system. The lattice-based integrity assignment concept allows users of

Section 3.2: Formal system model | 47

the pattern to annotate selected system elements with provided and required
integrity levels, respectively; from these assignments, the safety assessment
determines the acceptance of all relevant CF potential.

⊲ Remark 3.3: CF potential is relevant if, according to the fault model described
in Section 3.3, the system element it originates from can be expected to fail.

The result returned by the safety assessment process is a binary acceptance
value. A superordinate synthesis process, for instance, can use this result to
abort the synthesis if safety cannot be guaranteed.

When a system is rejected, it is also practical to return reasons for this
rejection as a secondary result. If interference whitelists are used, for example,
an explicit list of CF potential violating the whitelist can support users of the
safety pattern in further development steps.

3.2 Formal system model

The three-layered system model is a key input of the logical isolation pattern.
Apart from the fact that it references the execution platform library, it is a
self-contained artifact. Its entities are translated into zero or more system
elements (according to Definition 3.2), which makes the system model an
important prerequisite before the fault model can be described.

The system metamodel is inspired by state-of-the-art approaches for hard-
ware/software system modeling, such as AADL and AUTOSAR. Since the
proposed generation and analysis procedure is a specialized use case, how-
ever, suitable concepts from these approaches are incorporated into a tailored
metamodel. This metamodel is described in the remainder of this section.

⊲ Remark 3.4: The capabilities of themetamodel are deliberately limited to aspects
required by the logical isolation pattern. State-of-the-art modeling solutions, such
as AADL, are generally more flexible. This means that they can often be used to
express the knowledge captured by a system model as introduced below. Due to
their complexity, however, they are less suited to communicate the bare minimum
of knowledge that the pattern needs to be able to operate.

System model entities Table 3.1 lists the eight types of system model
entities that are explicitly described by the creator of a model instance. One of
them is the execution platform, which is a special type of entity taken from
the execution platform library of the pattern. Each such entity can enrich

48 | Chapter 3: Concept and system model

Acronym Model entity Description

– Execution platform1 Hardware platform instantiated by the sys-
tem, e.g., a Zynq UltraScale+ MPSoC.

– Off-chip interconnect Off-chip bus attached to one or more periph-
eral devices2, e.g., a CAN bus.

RTE Runtime environment Infrastructure software executed directly on
a processing unit2, e.g., a Linux distribution
with certain management features.

LP Local path Dedicated region of a memory module2 used
for the communication between a pair of lo-
cal RTEs, e.g., a portion of DDR.

GP Global path Virtual channel in an off-chip interconnect
used for the communication between two re-
mote RTEs, e.g., a set of CAN messages.

SWC Software component Application executed by an RTE, e.g., a binary
spawned as a user-space Linux process.

– Port (= SWC port) Asynchronous input or output interface ex-
posed by a particular SWC.

– Channel Unidirectional information flow path from
one SWC port to another.

1 Must be instantiated from the execution platform library of the safety pattern.
2 Automatically inferred from knowledge about instantiated execution platforms (cf. Table 3.2),
i.e., not explicitly described by the creator of a model instance.

Table 3.1: Entities explicitly instantiated by the creator of a model instance. From top
to bottom, the hardware, runtime, and software architecture layer is covered.

Acronym Model entity Description

PROC Processing unit CPU or a comparable component of an execution
platform, e.g., a Cortex-A53 processor.

MEM Memory module Memory owned by an execution platform, e.g.,
external DDR memory or the OCM module.

DEV Peripheral device On-chip peripheral of an execution platform, e.g.,
a CAN controller or the SLCRs.

Table 3.2: Inferred system model entities at the hardware architecture layer along with
illustrative examples taken from the Zynq UltraScale+ MPSoC.

Section 3.2: Formal system model | 49

SWC

SWC

SWC

SWC

SWC

RTE RTE RTE

LP GP

Execution platform Execution platform

On-chip interconnect

PROC PROC MEM DEV

On-chip interconnect

PROC PROC MEM DEV

Off-chip interconnect

Hardware architecture

Runtime architecture

Software architecture

Figure 3.7: System model instance composed of 5 SWCs, 15 SWC ports, 3 RTEs, two
communication paths, two execution platforms, and one off-chip interconnect.

the system model with instances of three additional model entities described
in Table 3.2: processing units, memory modules, and peripheral devices. These
instances become an implicit part of the overall system model and can be
referenced by explicitly described entities.

⊲ Remark 3.5: In the remainder of this work, two of the acronyms from Table 3.1
will also be used from continuous text: Software Component (SWC) and Run-
time Environment (RTE). Usage of other acronyms from both model entity tables
is limited to diagrams, such as the one in Figure 3.7.

Graphical visualization of a system model For illustration purposes, a
sample instance of a system model is visualized in Figure 3.7. The depicted
hardware architecture consists of two execution platforms, each instantiating
two processing units, one memory module, and one peripheral device. At
runtime level, three RTEs are each mapped to a dedicated processing unit. A

50 | Chapter 3: Concept and system model

local path connects two RTEs mapped to the same execution platform, while
a global path is used to connect two remote RTEs. At the software layer,
five SWCs with a total of 15 ports are instantiated. Twelve of these ports are
internal; they are drawn using an empty square and used to establish inter-SWC
communication via a total of six channels. In addition, three environment
ports, each depicted as a filled square, connect application software to the
physical environment of the system.

Address space of execution platforms In the system model, each exe-
cution platform is associated with its own private address space. Memory
modules and peripheral devices implement this address space, i.e., they serve
as slave components. Processing units serve as master components and are
generally capable of writing to or reading from any address. Selected periph-
eral devices, such as a DMA or an Ethernet controller, may also be equipped
with a master port and therefore able to access the address space. For ev-
ery execution platform, exactly one processing unit or peripheral device is
defined to be the address space origin; this is the ‘viewport’ from which all
specified addresses need to be interpreted. The physical entity that connects
masters to slaves is a shared on-chip interconnect as shown in Figure 3.7. This
shared on-chip interconnect may or may not be protected by an APU. Re-
gardless of the APU protection status, selected master components might be
able to circumvent this shared on-chip interconnect to access certain memory
modules or peripheral devices. For example, a processing unit might have
unrestricted access to a local memory module. If this is the case, then accesses
by this processing unit to the local memory module might not be protected by
a possible APU configuration.

3.2.1 Execution platform library
Before it is possible to formalize the system model, a specification of the
execution platform library is necessary. This library is concerned with types
of execution platforms rather than specific instances. It captures properties
that all execution platform instances of a particular type have in common.

Since the execution platform library is provided by the safety pattern itself,
the model entities covered in this section are—strictly speaking—not part of
the system model. However, they are referenced from the system model and
therefore an implicit part of it.

One property common to all execution platforms is that each memory
module is mapped to a particular memory region from the address space of the

Section 3.2: Formal system model | 51

platform. To be able to reason about address spaces and memory regions, we
formalize them using mathematical set theory:

▶ Definition 3.7: Address space and memory regions

The address space of execution platforms, 𝔸, is the set of all physically
possible memory addresses. A memory region is a sequential subset of 𝔸:

[𝑥,𝑦]𝔸 = {𝑎 ∈ 𝔸 : 𝑥 ≤ 𝑎 ≤ 𝑦}, 𝑥,𝑦 ∈ 𝔸.

The set of all possible memory regions, 𝕄, is given as follows:

𝕄 = {[𝑥,𝑦]𝔸 : 𝑥,𝑦 ∈ 𝔸}.

Since address spaces and memory regions are mathematical sets, conven-
tional operations from set theory can be applied to them.

With this, the execution platform type is defined as follows:

▶ Definition 3.8: Execution platform type

An execution platform type is a tuple

⟨𝑈 , 𝑀, 𝑄, 𝑍, Γ1, Γ2, Γ3, 𝑎, mmap⟩

with the following components:

1) The finite sets 𝑈 , 𝑀 , and 𝑄 represent processing units, memory
modules, and peripheral devices, respectively.

2) 𝑍 ⊆ 𝑄 represents peripheral devices equipped with a master port.
3) Γ1 ⊆ 𝑈 ×𝑀 describes the memory modules that each processing

unit can access without traversing the shared on-chip interconnect.
4) Γ2 ⊆ 𝑄 × (𝑈 ∪𝑀 ∪𝑄) describes the platform components to which

the failure of a peripheral device can directly propagate to.
5) Γ3 ⊆ 𝑄 represents peripheral devices whose failure can directly

propagate to the entire underlying execution platform.
6) 𝑎 ∈ 𝑈 ∪ 𝑍 is the address space origin, i.e., a reference master from

which all specified addresses need to be interpreted.
7) mmap: 𝑀 → 𝕄 maps each𝑚 ∈ 𝑀 to its memory region. Mem-

ory regions do not overlap, i.e., the following condition holds for
all𝑚1,𝑚2 ∈ 𝑀 :𝑚1 ≠𝑚2 ⇒ mmap(𝑚1) ∩mmap(𝑚2) = ∅.

52 | Chapter 3: Concept and system model

Collectively, elements from𝑈 ,𝑀 , and 𝑄 are the platform components of an
execution platform type. They are also referred to as 𝐶 = 𝑈 ∪𝑀 ∪𝑄 .

⊲ Remark 3.6: In the following, references to any element from𝔸 or𝕄 are always
relative to 𝑎 of the underlying execution platform. For the sake of brevity, this
implicit dependency is not explicitly stated when such references are made.

Execution platform types are combined into the library and can optionally
be complemented with APU configuration generators:

▶ Definition 3.9: Execution platform library

The execution platform library is a tuple

Ω = ⟨𝑇, gen⟩

with the following components:

1) 𝑇 is a set of execution platform types according to Definition 3.8.
2) gen is a collection of procedures to generate APU configuration

code for selected execution platform types from 𝑇 .

In the remainder of this thesis, it will occasionally be necessary to refer to
a particular tuple element of an execution platform type 𝑡 ∈ 𝑇 . To achieve this,
the relevant tuple element (such as 𝑈 or the ‘mmap’ function) is spelled out
and suffixed with the underlying 𝑡 in parentheses. 𝑈 (𝑡), for example, refers
to the processing units that are part of execution platform type 𝑡 ∈ 𝑇 . Since
this notation is identical to that of a function call, two consecutive pairs of
parentheses can appear when the ‘mmap’ function is first referenced and then
called.mmap(𝑡) (𝑚), for example, returns the memory region that the memory
module𝑚 ∈ 𝑀 (𝑡) is mapped to in 𝑡 ∈ 𝑇 .

⊲ Example 3.5: This framework is now used to model a certain portion of the Zynq
UltraScale+ MPSoC as execution platform type. Figure 3.8 shows nine selected
system entities to be represented: the two CPUs that were introduced in Exam-
ple 2.3 and seven slave components from Table 2.2. To model the two CPUs as
processing units, the following definition is made:

𝑈 = {𝑢A53, 𝑢R5}.

𝑢A53 ∈ 𝑈 , for instance, describes that in every execution platform instance of this
type, a Cortex-A53 processor has access to the shared address space.

Section 3.2: Formal system model | 53

PROC
Cortex-A53

PROC
Cortex-R5

MEM
TCM region

DEV
SLCR/FPD

DEV
CAN controller

MEM
DDR region

MEM
OCM region

DEV
OCM controller

DEV
GEM controller

Γ1

Γ2

Γ3

Figure 3.8: Execution platform type from selected Zynq UltraScale+MPSoC components.
Dashed arrows represent elements of Γ1, Γ2, and Γ3, respectively.

𝑚 ∈ 𝑀 mmap(𝑚)
Memory module Memory region mapping

𝑚DDR [0x0, 0x7FFFFFFF]𝔸
𝑚TCM [0xFFE00000, 0xFFE1FFFF]𝔸
𝑚OCM [0xFFFC0000, 0xFFFFFFFF]𝔸

Table 3.3: ‘mmap’ definition for three memory modules of the Zynq UltraScale+ MPSoC.
This assignment assumes that the Cortex-R5 is operated in lockstep mode and, therefore,
that the modeled TCM is one unified memory of 128 KiB.

Afterward, the memory modules from Figure 3.8 are modeled:

𝑀 = {𝑚DDR, 𝑚OCM, 𝑚TCM}.

They represent read-write memory provided by external DDR, the OCM, and
the TCM of the Cortex-R5, respectively.𝑚TCM is simply represented as another
module attached to the on-chip interconnect. This reflects the property that it is
accessible from every master component in the system. The fact that it is actually
part of the Cortex-R5, which can bypass the on-chip interconnect to access the TCM
region, is modeled by choosing Γ1 = {⟨𝑢R5, 𝑚TCM⟩}. To complete the memory
region model, the address space origin is set to 𝑎 = 𝑢A53, and ‘mmap’ values are
derived from knowledge given in Table 2.2. As seen from the Cortex-A53, for

54 | Chapter 3: Concept and system model

example, the lower DDR region starts at address 0x0 and has a size of 2 GiB. The
full derived table of ‘mmap’ values is given as Table 3.3.

Finally, to reflect the four represented types of peripheral devices, the periph-
eral device descriptor 𝑄 is chosen as follows:

𝑄 = {𝑞CAN, 𝑞GEM, 𝑞OCM-CTRL, 𝑞SLCR-FPD}.

As described on page 15, the Ethernet (GEM) controller integrates DMA function-
ality and is therefore equipped with a master port that grants it access to the
address space of the device. We choose 𝑍 = {𝑞GEM} to reflect this capability.

To be able to define Γ2 and Γ3, one must consider the indirect effects that
write transactions to peripherals devices can have. By writing to the OCM control
register 𝑞OCM-CTRL, relevant characteristics of the OCM module may be affected.
By writing to the SLCRs of the FPD, which are modeled as 𝑞SLCR-FPD, it is pos-
sible to interfere with platform-level configurations. Γ2 = {⟨𝑞OCM-CTRL,𝑚OCM⟩}
and Γ3 = {𝑞SLCR-FPD} capture these relationships.

3.2.2 Hardware architecture (layer I)

An accurate model of relevant hardware properties is the first input required
by the logical isolation pattern. This section describes a hardware architecture
metamodel that was specifically developed to facilitate this goal.

The metamodel is inspired by the hardware abstraction of AADL [138]
and a refined version of work the author previously published in [3]. Com-
pared with AADL and the previous work, a key characteristic of the following
metamodel is its automatic instantiation of execution platforms. For a given
system, these instances are represented as follows:

▶ Definition 3.10: Platform specification

The platform specification is a tuple

𝜙𝑋 = ⟨𝑋, type⟩

with the following components:

1) 𝑋 is a finite set of execution platform instances.
2) type : 𝑋 → 𝑇 maps each execution platform instance to its type.

Section 3.2: Formal system model | 55

Each 𝑥 ∈ 𝑋 is comparable to an execution platform system from AADL.
According to the AADL standard [138], hardware can be clustered into “execu-
tion platform systems, i.e., into systems of execution platform components to
model complex physical computing hardware [...].”

As it was informally described in Table 3.2, the instantiated execution
platform components are processing units, memory modules, and peripheral
devices. In the following, three functions will be used to refer to them:

▶ Definition 3.11: Instantiated platform components

Given a platform specification 𝜙𝑋 = ⟨𝑋, type⟩, the functions

procs(𝑥) = {𝑢𝑥 : 𝑢 ∈ 𝑈 (type(𝑥))}, 𝑥 ∈ 𝑋
mems(𝑥) = {𝑚𝑥 :𝑚 ∈ 𝑀 (type(𝑥))}, 𝑥 ∈ 𝑋
devs(𝑥) = {𝑞𝑥 : 𝑞 ∈ 𝑄 (type(𝑥))}, 𝑥 ∈ 𝑋

map an execution platform to its processing units, memory modules, and
peripheral devices, respectively. For each 𝑥 ∈ 𝑋 , the returned values are
collectively referred to as the instantiated platform components of 𝑥 .

Mathematically, all instantiated platform components are distinct objects,
even if they originate from the same 𝑢 ∈ 𝑈 ,𝑚 ∈ 𝑀 , or 𝑞 ∈ 𝑄 .

For the sake of brevity, the complete set of (instantiated) processing units,
memory modules, and peripheral devices in a system will be abbreviated as

𝑈 =
⋃
𝑥∈𝑋

procs(𝑥), �̂� =
⋃
𝑥∈𝑋

mems(𝑥), and �̂� =
⋃
𝑥∈𝑋

devs(𝑥),

respectively. The union of these three sets,

𝐶 = 𝑈 ∪ �̂� ∪ �̂� ,

refers to all instantiated platform components in the system. In addition,

𝑍 = {𝑧𝑥 : 𝑧 ∈ 𝑍 (type(𝑥))} ⊆ �̂�

is used to refer to those instantiated peripheral devices that are (also) a master
of their respective on-chip interconnect.

Off-chip interconnects, such as a CAN bus, can be used to connect pe-
ripheral devices of several execution platforms. From a physical point of

56 | Chapter 3: Concept and system model

view, such a connection is only feasible if used peripheral devices are I/O
controllers of the correct type and if their external receive/transmit signals
are actually accessible from outside. For example, a CAN bus [145] needs to
interface CAN controllers whose receive and transmit signals are accessible via
a transceiver. The following model feature formalizes off-chip interconnects:

▶ Definition 3.12: Bus specification

The bus specification is a tuple

𝜙𝐵 = ⟨𝐵, controllers⟩

with the following components:

1) 𝐵 is a finite set of off-chip interconnects.
2) controllers : 𝐵 → 𝒫(�̂�) maps each off-chip interconnect to the

peripheral devices that are attached to it. Every peripheral device
is associated with up to one off-chip interconnect.

⊲ Remark 3.7: The constraint that peripheral devices are associated with no more
than one off-chip interconnect can also be expressed as follows:

∀𝑞 ∈ �̂� : |{𝑏 ∈ 𝐵 : 𝑞 ∈ controllers(𝑏)}| ≤ 1.

For the sake of readability, however, Definition 3.12 describes this requirement
textually. All following definitions in this chapter follow the same pattern, i.e.,
they formulate constraints textually rather than mathematically.

Instantiated peripheral devices with a master port (e.g., a DMA controller)
can allocate memory regions. This is formalized as follows:

▶ Definition 3.13: Device configuration

The device configuration is a function

𝜙𝐷 = malloc : 𝑍 → 𝒫(𝕄),

which maps each 𝑧 ∈ 𝑍 to an arbitrary number of exclusively owned
memory regions, each taken from exactly one memory module of the
execution platform that 𝑧 is instantiated by.

Section 3.2: Formal system model | 57

cmd
(
𝑝𝐼𝑐
)

viz
(
𝑝𝐼𝑣
)infotainment (𝑠𝐼)

meas
(
𝑝𝐷𝑚

)
speed

(
𝑝𝐷𝑠

)drivetrain (𝑠𝐷)

speed
(
𝑝𝐵𝑠

)
msg

(
𝑝𝐵𝑚

)body (𝑠𝐵)

linux (𝑟𝐿) zephyr (𝑟𝑍)

Zynq UltraScale+ MPSoC instance: main (𝑥𝑍)

gem (𝑞GEM) a53 (𝑢A53) ddr (�̂�DDR) r5 (𝑢R5) can (𝑞CAN)

On-chip interconnect

Figure 3.9: Systemmodel for a central car server that integrates infotainment, drivetrain,
and body functions on two processors of the Zynq UltraScale+ MPSoC.

A memory region owned by a peripheral device must not be owned by any
other system entity. Such memory regions are said to be allocated by their
respective owner, and they become relevant when the peripheral devices
are (by themselves) allocated to RTEs or SWCs: each RTE and each SWC will
automatically obtain read/write access to the memory regions owned by their
peripheral devices. For example, a SWC allocating a particular 𝑧 ∈ 𝑍 can use
the memory regions from malloc(𝑧) to exchange data with 𝑧.

The combination of the three partial hardwaremodels leads to the hardware
architecture, i.e., to layer I of the full system model:

▶ Definition 3.14: Hardware architecture

A hardware architecture is a tuple ⟨𝜙𝑋 , 𝜙𝐵, 𝜙𝐷⟩, where

1) 𝜙𝑋 is a platform specification according to Definition 3.10,
2) 𝜙𝐵 is a bus specification according to Definition 3.12, and
3) 𝜙𝐷 is a device configuration according to Definition 3.13.

It implicitly contains the sets𝑈 , �̂� , �̂� , and 𝑍 .

58 | Chapter 3: Concept and system model

�̂�DDR 𝑞CAN 𝑞GEM

M
malloc

Address space

Figure 3.10: Schematic visualization of the global address space that 𝑥𝑍 implements
in the car server example (not to scale). Using the ‘malloc’ function, a DDR memory
region is allocated to 𝑞GEM.

⊲ Example 3.6: This is the first in a sequence of examples that collectively model
the central car server use case shown in Figure 3.9.

At the hardware layer, the system employs a Zynq UltraScale+ MPSoC, i.e.,
an instance of the execution platform type that was modeled in Example 3.5.
Referring to this type as 𝑡𝑍 ∈ 𝑇 , we model this by choosing

𝑋 = {𝑥𝑍 } and type = {⟨𝑥𝑍 , 𝑡𝑍 ⟩}.

This enriches the model with nine instantiated platform components (five of
which are shown in Figure 3.9). Since this example scenario does not comprise
any off-chip communication, the bus specification is defined by choosing

𝐵 = ∅ and controllers = ∅.

As illustrated in Figure 3.10, a portion of DDR memory shall be allocated to
the Ethernet controller (𝑞GEM). Without loss of generality, we choose

malloc = {⟨𝑞GEM, {[0x3C00000, 0x43FFFFF]𝔸}⟩}

to allocate 8MiB of memory, which is later to be shared between 𝑞GEM and all
entities that allocate 𝑞GEM. This concludes the hardware architecture model.

When this example is continued, the five relevant platform components will be
referred to as indicated in Figure 3.9, e.g., by using 𝑢A53 to refer to the Cortex-A53
of the instantiated execution platform.

3.2.3 Runtime architecture (layer II)
The purpose of the runtime architecture is to execute all SWCs of a system.
This includes the task of providing every SWC with required hardware re-
sources, such as CPU time or memory. Furthermore, it is responsible for the
implementation of inter-SWC communication; in this sense, it is comparable to

Section 3.2: Formal system model | 59

the Virtual Function Bus (VFB) concept from AUTOSAR [146] or the federated
execution of a Lingua Franca (LF) program [147].

The runtime architecture model does not dictate how exactly these tasks
are implemented in a given system. However, it assumes certain invariants
that an implementation must fulfill. These invariants are built around the
notion of the RTE, which is infrastructure software typically based on OS (such
as Linux, Zephyr, . . .) or a hypervisor (such as XtratuM, Jailhouse, . . .).

▶ Definition 3.15: RTE specification

Based on a hardware architecture, the RTE specification is a tuple

𝜙𝑅 = ⟨𝑅, proc, malloc′, qalloc′⟩

with the following components:

1) 𝑅 is a finite set of Runtime Environments (RTEs).
2) proc : 𝑅 → 𝑈 maps each RTE to its dedicated processing unit.
3) malloc′ : 𝑅 → 𝒫(𝕄) maps each RTE to a set of exclusively owned

memory regions, each taken from exactly one memory module of
the underlying execution platform.

4) qalloc′ : 𝑅 → 𝒫(�̂�) maps each RTE to a set of allocated peripheral
devices, each from the underlying execution platform.

As described in item 2, each RTE operates on a dedicated processing unit.
In other words, processing units host no more than one RTE.

The allocation described in item 3 maps each RTE to an arbitrary number
of memory regions of the underlying execution platform. These memory
regions are where an RTE stores instructions and data, both for its own and
the operation of SWCs that it is responsible for.

The function in item 4 allows users to allocate peripheral devices to RTEs.
The same peripheral device may be allocated to more than one system entity.
In the context of this function, there are two important rules to understand:

1) As it was already described in Section 3.2.2, allocating a peripheral device
with a master port (𝑧 ∈ 𝑍) to an RTE means that this RTE will have
read/write access to the memory owned by the peripheral device.

2) In addition, there is an analogous rule into the opposite direction: allo-
cating a peripheral device with a master port (𝑧 ∈ 𝑍) to an RTE means

60 | Chapter 3: Concept and system model

�̂�DDR 𝑞CAN 𝑞GEM

M
malloc

𝑟𝐿 𝑟𝑍

ma
lloc
′

ma
lloc
′ qalloc ′

Address space

Figure 3.11: Allocation of two memory regions and one peripheral device to the RTEs
of the car server example. The depicted address space is again not to scale.

that the peripheral device will have read/write access to the memory
region owned by the RTE.

⊲ Remark 3.8: The number of apostrophes added to allocation functions (such
as malloc′ and qalloc′) reflects the number of layers between the considered
entity and the hardware architecture. This is why the memory allocation func-
tion in Definition 3.13 was suffixed with zero apostrophes, while the allocation
functions in Definition 3.15 are suffixed with one apostrophe each.

⊲ Example 3.6 (continued): The runtime architecture shown in Figure 3.9 is based
on two operating systems. They are modeled as

𝑅 = {𝑟𝐿, 𝑟𝑍 },

where 𝑟𝐿 represents a Linux distribution and 𝑟𝑍 a Zephyr instance. They are
mapped to dedicated processing units by choosing

proc = {⟨𝑟𝐿, 𝑢A53⟩, ⟨𝑟𝑍 , 𝑢R5⟩}.

As illustrated in Figure 3.11, each RTE allocates exactly one memory region from
the DDR of the underlying execution platform. Without loss of generality, we
select one 24MiB and one 12MiB wide region, which leads to

malloc′ =
{
⟨𝑟𝐿, {[0x0, 17FFFFF]𝔸}⟩,
⟨𝑟𝑍 , {[0x2C00000, 0x37FFFFF]𝔸}⟩

}
.

To grant 𝑟𝑍 access to the CAN controller of the platform, we further choose

qalloc′ = {⟨𝑟𝐿, ∅⟩, ⟨𝑟𝑍 , {𝑞CAN}⟩},

which concludes this part of the example.

Section 3.2: Formal system model | 61

If two SWCs mapped to different RTEs need to interact, these RTEs need
to collaborate to implement this communication. The resources they use to
implement this communication are represented as either a local or a global
path, both of which are covered by the following model artifact:

▶ Definition 3.16: Path specification

Based on a hardware architecture, the path specification is a tuple

𝜙𝑌 = ⟨𝐿, 𝐺, endpoints, impl, bus⟩

with the following components:

1) 𝐿 is a finite set of local paths.
2) 𝐺 is a finite set of global paths.
3) endpoints : 𝐿 ∪ 𝐺 → {𝐾 ⊆ 𝑅 : |𝐾 | = 2} maps each path to the

unique unordered pair of RTEs connected by this path. A local
path connects two RTEs from the same execution platform, while
the RTEs of a global path are from different execution platforms.

4) impl : 𝐿 → 𝒫(𝕄) maps each local path to a set of exclusive mem-
ory regions used to implement this path. Each region is part of a
memory module of the underlying execution platform.

5) bus : 𝐺 → 𝐵 maps each global path to the off-chip interconnect
used to implement it. Every endpoint of a path must allocate
an I/O controller attached to the path’s interconnect.

Every specified path—regardless of whether it is a local or a global one—is
defined between an unordered pair of RTEs. For a given path, these RTEs are
referred to as its endpoints. As described in item 3 above, endpoints must be
unique, i.e., there may only be one path for the same pair of RTEs.

A local path describes memory regions that the two endpoints of this
path (i.e., the two connected RTEs) utilize to exchange necessary messages. To
do so, these RTEs have read/write access to all memory regions owned by this
path. According to item 4 of the above definition, memory regions allocated
to a local path are exclusively owned by it, i.e., they must not be allocated to
another system entity (such as an RTE, another local path, . . .).

Global paths are implemented by exactly one off-chip interconnect (which,
in turn, may be used to implement more than one global path). The communi-
cation between an RTE and this off-chip interconnect is achieved via I/O con-
trollers, which must already be allocated to each endpoint via the qalloc′ func-

62 | Chapter 3: Concept and system model

tion from Definition 3.15. The precise I/O controller that an RTE uses to
communicate with a specific global path is not relevant for the purposes of
this work and, therefore, not reflected in the model.

⊲ Example 3.6 (continued): SWCs in the car server example from Figure 3.9 do
not communicate across RTE boundaries. Therefore, inter-SWC communication
can always be handled without leveraging local or global paths. In the system
model, we reflect this by choosing

𝐿 = 𝐺 = ∅,

which automatically implies

endpoints = ∅, impl = ∅, and bus = ∅.

This concludes the path specification.

Finally, the combination of specified RTEs, local paths, and global paths is
combined to layer II of the full system model:

▶ Definition 3.17: Runtime architecture

The runtime architecture is a tuple ⟨𝜙𝑅, 𝜙𝑌 ⟩, where

1) 𝜙𝑅 is an RTE specification according to Definition 3.15 and
2) 𝜙𝑌 is a path specification according to Definition 3.16.

It implicitly contains the underlying hardware architecture.

3.2.4 Software architecture (layer III)
At the highest level of abstraction, a software architecture describes relevant
application properties in the form of SWCs and their interactions.

The model does not dictate how a software architecture is implemented,
but it defines several invariants that an implementation must conform to. One
such invariant is that SWCs are conceptually concurrent processes executed
by exactly one RTE. They communicate via asynchronous input and output
interfaces called ports. SWCs use ports to interact with each other or to access
the physical environment. Emitting data via an output port does not affect the
future behavior of its SWC; this implies that write access is non-blocking, which
is in line with sender-receiver communication in AUTOSAR [146]. SWCs may

Section 3.2: Formal system model | 63

allocate peripheral devices, e.g., to write to the physical environment of the
system. Formally, they are defined as follows:

▶ Definition 3.18: SWC specification

Based on a runtime architecture, the SWC specification is a tuple

𝜙𝑆 = ⟨𝑆, rte, qalloc′′⟩

with the following components:

1) 𝑆 is a finite set of Software Components (SWCs).
2) rte : 𝑆 → 𝑅 maps each SWC to the RTE it is executed on.
3) qalloc′′ : 𝑆 → 𝒫(�̂�)maps each SWC to a set of allocated peripheral

devices, each from the underlying execution platform.

In practice, a SWC will often be realized as a process or task of the OS that
is used to implement the underlying RTE.

The ability of SWCs (or processes, tasks, . . .) to allocate peripheral devices
is captured in item 3 of the above definition; it is analogous to the identically
named capability of RTEs (cf. Definition 3.15). As described in Section 3.2.2,
allocating a peripheral device with a master port (𝑧 ∈ 𝑍) to a SWC has a
semantic implication: it means that this SWC will also receive read/write
access to the memory regions that are owned by this peripheral device, i.e.,
owned by 𝑧. Since a SWC may not allocate memory regions, there is no
analogous rule into the opposite direction (as there was in the RTE case).

⊲ Example 3.6 (continued): As it was shown in Figure 3.9, the car server example
defines three SWCs: one controlling an infotainment system (𝑠𝐼), another one im-
plementing drivetrain control functions (𝑠𝐷), and a third one responsible for body
control tasks (𝑠𝐵). In the model, they are defined by choosing

𝑆 = {𝑠𝐼 , 𝑠𝐷 , 𝑠𝐵}.

The infotainment controller is executed by the Linux runtime (𝑟𝐿), while
the Zephyr system (𝑟𝑍) hosts the two other SWCs. This assignment is modeled by

rte = {⟨𝑠𝐼 , 𝑟𝐿⟩, ⟨𝑠𝐷 , 𝑟𝑍 ⟩, ⟨𝑠𝐵, 𝑟𝑍 ⟩}.

64 | Chapter 3: Concept and system model

�̂�DDR 𝑞CAN 𝑞GEM

M
malloc

𝑟𝐿 𝑟𝑍 𝑠𝐼

ma
lloc
′

ma
lloc
′ qalloc ′

qalloc ′′

Address space

Figure 3.12: Extended resource mapping for the car server example. To comple-
ment RTE-based allocations, 𝑠𝐼 has access to the Ethernet controller.

Following the structure from Figure 3.9, the infotainment controller requires
access to the Ethernet controller (𝑞GEM). The other SWCs do not need to allocate
peripheral devices. In combination, this is reflected by choosing

qalloc′′ = {⟨𝑠𝐼 , {𝑞GEM}⟩, ⟨𝑠𝐷 , ∅⟩, ⟨𝑠𝐵, ∅⟩}.

This finally leads to the allocations shown in Figure 3.12. Note that the arrows
in this visualization show only allocations, not accesses to the address space. The
infotainment controller, 𝑠𝐼 , will additionally have access to the memory region
owned by 𝑞GEM, for example.

Ports are used to model all interactions of SWCs—both internal and external
ones. In the software architecture model, they are formalized as follows:

▶ Definition 3.19: Port specification

The port specification is a tuple

𝜙𝑃 = ⟨𝑃, swc, scope, dir⟩

with the following components:

1) 𝑃 is a finite set of SWC ports.
2) swc : 𝑃 → 𝑆 maps each port to the SWC it is part of.
3) scope : 𝑃 → {Int, Env} specifies the scope of each port.
4) dir : 𝑃 → {In, Out} specifies the data flow direction of each port.

A port is part of exactly one SWC, which is covered by item 2 of the above
definition. The scope, which is described by the function in item 3, captures

Section 3.2: Formal system model | 65

cmd
(
𝑝𝐼𝑐
)

viz
(
𝑝𝐼𝑣
)infotainment (𝑠𝐼)

meas
(
𝑝𝐷𝑚

)
speed

(
𝑝𝐷𝑠

)drivetrain (𝑠𝐷)

speed
(
𝑝𝐵𝑠

)
msg

(
𝑝𝐵𝑚

)body (𝑠𝐵)

Figure 3.13: Software architecture of the car server example in Figure 3.9.

whether a port exchanges messages with other SWCs (scope(·) = Int) or
interacts with the physical environment of the system (scope(·) = Env). The
port direction, which is defined by item 4, captures whether the port is used to
receive (dir(·) = In) or transmit (dir(·) = Out) data.

⊲ Remark 3.9: If it is necessary to emphasize the scope of a port, the entity will
be loosely referred to as either an ‘internal port’ or ‘environment port’ in the
following. Analogously, the terms ‘input’ and ‘output’ will be used to highlight
the direction of a particular port. If applicable, this terminology is occasionally
combined, for instance to refer to an ‘environment output’ of a SWC.

Internal communication (between SWCs) is represented in the form of
channels, whose model representation is the following relation:

▶ Definition 3.20: Channel specification

The channel specification is a relation

𝜙𝐻 ⊆ 𝑃 × 𝑃

of logical data paths, each referred to as a channel.
⟨𝑝, 𝑝′⟩ ∈ 𝜙𝐻 implies that 𝑝 and 𝑝′ are SWC ports with internal scope,

i.e., neither 𝑝 nor 𝑝′ is an environment port. It further means that 𝑝 has
output direction and 𝑝′ has input direction. Output 𝑝 is said to write to
the channel, while input 𝑝′ is written by the channel.

SWCs whose ports are connected via a channel must be mapped to
the same RTE or, alternatively, there must be a local or global path that
connects the RTEs executing the SWCs (cf. Definition 3.16).

66 | Chapter 3: Concept and system model

𝑝 ∈ 𝑃

Specifier 𝑝𝐼𝑐 𝑝𝐼𝑣 𝑝𝐷𝑚 𝑝𝐷𝑠 𝑝𝐵𝑠 𝑝𝐵𝑚

swc(𝑝) 𝑠𝐼 𝑠𝐼 𝑠𝐷 𝑠𝐷 𝑠𝐵 𝑠𝐵
scope(𝑝) Env Env Env Int Int Env
dir(𝑝) In Out In Out In Out

Table 3.4: Port specification for the software architecture in Figure 3.13.

⊲ Example 3.6 (continued): Using these definitions, it is now possible to complete
the model of the car server from Figure 3.9. For convenience, the software architec-
ture of this system is replicated in Figure 3.13. It comprises a total of six SWC ports,
exactly two per SWC. For the purposes of this example, the ports will be referred
to as 𝑝𝑦𝑥 , where 𝑥 describes the data exchanged via a port and 𝑦 ∈ {𝐼 , 𝐷, 𝐵} is
used to associate it with the respective SWC that it is part of.

The infotainment controller (𝑠𝐼) is a standalone SWC. Its environment input 𝑝𝐼𝑐
reads user commands from the physical environment, while the environment
output 𝑝𝐼𝑣 visualizes requested content on a display. The drivetrain controller (𝑠𝐷)
reads sensor measurements via 𝑝𝐷𝑚 , processes them to derive the vehicle speed,
and distributes this value via the internal output 𝑝𝐷𝑠 . The operation of the body
controller (𝑠𝐵), in turn, is based on the vehicle speed that it expects to read via
the internal input 𝑝𝐵𝑠 . To activate the central locking system when a threshold
speed is exceeded, for instance, it writes to the body network modeled as environ-
ment output 𝑝𝐵𝑚 . This leads to 𝑃 =

{
𝑝𝐼𝑐 , 𝑝

𝐼
𝑣, 𝑝

𝐷
𝑚, 𝑝

𝐷
𝑠 , 𝑝

𝐵
𝑠 , 𝑝

𝐵
𝑚

}
and the function

assignments given in Table 3.4. Finally, 𝜙𝐻 =
{
⟨𝑝𝐷𝑠 , 𝑝𝐵𝑠 ⟩

}
reflects the channel

that forwards calculated vehicle speeds to 𝑠𝐵 .

The combination of all model entities described in this section is the soft-
ware architecture, i.e., layer III of the full system model:

▶ Definition 3.21: Software architecture

The software architecture is a tuple ⟨𝜙𝑆 , 𝜙𝑃 , 𝜙𝐻 ⟩, where

1) 𝜙𝑆 is a SWC specification according to Definition 3.18,
2) 𝜙𝑃 is a port specification according to Definition 3.19, and
3) 𝜙𝐻 is a channel specification as described in Definition 3.20.

It implicitly contains the underlying runtime architecture.

Section 3.2: Formal system model | 67

Since the software architecture is the highest abstraction layer covered by
this work, Definition 3.21 concludes the formal system metamodel.

3.2.5 Auxiliary functions
Sets, functions, and relations directly embedded into the system model are
populated by users of the safety pattern. To be able to reason about a system
model, it is beneficial to complement them with auxiliary functions that query
certain details. Eleven such functions are defined below.

3.2.5.1 Execution platform lookup

The function ‘pf : 𝐶 → 𝑋 ’ maps instantiated platform components to their
execution platform. It is defined as follows:

pf (𝑐) =

𝑥 ∈ 𝑋 : 𝑐 ∈ procs(𝑥), 𝑐 ∈ 𝑈 ,
𝑥 ∈ 𝑋 : 𝑐 ∈ mems(𝑥), 𝑐 ∈ �̂� ,
𝑥 ∈ 𝑋 : 𝑐 ∈ devs(𝑥), 𝑐 ∈ �̂� .

Based on this, the function ‘pf ′ : 𝑅 → 𝑋 ’ performs a two-step lookup to return
the execution platform of a particular RTE:

pf ′ (𝑟) = pf (proc(𝑟)).

Moving one step further away from the hardware layer, the auxiliary func-
tion ‘pf ′′ : 𝐿 → 𝑋 ’ determines the platform of a given local path:

pf ′′ (ℓ) = pf ′ (𝑟 ∈ 𝑅 : 𝑟 ∈ endpoints(ℓ)).

3.2.5.2 SWC-related lookups

It can be useful to query all SWCs executed by a particular RTE. The auxiliary
function ‘swcs : 𝑅 → 𝒫(𝑆)’ achieves this as follows:

swcs(𝑟) = {𝑠 ∈ 𝑆 : rte(𝑠) = 𝑟 }.

To query SWC input and SWC output ports of a particular SWC, the func-
tions ‘inputs : 𝑆 → 𝒫(𝑃)’ and ‘outputs : 𝑆 → 𝒫(𝑃)’ are defined as follows:

inputs(𝑠) = {𝑝 ∈ 𝑃 : swc(𝑝) = 𝑠 ∧ dir(𝑝) = In},
outputs(𝑠) = {𝑝 ∈ 𝑃 : swc(𝑝) = 𝑠 ∧ dir(𝑝) = Out}.

68 | Chapter 3: Concept and system model

3.2.5.3 Port-related lookups

It can be necessary to determine the RTE managing a particular SWC port.
The function ‘rte′ : 𝑃 → 𝑅’ achieves this as follows:

rte′ (𝑝) = rte(swc(𝑝)).

Based on this, the function ‘sinks : (𝐿∪𝐺) → 𝒫(𝑃)’ returns all SWC ports
that may read values from a local or global path. It is defined as follows:

sinks(𝑦) = {𝑝′ ∈ 𝑃 : ⟨𝑝, 𝑝′⟩ ∈ 𝜙𝐻 ∧ endpoints(𝑦) = {rte′ (𝑝), rte′ (𝑝′)}}.

3.2.5.4 Allocation-related lookups

Since the memory region implemented by an instantiated memory module
is not a direct property of this instance, it takes several intermediate steps to
obtain this knowledge from the underlying platform type. To simplify this
process, we define the function ‘region : �̂� → 𝕄’ as follows:

region(�̂�) = mmap(𝑡) (𝑚),

where �̂� =𝑚𝑥 such that 𝑥 ∈ 𝑋 , 𝑡 = type(𝑥), and𝑚 ∈ 𝑀 (𝑡).
In total, three entities from the system model are able to allocate memory

regions: peripheral devices with a master port, RTEs, and local paths. For each
such entity, it can be necessary to query the instantiated memory modules
that implement these regions. The function ‘mems′ : (𝑍 ∪ 𝑅 ∪ 𝐿) → 𝒫(�̂�)’
achieves this as follows:

mems′ (𝑣) =

{�̂� ∈ mems(pf (𝑣)) : contains(�̂�,malloc(𝑣))}, 𝑣 ∈ 𝑍 ,
{�̂� ∈ mems(pf ′ (𝑣)) : contains(�̂�,malloc′ (𝑣))}, 𝑣 ∈ 𝑅,
{�̂� ∈ mems(pf ′′ (𝑣)) : contains(�̂�, impl(𝑣))}, 𝑣 ∈ 𝐿,

where contains(�̂�, 𝛼) = (∃𝜇 ∈ 𝛼 : 𝜇 ⊆ region(�̂�)), i.e., a predicate that evalu-
ates to true if and only if the instantiated memory module �̂� implements at
least one of the memory regions contained in 𝛼 .

For consistency, we also define ‘devs′ : (𝑅 ∪ 𝑆) → 𝒫(�̂�)’ to return the
peripheral devices that are allocated to an entity:

devs′ (𝑣) =
{
qalloc′ (𝑣), 𝑣 ∈ 𝑅,
qalloc′′ (𝑣), 𝑣 ∈ 𝑆 .

Section 3.3: Fault model for system elements | 69

RTE RTE

LP

Execution platform

DEV MEM PROC PROC

System model

𝑣1 𝑣2

𝑣3 𝑣4 · · ·

𝑣5 · · ·

CF graph

Figure 3.14: Mapping of selected entities from a generic system model to vertices of
the CF graph, i.e., to system elements according to Definition 3.2.

3.3 Fault model for system elements

To close this chapter, the CF determination concept from Section 3.1 is con-
nected to the formal system model from Section 3.2. The former is a procedure
to reason about the potential for CFs, while the latter is a descriptive frame-
work that allows users of the pattern to describe relevant system knowledge.
Therefore, entities from the formal system model do not necessarily have the
correct granularity to conduct the CF determination.

3.3.1 System element mapping
Mapping system model entities to system elements, which were introduced
in Definition 3.2, is the proposed approach to solve this mismatch. System
elements are the vertices of the CF graph. As shown in Figure 3.14, various
system model entities are directly represented as exactly one such vertex. In
fact, this applies to all entities except for the following:

SWCs (𝑠 ∈ 𝑆): To analyze how a SWC contributes to the CF potential, decou-
pling its implementation from its application-level behavior is beneficial.
Consider, for instance, that an erroneous algorithm is correctly translated
to C code, compiled, and executed. In this case, the SWC implementa-
tion is correct, but the SWC logic is faulty. In the CF graph, this will

70 | Chapter 3: Concept and system model

𝑠 ∈ 𝑆 ⇒

𝑝1 · · · 𝑝 𝑗

𝜆𝑠

𝑝 𝑗+1 · · · 𝑝 𝑗+𝑛

𝑠 SWC logic block

SWC implementation

𝑗 ∈ ℕ0
inputs

𝑛 ∈ ℕ0
outputs

Figure 3.15: Decomposition of a SWC, 𝑠 ∈ 𝑆 , into a system element reflecting its
implementation (𝑠) and another one describing realized application logic (𝜆𝑠).

later be represented by decomposing this 𝑠 ∈ 𝑆 into an implementation
vertex (𝑠) and a logic vertex (𝜆𝑠). Figure 3.15 visualizes this decompo-
sition. As shown in Chapter 4, it can even be beneficial to decompose
a SWC into 𝑘 ∈ ℕ+ logic vertices (𝜆𝑠1, . . . , 𝜆𝑠𝑘). Together, these two kinds
of vertices are the system elements derived from SWCs.

Channels (⟨𝑝, 𝑝′⟩ ∈ 𝜙𝐻): Channels will later be represented as edges instead
of CF graph vertices. Chapter 4 will show why this is a possible and
straightforward solution. Despite their presence in the formal system
model, they are therefore not system elements in the sense of Defini-
tion 3.2; this is consistent with the decision to represent channels as
tuples of SWC ports instead of independent objects.

Instantiated platform components (𝑐 ∈ 𝐶): Since the set of instantiated
platform components is automatically derived from the execution plat-
form library, typical systems will use only a small subset of them. An
instantiated platform component is a system element if and only if it is
in use. The rationale for this is given in Section 4.1.1.

There is another aspect of the system model whose mapping necessitates a
more detailed explanation: memory regions allocated to an RTE, a peripheral
device with master access, or a local path. In CF graphs, such memory regions
are represented by their respective owner:

• All memory regions 𝜇 ∈ malloc(𝑧), 𝑧 ∈ 𝑍 , are represented by 𝑧.
• All memory regions 𝜇 ∈ malloc′ (𝑟), 𝑟 ∈ 𝑅, are represented by 𝑟 .
• All memory regions 𝜇 ∈ impl(ℓ), ℓ ∈ 𝐿, are represented by ℓ .

While it would be possible to represent these memory regions using dedicated
vertices, the memory region and its owner would have to be connected using

Section 3.3: Fault model for system elements | 71

Fault susceptibilitya

System entity System element Systematic Random

𝑥 ∈ 𝑋 Execution platform 𝑥

𝑢 ∈ 𝑈 Processing unit 𝑢
�̂� ∈ �̂� Memory module �̂�
𝑞 ∈ �̂� Peripheral device 𝑞 b b

𝑏 ∈ 𝐵 Off-chip interconnect 𝑏

𝑟 ∈ 𝑅 Runtime environment 𝑟 b

ℓ ∈ 𝐿 Local path ℓ
𝑔 ∈ 𝐺 Global path 𝑔

𝑠 ∈ 𝑆 SWC implementation 𝑠
SWC logic block 𝜆𝑠1, . . . , 𝜆

𝑠
𝑘

𝑝 ∈ 𝑃 SWC port 𝑝 (/)c

a Legend: yes (⇒ subject to systematic/random faults); no (⇒ free of faults).
b Memory regions represented by this system element cannot become faulty. Faults of their
underlying memory module, �̂� ∈ �̂� , are captured by the corresponding system element.

c Only for environment inputs. A fault of a 𝑝 ∈ 𝑃 (with scope(𝑝) = Env and dir(𝑝) = In)
represents the possibility that 𝑝 reads erroneous data from the environment.

Table 3.5: Susceptibility of each system element type to systematic and random faults,
respectively. System elements with at least one ‘yes’ entry can become faulty.

bidirectional edges. Merging them into one system element is a practical
approach to reduce the complexity of CF graphs.

3.3.2 Fault susceptibility

As described above, it is assumed that system elements may fail during system
runtime. By definition, such a failure is the result of a fault manifestation.
With the 11 types of system elements defined, it is now possible to describe
the fault types that are covered by the scope of this work.

⊲ Remark 3.10: Here, the term ‘fault’ refers to only the root cause of a (potentially
cascading) failure. The fact that a failure can in turn present as a fault to
dependent system parts is not the topic of this section.

In general, the pattern is able to track failures that are caused by both
systematic and random faults. At the hardware architecture level, a design error
in the processing unit of an execution platform is an example of a systematic

72 | Chapter 3: Concept and system model

fault covered by the fault model. The well-known floating division bug of
early Pentium microprocessors [148] is a real-world example of such a case.
A single-event transients that manifests as a flipped bit in the register of a
processing unit is an example of a random fault that can cause the system
element to fail. As shown in Table 3.5, system elements at the hardware layer
are assumed to be susceptible to both systematic and random faults.

Higher abstraction levels are software-based and can, by definition, not
suffer from random faults. At the runtime architecture level, every RTE is
considered to be susceptible to systematic faults; it might fail to schedule
processes as required, for example. Local and global paths are inherently
fault-free, as again shown in Table 3.5. This is a consequence of the fact that
they are only ‘virtual’ elements realized by RTEs, memory modules, peripheral
devices, and off-chip interconnects. They can fail in response to a failure of
those elements, but they will never introduce a fault by themselves.

At the software architecture layer, SWC implementations and SWC logic
are both susceptible to systematic faults. A faulty binary implementing
a SWC might contain instructions that access memory regions not allocated
to the SWC, for instance. SWC ports are, in principle, virtual elements that do
not cause faults by themselves. Environment inputs are an exception, however:
if there is the possibility that they introduce erroneous inputs into the system,
this is interpreted as a systematic fault of the respective input port.

⊲ Remark 3.11: While environment inputs are concerned with the correctness of
the inputs they read from external sources, environment outputs play a pivotal
role in the safety assessment procedure. Chapter 5 will show that the safety
requirements of environment outputs are a key factor in determining whether a
specific CF potential is acceptable.

This concludes the fault model of the logical isolation pattern. In the next
chapter, the impact of failures that result from covered faults is investigated
and reflected in the CF graph creation algorithm.

Chapter 4

APU configuration and CF deter-
mination procedure

The procedure described in this chapter is a novel approach to restrict and
analyze the potential for CFs in multicore-based software systems. It forms
the basis of the safety assessment strategy described in Chapter 5, but an
application to other use cases is feasible. To emphasize its transferable nature,
safety considerations are mostly omitted from this chapter.

As described in Section 3.1.1, the integrated procedure operates on two
key inputs: a system model instance and a specification of isolation mea-
sures. Conceptually, the isolation measure specification is optional. Without
it, the derived CF graph will be as pessimistic as it can be for a given system
model. Specified isolation measures reduce this pessimism, for example by
running APU configuration procedures, and need to be reflected in gener-
ated CF graphs. This observation motivates the structure of this chapter:

• Section 4.1 introduces the reader to CF graphs.
• Afterward, the meaning and treatment of isolation measures is cov-
ered in Section 4.2. This includes a description of the procedure to
auto-generate APU configuration code.

• Section 4.3 closes this chapter with a thorough description of the CF
determination process.

In combination, the latter two sections describe a repeatable procedure for the
prevention and the analysis of CFs.

73

74 | Chapter 4: APU configuration and CF determination procedure

4.1 Introduction to CF graphs

Before the repeatable procedure is described, this section attempts to give
the reader an intuitive understanding of CF graphs and the way they are
influenced by isolation measures. As part of this, a graphical notation used to
visualize CF graphs is introduced.

4.1.1 Structure and visualization

According to Definition 3.5, a CF graph is a directed graph in which a ver-
tex 𝑣 ∈ 𝑉 represents a system element and the edge set 𝐸 contains a directed
path from 𝑣 ∈ 𝑉 to 𝑣 ′ ∈ 𝑉 if and only if CF potential leads from 𝑣 to 𝑣 ′.

4.1.1.1 CF graph vertices

As described in Section 3.3.1, the pattern considers eleven types of system
elements. They originate either directly from the system model or, in the case
of SWC logic blocks, are derived from it. The set of SWC logic blocks will be
formally introduced in Section 4.2. Until then, this set is simply referred to
as Λ𝑆 . Based on this notation, the vertex set 𝑉 can be described as follows:

𝑉 ⊆
(
𝑋 ∪

Instantiated platform components (𝐶)︷ ︸︸ ︷(
𝑈 ∪ �̂� ∪ �̂�

)
∪ 𝐵

)
︸ ︷︷ ︸

Hardware architecture

∪
(
𝑅 ∪ 𝐿 ∪𝐺

)
︸ ︷︷ ︸

Runtime architecture

∪
(
𝑆 ∪ Λ𝑆 ∪ 𝑃

)
︸ ︷︷ ︸

Software architecture

.

This relation defines the set from which CF graph vertices are drawn. To
prevent the CF graph from becoming unnecessarily complex, instantiated
platform components that remain unused are deliberately excluded from 𝑉 .
The precise definition of this ‘in use’ property is given in Section 4.3. For now,
the set of used components is simply referred to as

𝐶+ = {𝑐 ∈ 𝐶 : 𝑐 is in use}

Based on this, it is possible to give an equation for the vertex set:

𝑉 =
(
𝑋 ∪𝐶+ ∪ 𝐵

)︸ ︷︷ ︸
Hardware architecture

∪
(
𝑅 ∪ 𝐿 ∪𝐺

)︸ ︷︷ ︸
Runtime architecture

∪
(
𝑆 ∪ Λ𝑆 ∪ 𝑃

)︸ ︷︷ ︸
Software architecture

.

Section 4.1: Introduction to CF graphs | 75

Application vertex

Context vertex
Dependency-based edge

Activity-based edge

(a) Vertices and edges

R

W

Environment read

Environment write

Vertex cluster

Removed edge

Edge to other subgraph

(b) Visualization helpers

Figure 4.1: Graphical notation used for the visualization of CF graphs.

To give CF graphs a clear and comprehensible structure, it is beneficial to
partition 𝑉 into two disjoint sets: the application vertices (𝑉𝛼 = Λ𝑆 ∪ 𝑃) and
the context vertices (𝑉𝛽 = 𝑉 \𝑉𝛼). Semantically, these two subsets of 𝑉 differ
in the system aspects they capture:

Application vertices (𝑣 ∈ 𝑉𝛼): This vertex category represents either a port
or a SWC logic block. Combined with channels, these are exactly the
system elements that capture the nominal behavior of a system. This
behavior is fully determined by application properties, which gives this
class of CF graph vertices its name.

Context vertices (𝑣 ∈ 𝑉𝛽): The remaining nine types of system elements are
unrelated to the nominal behavior of the considered system. As described
in Section 3.2, for example, SWC implementation vertices (𝑠 ∈ 𝑆) are
only concerned with implementation-related failures of a SWC. Like
system elements from the runtime and the hardware architecture, these
aspects are interpreted as the context of an application, which is again
the aspect that gives this vertex class its name.

Figure 4.1a introduces the graphical notation used to visualize CF graphs.
According to this legend, vertices are represented as rectangles with a black
border. Different background colors indicate whether a vertex belongs to the
application or the context portion of the graph.

To reduce the visual complexity of a CF graph visualization, its vertices
are labeled using the textual naming scheme

⟨elem⟩(⟨identifier⟩),

where ⟨elem⟩ is a placeholder for the system element type and ⟨identifier⟩ is
a descriptor to identify the specific system element of given type. The value

76 | Chapter 4: APU configuration and CF determination procedure

𝜆𝑠 ∈ Λ𝑆 ⇒ logic 𝑝 ∈ 𝑃 ⇒ port

(a) Application vertices

𝑠 ∈ 𝑆 ⇒ swc 𝑟 ∈ 𝑅 ⇒ rte 𝑢 ∈ 𝑈 ⇒ proc
ℓ ∈ 𝐿 ⇒ path 𝑥 ∈ 𝑋 ⇒ platform �̂� ∈ �̂� ⇒ mem
𝑔 ∈ 𝐺 ⇒ path 𝑏 ∈ 𝐵 ⇒ bus 𝑞 ∈ �̂� ⇒ dev

(b) Context vertices

Figure 4.2: ⟨elem⟩ values used to label vertices of CF graphs.

cmd
(
𝑝𝐼𝑐
)

viz
(
𝑝𝐼𝑣
)infotainment (𝑠𝐼)

meas
(
𝑝𝐷𝑚

)
speed

(
𝑝𝐷𝑠

)drivetrain (𝑠𝐷)

speed
(
𝑝𝐵𝑠

)
msg

(
𝑝𝐵𝑚

)body (𝑠𝐵)

linux (𝑟𝐿) zephyr (𝑟𝑍)

Zynq UltraScale+ MPSoC instance: main (𝑥𝑍)

gem (𝑞GEM) a53 (𝑢A53) ddr (�̂�DDR) r5 (𝑢R5) can (𝑞CAN)

On-chip interconnect

Figure 4.3: Central car server system from Example 3.6, here repeated for convenience.

of ⟨identifier⟩ is not directly captured in the formal system model from Sec-
tion 3.2. The formal way of referring to a particular vertex is to use the
respective symbol. In this thesis, however, entities of the system model are
often associated with human-readable names, and these names are then used
to construct the ⟨identifier⟩. The mapping from each system element to the
associated ⟨elem⟩ expression is documented in Figure 4.2.

⊲ Example 4.1: The system in Figure 4.3, which is already known from Chap-
ter 3, implements infotainment, drivetrain control, and body control features on a
single execution platform (main). The functionality is partitioned in the sense
that the SWC for infotainment tasks (infotainment) does not communicate

Section 4.1: Introduction to CF graphs | 77

Application subgraph

Context subgraph platform(main)

mem(main.ddr) proc(main.a53)proc(main.r5)dev(main.can)

dev(main.gem) rte(linux)rte(zephyr)

swc(infotainment)swc(drivetrain)swc(body)

port(drivetrain.meas)

port(drivetrain.speed)

logic(drivetrain)

port(body.speed)

port(body.msg)

logic(body)

port(infotainment.cmd)

port(infotainment.viz)

logic(infotainment)

Figure 4.4: CF graph for the car server from Example 4.1. The dashed line separates
application vertices (above) from context vertices (below).

to the other SWCs in the system (drivetrain and body). The runtime-level
implementation of this functionality is also partitioned, i.e., the two groups
of SWCs are mapped to dedicated RTEs: a Linux distribution (linux) executed on
the Cortex-A53 processor (main.a53) and a Zephyr instance (zephyr) mapped
to the Cortex-R5 processor (main.r5). Each of the RTEs uses a DDR mem-
ory (main.ddr) region to store relevant code and data. To interact with the
environment, infotainment allocates the Ethernet controller (main.gem). To
communicate with the SWC, this controller in turn allocates a DDR memory
region (see Figure 3.12). Environment interactions of the other SWCs are managed
by the Zephyr instance, which allocates a CAN controller (main.can) to do so.

Under the assumption that no isolation measures are applied, the CF graph
for this system contains the 20 vertices shown in Figure 4.4.

78 | Chapter 4: APU configuration and CF determination procedure

⊲ Remark 4.1: Apart from manual fine-tuning of its layout, the CF graph in Fig-
ure 4.4 was automatically generated by the reference implementation of the
pattern, which will later be the topic of Chapter 6. The same tool was used to
auto-generate all following CF graph examples.

4.1.1.2 CF graph edges

Edges of the CF graph are added between the following vertex pairs:

𝐸 ⊆
(
𝑉𝛼 ×𝑉𝛼

)
∪
(
𝑉𝛽 ×𝑉𝛽

)
∪
(
𝑉𝛽 ×𝑉𝛼

)
.

Edges from an application vertex (𝑣𝛼 ∈ 𝑉𝛼) to a context vertex (𝑣𝛽 ∈ 𝑉𝛽) do
not occur, since failures cannot propagate into this direction. The following
general statement about CF graph edges is true:

⟨𝑣1, 𝑣2⟩ ∈ 𝐸 ⇒ CF potential leads from 𝑣1 to 𝑣2.

The converse of this statement does not necessarily apply, i.e., not every CF po-
tential is represented by a dedicated edge (cf. Section 4.3).

If there is an edge, however, it is assigned to one of two categories:
dependency-based edges (𝐸𝛿) and activity-based edges (𝐸𝜂). As in the ver-
tex case, 𝐸 is partitioned into these subsets, i.e., 𝐸𝛿 ∪ 𝐸𝜂 = 𝐸 and 𝐸𝛿 ∩ 𝐸𝜂 = ∅.
The subsets differ in the semantics of contained edges as follows:

Dependency-based edges (𝑒 ∈ 𝐸𝛿): A directed edge ⟨𝑣1, 𝑣2⟩ ∈ 𝐸𝛿 implies
that a failure of 𝑣1 can potentially trigger a CF of 𝑣2, because 𝑣2 is imple-
mented by or implemented using 𝑣1.

Activity-based edges (𝑒 ∈ 𝐸𝜂): A directed edge ⟨𝑣1, 𝑣2⟩ ∈ 𝐸𝜂 implies that
although ⟨𝑣1, 𝑣2⟩ ∉ 𝐸𝛿 , a failure of 𝑣1 can potentially trigger and perform
an activity that causes 𝑣2 to fail.

⊲ Example 4.2: If a given RTE uses a particular memory module to store its kernel
data, a dependency-based edge from this module to the RTE is added.

An activity-based edge occurs, for instance, if an RTE allocates a peripheral
device. Since the RTE has full control over this peripheral device, it can potentially
configure it in an erroneous manner.

In CF graphs, dependency-based edges are drawn with one arrow tip, while
activity-based edges have two arrow tips (cf. Figure 4.1a).

⊲ Example 4.1 (continued): Assuming that no isolation measures are specified,
the CF graph derived from Figure 4.3 contains |𝐸𝛿 | = 25 dependency-based
and |𝐸𝜂 | = 10 activity-based edges, all of which are shown in Figure 4.4.

Section 4.1: Introduction to CF graphs | 79

⊲ Remark 4.2: ⟨𝑣1, 𝑣2⟩ ∈ 𝐸 does not mean that 𝑣2 is inherently faulty. It only
means that in the considered context, 𝑣2 may deviate from its intended function-
ality. Suppose that a CAN controller, which is modeled as a peripheral device, is
free of systematic and random faults. If it is erroneously configured by the RTE,
it can still fail in the context of the overall system.

4.1.1.3 Visualization of CF graphs

CF graphs can be decomposed into two subgraphs: one induced by 𝑉𝛼 and
another induced by 𝑉𝛽 . Following the notation from Section 2.2, these graphs
will be referred to as 𝐺𝛾 [𝑉𝛼] and 𝐺𝛾 [𝑉𝛽], respectively. Edges that lead from
a context to an application vertex (𝑒 ∈ 𝑉𝛽 × 𝑉𝛼) are dropped during this
decomposition, i.e., they will not be included in any of the two subgraphs.

Induced subgraphs can be used to reason about CF potential in particular
portions of a system. 𝐺𝛾 [𝑉𝛼] captures the nominal behavior at the software
level, while 𝐺𝛾 [𝑉𝛽] is concerned with the context that applications run in.

This decomposition is particularly useful for visualization purposes. It can
reduce visual complexity and facilitate the human observer’s understanding
of important relationships between system elements.

Comprehensibility of CF graphs can further be supported by incorporating
additional knowledge into their visualization. The graphical notation used to
do so is introduced by the legend in Figure 4.1b on page 75. In the application
subgraph, for example, clustering logic and port vertices of the same SWC can
be beneficial and makes it possible to drop the SWC name from each individual
vertex. In the context subgraph, clustering vertices that originate from the
same model layer can simplify the interpretation of important relationships.
Vertices in these clusters will occasionally be referred to as the software context,
runtime context, and hardware context, respectively. Furthermore, to increase
comprehensibility, it can make sense to add labels to those vertices from
which outgoing context-to-application edges have been removed; by listing all
application vertices to which a context vertex is actually connected, dropped
edges (𝑒 ∈ 𝑉𝛽 ×𝑉𝛼) become visible again.

⊲ Example 4.1 (continued): The two subgraphs extracted from Figure 4.4 are
shown in Figure 4.5 and Figure 4.6, respectively.

The application subgraph in Figure 4.5, for instance, contains a directed
path from port(drivetrain.meas) to port(body.msg). This means that
data from the meas input of drivetrain is potentially able to interfere with
the msg output of the body component. The context subgraph in Figure 4.6
contains an activity-based edge from proc(main.a53) to platform(main).

80 | Chapter 4: APU configuration and CF determination procedure

infotainmentdrivetrain

body

port(meas)R

logic

port(msg) W

logic

port(cmd)R

port(viz) W

logic

port(speed)

port(speed)

Figure 4.5: Visually enriched 𝐺𝛾 [𝑉𝛼] for the car server example. Gray rectangles
represent SWCs, while R/W pins highlight environment interactions.

This edge describes the fact that a failure of proc(main.a53) will potentially
lead to a failure of the entire underlying main platform.

4.1.2 Illustrative examples of CF potential

In this section, selected portions of CF graphs will be discussed to convey a
better intuition about the semantics of vertices and edges in 𝐺𝛾 .

4.1.2.1 Central car server with partitioned SWCs

We first discuss the partitioned version of the central car server without isola-
tion measures, i.e., the scenario from Example 4.1. The corresponding context
subgraph,𝐺𝛾 [𝑉𝛽], is shown in Figure 4.6. Consider a failure of 𝑠𝐼 , which is rep-
resented by swc(infotainment). Since there is no logical isolation, the RTE
hosting 𝑠𝐼 remains unprotected from this failure. It must be assumed, for exam-
ple, that SWC code accesses a memory region that the RTE has not allocated to
the SWC. By doing so, the SWC can interfere with rte(linux) itself, which
is captured by a directed edge from 𝑠𝐼 to its RTE. CF potential of 𝑠𝐼 does not
end here, however. By interfering with the Linux system, 𝑠𝐼 gains consider-
able control of the underlying CPU, which is visualized as proc(main.a53).
This on-chip component has full access over the entire address space of
its MPSoC, i.e., platform(main). Among other things, this access can re-
sult in erroneous writes to the entire DDR memory, i.e., mem(main.ddr).

Section 4.1: Introduction to CF graphs | 81

platform(main)

proc(main.a53)proc(main.r5)dev(main.can) mem(main.ddr)dev(main.gem)

rte(linux)rte(zephyr)

swc(infotainment)

logic(infotainment)

swc(drivetrain)

logic(drivetrain)

swc(body)

logic(body)

Hardware context

Runtime context

Software context

Figure 4.6: Visually enriched 𝐺𝛾 [𝑉𝛽] for the car server example. Connections to
the application subgraph are reported using dashed arrows at the top edge; these
connections are visual extensions and not part of the subgraph itself.

Since the Zephyr instance stores code and data in this memory module, the
initial failure can propagate to rte(zephyr). From there, it will potentially
interfere with the implementation of the other two SWCs in the system, i.e.,
with swc(body) and swc(drivetrain).

Context-to-application edges connect these two vertices to their respective
logic block. In the case of swc(body), for instance, there is an outgoing edge
to logic(body). As it was shown in the application subgraph, Figure 4.5, the
actions taken by logic(body) influence port(body.msg), which represents
the safety-relevant body network.

4.1.2.2 APU configuration and process isolation

⊲ Example 4.3: Based on Example 4.1, consider the case that two isolation mea-
sures are specified: a request to generate APU configuration code for 𝑥𝑍 , and the
declaration that 𝑟𝑍 is a runtime with process isolation. This affects𝐺𝛾 [𝑉𝛽], which
now has the structure visualized in Figure 4.7. Compared with the original con-
text subgraph, five activity-based edges have been removed. The structure of the
application subgraph remains unchanged; this means that context-to-application
arrows at the upper edge of Figure 4.7 lead to the vertices in Figure 4.5, the
application subgraph that is still valid.

82 | Chapter 4: APU configuration and CF determination procedure

platform(main)

proc(main.a53)proc(main.r5)dev(main.can) mem(main.ddr)dev(main.gem)

rte(linux)rte(zephyr)

swc(infotainment)

logic(infotainment)

swc(drivetrain)

logic(drivetrain)

swc(body)

logic(body)

Figure 4.7: Visually enriched 𝐺𝛾 [𝑉𝛽] for the car server with two isolation measures.
APU configuration code for main (𝑥𝑍) and process isolation for zephyr (𝑟𝑍) are reflected
in the form of removed edges (each highlighted using a circle).

⊲ Remark 4.3: As documented in Figure 4.1b, edges removed due to an isolation
measure are highlighted using a white circle (instead of the arrow tip).

Considering the CF graph in Figure 4.7, we can now repeat the procedure
from above and ask if a failure of the infotainment component will still prop-
agate to the body network. This is not the case, since there is no longer a
directed path from swc(infotainment) to port(body.msg). From an imple-
mentation point of view, this improvement is due to the generated APU con-
figuration code, which prevents proc(main.a53) from accessing the address
space of platform(main) in an uncontrolled manner. Analogously, the pro-
cess isolation of rte(zephyr) prevents swc(body) and swc(drivetrain)
from interfering with the RTE itself.

4.1.2.3 Introduction of a seat adjustment feature

⊲ Example 4.4: Starting with the protected car server from Example 4.3, the
system model is now refined to reflect Figure 4.8. This updated use case comprises
a remote-controlled seat adjustment feature. To implement it, 𝑠𝐼 is extended with
an internal output 𝑝𝐼𝑧 ∈ 𝑃 , while 𝑠𝐵 is extended with an internal input 𝑝𝐵𝑧 ∈ 𝑃 .
When the vehicle is approached by a known driver, 𝑠𝐼 receives a command to adjust
the seat accordingly. Using its 𝑝𝐼𝑧 output, it communicates the desired seat position

Section 4.1: Introduction to CF graphs | 83

cmd
(
𝑝𝐼𝑐
) viz

(
𝑝𝐼𝑣
)

seatpos
(
𝑝𝐼𝑧
)

infotainment (𝑠𝐼)

meas
(
𝑝𝐷𝑚

)
speed

(
𝑝𝐷𝑠

)drivetrain (𝑠𝐷)
seatpos

(
𝑝𝐵𝑧

)
speed

(
𝑝𝐵𝑠

) msg
(
𝑝𝐵𝑚

)
body (𝑠𝐵)

linux (𝑟𝐿) zephyr (𝑟𝑍)

ℓ𝐿↔𝑍

Zynq UltraScale+ MPSoC instance: main (𝑥𝑍)

gem (𝑞GEM) a53 (𝑢A53) ddr (�̂�DDR) r5 (𝑢R5) can (𝑞CAN)

On-chip interconnect

Figure 4.8: Central car server example with a remote-controlled seat adjustment feature.
At the application level, there is now data flow from 𝑠𝐼 to 𝑠𝐵 .

to the 𝑝𝐵𝑧 input of the body controller, i.e., there is now a channel ⟨𝑝𝐼𝑧, 𝑝𝐵𝑧 ⟩ ∈ 𝜙𝐻 .
Since this is an inter-RTE channel, it is now also necessary to introduce a local
path between 𝑟𝐿 and 𝑟𝑍 . As visualized in Figure 4.8, this local path (ℓ𝐿↔𝑍 ∈ 𝐿) is
mapped to a DDR memory region.

The context subgraph for this scenario is visualized in Figure 4.9. Com-
pared with the graph in Figure 4.7, it now comprises a path(linux, zephyr)
vertex representing the memory region that rte(zephyr) and rte(linux)
use to communicate. Since the channel from port(infotainment.seatpos)
to port(body.seatpos) is implemented via this channel, the path vertex has
an outgoing edge to port(body.seatpos) in the application subgraph.

With the introduction of the new seat adjustment feature, the application
subgraph is affected as well. Under the assumption that no further isolation
measures are specified, it is visualized in Figure 4.10.

The application subgraph in Figure 4.10 shows a key property of CF graphs:
without further knowledge about the internals of SWC logic, it must be as-

84 | Chapter 4: APU configuration and CF determination procedure

platform(main)

proc(main.a53)proc(main.r5)dev(main.can)

mem(main.ddr)dev(main.gem)

rte(linux)rte(zephyr)

path(linux, zephyr)

port(body.seatpos)swc(infotainment)

logic(infotainment)

swc(drivetrain)

logic(drivetrain)

swc(body)

logic(body)

Figure 4.9: Visually enriched 𝐺𝛾 [𝑉𝛽] for the extended car server use case.

sumed that a failure of any SWC input causes all SWC outputs to fail. In
the specific example, this means that failures of port(infotainment.cmd)
can also propagate to port(body.msg). Considering the possibly untrusted
nature of infotainment commands and the safety-relevant impact of body net-
work messages, this CF potential can develop into an issue during the safety
assessment performed at a later time.

4.1.2.4 Application-level barriers

The following example assumes that the CF potential identified above is, in
fact, a safety issue. Therefore, it introduces an application-level barrier.

⊲ Example 4.5: A safety assessment revealed that the remote-controlled seat
adjustment can interfere with the driver’s ability to operate the vehicle. Therefore,
the feature must be disabled while the vehicle is in motion. The logic of 𝑠𝐵 is
extended to perform this check, and its nominal behavior is defined as follows:

• If speed > 0, written msg outputs are independent of seatpos inputs.
• Otherwise, msg outputs may trigger spurious seat adjustments.

Section 4.1: Introduction to CF graphs | 85

infotainmentdrivetrain

body

port(cmd)R

port(viz) Wport(seatpos)

logic

port(meas)R

port(speed)

logic

port(seatpos)port(speed)

port(msg) W

logic

Figure 4.10: Visually enriched 𝐺𝛾 [𝑉𝛼] for the extended car server use case.

infotainmentdrivetrain

body

port(cmd)R

port(viz) Wport(seatpos)

logic

port(meas)R

port(speed)

logic

port(seatpos)port(speed)

port(msg) W

logic

Figure 4.11: Visually enriched 𝐺𝛾 [𝑉𝛼] for the extended car server use case with an
application-level barrier between port(body.seatpos) and logic(body).

Including the potential for spurious seat adjustments into the logic block specifi-
cation allows future safety assessments to consider this aspect.

It also allows us to state that a failure of port(body.seatpos) does no
longer propagate to logic(body): if speed > 0, erroneous seatpos inputs are
ignored and will therefore not lead to a failure of logic(body); if speed = 0,

86 | Chapter 4: APU configuration and CF determination procedure

erroneous seatpos inputs may trigger spurious seat adjustments, but these are
covered in the specification of logic(body) and therefore not a failure.

The updated application subgraph is shown in Figure 4.11. It captures the
applied modifications as a removed incoming edge to logic(body).

With the application-level barrier added to Figure 4.11, the CF potential
from port(infotainment.cmd) to port(body.msg) is eliminated. This im-
provement comes at a cost, however: erroneous seat adjustments in certain sit-
uations are now a part of the body controller’s specified behavior. In the safety
assessment step, it will have to be shown that this circumstance does not
violate a safety requirement (cf. Chapter 5).

4.2 Measures for logical isolation

Complementing the system model, a possibly empty set of isolation measures
is the second input of the APU generation and CF determination step.

Isolation measures are means to limit logical interaction possibilities in
the embedded software system. As described in Figure 3.3 on page 42, this
work considers three types of isolation measures: APU configurations, process
isolation, and application-level barriers. APU configuration is requested from
the pattern, while the other two types are communicated to the pattern.

4.2.1 Isolation measure specification

Each isolation measure type is associated with one class of system elements:

• APU configurations are requested for execution platforms (𝑥 ∈ 𝑋).
• Process isolation is a binary attribute of deployed RTEs (𝑟 ∈ 𝑅).
• Application-level barriers are associated with logic blocks (𝜆 ∈ Λ𝑆).

Recall from Section 4.1 that Λ𝑆 is the set of all SWC logic blocks. It contains
at least one logic block per SWC, but a more fine-grained specification of
application behavior is possible through the logic decomposition concept.

Logic decomposition is an optional step and only relevant in combination
with application-level barriers. If it is used, it becomes an implicit part of the
isolation measures specified as part of the pattern input.

Section 4.2: Measures for logical isolation | 87

port(in2)port(in1)

port(out2)port(out1)

logic(part2)logic(part1)

Figure 4.12: Application subgraph for a single SWC with two partial logic blocks, each
associated with an input barrier (from Ω𝐼) and an output barrier (from Ω𝑂).

From the pattern user’s perspective, logic decomposition is performed by
populating the following tuple with values:

▶ Definition 4.1: Logic decomposition

A tuple ⟨Λ̃𝑆 , parent⟩ is the logic decomposition of a given software ar-
chitecture. It splits the logic of selected SWCs into different parts, each
referred to as partial logic block, and it consists of two components:

1) Λ̃𝑆 ⊆ Λ𝑆 is a finite set of partial logic blocks.
2) parent : Λ̃𝑆 → 𝑆 maps each partial logic block to its SWC.

⊲ Example 4.6: Logic decomposition makes it possible to model application-level
behavior such as the one visualized in Figure 4.12. Here, the logic of a SWC was
decomposed into two partial logic blocks, logic(part1) and logic(part2).
Each of them propagates failures from only one of the inputs and to only one of
the outputs. Without logic decomposition, it would not be possible to model two
separate CF potential paths within a single SWC.

As described above, populating this tuple is optional. If a particular 𝑠 ∈ 𝑆 is
not associated with partial logic blocks (i.e., if � 𝜆 ∈ Λ̃𝑆 : parent(𝜆) = 𝑠), then
a logic block 𝜆𝑠 ∈ Λ𝑆 is automatically introduced for 𝑠 . This logic block is by
definition not a partial one, i.e., 𝜆𝑠 ∉ Λ̃𝑆 holds.

The auxiliary function ‘partials : 𝑆 → Λ̃𝑆 ’ allows us to refer to the partial
logic blocks of the SWC passed as its argument:

partials(𝑠) = {𝜆 ∈ Λ̃𝑆 : parent(𝜆) = 𝑠}.

88 | Chapter 4: APU configuration and CF determination procedure

The function ‘logic : 𝑆 → Λ𝑆 ’ returns all logic blocks of a SWC:

logic(𝑠) =
{
partials(𝑠), | partials(𝑠) | > 0,
{𝜆𝑠 }, otherwise.

Based on these functions, it is now possible to express Λ𝑆 as

Λ𝑆 =
⋃
𝑠∈𝑆

logic(𝑠)

and define the isolation measure specification itself as follows:

▶ Definition 4.2: Isolation measure specification

The isolation measure specification is a tuple

⟨Ω𝑋 , Ω𝑅, Ω𝐼 , Ω𝑂 ⟩

with the following components:

1) Ω𝑋 ⊆ 𝑋 is a set of APU configuration requests.
2) Ω𝑅 ⊆ 𝑅 is the set of RTEs implementing process isolation.
3) Ω𝐼 ⊆ {𝑝 ∈ 𝑃 : dir(𝑝) = In}×Λ𝑆 is a set of application-level barriers

between an input port and a logic block of the same SWC.
4) Ω𝑂 ⊆ Λ𝑆 × {𝑝 ∈ 𝑃 : dir(𝑝) = Out} is a set of application-level

barriers between a logic block an output port of the same SWC.
For every output port, there must remain at least one logic block
without an application-level barrier in between.

The pattern will generate APU configuration code for each 𝑥 ∈ Ω𝑋 . The
semantics of Ω𝑅 , Ω𝐼 , and Ω𝑂 are described in Section 4.2.3. Roughly speak-
ing, 𝑟 ∈ Ω𝑅 means that 𝑟 protects itself from failures of its SWCs, elements
of Ω𝐼 suppress CFs from an input port to a logic block, and elements of Ω𝑂

suppress CFs from a logic block to an output port.

⊲ Example 4.5 (continued): In the final version of the extended car server example
from above, three isolation measures were applied: one requesting APU configura-
tion code for platform(main), one declaring process isolation for rte(zephyr),
and an input barrier between port(body.seatpos) and logic(body). It was
not necessary to decompose the logic of any SWC.

Section 4.2: Measures for logical isolation | 89

Logical isolation
pattern

Platform-independent
root algorithm

Platform-specific
configuration

gen

GenerateConfigs

NewBaseConfig
GrantMemAccess

GrantDevAccess

WriteConfig

«create»

Figure 4.13: Interfaces between the pattern, the platform-independent root algorithm
for logical isolation, and a platform-specific configuration.

Using the introducedmodeling framework, the fact that no logic decomposition
was applied is expressed by choosing Λ̃𝑆 = ∅ and parent = ∅. Setting

Ω𝑋 = {𝑥𝑍 }, Ω𝑅 = {𝑟𝑍 }, Ω𝐼 =
{
⟨𝑝𝐵𝑧 , 𝜆𝑠𝐵 ⟩

}
, and Ω𝑂 = ∅

formalizes the described isolation measure specification.

4.2.2 APU configuration for MPSoCs
To initiate an automatic APU configuration, the logical isolation pattern trig-
gers a platform-independent root algorithm (cf. Figure 4.13).

This algorithm considers every APU configuration request (𝑥 ∈ Ω𝑋) sepa-
rately. For each such request, it consults the ‘gen’ collection of the pattern’s
platform library to obtain a mutable, platform-specific configuration object.
To do so, it invokes the following function with 𝑡 = type(𝑥):

NewBaseConfig(𝑡 ∈ 𝑇) : config

The configuration object returned by this function (config) is expected to isolate
all instantiated platform components from each other. However, accesses that
involve internal on-chip components (i.e., components not exposed via the
execution platform library) do not necessarily have to be prohibited. In fact, it
is possible and often necessary to initialize the object with reasonable default
permissions. Examples of such permissions include:

1) Accesses for internal power management functions.
2) External debug access to all on-chip components.

90 | Chapter 4: APU configuration and CF determination procedure

Among other things, they account for the fact that a bare minimum of transac-
tions is generally required to keep a platform operational. The exact nature
of these permissions is a property determined by the respective generator. At
this stage, the configuration object is referred to as a base configuration. An
example of a practical base configuration is given in Section 6.2.4.

The configuration object returned for each 𝑥 ∈ Ω𝑋 is evolved by repeatedly
consulting the system model and granting required memory and peripheral de-
vice access permissions. This is achieved using two procedures of the mutable
configuration object. The first procedure has the following interface:

GrantMemAccess(config, 𝑐 ∈ (𝑈 ∪ 𝑍), 𝜇 ∈ 𝕄)

Its first parameter (config) references the mutable configuration object to
modify. The second parameter captures the instantiated platform compo-
nent (from𝑈 ∪ 𝑍) whose access permissions shall be extended. The third and
final parameter references the memory region (from 𝕄) to grant read/write
access to. Analogously, the second procedure has the following interface:

GrantDevAccess(config, 𝑢 ∈ 𝑈 , 𝑞 ∈ �̂�)

Here, the first parameter (config) is again a reference to the mutable configura-
tion object. The two final parameters describe a processing unit (from 𝑈) and
the peripheral device (from �̂�) that 𝑢 shall obtain read/write access to.

To translate its state into APU configuration code, a platform-specific
configuration object finally provides the following interface:

WriteConfig(config)

The output artifacts generated by this procedure are platform-specific; they
are entirely under the control of the platform-specific generator.

4.2.2.1 Platform-independent root algorithm

The platform-independent root algorithm is now described in more detail. As
explained above, it handles all APU configuration requests:

Algorithm 4.1: Entry point into the APU configuration process

1 procedure GenerateConfigs()
2 // Process every APU configuration request:
3 for each 𝑥 ∈ Ω𝑋 do
4 GenerateConfig(x)

Section 4.2: Measures for logical isolation | 91

From line 4, it executes the following procedure for each 𝑥 ∈ Ω𝑋 :

Algorithm 4.2: Logical isolation for an execution platform

1 procedure GenerateConfig(𝑥 ∈ 𝑋)
2 // Isolate instantiated platform components from each other:
3 config ← NewBaseConfig(type(𝑥))
4 // Grant required access permissions:
5 for each 𝑧 ∈ 𝑍 do
6 HandleMasterDevice(config, 𝑧)
7 for each 𝑟 ∈ 𝑅 do
8 HandleRte(config, 𝑟)
9 for each ℓ ∈ 𝐿 do
10 HandleLocalPath(config, ℓ)
11 for each 𝑠 ∈ 𝑆 do
12 HandleSwc(config, 𝑠)
13 // Generate and return APU configuration code:
14 WriteConfig(config)

⊲ Remark 4.4: In practice, a call to NewBaseConfig can fail with an error. This
is the case if ‘gen’ does not contain a platform-specific generator for the respective
execution platform type. For the sake of brevity, this alternative control flow path
is not explicitly shown in the algorithm.

In an incremental procedure, Algorithm 4.2 extends the mutable configura-
tion object (config) to ensure that all access permissions required to implement
individual parts of the system model are granted.

Starting at layer I of the system model, it first ensures that peripheral
devices equipped with a master port (𝑧 ∈ 𝑍) have full access to the memory
regions allocated to them. This is achieved by the following procedure, which
is called in line 6 of Algorithm 4.2:

Algorithm 4.3: Handling of allocations to master devices

1 procedure HandleMasterDevice(config, 𝑧 ∈ 𝑍)
2 // Handle memory region allocations:
3 for each 𝜇 ∈ malloc(𝑧) do
4 GrantMemAccess(config, 𝑧, 𝜇)

⊲ Remark 4.5: The fact that a specific peripheral device might not actually need
full (i.e., read and write) memory region access is not captured by any pattern
input. It can therefore not be considered by the APU configuration procedure.

92 | Chapter 4: APU configuration and CF determination procedure

The procedure invoked in line 8 of Algorithm 4.2 deals with instantiated
platform components allocated to an RTE:

Algorithm 4.4: Handling of allocations to an RTE

1 procedure HandleRte(config, 𝑟 ∈ 𝑅)
2 // Handle memory region allocations:
3 for each 𝜇 ∈ malloc′ (𝑟) do
4 GrantMemAccess(config, proc(𝑟), 𝜇)
5 // Handle peripheral device allocations:
6 for each 𝑞 ∈ qalloc′ (𝑟) do
7 GrantDevAccess(config, proc(𝑟), 𝑞)
8 if 𝑞 ∈ 𝑍 then
9 // Handle indirect read/write permissions:
10 for each 𝜇 ∈ malloc(𝑞) do
11 GrantMemAccess(config, proc(𝑟), 𝜇)
12 for each 𝜇 ∈ malloc′ (𝑟) do
13 GrantMemAccess(config, 𝑞, 𝜇)

Note that for peripheral devices with a master port (𝑞 ∈ 𝑍), the procedure also
implements the two access permission rules from Section 3.2.3, i.e.:

• RTEs have access to memory owned by their peripheral devices.
• Peripheral devices have access to memory owned by their RTE.

⊲ Remark 4.6: At first glance, the second rule may seem unnecessarily lenient.
However, it solves the practical challenge that OS kernels can allocate buffers to
communicate with their peripheral devices anywhere in their memory. These
locations may be dynamic or entirely unknown at design time.

Afterward, line 10 of Algorithm 4.2 considers memory regions allocated
to local paths. This is achieved by invoking the HandleLocalPath helper,
which identifies the endpoints of a given local path and grants the underlying
processing unit access to all owned memory regions:

Algorithm 4.5: Handling of memory regions for local paths

1 procedure HandleLocalPath(config, ℓ ∈ 𝐿)
2 // Grant memory region access to the processing unit of each endpoint:
3 for each 𝑟 ∈ endpoints(ℓ) do
4 for each 𝜇 ∈ impl(ℓ) do
5 GrantMemAccess(config, proc(𝑟), 𝜇)

Section 4.2: Measures for logical isolation | 93

In line 12 of Algorithm 4.2, peripherals allocated to SWCs are translated to
access permissions. This is achieved by the HandleSwc helper:

Algorithm 4.6: Handling of allocations to a SWC

1 procedure HandleSwc(config, 𝑠 ∈ 𝑆)
2 // Handle peripheral device allocations:
3 for each 𝑞 ∈ qalloc′′ (𝑠) do
4 GrantDevAccess(config, proc(rte(𝑠)), 𝑞)
5 if 𝑞 ∈ 𝑍 then
6 // Handle indirect read/write permissions:
7 for each 𝜇 ∈ malloc(𝑞) do
8 GrantMemAccess(config, proc(rte(𝑠)), 𝜇)

After all these steps, config is in its final state. To finalize the configuration
process, line 14 of Algorithm 4.2 calls theWriteConfig interface. Doing so
requests the platform-specific procedure from the ‘gen’ collection to generate
executable APU configuration code from this state.

4.2.2.2 Code generator for the Zynq UltraScale+ MPSoC

To extend the ‘gen’ collection for a particular execution platform type, the
following four functions/procedures need to be implemented for this type:

1) NewBaseConfig,
2) GrantMemAccess,
3) GrantDevAccess, and
4) WriteConfig.

Considering the Zynq UltraScale+ MPSoC as a representative example, this sec-
tion describes one possible implementation of them. Note that it (also) serves as
the theoretical foundation of Section 6.2.4, which covers the zynqmp generator
developed as part of this thesis.

Zynq UltraScale+ MPSoCs are equipped with nine APUs: one XPPU and
eight XMPUs. For clarity, XMPUs are suffixed with what they protect:

• XMPU/OCM: This unit monitors and controls accesses to the OCM,
which is located in the LPD of the device.

• XMPU/DDR: Six of these units cover accesses to DDR memory, each
responsible for accesses from a different inbound path.

• XMPU/FPD: This unit protects peripheral devices in the FPD of the
platform, such as SLCRs or the GPU.

94 | Chapter 4: APU configuration and CF determination procedure

XPPU

CAN

SLCRs

NAND

GEM

DMA

Cortex-R5

XMPU

OCM DDR

XMPU XMPU

TBU

Cortex-A53

XMPU

SLCRs

GPU

TBU

LPD FPD

Figure 4.14: Selected components of the Zynq UltraScale+ MPSoC, including the XPPU
and four of eight XMPUs. Schematic repeated from Figure 2.7 for convenience.

Figure 4.14 shows how the XPPU and four of the XMPUs are integrated
into the platform itself. To restrict its complexity, the figure omits four of
the XMPU/DDR instances. This is possible because, for the purposes of this
work, all XMPU/DDR instances are treated equally.

From a configuration point of view, XPPUs and XMPUs constitute a se-
quence of memory-mapped registers.

XMPU configuration The address space of an XMPU contains global con-
figuration and regional control registers. The regional control registers are
organized into 16 blocks of 128 bit each. For the purposes of this work, each
such block is referred to as a ‘set’ of regional control registers. The fields of a
regional control register set are explained in Figure 4.15 and Figure 4.16, respec-
tively. By populating any of the 16 sets, it is possible to specify precise access
permissions of one or more masters, given that targeted slaves are actually
protected by the respective XMPU. The entire XMPU can further be operated
in a lenient or a strict mode; this mode determines how accesses not covered
by a regional control register shall be handled. By prohibiting them, the XMPU
operates in a whitelist fashion.

Section 4.2: Measures for logical isolation | 95

01234916252731

reserved START

reserved END

reserved MASK reserved ID

reserved C N W R E

Figure 4.15: One of 16 regional control register sets in the single XMPU/FPD and all
six XMPU/DDR instances. In addition to the slave address range (START– END) and
master configuration fields (ID and MASK), it contains an enable (E), a read permission (R),
a write permission (W) and two TrustZone (N/C) bits.

01234916192531

reserved START

reserved END

reserved MASK reserved ID

reserved C N W R E

Figure 4.16: One of 16 regional control register sets in the XMPU/OCM instance. Except
for a reduced START/END width, its structure is identical to that from Figure 4.15.

XPPU structure Although it pursues a similar objective, the XPPU has a
different internal structure than the XMPU. The main difference is that the
addresses to protect are predetermined and cannot be arbitrarily configured
via START and END fields. With this, the XPPU is tailored to its main purpose:
the protection of peripheral devices, whose address space must often be treated
as an atomic block. Note, however, that some memory modules of the platform
are protected by the XPPU rather than the XMPU. Most importantly, this
applies to all TCM of the Cortex-R5.

XPPU configuration The configuration of an XPPU is determined by global
control registers, 20 master profile registers, and 401 aperture configuration reg-
isters. The global control registers allow clients to enable and disable the XPPU
protection. Figure 4.17 shows the fields of a master profile register. Each such

0916253031

P R reserved MASK reserved ID

Figure 4.17: One of 20 master profile registers in the XPPU. The profile itself consists
of two master configuration fields (ID and MASK) along with a read-only bit (R). The
most significant bit (P) acts as an optional parity bit.

96 | Chapter 4: APU configuration and CF determination procedure

019272831

P T reserved PERM

Figure 4.18: One of 401 aperture configuration registers in the XPPU. It specifies whether
each of the 20 configured masters has access to the covered peripheral device (PERM).
In addition, it comprises a TrustZone bit (T) and a parity field (P).

register can be used to represent one or more master components, and it en-
codes whether those master components are read-only masters. Based on this
list, the 401 aperture configuration registers specify the access permissions of
each master profile. Figure 4.18 shows the fields of one aperture configuration
register; by setting its PERM field, clients specify which of the 20 master profiles
shall have access to the respective slave.

Usage strategy To design a platform-specific generator, it is first necessary
to decide how the available APUs shall be used. A possible usage strategy for
the Zynq UltraScale+ MPSoC is as follows:

1) Use all APUs in a whitelist fashion, i.e., configure them to reject transac-
tions by default. Therefore, initialize the PERM field of aperture configu-
ration registers to zero and operate XMPUs in their strict mode.

2) Use each regional control register set (of an XMPU) and each master
profile register (of the XPPU) to refer to no more than one bus master.
Therefore, configure their MASK fields as narrowly as possible.

3) Grant only full (i.e., read and write) access permissions. Therefore,
set both the R and the W bit when populating a set of regional control
registers, and do not set the R bit of master profile registers.

4) Do not apply any TrustZone restrictions, i.e., keep generated APU con-
figurations orthogonal to the TrustZone mechanism.

5) Generate exactly one XMPU/DDR configuration and mirror it to all
six XMPU/DDR instances.

This strategy is the one that will be explained in the remainder of this section.
It is also the strategy that was used in the reference implementation of the
logical isolation pattern and is therefore covered further in Section 6.2.4.

Base configuration A possible approach to implement NewBaseConfig
is to generate a data structure hosting four mutable configurations: one for
the six XMPU/DDRs, and one dedicated configuration for each of the three
other APUs. Then, suitable default permissions need to be applied, and the

Section 4.2: Measures for logical isolation | 97

NewBaseConfig GrantMemAccess GrantDevAccess

AddXppuEntry

AddXmpuDevEntry

AddXmpuMemEntry

AddWildcardEntry

XMPU/DDR
XMPU/OCM
XMPU/FPD

XPPU

Platform-specific
configurationLegend: procedure call, config extension

Figure 4.19: Permission granting procedures of a platform-specific generator for
the Zynq UltraScale+ MPSoC. Solid arrows indicate how they are invoked.

data structure is returned as the mutable ‘config’ object. This object can then
be refined by the platform-independent root algorithm.

Permission granting procedures APU access permissions are granted
by NewBaseConfig, GrantMemAccess, and GrantDevAccess. Each of
them needs to be able to influence all configurations of the mutable con-
figuration object.1 Therefore, it is reasonable to introduce procedures to extend
the mutable configuration object. These procedures (and how they are in-
voked) are visualized in Figure 4.19. All of them operate on symbolic names (𝕊)
to identify a master component, a slave component, or both.

AddXppuEntry(config, master ∈ 𝕊, aperture ∈ 𝕊)

extends the current XPPU configuration with permissions that grant ‘master’
full access to ‘aperture’. The procedure

AddXmpuMemEntry(config, target ∈ {DDR,OCM}, master ∈ 𝕊, 𝜇 ∈ 𝕄)

adds memory access permissions to either XMPU/DDR or XMPU/OCM.Which
of these XMPUs to configure is determined by the ‘target’ parameter. By

1For example, if the GrantMemAccess procedure is used to grant TCM access to a master,
this needs to be reflected in the XPPU instead of an XMPU.

98 | Chapter 4: APU configuration and CF determination procedure

adding a suitable configuration entry, the procedure grants ‘master’ full access
to memory region 𝜇. Similarly, the procedure

AddXmpuDevEntry(config, master ∈ 𝕊, slave ∈ 𝕊)

extends the XMPU/FPD configuration to grant ‘master’ full access to the ‘slave’
module. Finally, the procedure

AddWildcardEntry(config, master ∈ 𝕊)

is a helper that grants ‘master’ full access to all possible slaves, including all
memory regions. It extends the configuration of all APUs, and its usage is
limited to the NewBaseConfig function.

Memory access handler Components that the system model treats as mem-
ory modules (�̂� ∈ �̂�) are protected by an XMPU/DDR, by the XMPU/OCM,
or the XPPU. This is used in the following sample procedure:

Algorithm 4.7: Memory access handler for Zynq UltraScale+ MPSoCs

1 procedure GrantMemAccess(config, 𝑐 ∈ (𝑈 ∪ 𝑍), 𝜇 ∈ 𝕄)
2 𝑥 ← pf (𝑐)
3 𝑡 ← type(𝑥)
4 // Find the underlying master component:
5 if 𝑐 ∈ 𝑈 then
6 master ← (symbolic name of 𝑢 ∈ 𝑈 (𝑡) with 𝑢𝑥 = 𝑐)
7 else if 𝑐 ∈ 𝑍 then
8 master ← (symbolic name of 𝑧 ∈ 𝑍 (𝑡) with 𝑧𝑥 = 𝑐)
9 // Find the underlying memory module:
10 memory ← (𝑚 ∈ 𝑀 (𝑡) with 𝜇 ⊆ mmap(𝑡) (𝑚))
11 // Using the corresponding protection mechanism, add permissions:
12 if memory =𝑚DDR then
13 AddXmpuMemEntry(config, DDR, master, 𝜇)
14 else if memory =𝑚OCM then
15 AddXmpuMemEntry(config, OCM, master, 𝜇)
16 else if memory =𝑚TCM then
17 for each aperture ∈ (XPPU apertures covering 𝜇) do
18 AddXppuEntry(config, master, aperture)

The procedure first derives the symbolic name that identifies the master
to grant access to (line 6 or line 8), and it determines the generic memory
module that the supplied memory region 𝜇 is part of (in line 10). Recall that

Section 4.2: Measures for logical isolation | 99

elements from 𝑈 (𝑡), 𝑄 (𝑡), and 𝑀 (𝑡) describe generic platform components;
in contrast to elements from 𝑈 , �̂� , and �̂� , they do not designate specific
component instances. With this knowledge, Algorithm 4.7 calls the respective
permission granting procedure(s). Note that each of these calls will fail if the
remaining APU configuration resources are insufficient: AddXmpuMemEntry
fails if the 16 regional control register sets of the relevant XMPU are already
occupied; AddXppuEntry fails if all 20 master profile registers are occupied
and it would be necessary to introduce an additional one.

Device access handler Zynq UltraScale+ MPSoC components that the sys-
tem model treats as peripheral device (𝑞 ∈ �̂�) are either protected by the XPPU
or the XMPU/FPD instance. A valid implementation of GrantDevAccess
needs to take this detail into account, for example as follows:

Algorithm 4.8: Device access handler for Zynq UltraScale+ MPSoCs

1 procedure GrantDevAccess(config, 𝑢 ∈ 𝑈 , 𝑞 ∈ �̂�)
2 𝑥 ← pf (𝑢)
3 𝑡 ← type(𝑥)
4 // Identify the underlying component:
5 master ← (symbolic name of 𝑢 ∈ 𝑈 (𝑡) with 𝑢𝑥 = 𝑢)
6 slave← (symbolic name of 𝑞 ∈ 𝑄 (𝑡) with 𝑞𝑥 = 𝑞)
7 // Using the corresponding protection mechanism, add permissions:
8 if slave is protected by XPPU then
9 AddXppuEntry(config, master, slave)
10 else if slave is protected by XMPU/FPD then
11 AddXmpuDevEntry(config, master, slave)

Like in the memory access case, this procedure first identifies the under-
lying platform components (in line 5 and line 6, respectively). Afterward,
it uses the permission granting procedures from above to modify the muta-
ble configuration object. Note that AddXmpuDevEntry reads the START and
the END address to populate the regional control registers with from an internal
lookup table. As before, this call may fail if the 16 regional control register
sets of XMPU/FPD are already occupied.

⊲ Remark 4.7: With respect to the number of occupied configuration registers,
the strategy described in this section is not necessarily optimal. In practice,
optimizations can be applied to realize the same configuration with a reduced
number of occupied XPPU or XMPU registers.

100 | Chapter 4: APU configuration and CF determination procedure

XMPU/DDR
XMPU/OCM
XMPU/FPD

XPPU
Platform-specific

configuration
@

config.c

WriteCode

Figure 4.20: Symbolic representation of a WriteCode procedure that generates exe-
cutable C code for the Zynq UltraScale+ MPSoC.

Hardware architecture Runtime architecture Software architecture

Application-level barrierProcess isolationAPU configuration

AnalysisGeneration

Figure 4.21: Isolation measures applicable to each system model layer and how they
are considered by the pattern: either through generation or through analysis.

Code generation After all GrantMemAccess and GrantDevAccess calls
have been executed, the mutable configuration object is in its final state. At
this point, the platform-independent root algorithm calls WriteConfig to
translate this state into executable APU configuration code. For the consid-
ered Zynq UltraScale+MPSoC, this procedure can generate a lightweight C pro-
gram performing writes to XPPU and XMPU registers (cf. Figure 4.20). This
code may be self-contained or supported by a platform-specific configuration
library. The reference implementation presented in Chapter 6 makes use of
the latter option; it generates C code that depends on the library documented
in Section A.2 of the appendix.

4.2.3 Semantics of barrier declarations

The procedure from Section 4.2.2 controls how on-chip interconnects of se-
lected MPSoCs behave. As shown in Figure 4.21, the APU configuration code
it returns operates at the hardware architecture level and is actively generated
by the pattern. From a pattern user’s point of view, the potential to misuse
this isolation measure is limited: as long as generated APU configuration code
is actually applied to the system under consideration, it is the pattern’s respon-
sibility to ensure that possible on-chip transactions are correctly represented
in the CF graph. This is not true for the two other types of isolation measures,

Section 4.2: Measures for logical isolation | 101

i.e., process isolation and the application-level barrier. As it was explained
in Section 3.1.1, these measures are only declared to and then analyzed by the
pattern. Their use is completely optional. If they are used, however, it is the
user’s responsibility to ensure that conditions associated with each barrier
declaration are actually met by a system.

4.2.3.1 Process isolation

In simplified terms, 𝑟 ∈ Ω𝑅 means that 𝑟 ∈ 𝑅 constrains failures of its SWCs.
More specifically, the meaning of process isolation is as follows:

𝑟 ∈ Ω𝑅 ⇒
(
∀𝑠 ∈ swcs(𝑟) : a failure of 𝑠 cannot

directly cause 𝑟 or proc(𝑟) to fail
)
,

where directly refers to the direct interaction between a SWC and its RTE or,
alternatively, between a SWC and its processing unit. Indirect effects (due to
the failure of other system elements) do not have to be considered to decide
whether 𝑟 ∈ Ω𝑅 holds for a particular 𝑟 ∈ 𝑅.

Recall from Section 3.3.1 that in CF graphs, 𝑟 ∈ 𝑅 represents not only
the RTE itself. It also represents the memory region(s) allocated to this RTE.
Selected portions of this memory region will typically be used to store kernel
code, store kernel data, or they will be delegated to a particular SWC.

RTEs that execute SWCs without limiting their access to such memory
regions are highly susceptible to CFs: failed SWCs might be able to override
memory used by the kernel, for instance. In this case, it would not be justified
to add this RTE to Ω𝑅 . Limiting the memory access permissions of every SWC
to the regions that are delegated to this SWC is a necessary condition that
an 𝑟 ∈ Ω𝑅 has to meet. A similar statement can be made about peripheral
devices that the RTE has access to: ensuring that SWCs are only able to
access peripheral devices delegated to them is another necessary condition
for 𝑟 ∈ Ω𝑅 . In practice, these requirements will often be enforced through
local MMU or MPU configurations managed by 𝑟 . Examples of operating
systems that are able to apply such configurations are Linux and Zephyr.

MMU/MPU protection is not sufficient to declare process isolation for a
particular RTE, however. Even with this protection in place, a SWC might
be able to overwrite an important processor control register. Other possible
interference sources are means for inter-process communication; the following
snippet shows how such mechanisms may cause an RTE to fail.

102 | Chapter 4: APU configuration and CF determination procedure

⊲ Example 4.7: Consider an RTE based on Linux, where every SWC is spawned
as a user-space process. Although these processes will not be able to access each
other’s memory spaces, POSIX signals allow them to terminate another. This
mechanism is triggered by the following C code, for instance:

Listing 4.1: SWC interference via POSIX signals

#include <signal.h>

int main(void) {
pid_t target_pid = /∗ PID of another SWC binary ∗/;
return kill(target_pid, SIGKILL);

}

From the perspective of the logical isolation pattern, this would primarily
be a failure of the RTE, because this RTE fails to provide the expected execution
environment to the terminated SWC. The termination of the SWC is a second
failure that is an immediate consequence of the first one.

State-of-the-art software for OS-level virtualization on Linux, such as Docker
or LXC, is a possible way to solve this particular issue.

4.2.3.2 Application-level barriers

Application-level barriers capture external knowledge about CF potential
between SWC input ports, SWC logic blocks, and SWC output ports. They
allow the user to either ignore the impact of an input port on a logic block (Ω𝐼)
or the impact of a logic block on an output port (Ω𝑂). Application-level barriers
may be declared only after careful evaluation of a SWC.

Formally, elements of Ω𝐼 have the following meaning:

⟨𝑝, 𝜆⟩ ∈ Ω𝐼 ⇒
(
a failure of SWC input 𝑝 cannot

directly cause logic block 𝜆 to fail
)
,

where directly means through direct interactions within the SWC. Indirect
effects (via a cyclic channel structure in the software architecture) do not have
to be considered to decide whether such a barrier is justified. Another way
to express this necessary condition is to say that the correctness of 𝑝 does
not have a direct impact on the correctness of 𝜆. Elements of Ω𝐼 will also be
referred to as input barriers in the following.

Section 4.3: CF determination procedure | 103

Analogously, elements of Ω𝑂 have the following meaning:

⟨𝜆, 𝑝⟩ ∈ Ω𝑂 ⇒
(
a failure of logic block 𝜆 cannot

directly cause SWC output 𝑝 to fail
)
,

where directly has the same meaning as above. In other words: the correctness
of 𝜆 does not have a direct impact on the correctness of 𝑝 . Such barriers will
also be referred to as output barriers in the following.

⊲ Remark 4.8: When tuples are added to Ω𝑂 , it is essential to ensure that ev-
ery SWC output port remains associated with at least one SWC logic block. This
invariant is stipulated by Definition 4.2 and will be leveraged in Section 4.3.2.

As it was illustrated in Example 4.5, application-level barriers can be used
to reflect SWC logic that performs a safety check before processing data from
a particular input. The feature can also be used to model that a SWC logic
block does not read from or write to a particular SWC port, i.e., that there is
no nominal information flow from or to a SWC port.

4.3 CF determination procedure

This step is concerned with the creation of a CF graph. Complementing gener-
ated APU configurations, this graph is the second and final result of the first
safety pattern step. According to Definition 3.5, it is an exact representation of
the CF potential in a considered system.

4.3.1 Formal foundation
The algorithm to create a CF graph is based on one global premise and three
theorems. The global premise is the following:

▶ Premise 4.1: Absence of hidden failure propagation

CFs propagate only from system element to system element.

In other words, the pattern assumes that other than system elements, no
physical or logical system parts are relevant to reason about CFs. When the set
of system elements was formalized in Section 4.1.1, the definition of when an

104 | Chapter 4: APU configuration and CF determination procedure

instantiated platform component is ‘in use’ was postponed. Since it is relevant
to ensure that Premise 4.1 is met, it is given here:

▶ Definition 4.3: Use of instantiated platform components

An instantiated platform component 𝑐 ∈ 𝐶 is in use if and only if the
following conditions are met:

𝑐 ∈ 𝑈 ⇒
(
∃𝑟 ∈ 𝑅 : proc(𝑟) = 𝑐

)
,

𝑐 ∈ �̂� ⇒
(
∃𝑣 ∈ (𝑍 ∪ 𝑅 ∪ 𝐿) : 𝑐 ∈ mems′ (𝑣)

)
, and

𝑐 ∈ �̂� ⇒
(
𝑐 ∈ 𝑍 ∧malloc(𝑐) ≠ ∅

)
∨
(
∃𝑣 ∈ (𝑅 ∪ 𝑆) : 𝑐 ∈ devs′ (𝑣)

)
∨
(
∃𝑏 ∈ 𝐵 : 𝑐 ∈ controllers(𝑏)

)
.

With this, the set of system elements 𝑉 is now unambiguously defined. To
decide whether a failure propagates from one system element to another, the
procedure makes use of the following definition:

▶ Definition 4.4: CF potential transfer

The relation⇝ ⊆ 𝑉 × 𝑉 describes CF potential transfers from one to
another system element. 𝑣1 ⇝ 𝑣2 is true if and only if a failure of 𝑣1 has
the potential to directly cause a failure of 𝑣2.

Here, the term directly means that the CF is due to the direct interaction
between the two involved system elements. Indirect effects due to a failure
of one or more other, intermediate system elements are deliberately not cap-
tured by the definition of CF potential transfer. Intuitively speaking, values
of ‘⇝’ capture how CF potential ‘transfers’ between system elements. They
can be used to determine the complete CF potential:

▶ Theorem 4.1: Derivation of CF potential

CF potential from 𝑣 ∈ 𝑉 leads to 𝑣 ′ ∈ 𝑉 if and only if there are distinct
vertices 𝑤1, . . . , 𝑤𝑘 ∈ 𝑉 such that 𝑤1 = 𝑣 , 𝑤𝑘 = 𝑣 ′, and 𝑤𝑖 ⇝ 𝑤𝑖+1 is
true for all 𝑖 = 1, . . . , 𝑘 − 1.

As shown in the following proof, this theorem holds if Premise 4.1, i.e., the
absence of hidden failure propagation, is fulfilled.

Section 4.3: CF determination procedure | 105

⊲ Proof: We first rewrite the left-hand side of the theorem:

There is CF potential from 𝑣 ∈ 𝑉 to 𝑣 ′ ∈ 𝑉 .
(Def. 3.1)
⇐⇒ There is the possibility of a CF that is caused

by 𝑣 and leads to a failure of 𝑣 ′.

Due to Premise 4.1, this is equivalent to the following statement: There is
an ordered sequence of distinct system elements, where 𝑣 is the first, 𝑣 ′ is the
last, and a failure of each system element has the potential to cause a direct
failure of the next system element. Through the application of Definition 4.4,
this can be rewritten as the right-hand side of Theorem 4.1 above. □

For the creation of CF graphs, Theorem 4.1 is an important intermediate
result. It reduces the problem of finding the transitive CF potential to finding
only CF potential transfers, which is a non-transitive relation. With knowledge
about (1) the feasibility of interactions in an embedded system and (2) applied
isolation measures, finding this non-transitive relation is significantly easier
than arguing about the complete CF potential.

Based on this observation, a possible strategy to construct a CF graph is
to introduce a directed edge ⟨𝑣1, 𝑣2⟩ ∈ 𝐸 if and only if there is CF potential
transfer from system element 𝑣1 to system element 𝑣2. This strategy leads to
a CF graph in the sense of Definition 3.5:

▶ Theorem 4.2: Creation of CF graphs

If the set 𝐸 ⊆ 𝑉 ×𝑉 fulfills the condition

⟨𝑣1, 𝑣2⟩ ∈ 𝐸 ⇔ (𝑣1 ⇝ 𝑣2),

then 𝐺𝛾 = ⟨𝑉 , 𝐸⟩ is a CF graph.

⊲ Proof: By definition, 𝐺𝛾 must contain a directed path from 𝑣 ∈ 𝑉 to 𝑣 ′ ∈ 𝑉 if
and only if there is CF potential from 𝑣 to 𝑣 ′.

According to Section 2.2.2, a directed graph ⟨𝑉 , 𝐸⟩ contains a directed path
from 𝑣 ∈ 𝑉 to 𝑣 ′ ∈ 𝑉 if and only if there are distinct vertices𝑤1, . . . , 𝑤𝑘 ∈ 𝑉
such that𝑤1 = 𝑣 ,𝑤𝑘 = 𝑣 ′, and ⟨𝑤𝑖 ,𝑤𝑖+1⟩ ∈ 𝐸 for all 𝑖 = 1, . . . , 𝑘 − 1. Using the
condition from Theorem 4.2 itself, the requirement that ⟨𝑤𝑖 , 𝑤𝑖+1⟩ ∈ 𝐸 can be
replaced by𝑤𝑖 ⇝ 𝑤𝑖+1 for all 𝑖 = 1, . . . , 𝑘 − 1. According to Theorem 4.1, this
is exactly the definition of CF potential from 𝑣 to 𝑣 ′. □

106 | Chapter 4: APU configuration and CF determination procedure

This is not the only approach for CF graph construction, however. As it
was already mentioned in Section 3.1.1.2, it is possible to drop edges from
a CF graph and obtain a CF graph semantically equivalent to the initial one.
The following edge creation strategy makes use of this observation:

▶ Theorem 4.3: Creation of reduced CF graphs

If the set 𝐸 ⊆ 𝑉 ×𝑉 fulfills the conditions

1) ⟨𝑣1, 𝑣2⟩ ∈ 𝐸 ⇒ (𝑣1 ⇝ 𝑣2) and
2) (𝑣1 ⇝ 𝑣2) ⇒ ⟨𝑉 , 𝐸⟩ contains a directed path from 𝑣1 to 𝑣2,

then 𝐺𝛾 = ⟨𝑉 , 𝐸⟩ is a CF graph.

⊲ Proof: To show that ⟨𝑉 , 𝐸⟩ is a CF graph, we decompose the biconditional
from Definition 3.5 into a necessary and a sufficient condition.

First, the following statement must be proven: (⟨𝑉 , 𝐸⟩ contains a directed
path from 𝑣 ∈ 𝑉 to 𝑣 ′ ∈ 𝑉)⇒ (CF potential leads from 𝑣 to 𝑣 ′). Using item 1
from the theorem itself, this can be achieved by repeating the proof of Theo-
rem 4.2 and replacing the final equivalence with (only) an implication.

Into the opposite direction, it must be shown that the following statement
is true: (CF potential leads from 𝑣 ∈ 𝑉 to 𝑣 ′ ∈ 𝑉)⇒ (⟨𝑉 , 𝐸⟩ contains a directed
path from 𝑣 to 𝑣 ′). According to Theorem 4.1, the left-hand side is equivalent to
the statement that there are distinct vertices𝑤1, . . . , 𝑤𝑘 ∈ 𝑉 such that𝑤1 = 𝑣 ,
𝑤𝑘 = 𝑣 ′, and 𝑤𝑖 ⇝ 𝑤𝑖+1 holds for all 𝑖 = 1, . . . , 𝑘 − 1. Using item 2 from
the theorem, this implies that there are distinct vertices𝑤 ′1, . . . , 𝑤

′
𝑘
∈ 𝑉 such

that𝑤 ′1 = 𝑣 ,𝑤
′
𝑘
= 𝑣 ′, and ⟨𝑉 , 𝐸⟩ contains a directed path from𝑤 ′𝑖 to𝑤

′
𝑖+1 for

all 𝑖 = 1, . . . , 𝑘 − 1. This, in turn, implies that, vertex 𝑣 ′ is reachable from 𝑣

and, consequently, that there is a directed path from 𝑣 to 𝑣 ′. □

4.3.2 CF potential transfers

This section describes an approach to derive CF potential transfers from (1) a
system model and (2) a specification of applied isolation measures. As part of
the description, it will be argued why it is reasonable to assume that there is or,
alternatively, that there is not a CF potential transfer between a pair of system
elements. In the latter case, the decision is occasionally based on additional
premises whose fulfillment has to be ensured by the user of the safety pattern.
Such premises will be explicitly highlighted.

Section 4.3: CF determination procedure | 107

CF potential transfer

Scope Predicate Impact

D01) ∀𝑐 𝑐 ∈ 𝐶+ pf (𝑐) ⇝ 𝑐

D02) ∀𝑟 𝑟 ∈ 𝑅 proc(𝑟) ⇝ 𝑟

D03) ∀𝑠 𝑠 ∈ 𝑆 proc(rte(𝑠)) ⇝ 𝑠

D04) ∀𝑣, �̂� 𝑣 ∈ (𝑍 ∪ 𝐿 ∪ 𝑅), �̂� ∈ mems′ (𝑣) �̂�⇝ 𝑣

D05) ∀𝑣, 𝑞 𝑣 ∈ (𝑆 ∪ 𝑅), 𝑞 ∈ devs′ (𝑣) 𝑞⇝ 𝑣

D06) ∀𝑔,𝑏 𝑔 ∈ 𝐺 , 𝑏 ∈ bus(𝑔) 𝑏 ⇝ 𝑔

D07) ∀𝑠 𝑠 ∈ 𝑆 rte(𝑠) ⇝ 𝑠

D08) ∀𝑦, 𝑟 𝑦 ∈ (𝐿 ∪𝐺), 𝑟 ∈ endpoints(𝑦) 𝑟 ⇝ 𝑦

D09) ∀𝑦, 𝑝 𝑦 ∈ (𝐿 ∪𝐺), 𝑝 ∈ sinks(𝑦) 𝑦 ⇝ 𝑝

D10) ∀𝑠, 𝜆 𝑠 ∈ 𝑆 , 𝜆 ∈ logic(𝑠) 𝑠 ⇝ 𝜆

D11) ∀𝑠, 𝜆, 𝑝 𝑠 ∈ 𝑆 , 𝜆 ∈ logic(𝑠), 𝑝 ∈ inputs(𝑠), ⟨𝑝, 𝜆⟩ ∉ Ω𝐼 𝑝 ⇝ 𝜆

D12) ∀𝑠, 𝜆, 𝑝 𝑠 ∈ 𝑆 , 𝜆 ∈ logic(𝑠), 𝑝 ∈ outputs(𝑠), ⟨𝜆, 𝑝⟩ ∉ Ω𝑂 𝜆⇝ 𝑝

D13) ∀𝑝, 𝑝′ ⟨𝑝, 𝑝′⟩ ∈ 𝜙𝐻 𝑝 ⇝ 𝑝′

Table 4.1: CF potential transfers due to the dependency on system elements. From top
to bottom, the four groups cluster CF potential transfers originating from the hardware
context, runtime context, software context, and application vertices, respectively. The
consideration of isolation measures is highlighted with blue background.

⊲ Remark 4.9: Based on other premises, it is possible to argue different strategies
for the determination of ‘⇝’ values. The strategy presented below is the one that
the author considers most practical for the given context.

To structure the description of the approach, we split CF potential trans-
fers into two classes: dependency-based and activity-based ones. They are
analogous to dependency-based and activity-based CF graph edges, respec-
tively. Each type is now described in a dedicated subsection. Together, both
subsections describe the ‘⇝’ relation fully (closed-world assumption).

4.3.2.1 Dependency-based transfers

Dependency-based transfers capture cases in which a failure of software el-
ement 𝑣1 might directly cause a failure of software element 𝑣2, because 𝑣2 is
implemented by or implemented using 𝑣1. Table 4.1 presents thirteen rules to
derive them. Each rule is labeled with a unique identifier, e.g., rule D01. In each
identifier, the ‘D’ emphasizes that this rule describes dependency-based trans-

108 | Chapter 4: APU configuration and CF determination procedure

fers. The table has a bottom-up nature in the sense that it is first concerned
with the hardware context, then with the runtime context, and so on.

Every rule in Table 4.1 encodes an expression in first-order logic, where
the ‘Scope’ specifies one or more bound variables. For all possible combi-
nations (∀) of these variables, if the associated ‘Predicate’ holds true, then
the CF potential transfer given as ‘Impact’ is implied. For example, rule D13 is
equivalent to the following expression:

∀𝑝 ∀𝑝′︸ ︷︷ ︸
Scope

(
(⟨𝑝, 𝑝′⟩ ∈ 𝜙𝐻)︸ ︷︷ ︸

Predicate

⇒ (𝑝 ⇝ 𝑝′)︸ ︷︷ ︸
Impact

)
.

In the following, it is reasoned why the table contains exactly the thirteen
presented rules. The fundamental question that repeatedly has to be answered
is the following: For a given system element 𝑣 , which other system elements
directly depend on 𝑣 and, therefore, can fail if 𝑣 fails?

Execution platforms (D01) An execution platform hosts and interconnects
instantiated platform components. If it fails, it might no longer be able to
provide these components with the environment they require. For example,
if the platform is no longer able to power a memory module, this memory
module ceases to deliver its intended functionality. If its on-chip intercon-
nect stalls, does not achieve the required throughput, forwards transactions
between components that should not communicate, or falsifies transactions,
then all instantiated platform components might be affected. Since unused
components are no system elements, they are not relevant for the purposes
of CF determination. For each used component (𝑐 ∈ 𝐶+), however, there
is CF potential transfer from pf (𝑐) to 𝑐 . This is captured by rule D01. No other
system elements depend directly on an execution platform.

Processing units (D02, D03) Processing units are responsible for the
execution of instructions, primarily those issued by an RTE. Temporarily,
an RTE might delegate the capabilities of its processing unit to a SWC. If the
processing unit is affected by a soft error, for instance, an instruction from
kernel code might be falsified during its execution. More generally, an RTE and
all of its SWCs depend on the functionality of their underlying processing unit.
Formally, this is reflected by rule D02 and rule D03. Apart from those two, no
other system elements depend directly on a processing unit.

Section 4.3: CF determination procedure | 109

Memory modules and peripheral devices (D04, D05) As it was de-
scribed in Section 3.3.1, there are three system elements that also represent
the memory region(s) allocated to them: peripheral devices with a master
port (𝑧 ∈ 𝑍), RTEs (𝑟 ∈ 𝑅), and local paths (ℓ ∈ 𝐿). Each such memory region
must be realized by a specific memory module. If this memory module fails,
for example due to a radiation-induced soft error, a failure of any system el-
ement that stores data in the memory module is possible. This is captured
by rule D04. A similar argument can be made about peripheral devices allo-
cated to an RTE (𝑟 ∈ 𝑅) or a SWC (𝑠 ∈ 𝑆). For example, a peripheral device
might be an on-chip timer that an RTE uses to schedule tasks. Without fur-
ther knowledge, it must be assumed that the owner of a peripheral device
depends on the correct functionality of this device. Formally, rule D05 de-
scribes this assumption. No other system elements depend directly on the
correct functionality of a memory module or a peripheral device.

Off-chip interconnects (D06) Off-chip interconnects are physical media
used to implement global paths (𝑔 ∈ 𝐺). If an off-chip interconnect stalls, does
not achieve the required throughput, forwards transactions between I/O con-
trollers that should not communicate, or falsifies transactions, then the global
path lacks a reliable foundation. Therefore, as described by rule D06, a global
path depends on the correct operation of its off-chip interconnect. The only
other system element type that can be in direct contact with an off-chip in-
terconnect is the peripheral device. If a peripheral device is used as an I/O
controller, the functionality it provides—in the given context—is implemented
using the attached off-chip interconnect. Regarding the potential of CFs, how-
ever, it is often reasonable to assume that a failure of the off-chip interconnect
does not lead to a misconfiguration of the I/O controller itself:

▶ Premise 4.2: Self-protection of I/O controllers

Peripheral devices used as I/O controllers do not fail due to a malfunction
of the off-chip interconnect attached to them.

If this invariant is enforced by the pattern user, it is not necessary to add
a dependency-based CF potential transfer from an off-chip interconnect
to I/O controllers attached to it. Other direct dependencies on the correct
operation of an off-chip interconnect do not exist.

110 | Chapter 4: APU configuration and CF determination procedure

RTEs (D07, D08) RTEs form the foundation of the SWCs they execute, as
well as the communication paths for which they serve as an endpoint. If
the RTE fails to schedule its processes, a SWC might no longer be provided
with its expected execution environment. If the kernel code that manages
inter-RTE communication is erroneous, associated communication paths can
fail. These aspects are reflected in rule D07 and rule D08, respectively. No
other system elements depend directly on the behavior of RTEs.

Local and global paths (D09) A local path represents memory regions
that two local RTEs use to communicate. Analogously, a global path is a
virtual channel that two RTEs from different execution platforms use to com-
municate. In both cases, this communication mechanism is primarily used
to transmit data from SWC outputs generated on one RTE to SWC inputs on
another RTE. In both cases, failures of a path can have an effect on all the
channels (⟨𝑝, 𝑝′⟩ ∈ 𝜙𝐻) that are implemented using this system element. By
definition (cf. Section 3.2.4), the failure cannot affect output ports writing to
a channel. However, it can affect the values that are received by input ports
reading data from corresponding channels. Formally, this relationship is cap-
tured in rule D09. Furthermore, it must generally be assumed that the failure
of a path affects the connected RTEs by themselves. Since these RTEs have
full control over how they use the local or global path that connects them,
however, it is possible to add the following premise:

▶ Premise 4.3: Absence of path-induced RTE failures

The correct operation of an RTE does not depend on the correct operation
of local or global paths associated with this RTE.

With this premise in place, no system element other than the SWC input port
depends on the correct operation of a path.

SWC implementations (D10) These system elements represent the imple-
mentation of the logic to be performed by every SWC. If this implementation
is erroneous, e.g., because an instruction in the ‘text’ section of the SWC’s
memory region became corrupted, it must be assumed that the SWC logic
deviates from its intended behavior. This dependency is described by rule D10.
No other system element directly depends on the SWC implementation.

Section 4.3: CF determination procedure | 111

SWC input ports (D11) Data received via a SWC input port is provided
to SWC logic blocks. It might be erroneous, e.g., due to rule D09. If this is
the case, SWC logic blocks operating on this data might fail to deliver their
intended behavior. After examination of a SWC, it might be possible to argue
that such a dependency does not exist in certain cases. Given the following
premise, this can be represented as an input barrier (⟨𝑝, 𝜆⟩ ∈ Ω𝐼):

▶ Premise 4.4: Correctness of the input barrier set

Every element of Ω𝐼 fulfills the specification from Section 4.2.3.2.

Without an input barrier, the CF potential transfer shown in rule D11 must be
assumed. Other direct dependencies on SWC input ports do not exist.

SWC logic blocks (D12) Without further knowledge about the behavior of
a logic block, it must be assumed that its failure propagates to all output ports
of the respective SWC. As in the previous case, an application-level barrier
can be specified to suppress this assumption (⟨𝜆, 𝑝⟩ ∈ Ω𝑂). As before, such
barriers are associated with an invariant that must be enforced:

▶ Premise 4.5: Correctness of the output barrier set

Every element of Ω𝑂 fulfills the specification from Section 4.2.3.2.

Without an output barrier, the CF potential transfer shown in rule D12 must
be assumed. Other dependencies on a logic block do not exist.

SWC output ports (D13) Outputs with environment scope affect only the
environment and, therefore, cannot give rise to dependency-based transfers.
Outputs with internal scope, however, can be connected to other ports via a
channel (⟨𝑝, 𝑝′⟩ ∈ 𝜙𝐻). If incorrect values are written to an output, ports at
the receiving end of a channel connected to this output read incorrect values,
i.e., they fail. This relationship is captured by rule D13. Other dependencies
on SWC output ports do not exist.

112 | Chapter 4: APU configuration and CF determination procedure

CF potential transfer

Scope Predicate Impact

A01) ∀𝑠 𝑠 ∈ 𝑆 , rte(𝑠) ∉ Ω𝑅 𝑠 ⇝ rte(𝑠)
A02) ∀𝑠 𝑠 ∈ 𝑆 , rte(𝑠) ∉ Ω𝑅 𝑠 ⇝ proc(rte(𝑠))
A03) ∀𝑠, 𝑞 𝑠 ∈ 𝑆 , 𝑞 ∈ qalloc′′ (𝑠) 𝑠 ⇝ 𝑞

A04) ∀𝑟 𝑟 ∈ 𝑅 𝑟 ⇝ proc(𝑟)
A05) ∀𝑠, 𝑞 𝑠 ∈ 𝑆 , 𝑞 ∈ qalloc′′ (𝑠) rte(𝑠) ⇝ 𝑞

A06) ∀𝑟, 𝑞 𝑟 ∈ 𝑅, 𝑞 ∈ qalloc′ (𝑟) 𝑟 ⇝ 𝑞

A07) ∀𝑣 𝑣 ∈ (𝑈 ∪ 𝑍), 𝑣 in use, pf (𝑣) ∉ Ω𝑋 𝑣 ⇝ pf (𝑣)
A08) ∀𝑠, 𝑞 𝑠 ∈ 𝑆, 𝑞 ∈ qalloc′′ (𝑠) proc(rte(𝑠)) ⇝ 𝑞

A09) ∀𝑟, 𝑞 𝑟 ∈ 𝑅, 𝑞 ∈ qalloc′ (𝑟) proc(𝑟) ⇝ 𝑞

A10) ∀𝑥,𝑢,𝑚 𝑥 ∈ 𝑋 , ⟨𝑢,𝑚⟩ ∈ Γ1 (type(𝑥)), 𝑢𝑥 and𝑚𝑥 in use 𝑢𝑥 ⇝𝑚𝑥

A11) ∀𝑥, 𝑞, 𝑐 𝑥 ∈ 𝑋 , ⟨𝑞, 𝑐⟩ ∈ Γ2 (type(𝑥)), 𝑞𝑥 and 𝑐𝑥 in use 𝑞𝑥 ⇝ 𝑐𝑥

A12) ∀𝑥, 𝑞 𝑥 ∈ 𝑋 , 𝑞 ∈ Γ3 (type(𝑥)), 𝑞𝑥 in use 𝑞𝑥 ⇝ 𝑥

A13) ∀𝑏, 𝑞 𝑏 ∈ 𝐵, 𝑞 ∈ controllers(𝑏) 𝑞⇝ 𝑏

Table 4.2: CF potential transfers due to activities performed by system elements. From
top to bottom, the three groups cluster CF potential transfers originating from the soft-
ware context, runtime context, and hardware context, respectively. The consideration
of isolation measures is highlighted with blue background.

4.3.2.2 Activity-based transfers

Activity-based transfers capture cases in which a failure of system element 𝑣1
might directly cause a failure of system element 𝑣2, because 𝑣1 is able to
perform activities affecting 𝑣2. Like in the previous section, Table 4.2 presents
the rules to derive them. This time, rule identifiers carry an ‘A’ prefix to
emphasize the activity-based focus, and the table has a top-down nature: it is
first concerned with the transfers originating from the software context, then
from the runtime context, and finally from the hardware context.

With respect to temporal isolation, activities triggered by failed system
elements are a difficult topic. For example, a failed SWC might access a pe-
ripheral device allocated to this SWC so often that the on-chip interconnect is
overloaded, leading to increased memory access latencies of an unrelated RTE.
A similar argument can be made about logically valid accesses to a memory
region that cause unexpected contention at a memory module. As outlined
in Chapter 1, APUs are means for spatial isolation and have only limited control
over timing aspects. Depending on the timing requirements of applications, it

Section 4.3: CF determination procedure | 113

might be necessary to address timing interferences in addition to performing
spatial isolation. If this is the case, the logical isolation pattern regards this as
the user’s responsibility. The argumentation in the remainder of this section
is based on and only valid if the following premise is fulfilled:

▶ Premise 4.6: Sufficient temporal isolation

If a system runs applications with timing requirements, anomalous ac-
tivities directed toward (1) an execution platform or (2) an instantiated
platform component will not cause this system element to deliver a
temporal performance insufficient for applications that depend on it.

⊲ Remark 4.10: Dependency-based transfers of CF potential, which are described
in Table 4.1, can support the user in checking this premise. If there is no chain of
dependency-based CF potential transfers from a hardware vertex to an application
vertex, timing issues of the former cannot cause a failure of the latter.

SWC implementations (A01, A02, A03) If a SWC implementation fails,
the activities it is able to perform depend heavily on whether its RTE attempts
to contain the failure. Executed on an RTE without process isolation (𝑟 ∉ Ω𝑅),
the SWC might write to the memory region that its RTE uses to store kernel
code. This must be classified as a failure of the RTE. Without process isola-
tion, the SWC might also be able to cause the underlying processor to fail, for
example by writing to a CPU-specific configuration register. Both of these
activities are reflected in rule A01 and rule A02, respectively. If a SWC is the
owner of a peripheral device, it is responsible for the configuration of the pe-
ripheral device. Naturally, its failure might lead to an erroneous configuration,
which must be regarded as failure of the peripheral device. This relationship
is represented by rule A03. Due to Premise 4.6, activities triggered by the
failure of a SWC implementation cannot cause a failure of any other system
element. Furthermore, if process isolation is used, the validity of the above
argumentation depends on the correctness of Ω𝑅 :

▶ Premise 4.7: Correctness of the process isolation set

Every element of Ω𝑅 fulfills the specification from Section 4.2.3.1.

114 | Chapter 4: APU configuration and CF determination procedure

RTEs (A04, A05, A06) Executed on a processing unit, each RTE is able
to trigger activities that compromise this processing unit. For example, its
failure can lead to the corruption of important processor registers or initiate
an on-chip transaction that the processing unit should not execute. This
relationship is captured by rule A04. Memory regions allocated to the RTE are
represented by the RTE vertex itself (cf. Section 3.3.1) and therefore do not
warrant outgoing CF potential transfers. With respect to peripheral devices,
an RTE has access to its own and the peripheral devices of its SWCs. Its
failure may cause a misconfiguration of these peripheral devices, as reflected
by rule A05 and rule A06. RTEs are unable to perform other activities that
result in the direct failure of another system element.

Processing units and peripheral devices (A07 –A13) Instantiated pro-
cessing units (𝑢 ∈ 𝑈) and peripheral devices with a master port (𝑧 ∈ 𝑍) have
access to the on-chip interconnect of their execution platform. Their failure
might therefore cause an on-chip transaction directed at instantiated platform
components that should not be accessible to this master component. Without
applied APU configuration code, activity-based CF potential transfer that cor-
responds to such interactions must be assumed. APUs configured according
to Section 4.2.2 are able to eliminate this type of CF potential transfer. This
conditional relationship is described by rule A07. This rule is valid only if
generated APU configuration code is correctly applied to the target:

▶ Premise 4.8: Correct usage of APU configuration code

APU configuration code generated for each 𝑥 ∈ Ω𝑋 is deployed to and
successfully executed on this execution platform.

As it was described in Section 4.2.2, an APU configuration allowsmaster compo-
nents to issue certain transactions via the on-chip interconnect. A consequence
of this is that a processing unit will always be able to access peripheral devices
that are allocated to its RTE or any of its SWCs. A failure of a processing unit
might therefore give rise to activities that result in the misconfiguration of
these peripheral devices, which explains rule A08 and rule A09. Furthermore, a
processing unit will always have access to the memory region of its RTE. This
means that the failure of a processing unit might give rise to activities that cor-
rupt this memory region. Since a dependency-based CF potential transfer into
this direction is already in place (cf. rule D02), however, this scenario does not

Section 4.3: CF determination procedure | 115

have to be represented as an activity-based transfer. Peripheral devices from 𝑍

will always have access to memory regions allocated to them. However, these
memory regions are represented by the peripheral device vertex itself; a CF
potential transfer is therefore not applicable. Indirect effects the execution plat-
form library captures as Γ1, Γ2, or Γ3 are translated into activity-based transfers
by rule A10, rule A11, and rule A12, respectively. Finally, rule A13 captures
the fact that a peripheral device will always be able to trigger transactions that
traverse the off-chip interconnect attached to this peripheral device.

Another type of activity that processing units and peripheral devices are
generally able to initiate are interrupt requests. The occurrence of an interrupt
request can influence the control flow executed by a processing unit and, there-
fore, lead to its failure. From the perspective of each processing unit, however,
interrupt handling is an opt-in mechanism. A processing unit is usually able
to mask the interrupts that shall not have an influence on its execution. For
all specifically activated (i.e., unmasked) interrupts, it is reasonable to assume
that their occurrence cannot cause the processing unit to fail. Therefore, the
pattern user is expected to enforce the following invariant:

▶ Premise 4.9: Absence of interrupt-induced failures

The correct operation of a processing unit does not depend on the cor-
rectness of interrupt requests directed to it.

Under this assumption, it is not necessary to add interrupt-related entries to
the activity-based list of rules. In addition to the seven relationships described
above, no further activities triggered by a processing unit or a peripheral device
are able to cause a direct failure of another system element.

Other system elements The thirteen types of activity-based CF poten-
tial transfer have now been described as originating from four kinds of system
elements: SWC implementations, RTEs, processing units, and peripheral de-
vices. Failures of the other seven kinds of system elements (such as SWC
logic blocks or local paths) cannot trigger activities that cause another system
element to fail. This means that they are not the source of activity-based CF po-
tential transfers and, therefore, do not appear on the left-hand side of an ‘Im-
pact’ column entry in Table 4.2.

116 | Chapter 4: APU configuration and CF determination procedure

cmd
(
𝑝𝐼𝑐
)

viz
(
𝑝𝐼𝑣
)infotainment (𝑠𝐼)

linux (𝑟𝐿)

Zynq UltraScale+ MPSoC instance: main (𝑥𝑍)

On-chip interconnect

gem (𝑞GEM) ddr (�̂�DDR) a53 (𝑢A53)

Figure 4.22: Excerpt of the introductory car server example, deliberately simplified by
dropping all system model entities related to the Zephyr instance.

4.3.3 CF graph creation

Using the 26 formal rules that were derived in Section 4.3.2, the following
algorithm generates a CF graph according to Definition 3.5:

Algorithm 4.9: Algorithm for the creation of a CF graph

1 procedure BuildGraph()
2 // Populate vertex sets:
3 𝑉𝛼 ← (Λ𝑆 ∪ 𝑃)
4 𝑉𝛽 ← (𝑋 ∪𝐶+ ∪ 𝐵 ∪ 𝑅 ∪ 𝐿 ∪𝐺 ∪ 𝑆)
5 // Build suitable edge sets:
6 𝐸𝛿 ← DependencyBasedEdges()
7 𝐸𝜂 ← ActivityBasedEdges()
8 // Construct the final CF graph:
9 𝐺𝛾 ← ⟨𝑉𝛼 ∪𝑉𝛽 , 𝐸𝛿 ∪ 𝐸𝜂⟩

First, in line 3, the set of application vertices is created by unifying
all SWC logic blocks and all SWC ports. Then, in line 4, the context ver-
tices are built by unifying all remaining system elements. In combination,
these lines implement the specification from Section 4.1.1.1.

The function DependencyBasedEdges, which is called in line 6, returns
the set of dependency-based edges to add to the CF graph. Analogously, the
call to ActivityBasedEdges in line 7 returns all activity-based edges added

Section 4.3: CF determination procedure | 117

platform(main)

mem(main.ddr) proc(main.a53)

dev(main.gem) rte(linux)

swc(infotainment)

port(infotainment.cmd) port(infotainment.viz)logic(infotainment)

D01

A07

D01A07

D01

D04

D04 A04

D02

A03

D05

A01

D07

D11 D12

A02

D03

A05

A08

D10

Figure 4.23: CF graph constructed via the direct application of Theorem 4.2. Superim-
posed rectangles with three-character labels name the CF potential transfer rule that
the closest arrow of an edge was created by; they are not part of the graph itself.

to the CF graph. Therefore, the union of both returned sets serves as the
edge set of 𝐺𝛾 . As described above, there is some flexibility with respect
to what DependencyBasedEdges and ActivityBasedEdges return. Based
on Theorem 4.2, the following implementation strategy is feasible:

• For each dependency-based CF potential transfer (from Table 4.1): trans-
late 𝑣 ⇝ 𝑣 ′ into a dependency-based edge ⟨𝑣, 𝑣 ′⟩ ∈ 𝐸𝛿 .

• For each activity-based CF potential transfer (from Table 4.2): trans-
late 𝑣 ⇝ 𝑣 ′ into an activity-based edge ⟨𝑣, 𝑣 ′⟩ ∈ 𝐸𝜂 .

⊲ Example 4.8: The system model in Figure 4.22 was generated by dropping
all drivetrain and the body control functions from the central car server ex-
ample. Following the discussion from Section 4.1.1.1, it consists of nine system
elements—three from the application and six from the context subgraph. By apply-
ing the above edge creation strategy, one obtains the CF graph visualized in Fig-
ure 4.23. Rectangles superimposed to graph edges name the rule that is responsible
for the existence of a particular arrow. For example, the dependency-based edge
from swc(infotainment) to logic(infotainment) is due to rule D10, which
demands that ∀𝑠 ∀𝜆 ((𝑠 ∈ 𝑆 ∧ 𝜆 ∈ logic(𝑠)) ⇒ (𝑠 ⇝ 𝜆)).

118 | Chapter 4: APU configuration and CF determination procedure

Adding an edge for every CF potential transfer can result in graphs that are
difficult to visualize to the human observer. Even for the comparably simple
system model in Example 4.8, the strategy generated a graph with intersecting
edges. It is therefore desirable to reduce the number of edges while keeping
the semantics of a graph unchanged. Theorem 4.3 can be used to achieve this:
if it is possible to show that a CF potential transfer is already covered by a
directed path in 𝐺𝛾 , it is not necessary to introduce a dedicated edge to reflect
it. Using this observation, it is possible to argue that rule D03 can be neglected
by the DependencyBasedEdges function:

1) CF potential transfers described by rule D03 will always be covered by a
directed path originating from rule D02 and rule D07.

Analogously, it is possible to show that rule A02, rule A05, rule A08, and
rule A09 can be neglected by the ActivityBasedEdges function:

2) CF potential transfers described by rule A02 will always be covered by a
directed path originating from rule A01 and rule A04.

3) CF potential transfers described by rule A05 will always be covered by a
directed path originating from rule D07 and rule A03.

4) CF potential transfers described by rule A08 will always be covered by a
directed path originating from rule D02, rule D07, and rule A03.

5) CF potential transfers described by rule A09 will always be covered by a
directed path originating from rule D02 and rule A06.

With this observation, the edge selection functions called in Algorithm 4.9 can
be simplified by choosing them as follows:

Algorithm 4.10: Selection of CF graph edges

1 function DependencyBasedEdges()
2 𝐸𝛿 ← ∅
3 for each (𝑣 ⇝ 𝑣 ′) due to (rule Dxx with xx ∉ {03}) do
4 𝐸𝛿 ← 𝐸𝛿 ∪ {⟨𝑣, 𝑣 ′⟩}
5 return 𝐸𝛿

6 function ActivityBasedEdges()
7 𝐸𝜂 ← ∅
8 for each (𝑣 ⇝ 𝑣 ′) due to (rule Axx with xx ∉ {02, 05, 08, 09}) do
9 𝐸𝜂 ← 𝐸𝜂 ∪ {⟨𝑣, 𝑣 ′⟩}
10 return 𝐸𝜂

Section 4.3: CF determination procedure | 119

platform(main)

mem(main.ddr) proc(main.a53)

dev(main.gem) rte(linux)

swc(infotainment)

port(infotainment.cmd) port(infotainment.viz)logic(infotainment)

D01

A07

D01A07

D01

D04

D04 A04

D02

A03

D05

A01

D07

D11 D12

D10

Figure 4.24: CF graph resulting from the omission of rules D03, A02, A05, andA08. Edges
removed due to this strategy are shown using dashed arrows. Arrows of remaining
edges are again labeled with the underlying CF potential transfer rule.

These definitions lead to the BuildGraph algorithm that is used in the
remainder of this thesis. For illustration purposes, this algorithm is now applied
to the simplified car server example from before.

⊲ Example 4.8 (continued): Applying the final version of the BuildGraph al-
gorithm to the system shown in Figure 4.22 leads to the CF graph in Figure 4.24.
Compared with the previous version of this CF graph, a total of four edges have
been removed. They were due to rule D03, rule A02, rule A05, and rule A08.

This algorithm was also used to create the introductory CF graph examples
in Section 4.1. It can be insightful to revisit them, for instance, by consider-
ing Example 4.1 along with the CF graph in Figure 4.4 on page 77.

⊲ Example 4.1 (continued): In the CF graph, an edge from proc(main.a53)
to swc(infotainment) does not exist. This is despite the fact that a failure of
the Cortex-A53 can clearly have an impact on the SWC implementation, poten-
tially causing it to deviate from its indented behavior. While this CF potential is
covered by rule D03, it is not necessary to add a dedicated edge for it: it is already
covered by a directed path via rte(linux).

120 | Chapter 4: APU configuration and CF determination procedure

With this, the CF determination procedure is fully described. Together
with the APU configuration approach from Section 4.2.2, this concludes the
description of the first safety pattern step. The following section closes this
chapter with a brief discussion of selected properties exhibited by the outputs
of this step, i.e., by APU configuration code and CF graphs.

4.4 Closing remarks

It is essential to understand that CF graphs capture the possibility of a CF be-
tween system elements. If a CF graph contains a path from 𝑣 ∈ 𝑉 to 𝑣 ′ ∈ 𝑉 , it is
assumed that during runtime, a failure of 𝑣 will be able to impact 𝑣 ′ in an unde-
sired manner. In other words: a directed path from 𝑣 ∈ 𝑉 to 𝑣 ′ ∈ 𝑉 means that
the logical isolation pattern was unable to show that a malfunction of 𝑣 does
not lead to a failure of 𝑣 ′. This is not equivalent to the statement that a malfunc-
tion of 𝑣 can actually lead to a failure of 𝑣 ′. In fact, auto-generated CF graphs
contain a degree of pessimism that could potentially be reduced with more
precise system knowledge.
⊲ Example 4.8 (continued): The auto-generated CF graph in Figure 4.24 contains
an edge from dev(main.gem) to swc(infotainment) and, therefore, also a
directed path from the former to the latter. This path is due to rule D05, which
assumes that whenever a SWC or an RTE allocates a peripheral device, its correct
functionality depends on the correct functionality of the peripheral device.

With detailed knowledge about how the SWC uses the Ethernet controller, one
might be able to argue that the SWC implementation itself remains unaffected by
the controller’s failure. The safety pattern is unable to reason about this, however.
It therefore employs the worst-case assumption and introduces CF potential trans-
fer. Future work could introduce another type of barrier declaration to capture
this (currently unavailable) knowledge.

Another aspect that needs to be emphasized is that CF graphs do not
capture information flow. The lack of a directed path from 𝑣 ∈ 𝑉 to 𝑣 ′ ∈ 𝑉 , for
example, does not justify the statement that 𝑣 will not have an impact on 𝑣 ′.
Among other things, this means that the approach from this chapter cannot
be used to reason about the confidentiality of data in an embedded software
system. It can be used to reason about the integrity of data, however.

Finally, note that the APU configuration procedure from Section 4.2.2 gives
master components either complete or no access to a particular memory region
or peripheral device. It does not give masters read-only access by default. Tech-
nically, doing so would be possible on most commercially available MPSoCs.

Section 4.4: Closing remarks | 121

Since read-only permissions do not have a logical impact on addressed slave
modules, doing so would not even require a modification of the algorithm to
create CF graphs. Still, the strategy from Section 4.2.2 does not grant these
default permissions; this decision is based on two observations:

• Restrictive transaction filtering at the on-chip interconnect level can
support pattern users in the enforcement of Premise 4.6, i.e., in achieving
a sufficient degree of temporal isolation at certain interfaces.

• Despite their negligible impact, read transactions directed to incorrect
targets are still an anomaly. A restrictive APU configuration facilitates
the identification of such anomalies.

In theory, however, it is conceivable to refine the APU configuration procedure
in such a way that read transactions are always possible.

Chapter 5

Safety assessment framework

This chapter presents a systematic approach to verify that an embedded soft-
ware system meets its safety requirements. The application of this approach is
the safety assessment, i.e., the second and final step of the pattern.

Safety assessment can be fully automated, just like the combined APU con-
figuration and CF determination procedure from Chapter 4. The value of
underlying concepts goes beyond an automated check of whether a system
meets its safety requirements, however. As it will be shown in Section 5.4, for
example, they can also be used for a safety-aware exploration of the design
space. The term safety assessment framework is used to emphasize the broad
applicability of concepts and ideas presented in this chapter.

According to Premise 1.1 on page 5, this work assumes that the intended
functionality of all system elements is safe. In other words: if every system
element delivers its intended functionality, the system under consideration
must not cause physical harm. Clients of the logical isolation pattern are
expected to ensure this, especially for SWC logic blocks. This can be achieved
by meeting the requirements of ISO 21448 [25] or similar standards.

With this targeted restriction of scope, the only remaining cause of physical
harm is the circumstance that a system element deviates from its intended
behavior, i.e., exhibits a failure. To reduce the risk of failure-induced harm
to an acceptable level is the topic of functional safety. Achieving functional
safety involves the consideration of various topics, such as hazard analysis,
risk assessment, fault avoidance, or fault tolerance. Another important topic
is how failures are able to propagate from system element to system element.
This propagation is exactly what this thesis refers to as CF potential. The

123

124 | Chapter 5: Safety assessment framework

platform(main)

mem(main.ddr) proc(main.a53)proc(main.r5)dev(main.can)

dev(main.gem) rte(linux)rte(zephyr)

swc(infotainment)swc(drivetrain)swc(body)

port(drivetrain.meas)R

port(drivetrain.speed)

logic(drivetrain)

port(body.speed)

port(body.msg) W

logic(body)

port(infotainment.cmd)R

port(infotainment.viz) W

logic(infotainment)

Figure 5.1: CF graph for the car server use case from Example 4.3, here enriched
with R/W pins that highlight interactions at environment ports.

procedure from Section 4.2.2 captures CF potential in the form of a CF graph.
Given a CF graph, safety assessment seeks to answer the question if the
reflected CF potential poses an unreasonable safety risk.

⊲ Example 5.1: In the final version of the partitioned car server use case, two
isolation measures were in place: a request to generate APU configuration code
for 𝑥𝑍 and the declaration that 𝑟𝑍 implements process isolation (cf. Example 4.3).
The corresponding CF graph is shown in Figure 5.1.

CF graphs do not capture the safety impact that the failure of a particular
system element can have. They are also agnostic to the probability that a par-
ticular system element fails. They are only concerned with failure propagation.

Section 5.1: Safety impact of CF potential | 125

5.1 Safety impact of CF potential

CF potential does not necessarily constitute a safety issue. For a CF to jeopar-
dize safety, the following chain of events must be fulfilled (cf. Section 3.1.2):

1) The manifestation of a fault leads to the failure of a system element.
2) In the form of a CF, this failure propagates to another system element.
3) This system element affects the environment in a hazardous manner.

While the consideration of item 2 is the responsibility of CF graphs, knowledge
about item 1 and item 3 needs to be provided by the pattern user. To create a
formal framework that allows them to do so, it is first necessary to specify the
system elements that are relevant with respect to these kinds of events.

5.1.1 Safety-relevant system elements

In this thesis, such system elements are referred to as safety-relevant system
elements. To prepare for their definition, we introduce the abbreviations

𝑃𝐼 = {𝑝 ∈ 𝑃 : scope(𝑝) = Env ∧ dir(𝑝) = In} and
𝑃𝑂 = {𝑝 ∈ 𝑃 : scope(𝑝) = Env ∧ dir(𝑝) = Out}.

As given by the formal statements above, 𝑃𝐼 refers to all environment inputs
of SWCs, while 𝑃𝑂 refers to all environment outputs of SWCs.

In line with the fault model from Section 3.3, only a subset of system
elements is susceptible to faults. This subset is defined as follows:

▶ Definition 5.1: Susceptible system elements

The set of susceptible system elements,

𝑉𝑠 = (𝑋 ∪𝐶+ ∪ 𝐵) ∪ (𝑅) ∪ (𝑆 ∪ Λ𝑆 ∪ 𝑃𝐼),

contains all system elements that may be subject to random or systematic
faults, regardless of the likelihood that a fault exists or manifests.

An example of a random fault affecting an execution platform, 𝑥 ∈ 𝑋 , is an
ionizing particle that falsifies a transaction traversing the on-chip interconnect
of 𝑥 . An example of a systematic fault of environment input 𝑝 ∈ 𝑃𝐼 is the

126 | Chapter 5: Safety assessment framework

circumstance that 𝑝 reads from an unreliable sensor and, therefore, might
introduce erroneous data into the system.

Physical harm can only be caused by system elements that affect the
environment. They are referred to as environment writers and, following the
underlying system model, defined as follows:

▶ Definition 5.2: Environment writers

The set of environment writers,

𝑉𝑤 = 𝑃𝑂 ,

contains all environment output ports, regardless of the physical harm
that can actually be caused by these interfaces.

One example of an environment writer is a SWC output port that controls
the door locks of a road vehicle using multiple actuators.

⊲ Remark 5.1: At this point, it is important to emphasize the virtual nature of
elements in 𝑃𝐼 and 𝑃𝑂 . Like all SWC ports, they are logical entities that allow the
pattern user to capture relevant SWC behavior. Physical components that allow
an environment input (or output) to actually read (or write) values are represented
by other system elements, including SWC implementations, underlying RTEs, and
utilized I/O controllers. In the CF graph, there will always be a directed path from
these system elements to logic blocks reading environment inputs and writing
environment outputs, respectively.

5.1.2 Fault manifestation and physical harm

𝑉𝑠 and 𝑉𝑤 are disjoint sets. This means that a system element susceptible to
faults (𝑉𝑠) is not an environment writer (𝑉𝑤) and, therefore, unable to cause
physical harm. The converse is also true: an environment writer (𝑉𝑤) is not a
susceptible system element (𝑉𝑠) and will therefore, by itself, not be affected by
a fault. This leads to two important observations:

1) Physical harm can only be the result of a CF that eventually causes the
failure of an environment writer, i.e., an element of 𝑉𝑤 .

2) The root cause (i.e., the fault) that gives rise to a CF can only originate
from a susceptible system element, i.e., an element of 𝑉𝑠 .

Section 5.1: Safety impact of CF potential | 127

Fault manifestation Failure propagation Physical harm

port(drivetrain.meas)R . . . logic(body) port(body.msg) W

swc(infotainment) logic(infotainment) port(infotainment.viz) W

proc(main.r5) rte(zephyr) . . . port(body.msg) W

Directed path in 𝐺𝛾

Directed path in 𝐺𝛾

Directed path in 𝐺𝛾

Table 5.1: Sample paths in𝐺𝛾 that lead from fault manifestation (at a susceptible system
element) to physical harm (at an environment output of a SWC).

If we combine these two observations, it is possible to state the following:
physical harm can only result from a directed path in 𝐺𝛾 that starts at a
susceptible system element and reaches an environment writer.

⊲ Example 5.1 (continued): In the partitioned car server use case, there are two
environment writers: 𝑝𝐵𝑚 , which is also labeled as port(body.msg), and 𝑝𝐼𝑣 ,
which is also labeled as port(infotainment.viz).

Table 5.1 shows three paths from the corresponding CF graph. The first one
starts at port(drivetrain.meas) and ends at port(body.msg). Whether
this CF potential leads to an unreasonable safety risk depends on (1) the integrity of
values introduced by port(drivetrain.meas) and (2) the criticality of outputs
generated by port(body.msg). For the purposes of this example, we assume that
these two factors are in line with each other. Therefore, the discussed CF potential
is not a reason to reject the system design.

The other two paths visualized in Table 5.1 originate from a SWC implemen-
tation and a processing unit, respectively. In this case, to assess the presence or
absence of unreasonable safety risk, it needs to be answered (1) how the integrity
of swc(infotainment) relates to the criticality of port(infotainment.viz),
and (2) how the integrity provided by port(main.r5) relates to the critical-
ity of port(body.msg). Under the assumption that these properties are again
pairwise compatible, the two CF potentials can be accepted.

128 | Chapter 5: Safety assessment framework

When the criticality of environment writers is assessed, state-of-the-art
methods such as a Hazard Analysis and Risk Assessment (HARA) can be
applied. Analogously, when the integrity of susceptible system elements is
determined, the application of fault avoidance or fault tolerance mechanisms
should be considered. For example, a SWC implementation performed using a
memory-safe programming language might be assigned a higher integrity than
a SWC implementation based on a programming language that does not provide
memory safety. Another example is lockstep functionality implemented by
a processing unit: it might be justified to consider the integrity provided by
such a processing unit higher than that of an unprotected one.

These relationships can be captured by the logical isolation pattern, but
their determination is the responsibility of the pattern user. To allow users to
communicate them in an unambiguous manner, the pattern accepts them in
the form of a formal safety requirements specification. As introduced in Sec-
tion 3.1.2, this work proposes two alternative specification approaches: the
interference whitelist and a lattice-based integrity assignment concept. Each
of them is associated with a corresponding assessment procedure and will now
be described in a dedicated section.

5.2 Interference whitelist approach

This approach is based on an enumeration of acceptable CF potential between
susceptible system elements and environment writers. It is referred to as
an interference whitelist, where interference is used as a synonym for CF.

5.2.1 Safety requirements specification

Formally, interference whitelists are binary relations:

▶ Definition 5.3: Interference whitelist

The interference whitelist is a binary relation

Σ ⊆ 𝑉𝑠 ×𝑉𝑤,

where ⟨𝑣, 𝑣 ′⟩ ∈ Σ implies (⇒) that CF potential from 𝑣 to 𝑣 ′ does not
pose an unreasonable safety risk.

Section 5.2: Interference whitelist approach | 129

To decide whether a system element pair can be added to Σ, the corre-
sponding CF potential needs to be considered on its own. This is an important
contributor to the applicability of the approach, since it allows pattern users
to focus on one pair of system elements at a time.

5.2.2 Assessment algorithm

To ensure that a system design is free from unreasonable safety risk, the as-
sessment procedure traverses the CF graph from every susceptible system
element, identifies all reachable environment writers, and compares the result-
ing CF potential to the interference whitelist:

Algorithm 5.1: Safety assessment based on an interference whitelist

1 function SafetyAssessment()
2 for each 𝑣 ∈ 𝑉𝑠 do
3 for each 𝑣 ′ ∈ DepthFirstSearch(𝐺𝛾 , 𝑣) do
4 if (𝑣 ′ ∈ 𝑉𝑤) ∧ (⟨𝑣, 𝑣 ′⟩ ∉ Σ) then
5 return false
6 return true

The binary result returned by Algorithm 5.1 emphasizes that safety as-
sessment is a decision problem, not a search or optimization problem. In the
algorithm, a return value of ‘true’ means that the system design is accepted; a
return value of ‘false’ communicates the rejection of the system design.

Time complexity The loop in line 2 is executed up to |𝑉𝑠 | times. For each
iteration of this outer loop, line 3 applies Depth-First Search (DFS) to iterate
over each system element reachable from 𝑣 ; under the assumption that edges
are stored in the form of an adjacency list, each DFS has a worst-case perfor-
mance of O(|𝑉 | + |𝐸 |). Based on the DFS result, in each iteration of the outer
loop, line 4 is executed up to |𝑉 | times. Under the assumption that this line
can be executed in constant time, we obtain a total worst-case time complexity
of O(|𝑉𝑠 | (|𝑉 | + |𝐸 | + |𝑉 |)) = O(|𝑉 |2 + |𝑉 | |𝐸 |).

Space complexity In addition to memory used by relevant inputs, the
worst-case space complexity of Algorithm 5.1 is O(|𝑉 |). This is due to the
application of DFS, which needs to maintain a vertex stack.

130 | Chapter 5: Safety assessment framework

platform(main)

mem(main.ddr) proc(main.a53)proc(main.r5)dev(main.can)

dev(main.gem) rte(linux)rte(zephyr)

swc(infotainment)
BOLT

swc(drivetrain)swc(body)

port(drivetrain.meas)R

port(drivetrain.speed)

logic(drivetrain)

port(body.speed)

port(body.msg) W

logic(body)

port(infotainment.cmd)R

port(infotainment.viz) W

logic(infotainment)

Figure 5.2: CF potential spawned by swc(infotainment) in the protected car server
use case. A lightning bolt highlights this arbitrarily selected source vertex. Vertices
reachable from it are outlined black and shaded red.

⊲ Example 5.2: For illustration purposes, we now determine an interference
whitelist for which a safety assessment of the partitioned car server use case (cf. Ex-
ample 5.1) succeeds. Therefore, it is first necessary to identify all CF potential
between the 16 susceptible system elements and the two environment writers.
Starting from swc(infotainment), for instance, the CF graph contains a di-
rected path only to port(infotainment.viz). This is graphically emphasized
in Figure 5.2 and documented in a row of Table 5.2.

Repeating this process for the other 𝑣 ∈ 𝑉𝑠 completes Table 5.2. It captures the
entire CF potential that is relevant from a safety assessment perspective.

For the safety assessment to succeed, Σ needs to contain all system element
pairs for which Table 5.2 reports a ‘reachable ()’ entry. To minimize the cardi-

Section 5.2: Interference whitelist approach | 131

Environment writera

Susceptible system element port(infotainment.viz) port(body.msg)

platform(main)
mem(main.ddr)

proc(main.a53)
dev(main.gem)
rte(linux)
swc(infotainment)
logic(infotainment)
port(infotainment.cmd)

proc(main.r5)
dev(main.can)
rte(zephyr)
swc(body)
swc(drivetrain)
logic(body)
logic(drivetrain)
port(drivetrain.meas)

a Legend: reachable (⇒ there is CF potential from the susceptible system element on the left
to this environment writer), unreachable (⇒ there is no such CF potential).

Table 5.2: Complete enumeration of CF potential between susceptible system elements
and environment writers in the car server use case.

nality of |Σ|, we do not add any further system element pairs and obtain a Σ value
populated with 18 elements:

Σ =

{
⟨𝑥𝑍 , 𝑝𝐼𝑣⟩, ⟨�̂�DDR, 𝑝

𝐼
𝑣⟩, ⟨𝑢A53, 𝑝𝐼𝑣⟩, ⟨𝑞GEM, 𝑝𝐼𝑣⟩, . . . ,

⟨𝑥𝑍 , 𝑝𝐵𝑚⟩, ⟨�̂�DDR, 𝑝
𝐵
𝑚⟩, ⟨𝑢R5, 𝑝𝐵𝑚⟩, ⟨𝑞CAN, 𝑝𝐵𝑚⟩, . . .

}
.

If the pattern user declares these safety requirements, Algorithm 5.1 returns a
positive (true) result. At the same time, it is the user’s responsibility to ensure
that the integrities and criticalities of each listed system element pair are in line
with each other. For instance, ⟨𝑢R5, 𝑝𝐵𝑚⟩ ∈ Σ communicates to the pattern that CF
potential from the Cortex-R5 to the body network is acceptable. This statement
can only be made if the Cortex-R5 has sufficient integrity to control the body
network, and its validity needs to be enforced by the user.

132 | Chapter 5: Safety assessment framework

5.3 Integrity assignment procedure

The interference whitelist is a flexible approach to specify safety requirements
in a fine-grained manner. From a usability perspective, however, defining
this whitelist for designs with numerous system elements can be difficult. To
specify Σ, safety considerations for a total of |𝑉𝑠 | |𝑉𝑤 | system elements pairs
need to be performed. In other words: to specify an interference whitelist, the
pattern user is expected to take O(|𝑉 |2) decisions.

This section presents a safety assessment procedure that attempts to solve
this usability issue. It is inspired by the concept of lattice-based information
flow tracking, but it reasons about CF potential instead of general information
flow. The procedure was initially contributed by the author to [4] and is now
described in a tailored and extended version.

5.3.1 Safety requirements specification
This specification strategy allows pattern users to define an arbitrary set
of integrity levels, where each level quantifies the ‘certainty’ that no fault
manifestation will affect a susceptible system element during runtime. These
integrity levels must be partially ordered and form a meet-semilattice.

Based on this framework, susceptible system elements are labeled with the
integrity level they provide, while environment writers are labeled with the
integrity level they require to avoid unreasonable safety risk:

▶ Definition 5.4: Integrity assignment

The integrity assignment is a tuple

⟨𝐼 , ≤, int, ireq⟩

in which:

1) 𝐼 is a finite set of integrity levels,
2) the partial order ≤ turns ⟨𝐼 , ≤⟩ into a meet-semilattice,
3) int : 𝑉𝑠 → 𝐼 specifies the inherent integrity of susceptible system

elements, i.e., the integrity level they provide by themselves, and
4) ireq : 𝑉𝑤 → 𝐼 maps every𝑤 ∈ 𝑉𝑤 to a required integrity such that

for each ⟨𝑣, 𝑤⟩ ∈ 𝑉𝑠 ×𝑉𝑤 , if ireq(𝑤) ≤ int(𝑣), then CF potential
from 𝑣 to𝑤 does not pose an unreasonable safety risk.

Section 5.3: Integrity assignment procedure | 133

high

low

(a) 𝐼 = {low, high} with low ≤ high,
low ≤ low, and high ≤ high.

a b

x

(b) 𝐼 = {x, a, b} with x ≤ a, x ≤ b,
a ≤ a, b ≤ b, and x ≤ x.

{□,■} {□, △} {■, △}

{□} {■} {△}

∅

{□,■, △}

(c) 𝐼 = 𝒫 ({□,■, △}) , where ≤ represents set containment (⊆).

Figure 5.3: Hasse diagrams of three arbitrarily chosen integrity lattices. The first (a)
constitutes a total order, while the third (c) leverages concepts from set theory.

For the sake of brevity, each ⟨𝐼 , ≤⟩ tuple that meets Definition 5.4 will be
referred to as an integrity lattice in the following, although this tuple does not
necessarily have to be a lattice in the mathematical sense. As stated above, it
is sufficient that ⟨𝐼 , ≤⟩ is a meet-semilattice; it is not necessary that there is a
least upper bound sup{𝑖1, 𝑖2} for all 𝑖1, 𝑖2 ∈ 𝐼 .

⊲ Example 5.3: Three possible integrity lattices are shown in Figure 5.3.
The integrity lattice in Figure 5.3a is built from a total order on {low, high}.

These integrity levels represent low and high integrity, respectively. Due to the
fact that low ≤ high, a susceptible system element with an inherent integrity
of high is less likely to fail due to an inherent root cause than one with low.

The definition in Figure 5.3b consists of three elements, where a and b describe
different, incomparable fault manifestation characteristics. However, susceptible
system elements labeled with x are more likely to fail due to an inherent root
cause than one labeled with either a or b.

134 | Chapter 5: Safety assessment framework

Finally, the integrity lattice in Figure 5.3c is based on three ‘beneficial’ proper-
ties symbolized by□, ■, and △, respectively. Semantically, each property expresses
robustness against a certain type of fault manifestations. If □ is used to express
the absence from systematic programming errors, and ■ signifies robustness
against single-event upsets, then an inherent integrity of {□,■} means that a
susceptible system element exhibits both of these properties.

With respect to usability, it is again interesting to discuss the effort that
pattern users need to invest for the specification of an integrity assignment.
Under the assumption that the integrity lattice is already defined, integrity
levels need to be assigned to |𝑉𝑠 | + |𝑉𝑤 | system elements. For each such
assignment, the pattern user needs to find the suitable ‘int’ or ‘ireq’ value
among |𝐼 | options. Therefore, to specify an integrity assignment, the pattern
user is expected to take O(|𝑉 | |𝐼 |) decisions.

Before moving on to the assessment procedure that decides if inherent and
required integrities are actually in line with each other, we briefly discuss how
the integrity assignment approach relates to the interference whitelist method.
In fact, the two specification approaches have the same expressivity:

▶ Theorem 5.1: Expressivity of specification approaches

Interference whitelists (according to Definition 5.3) and integrity assign-
ments (according to Definition 5.4) are interchangeable.

⊲ Proof: It is necessary to show that every interference whitelist can be trans-
formed into a semantically equivalent integrity assignment, and vice versa.

Starting with an interference whitelist Σ, we set 𝐼 to𝒫(𝑉𝑤) and define ≤ as
set containment (⊆) over 𝐼 . With this, ⟨𝐼 , ≤⟩ is ameet-semilattice, each integrity
level is a set of environment writers, and the greatest lower bound of 𝑖1 ∈ 𝐼
and 𝑖2 ∈ 𝐼 is 𝑖1 ∩ 𝑖2. We choose ‘int’ such that

∀𝑣 ∈ 𝑉𝑠 : int(𝑣) = {𝑤 ∈ 𝑉𝑤 : ⟨𝑣, 𝑤⟩ ∈ Σ}.

After this assignment, per Definition 5.3, it is possible to state the following: for
all ⟨𝑣, 𝑤⟩ ∈ 𝑉𝑠 × 𝑉𝑤 , if 𝑤 ∈ int(𝑣), then CF potential from 𝑣 to 𝑤 does not
pose an unreasonable safety risk. Since ≤ represents set containment, this
statement can be rewritten as follows: for all ⟨𝑣, 𝑤⟩ ∈ 𝑉𝑠 ×𝑉𝑤 , if {𝑤} ≤ int(𝑣),
then CF potential from 𝑣 to𝑤 does not pose an unreasonable safety risk. We
complete the integrity assignment specification by defining ‘ireq’ as follows:

∀𝑤 ∈ 𝑉𝑤 : ireq(𝑤) = {𝑤}.

Section 5.3: Integrity assignment procedure | 135

Substituting this into the previous intermediate result, we obtain precisely
the constraint from item 4 of Definition 5.4. Therefore, the derived integrity
assignment ⟨𝐼 , ≤, int, ireq⟩ is semantically equivalent to Σ.

Into the opposite direction, we start with ⟨𝐼 , ≤, int, ireq⟩ and need to show
that this safety requirements specification can be transformed into an integrity
whitelist. From item 4 of Definition 5.4, it is obvious that for a precisely defined
subset of 𝑉𝑠 ×𝑉𝑤 , the integrity assignment argues that CF potential does not
pose an unreasonable safety risk. This is exactly the subset that needs to be
assigned to Σ to achieve semantic equivalence. □

⊲ Remark 5.2: The proof of Theorem 5.1 utilizes the fact then when an integrity
assignment is created, it is possible to choose both 𝐼 and ≤ arbitrarily. In practice,
it is often more manageable to limit 𝐼 to a few elements. If such a constraint
is enforced, it may no longer necessarily possible to transform an interference
whitelist into an integrity assignment.

The integrity assignment can be seen as a generalization of the interference
whitelist: in principle, it is as powerful as the interference whitelist (cf. Theo-
rem 5.1), but this expressivity can be reduced to make the safety requirements
specification more manageable.

5.3.2 Assessment algorithm
To argue that CF potential from 𝐺𝛾 does not pose an unreasonable safety risk,
it is necessary to make use of ‘int’ and ‘ireq’ values. Intuitively speaking, the
assessment algorithm applies the following strategy:

1) Initialize the integrity level of each 𝑣 ∈ 𝑉𝑠 with int(𝑣).
2) Propagate integrity levels along the edges of 𝐺𝛾 ; when integrity levels

converge, calculate and forward their greatest lower bound.
3) Ensure that the integrity level of each𝑤 ∈ 𝑉𝑤 is at least ireq(𝑤), i.e., the

required integrity of the environment writer.

Therefore, the algorithm first extends ⟨𝐼 , ≤⟩ with a greatest element ⊤,
also referred to as the ‘top’ element. This is achieved by first setting

𝐼⊤ = 𝐼 ∪ {⊤}

and declaring 𝑖 ≤ ⊤ for all 𝑖 ∈ 𝐼⊤. This results in an extended integrity
lattice ⟨𝐼⊤, ≤⟩, in which⊤ is the meet (∧) of the empty set. All system elements
that are not part of 𝑉𝑠 can be initialized with this value to ensure that they do
not interfere with the integrity propagation process.

136 | Chapter 5: Safety assessment framework

a b

⊤

x

Figure 5.4: Semilattice from Figure 5.3b extended with a top (⊤) element, which leads
to 𝐼⊤ = {x, a, b, ⊤}. With this, ⊤ is the meet of the empty set.

⊲ Example 5.4: An extension of the integrity lattice from Figure 5.3b leads to
the Hasse diagram shown in Figure 5.4. As shown in the diagram, the top ele-
ment (⊤) is greater than or equal to every 𝑖 ∈ {x, a, b, ⊤}.

Based on 𝐼⊤, the following auxiliary concept is introduced:

▶ Definition 5.5: Effective integrity

The effective integrity of 𝑣 𝑗 ∈ 𝑉 is

𝑖 𝑗,0 ∧ ©«
∧
𝑣∗∈𝑉 ∗𝑣

int(𝑣∗)ª®¬ ∈ 𝐼⊤,
where𝑉 ∗𝑣 are the susceptible system elements from which there is CF po-
tential to 𝑣 𝑗 , and 𝑖 𝑗,0 is the initial integrity of 𝑣 𝑗 . If 𝑣 𝑗 is a susceptible
system element, then 𝑖 𝑗,0 is int(𝑣 𝑗); otherwise, 𝑖 𝑗,0 is ⊤.

⊲ Remark 5.3: If a system element 𝑣 𝑗 ∈ 𝑉 has no incoming CF potential from any
susceptible system element, its effective integrity is its initial integrity.

Effective integrities of environment writers are exactly the values that
need to be compared with ‘ireq’ values in order to reason about the absence
of unreasonable safety risk. From a dynamic programming perspective, their
calculation is facilitated by the effective integrity of all 𝑣 ∈ 𝑉 \𝑉𝑤 .

Based on this observation, the integrity propagation strategy can be re-
duced to the determination of an effective integrity for each system element.

Section 5.3: Integrity assignment procedure | 137

The following algorithm performs this determination and, finally, compares
the effective integrities of all environment writers to their requirements:

Algorithm 5.2: Safety assessment based on an integrity lattice

1 function SafetyAssessment()
2 // Preallocate a map for effective integrities:
3 for each 𝑣 ∈ 𝑉 do
4 levels[𝑣] ← ⊤
5 // Populate the ‘levels’ map and keep track of modified values:
6 for each 𝑣 ∈ 𝑉𝑠 do
7 levels[𝑣] ← int(𝑣)
8 dirtySet ← 𝑉𝑠
9 // Propagate effective integrities until there are no further changes:
10 while dirtySet ≠ ∅ do
11 // Get a system element whose effective integrity is not propagated:
12 𝑣 ← (arbitrary element from dirtySet)
13 dirtySet ← dirtySet \ {𝑣}
14 // Propagate it via all outgoing edges:
15 for each𝑤 ∈ 𝑉 : ⟨𝑣, 𝑤⟩ ∈ 𝐸 do
16 prev ← levels[𝑤]
17 levels[𝑤] ← (levels[𝑣] ∧ levels[𝑤])
18 if levels[𝑤] ≠ prev then
19 dirtySet ← dirtySet ∪ {𝑤}
20 // Ensure that required integrities are met:
21 for each𝑤 ∈ 𝑉𝑤 do
22 if ireq(𝑤) ̸≤ levels[𝑤] then
23 return false
24 return true

To determine the effective integrity of all system elements, the algorithm
performs an iterative procedure that operates on two data structures:

1) levels is a map that finally stores the effective integrity of each system
element; while the algorithm is in progress, it stores values that are
temporarily assumed to be effective integrities of system elements.

2) dirtySet is a set holding every system element whose current levels value
has not yet been propagated via its outgoing edges.

After the loops in line 3 and line 6, the levels map is initialized as follows:

∀𝑣 ∈ 𝑉 : levels[𝑣] =
{
int(𝑣), 𝑣 ∈ 𝑉𝑠 ,
⊤, otherwise.

138 | Chapter 5: Safety assessment framework

𝑣 𝑗 ∈ 𝑉 levels[𝑣 𝑗] =
𝑞∧

𝑘=0
𝑖 𝑗,𝑘

𝑖 𝑗,1

𝑖 𝑗,𝑞

𝑖 𝑗,0 = int(𝑣 𝑗) or ⊤

From other
system
elements

To other
system
elements

..
.

Figure 5.5: Local invariant to maintain for each system element. If 𝑣 𝑗 ∈ 𝑉𝑠 , then 𝑖 𝑗,0 is
the inherent integrity of 𝑣 𝑗 ; otherwise, it is the top element ⊤.

Then, during its iterative procedure, Algorithm 5.2 maintains the following
invariant: for each 𝑣 𝑗 ∈ 𝑉 , levels[𝑣 𝑗] is the greatest lower bound of its initial
value 𝑖 𝑗,0 and 𝑖 𝑗,1, . . . , 𝑖 𝑗,𝑞 ∈ 𝐼⊤. Here, 𝑞 is the number of CF graph edges that
lead to 𝑣 𝑗 , and 𝑖 𝑗,𝑘 has the following value:

1) If the system element that edge 𝑘 originates from is not contained
in dirtySet, then 𝑖 𝑗,𝑘 is the levels value of this system element.

2) If the system element that edge𝑘 originates from is in dirtySet, then 𝑖 𝑗,𝑘 is
greater than or equal to the levels value of this system element.

These relationships are illustrated in Figure 5.5. dirtySet allows us to reduce
a levels value at any time: as long as the respective system element is also added
to dirtySet, the invariant will be maintained. To remove a system element 𝑣
from dirtySet, it needs to be ensured that the levels values of its successors
are (individually) reduced to at most levels[𝑣]. When dirtySet is empty, the
invariant simplifies to the following: for each 𝑣 ∈ 𝑉 , levels[𝑣] is the greatest
lower bound of its initial integrity and the levels values of all predecessors of 𝑣 .
At this point, levels[𝑣] is exactly the effective integrity of 𝑣 ∈ 𝑉 .

These concepts are now mapped to Algorithm 5.2. After the loop in line 3,
every levels value is ⊤, and the invariant is trivially met. The loop in line 6
reduces the levels value of each susceptible system element. By simultaneously
adding these system elements to dirtySet in line 8, the invariant is maintained.
The loop in line 10 iterates until the dirtySet is empty. In each iteration, an
arbitrarily selected dirtySet element is removed. To ensure that the invariant
is maintained, all outgoing edges of this 𝑣 ∈ 𝑉 need to be considered, and
the levels value of each reachable system element needs to be reduced to at
most levels[𝑣]. This is achieved by the loop in line 15 and, particularly, the

Section 5.3: Integrity assignment procedure | 139

⟨lvl⟩

err(⟨lvl⟩/⟨ireq⟩)

ok(⟨lvl⟩/⟨ireq⟩)

Effective integrity ⟨lvl⟩ propagates via graph edge

Effective integrity ⟨lvl⟩ violates required integrity ⟨ireq⟩
Effective integrity ⟨lvl⟩ meets required integrity ⟨ireq⟩

Figure 5.6: Notation used for the annotation of lattice-based safety assessment results.
Elements in angular brackets are placeholders that represent a particular 𝑖 ∈ 𝐼⊤.

assignment in line 17. If this assignment leads to a reduction of a levels value,
the affected system element is again added to dirtySet in line 18. Eventually,
this procedure will result in a steady state, which means that dirtySet = ∅.
When this is the case, the loop in line 10 terminates, and the effective integrity
of each system element 𝑣 is available as levels[𝑣].

The final task of Algorithm 5.2 is to compare effective integrities of envi-
ronment writers to ‘ireq’ values. This is performed by the loop in line 21:

1) An effective integrity of levels[𝑤] = ⊤ means that there is no CF po-
tential from a susceptible system element to 𝑤 ∈ 𝑉𝑤 . Since the top
element ⊤ is at least as high as every 𝑖 ∈ 𝐼 , this case will never lead to a
rejection of the design, i.e., it will not lead to a ‘false’ return value.

2) An effective integrity of levels[𝑤] ≠ ⊤ means that there is at least one
susceptible system element with CF potential leading to𝑤 ∈ 𝑉𝑤 . In this
case, per Definition 5.5, levels[𝑤] is the greatest lower bound of all inher-
ent integrities assigned to these system elements. If ireq(𝑤) ≤ levels[𝑤],
per Definition 5.4, it is possible to infer the absence of an unreasonable
safety risk. Therefore, this condition does also not lead to the rejection
of a design. If ireq(𝑤) ̸≤ levels[𝑤], however, then there is CF potential
from a susceptible system element 𝑣∗ for which ireq(𝑤) ̸≤ int(𝑣∗). In
this case, absence of unreasonable safety risk can no longer be inferred,
and the design will be rejected in line 23.

Algorithm 5.2 returns its decision as a binary result. To provide active
support during the design process, it can further be insightful to return an
annotated version of a CF graph that provides pattern users with more details
about the assessment result. The legend in Figure 5.6 shows a notation that
this thesis uses for such a visual annotation of safety assessment results.

To analyze the computational complexity of Algorithm 5.2, the following
paragraphs assume that the meet operation is precomputed (for constant-time
lookups), that each 𝑣 ∈ 𝑉 is associated with a unique index from 0 to |𝑉 | − 1,
that levels is stored as an array using these indices, and that dirtySet combines

140 | Chapter 5: Safety assessment framework

two arrays to achieve constant-time addition and removal of set elements. To
facilitate this, addition to dirtySet is limited to elements from𝑉 , while removal
from dirtySet returns and deletes an arbitrary (random) element.

Time complexity The time complexity is dominated by the iterative in-
tegrity level propagation. The outer loop in line 10 is executed for as long as
elements can be removed from dirtySet. Over the course of the algorithm, a
system element is added to dirtySet whenever its levels value is reduced. In
the worst case, this occurs up to |𝐼 | times per system element. Therefore, in
total, the following two segments are executed up to |𝑉 | |𝐼 | times:

1) The set operations in line 12 and line 13, which can be executed in
constant time. For all iterations of the outer loop, they therefore have a
worst-case time complexity of O(|𝑉 | |𝐼 |).

2) The inner loop in line 15, whose body can again be executed in constant
time. It iterates over all vertices adjacent to the respective 𝑣 ∈ 𝑉 . In all
iterations of the outer loop combined, it visits each 𝑒 ∈ 𝐸 up to |𝐼 | times,
which leads to a worst-case time complexity of O(|𝐸 | |𝐼 |).

In total, we obtain a worst-case time complexity of O(|𝑉 | |𝐼 | + |𝐸 | |𝐼 |).

Space complexity In addition to external memory, which also holds the
precomputed meet operation table, the algorithm requires O(|𝑉 |) space to
store levels and dirtySet using suitable data structures.

⊲ Example 5.5: Based on the partitioned car server use case (cf. Example 5.1), we
now discuss an integrity assignment that reflects relevant safety requirements.

The use case consists of two environment writers: 𝑝𝐵𝑚 , which controls the
safety-critical body network, and 𝑝𝐼𝑣 , which is a convenience feature without
the potential to cause physical harm. Therefore, it makes sense to introduce
the following integrity lattice: 𝐼 = {low, high} with low ≤ high, low ≤ low,
and high ≤ high. Here, high is the inherent integrity that susceptible system
elements with CF potential to 𝑝𝐵𝑚 need. Susceptible system elements labeled
with low have an unknown or unpredictable fault manifestation behavior.

A possible assignment of ‘ int’ and ‘ ireq’ values is shown in Table 5.3. In
line with the above statements, it defines ireq(𝑝𝐵𝑚) = high and ireq(𝑝𝐼𝑣) = low.
It further specifies, e.g., that 𝑟𝐿 has an inherent integrity of only low; in other
words: a failure of this RTE is considered more likely than it would have to be to
accept CF potential from 𝑟𝐿 to 𝑝𝐵𝑚 or, more generally, to accept CF potential to
any environment writer with a required integrity of high.

Section 5.3: Integrity assignment procedure | 141

Integrity assignment

System element 𝑣 ∈ 𝑉 int(𝑣) ireq(𝑣)

platform(main) high –
mem(main.ddr) high –
proc(main.a53) low –
proc(main.r5) high –
dev(main.gem) low –
dev(main.can) high –
rte(linux) low –
rte(zephyr) high –
swc(infotainment) low –
swc(body) high –
swc(drivetrain) high –
logic(infotainment) low –
logic(body) high –
logic(drivetrain) high –
port(infotainment.cmd) low –
port(drivetrain.meas) high –

port(drivetrain.speed) – –
port(body.speed) – –

port(infotainment.viz) – low
port(body.msg) – high

Table 5.3: Sample assignment of inherent and required integrities for the partitioned
car server use case. Two of the 20 system elements are neither in 𝑉𝑠 nor in 𝑉𝑤 ; these
system elements are not associated with any integrity level.

For this integrity assignment, the safety assignment returns a positive result,
i.e., it argues the absence of unreasonable safety risk. The effective integrities that
propagate via CF graph edges are shown in Figure 5.7.

The annotated graph also visualizes how the effective integrity of each envi-
ronment writer relates to the required one: 𝑝𝐵𝑚 requires an effective integrity of at
least high, for example, and has an effective integrity of high.

⊲ Remark 5.4: Although effective integrities are a property of system elements,
the notation from Figure 5.6 annotates them to outgoing edges of vertices. This
is an attempt to simplify the human observer’s understanding of how effective
integrity levels propagate through the CF graph. For bidirectional edges, the
effective integrity that propagates into both directions is shown only once.

142 | Chapter 5: Safety assessment framework

platform(main)

mem(main.ddr) proc(main.a53)proc(main.r5)dev(main.can)

dev(main.gem) rte(linux)rte(zephyr)

swc(infotainment)swc(drivetrain)swc(body)

port(drivetrain.meas)R

port(drivetrain.speed)

logic(drivetrain)

port(body.speed)

port(body.msg) W

ok(high/high)

logic(body)

port(infotainment.cmd)R

port(infotainment.viz) W

ok(low/low)

logic(infotainment)

high highhighhigh

highhigh high lowhighhigh

low lowhighhigh

low

high

high

high

high

high

high

high

low

low

high

Figure 5.7: CF graph of the partitioned car server use case with safety assessment result
annotations. The assessment is based on 𝐼 = {low, high} with low ≤ high, low ≤ low,
and high ≤ high. It leads to a positive result, i.e., the acceptance of the design.

⊲ Example 5.5 (continued): Without an APU protection of 𝑥𝑍 , the safety assess-
ment would not lead to a positive result. In this case, the integrity ‘low’ would
propagate from 𝑢A53 via 𝑥𝑍 to the safety-critical environment writer 𝑝𝐵𝑚 .

5.4 Safety-aware system design using ILP

By the logical isolation pattern itself, safety assessment is treated as a decision
problem. This section leverages ILP to show how the underlying concept can
be used to solve search or optimization problems. The approach is guided by

Section 5.4: Safety-aware system design using ILP | 143

specified safety requirements and is meant to support pattern users in taking
certain design decisions. It is applicable to all pattern inputs where:

1) Safety requirements are specified in the form of an integrity lattice.
2) The binary relation ≤ is a total order.

In other words: using ≤, any two integrity levels from 𝐼 must now be compa-
rable. This is a restriction on arbitrary integrity lattices, which only require
that any two integrity levels have a greatest lower bound.

This allows us to associate each integrity level with a unique integer such
that greater integers correspond to greater integrity levels. Formally, this is
achieved by defining a one-to-one function 𝜋 : 𝐼 → ℤ such that for all 𝑖 𝑗 , 𝑖𝑘 ∈ 𝐼 ,
𝑖 𝑗 ≤ 𝑖𝑘 ⇔ 𝜋 (𝑖 𝑗) ≤ 𝜋 (𝑖𝑘). In the following and without loss of generality, the
integer set {0, . . . , |𝐼 | − 1} ⊆ ℤ will be used as the codomain of 𝜋 .

⊲ Example 5.5 (continued): 𝐼 = {low, high} with low ≤ high, low ≤ low,
and high ≤ high is a totally ordered set. Following the convention from
above, each integrity level must be mapped to a unique integer from {0, 1}.
We choose 𝜋 (low) = 0 and 𝜋 (high) = 1 to satisfy low ≤ high⇔ 0 ≤ 1.

5.4.1 LP formulation of the safety assessment
As foundation, we first discuss how the decision problem can be formulated
using ILP. Therefore, we introduce a vector 𝝈 ∈ ℤ𝑛 , where 𝑛 = |𝑉 |, and
every element of 𝝈 represents an integrity level associated with one particular
system element. In the following, we use subscript indices to communicate
the mapping between a system element and its associated integrity level: the
integrity level associated with 𝑣 𝑗 ∈ 𝑉 , 𝑗 = 1, . . . , 𝑛, is referred to as 𝜎 𝑗 .

A positive safety assessment can be argued if and only if there is a vec-
tor 𝝈 ∈ ℤ𝑛 that fulfills the following constraints:

∀⟨𝑣 𝑗 , 𝑣𝑘⟩ ∈ 𝐸 : 𝜎𝑘 − 𝜎 𝑗 ≤ 0, (5.1)
∀𝑣 𝑗 ∈ 𝑉𝑠 : 𝜎 𝑗 ≤ int′ (𝑣 𝑗), (5.2)
∀𝑣 𝑗 ∈ 𝑉𝑤 : −𝜎 𝑗 ≤ − ireq′ (𝑣 𝑗). (5.3)

Here and in the following, the auxiliary function int′ : 𝑉𝑠 → ℤ maps each
susceptible system element 𝑣 ∈ 𝑉𝑠 to 𝜋 (int(𝑣)), i.e., to the unique integer
associated with int(𝑣). Analogously, ireq′ : 𝑉𝑤 → ℤ maps each environment
writer 𝑣 ∈ 𝑉𝑤 to 𝜋 (ireq(𝑣)), i.e., to the unique integer associated with ireq(𝑣).
For a given integrity assignment, the returned integers are constants.

144 | Chapter 5: Safety assessment framework

Mapping (part 1/2)

𝑣1 = platform(main)
𝑣2 = proc(main.a53)
𝑣3 = proc(main.r5)
𝑣4 = mem(main.ddr)
𝑣5 = dev(main.gem)
𝑣6 = dev(main.can)
𝑣7 = rte(linux)
𝑣8 = rte(zephyr)
𝑣9 = swc(infotainment)
𝑣10 = swc(drivetrain)

Mapping (part 2/2)

𝑣11 = swc(body)
𝑣12 = port(infotainment.cmd)
𝑣13 = logic(infotainment)
𝑣14 = port(infotainment.viz)
𝑣15 = port(drivetrain.meas)
𝑣16 = logic(drivetrain)
𝑣17 = port(drivetrain.speed)
𝑣18 = port(body.speed)
𝑣19 = logic(body)
𝑣20 = port(body.msg)

Table 5.4: Association of vertex indices for the car server example.

In general, these constraints lead to𝑚 = |𝐸 | + |𝑉𝑠 | + |𝑉𝑤 | linear inequalities,
and each inequality depends on the integrity level assigned to one or two
system elements as its only variable(s).

The feasibility of the system with𝑚 linear inequalities can be determined
by checking if the following ILP problem has a solution:

maximize
𝝈 ∈ℤ𝑛

0

subject to 𝐴𝝈 ≤ 𝒅,
𝝈 ≥ 0,

where 𝐴 ∈ {−1, 0, 1}𝑚×𝑛 is a matrix and 𝒅 ∈ ℤ𝑚 is a vector, both chosen
according to Equation 5.1, Equation 5.2, and Equation 5.3.

⊲ Example 5.5 (continued): To perform the safety assessment of the partitioned
car server use case via ILP, we first give each system element a numeric index.
These indices are arbitrarily chosen and visualized in Table 5.4.

Elements of 𝝈 are interpreted according to this mapping. This means that 𝜎1
refers to the integrity level associated with platform(main), 𝜎2 refers to the
integrity level associated with proc(main.a53), and so on.

Since there is a CF graph edge from platform(main) to proc(main.a53),
for example, the constraints from above include the following inequality:

𝜎2 − 𝜎1 ≤ 0.

Intuitively speaking, it captures that the integrity level assigned to 𝑣2 cannot
be higher than the one assigned to 𝑣1. The inherent integrity specification

Section 5.4: Safety-aware system design using ILP | 145

of int(𝑣1) = high is translated into

𝜎1 ≤ 1,

which describes that the integrity level assigned to 𝑣1 cannot exceed high. The
specification that ireq(𝑣20) = high is translated into the following inequality:

−𝜎20 ≤ −1.

It means that the integrity level assigned to the safety-critical body message
output needs to be at least high. Following this strategy, a total of

𝑚 = |𝐸 | + |𝑉𝑠 | + |𝑉𝑤 | = 30 + 16 + 2 = 48

inequalities are specified and lead to the following matrix 𝐴 and vector 𝒅:

𝐴 =

©«

𝜎1 𝜎2 𝜎3 𝜎4 𝜎5 𝜎6 𝜎7 𝜎8 · · · 𝜎20

−1 +1 0 0 0 0 0 0 · · · 0
−1 0 +1 0 0 0 0 0 · · · 0
−1 0 0 +1 0 0 0 0 · · · 0
−1 0 0 0 +1 0 0 0 · · · 0
...

...
...

...
...

...
...

...
. . .

...

+1 0 0 0 0 0 0 0 · · · 0
0 +1 0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
...

...
. . .

...

0 0 0 0 0 0 0 0 · · · −1

ª®®®®®®®®®®®®®®®¬

, 𝒅 =

©«

0
0
0
0
...

+1
0
...

−1

ª®®®®®®®®®®®®®®®¬

.

Using the lp_solve software, it can be shown that this system of inequalities
has a solution. This means that the constraints can be satisfied and, therefore,
that the safety assessment has a positive result. It confirms the positive result that
was already obtained from the application of Algorithm 5.2.

From a mathematical point of view, 𝐴 matrices have an interesting prop-
erty: it is possible to show that an 𝐴 derived from the above constraints is
totally unimodular (cf. Section A.1 in the appendix). Furthermore, entries of 𝒅
will always be integers. Based on Section 2.2.5, this is sufficient to argue that
the following LP problem has only integral solutions:

maximize
𝝈 ∈ℝ𝑛

0

subject to 𝐴𝝈 ≤ 𝒅,
𝝈 ≥ 0.

146 | Chapter 5: Safety assessment framework

In other words: instead of solving the ILP formulation for 𝝈 ∈ ℤ𝑛 , it is
sufficient to solve the LP formulation for 𝝈 ∈ ℝ𝑛 . This turns the problem into
one with a polynomial worst-case time complexity.

5.4.2 ILP-based search and optimization framework
By extending the ILP formulation of the decision problem, it is possible to
solve a search problem such as the following:

Given a system model and an integrity assignment, find a combi-
nation of isolation measures that leads to the acceptance of the
design, or determine that this is infeasible.

It is also possible to solve the corresponding optimization problem:

Given a system model and an integrity assignment, find the best
combination of isolation measures that leads to the acceptance of
the design, or determine that this is infeasible.

Without loss of generality, this section presents an ILP approach to solve the
optimization version under the following two assumptions:

1) A given subset of possible isolation measures is actually applicable.
2) The best solution uses a minimum number of isolation measures.

The approach is based on a vector 𝝎 ∈ {0, 1}𝑞 in which every entry
represents an applicable isolation measure. Whether an isolation measure
is applicable is decided by the designer using this approach. For example,
the designer might consider it feasible to apply APU configurations to each
execution platform but infeasible to specify barrier declarations. In this case,
each entry of 𝝎 would correspond to exactly one 𝑥 ∈ 𝑋 , and 𝑞 = |𝑋 |.

The goal of the ILP approach is to find a specific 𝝎. If a particular 𝜔 𝑗 = 1,
then the isolation measure represented by entry 𝑗 is applied. If 𝜔 𝑗 = 0, the
isolation measure represented by entry 𝑗 is not applied.

The procedure to find this 𝝎 operates on a CF graph created without the
application of these 𝑞 isolation measures. As before, based on this CF graph,
a system of linear inequalities is constructed. Instead of Equation 5.1 from
above, however, the following rule is used:

∀⟨𝑣 𝑗 , 𝑣𝑘⟩ ∈ 𝐸 :
{
𝜎𝑘 − 𝜎 𝑗 − 𝛽 · 𝜔 (𝑓𝑗𝑘) ≤ 0, 𝑓𝑗𝑘 > 0,
𝜎𝑘 − 𝜎 𝑗 ≤ 0, otherwise.

(5.4)

Section 5.4: Safety-aware system design using ILP | 147

Here, 𝛽 ≥ |𝐼 | − 1 is a constant that holds at least the maximum difference
between two numeric integrity level values. Subtracting it from 𝜎𝑘 − 𝜎 𝑗 en-
sures that the inequality is always met. Intuitively speaking, it deactivates the
edge-induced constraint under a certain condition: the application of a partic-
ular isolation measure. Which isolation measure leads to this ‘deactivation’ is
determined by 𝐹 ∈ {0, 1, . . . , 𝑞}𝑛×𝑛 , a matrix that is yet to be determined. For
all 𝑗, 𝑘 = 1, . . . , 𝑛, matrix element 𝑓𝑗𝑘 needs to be chosen as follows:

𝑓𝑗𝑘 =

{
𝛼, applicable isolation measure 𝛼 eliminates 𝑣 𝑗 ⇝ 𝑣𝑘 ,
0, no applicable isolation measure eliminates 𝑣 𝑗 ⇝ 𝑣𝑘 ,

where 𝛼 ∈ {1, . . . , 𝑞} is the (numeric) index of the 𝝎 entry that represents the
respective isolation measure. The other two constraint rules from the decision
problem (Equation 5.2 and Equation 5.3) remain valid:

∀𝑣 𝑗 ∈ 𝑉𝑠 : 𝜎 𝑗 ≤ int′ (𝑣 𝑗), (5.5)
∀𝑣 𝑗 ∈ 𝑉𝑤 : −𝜎 𝑗 ≤ − ireq′ (𝑣 𝑗). (5.6)

With the goal to minimize the number of applied isolation measures, i.e.,
the number of ones in 𝝎, this leads to the following ILP formulation:

maximize
𝝈 ∈ℤ𝑛,𝝎∈ℤ𝑞

− 1𝑇𝝎

subject to 𝐴′
(
𝝈
𝝎

)
≤ 𝒅′,

0 ≤ 𝝎 ≤ 1,
𝝈 ≥ 0,

where matrix 𝐴′ ∈ {−1, 0, 1}𝑚×(𝑛+𝑞) and vector 𝒅′ ∈ ℤ𝑚 are chosen according
to Equation 5.4, Equation 5.5, and Equation 5.6.

⊲ Remark 5.5: 𝐴′ from this extended formulation does not have to be totally uni-
modular. For an integrity lattice with |𝐼 | = 3, for example, 𝛽 must be set to at
least 2. A totally unimodular matrix can only contain entries from {−1, 0, 1},
which might be violated in this case. A reduction to an LP problem, as in Sec-
tion 5.4.1, can no longer be argued.

⊲ Example 5.5 (continued): To finalize this example, we apply the ILP approach
to minimize |Ω𝑋 | + |Ω𝑅 | in such a way that the design is still regarded as safe.
At the hardware layer, there is only the possibility to apply APU configuration

148 | Chapter 5: Safety assessment framework

code to platform(main). At the runtime layer, process isolation can be declared
for rte(linux) and rte(zephyr). We introduce𝜔1,𝜔2, and𝜔3 to refer to these
applicable isolation measures in the given order. Based on this assignment, the
matrix 𝐹 has non-zero entries at exactly six positions:

©«

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 · · ·
𝑣1 0 0 0 0 0 0 · · ·
𝑣2 1 0 0 0 0 · · ·
𝑣3 1 0 0 0 · · ·
𝑣4 0 0 0 · · ·
𝑣5 1 0 · · ·
𝑣6 0 · · ·
𝑣7 . . .

𝑣8

𝑣9 2
𝑣10 3
𝑣11 3
.
.
.

ª®®®®®®®®®®®®®®®®®®®®¬
With 𝛽 = 1, this leads to the following 𝐴′ and 𝒅′ values:

𝐴′ =

©«

𝜎1 𝜎2 𝜎3 𝜎4 𝜎5 · · · 𝜎20 𝜔1 𝜔2 𝜔3

−1 +1 0 0 0 · · · 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...

+1 −1 0 0 0 · · · 0 −1 0 0
+1 0 −1 0 0 · · · 0 −1 0 0
+1 0 0 0 −1 · · · 0 −1 0 0
...

...
...

...
...

. . .
...

...
...

...

+1 0 0 0 0 · · · 0 0 0 0
0 +1 0 0 0 · · · 0 0 0 0
...

...
...

...
...

. . .
...

...
...

...

0 0 0 0 0 · · · −1 0 0 0

ª®®®®®®®®®®®®®®®®®®¬

, 𝒅′ =

©«

0
...

0
0
0
...

+1
0
...

−1

ª®®®®®®®®®®®®®®®®®®¬
For this ILP problem, lp_solve returns an optimum solution of 𝝎 = (1, 0, 0).

With this solution, the cost function evaluates to −1. This means that:

1) To meet the safety requirements from Table 5.3, it is sufficient to ap-
ply APU configuration code to platform(main). Process isolation is not
required for either rte(linux) or rte(zephyr).

Section 5.4: Safety-aware system design using ILP | 149

2) The minimum number of isolation measures required to meet the safety
requirements from Table 5.3 is one.

This concludes the description of the optimization procedure. Note that the
strategy of ‘selectively disabling’ the effect of CF graph edges, which is how
the ILP approach considers isolation measures, is not limited to the problem
statement from above. It is a flexible approach applicable to various related
problems. One such problem is the safety-aware allocation of SWCs to RTEs.
Its solution goes beyond the scope of this thesis, however, and remains a
possible direction for future research.

Chapter 6

Implementation and evaluation

As part of this thesis, the logical isolation pattern was fully implemented. The
resulting implementation is a seamless integration of the described APU con-
figuration, CF determination, and safety assessment procedures. It is available
in the form of a command-line utility and expects pattern users to formu-
late inputs using a textual notation. The notation is a Domain-Specific Lan-
guage (DSL) specifically developed for the logical isolation pattern.1

To evaluate the usability of the pattern, its implementation was then used
for (1) the safety-aware deployment of an Ethernet-based software application
to the Zynq UltraScale+ MPSoC and (2) the safety assessment of a cost-efficient
fault tolerance approach.

6.1 Language specification

In the remainder of this thesis, the developed DSL will be referred to as Logi-
cal Isolation Pattern (LIP) syntax. Its context-free grammar is now specified
using Wirth syntax notation [149]—with one useful extension: in a sequence of
alternatives, the ‘. . . ’ symbol is used to represent omitted terms.2 This means
that literals are surrounded by double quotes, alternatives are separated us-
ing |, groups are wrapped into a () pair, repetition is denoted by a {} pair, and
optional expressions are surrounded by a [] pair.

1As described in Chapter 7, the author contributed this notation to the XANDAR project.
Therefore, it is also aligned with the XbCgen syntax accepted by the XANDAR toolchain.

2This approach is also used in the Go language specification [150], for example.

151

152 | Chapter 6: Implementation and evaluation

6.1.1 Lexical elements and top-level grammar

The lexical structure of LIP syntax is based on five token types: keyword,
punctuation, identifier, identifier path, and hexadecimal number.

Keyword and punctuation tokens are the literals that appear in any pro-
duction rule from Section 6.1.2 or Section 6.1.3. If such a literal contains at
least one alphabetical character, such as platform or gen_apu, it is a keyword.
If it contains no such character, such as ‘>=’, it is a punctuation token. The
remaining three token types are defined as follows:

ident = letter {letter | decimal_digit} .
ident_path = ident {"." ident} .

hex_number = "0x" hex_digit {hex_digit} .

The underlying non-terminals are defined as follows:

decimal_digit = "0" . . . "9" .
hex_digit = "0" . . . "9" | "a" . . . "f" | "A" . . . "F" .

letter = "a" . . . "z" | "_" .

Based on this, an example of an identifier (ident) is slcr_fpd. An example
of an identifier path (ident_path) is main.a53. An example of a hexadecimal
number (hex_number) is 0x1000.

Line comments are introduced by two forward slashes (//); they instruct
the lexer to ignore the remainder of a respective line. Furthermore, the lexer
ignores any kind of whitespace between tokens.

The start symbol, which describes a complete LIP syntax file, is an arbitrary
sequence of items drawn from seven alternative constructs:

file = {platform | bus | rte | path | swc | channel | pattern} .

The first six constructs (from platform to channel) describe a system model.
The final construct allows the user to ‘annotate’ the pattern itself and, by doing
so, describe isolation measures and safety requirements.

6.1.2 Grammar for system model entities

The foundation of a systemmodel is the system’s hardware architecture (cf. Sec-
tion 3.2.2). At this layer, the LIP syntax allows users to instantiate execution
platforms, specify the device configuration, and connect I/O controllers via

Section 6.1: Language specification | 153

off-chip interconnects. The device configuration is based on the following
rules, which make it possible to express a set of memory regions:

mem_region = hex_number "-" hex_number .
mem_regions = mem_region {"," mem_region} .

For each memory region, the start and the end address is separated by a hyphen.
Based on this, the hardware architecture syntax is as follows:

platform = "platform" ident ":" ident (";" | "{" {dev_entry} "}") .
dev_entry = "alloc" "(" mem_regions ")" "to" ident ";" .

bus = "bus" ident "=" ident_path {"," ident_path} ";" .

The first rule instantiates an execution platform (𝑥 ∈ 𝑋) with a type from the
underlying library (𝑡 ∈ 𝑇). The identifier following the platform keyword is
the name of this execution platform, while the identifier following the ‘:’ is
a reference to the type of the platform. Afterward, it is possible to add de-
vice configuration entries for the instantiated platform. Each such entry is a
list of memory regions allocated to a peripheral device, and this peripheral
device is specified by the identifier following the to token. The third rule
introduces an off-chip interconnect (𝑏 ∈ 𝐵). The identifier following the bus
keyword becomes the name of this interconnect, and the comma-separated
list of identifier paths reference all I/O controllers that are attached to this
interconnect (formally the ‘controllers’ function from Definition 3.12).

⊲ Example 6.1: The partitioned car server use case from Example 3.6 on page 58
makes use of a Zynq UltraScale+ MPSoC instance. This instance was created from
the simplified execution platform type from Example 3.5. Assuming that this exe-
cution platform type is named zynqmp_demo, we can use the following LIP code
to describe the hardware architecture of the use case:

Listing 6.1: Hardware architecture of the partitioned car server

platform main : zynqmp_demo {
alloc (0x3C00000 - 0x43FFFFF) to gem;

}

This syntax allocates a DDR memory region of the underlying MPSoC to the Eth-
ernet controller (gem). Off-chip interconnects are not declared in this case.

154 | Chapter 6: Implementation and evaluation

⊲ Example 6.2: To connect two zynqmp_demo instances via a CAN network, the
following hardware architecture can be used:

Listing 6.2: Zynq UltraScale+ MPSoC instances connected via CAN

platform primary : zynqmp_demo;
platform secondary : zynqmp_demo;
bus network = primary.can, secondary.can;

For the definition of an RTE (𝑟 ∈ 𝑅), including its mapping to a processing
unit and its allocations, LIP syntax accepts the following statements:

rte = "rte" ident ":" ident_path "{" {rte_allocs} "}" .
rte_allocs = "alloc" rte_alloc {"," rte_alloc} ";" .
rte_alloc = mem_region | ident .

The identifier following the rte keyword is the name of the RTE. The
identifier path following the ‘:’ is the path of the processing unit executing
this RTE. Surrounded by curly braces, an arbitrary sequence of allocation
statements can be specified. Each statement contains a comma-separated list
of allocated memory regions and peripheral devices. In the formal system
model, they correspond to malloc′ and qalloc′, respectively.

⊲ Example 6.1 (continued): To continue the LIP formulation of the partitioned car
server use case, we introduce two RTEs: linuxmapped to the Cortex-A53 processor
and zephyr mapped to the Cortex-R5 processor. Allocations are specified as it
was described in Example 3.6:

Listing 6.3: Runtime architecture of the partitioned car server

rte linux : main.a53 {
alloc 0x0 - 0x17FFFFF;

}

rte zephyr : main.r5 {
alloc 0x2C00000 - 0x37FFFFF, can;

}

Section 6.1: Language specification | 155

Local and global paths (𝑦 ∈ 𝐿 ∪𝐺) are specified by referencing their RTEs
in curly braces and describing their realization:

path = "path" "{" ident "," ident "}" "=" (mem_regions | ident) ";" .

In case of a local path, the realization is a list of memory regions (specified
using the ‘mem_regions’ rule). In case of a global path, it is a reference to the
name of an off-chip interconnect (specified using the ‘ident’ rule).

The declaration of a SWC (𝑠 ∈ 𝑆) contains its name, its executing RTE, and
a sequence of port (𝑝 ∈ 𝑃) and allocation statements:

swc = "swc" ident ":" ident "{" {swc_ports | swc_allocs} "}" .
swc_ports = swc_port {"," swc_port} ";" .
swc_allocs = "alloc" ident {"," ident} ";" .
swc_port = ("out" | "in") ["~"] ident .

The name of a SWC follows the swc keyword, while the RTE reference fol-
lows the ‘:’ punctuation. Multiple port declarations can be merged into a
comma-separated list. Each element of this list uses a keyword to declare the
port direction (out or in), uses an (optional) tilde to flag environment ports,
and ends with the name of the port. In line with Definition 3.18, a SWC may
allocate only peripheral devices. These allocations are expressed in the same
way as for RTEs, but they populate qalloc′′ instead of qalloc′.

⊲ Example 6.1 (continued): To describe the SWC implementing infotainment
functions, the following LIP syntax can be used:

Listing 6.4: SWC specification from the partitioned car server

swc infotainment : linux {
in ~cmd, out ~viz;
alloc gem;

}

Channels are specified by explicitly stating the source and the sink port
they connect, each using an identifier path:

channel = "channel" ident_path "->" ident_path ";" .

156 | Chapter 6: Implementation and evaluation

⊲ Example 6.1 (continued): The remaining two SWCs from the partitioned car
server example can be declared and connected as follows:

Listing 6.5: Software architecture of the partitioned car server

swc drivetrain : zephyr {
in ~meas, out speed;

}

swc body : zephyr {
in speed, out ~msg;

}

channel drivetrain.speed -> body.speed;

In combination with the LIP syntax in previous parts of this example, this con-
cludes the description of the system model from Example 3.6.

6.1.3 Grammar for pattern-specific annotations
In comparison to the systemmodel, isolation measures and safety requirements
are less universal. They are specific to the logical isolation pattern and therefore
part of a designated ‘pattern’ annotation:

pattern = "pattern" [ident] ":" "isolation"
(";" | "{" [int_lattice] {isolation_item} "}") .

Following the pattern keyword, this rule beginswith an optional identifier,
which can be used to assign a name to the pattern annotation. In curly braces,
it is then possible to specify the integrity lattice as a collection of integrity level
sequences. Collectively, all sequences specify a dominance relation between
integrity levels, each given using an identifier:

int_lattice = "lattice" "{" {level_sequence} "}" .
level_sequence = ident {">=" ident} ";" .

Referenced identifiers implicitly define 𝐼 . The partial order ≤ (according to Def-
inition 5.4) is derived from the specified dominance relation. Therefore, the
order of integrity levels listed in each level sequence is inverted, and a ≤ entry
is derived from each specified level to the next. Finally, the reflexive transitive
closure of all these entries yields ≤, i.e., the partial order.

Section 6.1: Language specification | 157

⊲ Example 6.3: Consider the set 𝐼 = {low, mid, high} with the following par-
tial order: low ≤ low, mid ≤ mid, high ≤ high, low ≤ mid, mid ≤ high,
and low ≤ high. Two ways to describe this in LIP syntax are given below:

Listing 6.6: Semantically equivalent integrity lattices

lattice {
high >= mid;
mid >= low;

}

lattice {
high >= mid >= low;

}

Logic decomposition, APU configuration requests, barrier declarations,
and the assignment of ‘int’ and ‘ireq’ values can all be specified between the
optional integrity lattice and the closing brace:

isolation_item = context_isolation | logic_block | int_assignment .
context_isolation = ("gen_apu" | "prot_rte!") ident ["," ident] ";" .

logic_block = "logic" "(" ident_path ")" ["=" ident]
(";" | "{" {app_barrier} "}") .

app_barrier = ("no_in!" | "no_out!") ident ["," ident] ";" .
int_assignment = int_obj "(" ident_path ")" ("=" | ">=") ident ";" .

int_obj = ("swc" | "port" | "platform" | "bus" | "rte" |
"proc" | "mem" | "dev") .

Isolation measures targeting context vertices are specified using the ‘con-
text_isolation’ syntax: APU configuration is requested via the gen_apu key-
word, while process isolation is declared via the prot_rte! keyword.

Using the ‘logic_block’ syntax, it is possible to (1) perform logic decom-
position, (2) assign the inherent integrity of each logic block, and (3) spec-
ify application-level barriers of a logic block. The identifier path following
a logic statement is either the name of a SWC or, alternatively, the name of
a SWC suffixed with a dot and the name of the partial logic block to create.
Within curly braces, the no_in! keyword can be used to declare an input
barrier, while the no_out! keyword introduces an output barrier. Optionally,
following the ‘=’ token, the inherent integrity of a logic block is specified. If
unspecified, it defaults to the minimum integrity level from ⟨𝐼 , ≤⟩.

158 | Chapter 6: Implementation and evaluation

Using the ‘int_assignment’ syntax, it is possible to specify the inherent
integrity of all other susceptible system elements. This is achieved using the ‘=’
variant of this rule. At the same time, the ‘>=’ variant of the rule can be used to
specify required integrities of environment writers. As before, all unspecified
integrities default to the minimum integrity level from ⟨𝐼 , ≤⟩.

⊲ Example 6.1 (continued): To conclude the LIP formulation of the partitioned car
server example, we use the textual syntax to apply the logical isolation pattern:

Listing 6.7: Pattern applied to the partitioned car server example

pattern : isolation {
lattice { high >= low; }
prot_rte! zephyr;
gen_apu main;

platform(main) = high;
proc(main.r5) = high;
mem(main.ddr) = high;
dev(main.can) = high;
rte(zephyr) = high;
swc(body) = high;
swc(drivetrain) = high;
port(drivetrain.meas) = high;
logic(drivetrain) = high;
logic(body) = high;
port(body.msg) >= high;

}

⊲ Example 6.4: In an extended version of the car server use case (cf. Exam-
ple 4.5), the body control SWC was extended with a seatpos input, and an
application-level barrier between this input and the body control logic was intro-
duced. Using the DSL, this barrier is represented as follows:

Listing 6.8: Selected excerpt of the extended car server model

logic(body) = high {
no_in! seatpos;

}

Section 6.2: Reference implementation | 159

liptool.lip input

Safety assessment result
APU configuration code
CF graph reachability
CF graph visualization

Figure 6.1: Command-line tool implementing the logical isolation pattern. In addition
to APU configuration and integrity-based safety assessment, it provides functions for
the automatic analysis and visualization of CF graphs.

6.2 Reference implementation

The presented implementation is referred to as ‘LIP tool’ and was developed
using version 1.22 of the Go programming language [150]. In the following,
calls to this utility are indicated by invocations of the liptool binary. As
shown in Figure 6.1, it operates on one single LIP syntax file, which by con-
vention has a .lip extension. The tool first parses and resolves the provided
input. It then executes one or more of the following tasks:

1) Conduct an integrity-based safety assessment (cf. Section 5.3) and return
the assessment result as a binary success value.

2) Generate and output APU configuration code for each 𝑥 ∈ Ω𝑋 (or
determine and return that this is not possible for some reason).

3) Using the internal CF graph, determine and output all environment
writers that are reachable from a given 𝑣 ∈ 𝑉𝑠 .

4) Output a TikZ visualization of the internal CF graph, potentially with
annotations such as effective integrity levels.

⊲ Remark 6.1: A safety assessment based on interference whitelists (cf. Section 5.2)
is not directly supported. Based on Theorem 5.1, however, it can be achieved by
transforming the interference whitelist into an integrity assignment.

The logical isolation pattern, as it was introduced in Section 3.1, needs to
perform the safety assessment and the generation of APU configuration code.
This is achieved by the features in item 1 and item 2 above. The other features
are useful extensions to give pattern users more insights into the procedure.
The feature in item 4, for example, was used to generate all the CF graph
visualizations shown in this thesis.

160 | Chapter 6: Implementation and evaluation

Option Description

-verify Perform a safety assessment according to Section 5.3.
-gen ⟨dir⟩ Run code generation and write output(s) to ⟨dir⟩.
-sinks ⟨source⟩ Determine environment writers reachable from ⟨source⟩.
-visualize ⟨dir⟩ Write a TikZ visualization of CF graphs to ⟨dir⟩.
-transfers Enforce the visualization of all CF potential transfers.
-rules Annotate edges of CF graphs with rule identifiers.

Table 6.1: Options accepted by the implemented command-line tool. Terms surrounded
by angular brackets are parameters processed by the application.

6.2.1 Command-line interface

As its (only) mandatory argument, liptool expects a path to the .lip file to
process. The specific tasks to perform using this input are determined by the
options in Table 6.1. These options can be arbitrarily combined.

For example, a call to ‘liptool -gen configs -verify model.lip’
writes APU configuration code to ‘configs’ and returns the binary accep-
tance value. Calling ‘liptool -visualize graphs model.lip’ generates
visualizations such as the ones in Figure 4.7 or Figure 5.1. Extending this
call with ‘-transfers’ and ‘-rules’ leads to a visualization such as the one
in Figure 4.23. If the ‘-verify’ option is combined with ‘-visualize’, the
generated TikZ output annotates CF graph edges with effective integrities
and environment writers with their safety conformance; an example of such a
visualization was shown in Figure 5.7.

6.2.2 Execution platform types

To show that the pattern concept is applicable to various MPSoCs, execution
platform types for two platforms were developed: the Zynq UltraScale+ MPSoC
and the i.MX 8M (cf. Example 2.4). For these commercially available platforms,
the library was populated with a total of three entries:

1) zynqmp_demo is a simplified model of the Zynq UltraScale+ MPSoC; it
considers only a small subset of available on-chip components.

2) zynqmp is the full version of the Zynq UltraScale+ MPSoC model; it
considers all on-chip components required for the evaluation.

3) imx8m is a proof-of-concept model of the i.MX 8M; it was used to show
that RDC configurations can be generated successfully.

Section 6.2: Reference implementation | 161

PROC
Cortex-A53

PROC
Cortex-R5

MEM
TCM region

DEV
SLCR/FPD

DEV
CAN controller

MEM
DDR region

MEM
OCM region

DEV
OCM controller

DEV
GEM controller

Γ1

Γ2

Γ3

Figure 6.2: Simplified execution platform type of a Zynq UltraScale+ MPSoC, formally
covered in Example 3.5 and here repeated for convenience.

In all three cases, the address space origin (𝑎) is set to the Cortex-A53 processor
of the respective execution platform type.

The first type, zynqmp_demo, realizes the simplified model that was derived
in Example 3.5 and is repeated in Figure 6.2 for convenience. The implementa-
tion of this execution platform type is the following Go code:

Listing 6.9: Go formulation of Example 3.5

ddr := Memory{Name: "ddr", Start: 0x00000000, End: 0x7FFFFFFF}
ocm := Memory{Name: "ocm", Start: 0xFFFC0000, End: 0xFFFFFFFF}
tcm := Memory{Name: "tcm", Start: 0xFFE00000, End: 0xFFE1FFFF}
r5 := Processor{Name: "r5", AccessibleMems: []∗Memory{&tcm}}
a53 := Processor{Name: "a53"}
library["zynqmp_demo"] = PlatformType{
Processors: []∗Processor{&a53, &r5},
Memories: []∗Memory{&ddr, &tcm, &ocm},
Devices: []∗Device{
{Name: "ocm_ctrl", AffectedMems: []∗Memory{&ocm}},
{Name: "slcr_fpd", HasPlatformImpact: true},
{Name: "gem", IsMaster: true},
{Name: "can"},

},
}

162 | Chapter 6: Implementation and evaluation

This model was created for visualization purposes and is too limited for a
practical application. It disregards the fact that there are multiple instances
of the GEM and CAN controller, for instance. The second type, zynqmp, is
intended for a practical application and therefore more accurate.

6.2.3 Input model resolution
After parsing a .lip file, the implementation resolves all references made by
identifiers or identifier paths. As part of this, the input file is validated and
possible errors are reported back to the user. This process is independent of
the command-line options passed to the utility.

The resolution process is now illustrated using the lattice statement,
which defines a dominance relation that needs to be translated into ≤. This
translation is achieved by attempting to calculate the meet of all integrity level
pairs (𝑖1 ∧ 𝑖2 for all 𝑖1, 𝑖2 ∈ 𝐼). If two integrity levels do not have a meet, ⟨𝐼 , ≤⟩
is not a meet-semilattice, and the .lip file is invalid.

Algorithm 6.1: Meet calculation for integrity levels

1 function CalculateMeetTable()
2 // Iterate over all (unordered) pairs from 𝐼 = {𝑖1, 𝑖2, . . .}:
3 for each 𝑗 = 1, . . . , |𝐼 | do
4 for each 𝑘 = 1, . . . , 𝑗 do
5 // Get black vertices not reachable from another black node:
6 candidates = MeetCandidates(𝑖 𝑗 , 𝑖𝑘)
7 // If this vertex is unique, add it to the meet table:
8 if |candidates | ≠ 1 then
9 return error (𝑖 𝑗 ∧ 𝑖𝑘 does not exit)
10 meet ← (the integrity level in candidates)
11 meetTable[𝑖 𝑗] [𝑖𝑘] = meet
12 meetTable[𝑖𝑘] [𝑖 𝑗] = meet
13 return meetTable

For all 𝑗 = 1, . . . , |𝐼 | and 𝑘 = 1, . . . , 𝑗 , it calls MeetCandidates(𝑖 𝑗 , 𝑖𝑘) to
obtain the meet value candidates of 𝑖 𝑗 and 𝑖𝑘 . Following one of the approaches
from [151], these candidates are determined as follows:

1) Represent the dominance relation (>=) as a directed graph.
2) If this graph contains cycles, return the empty set.
3) Color vertices reachable from both 𝑖 𝑗 and 𝑖𝑘 black.
4) Return all black vertices not reachable from another black node.

Section 6.2: Reference implementation | 163

a b

c d

e

(a) Hasse diagram

a b

c d

e

(b) Dominance relation

a b

Candidates
for a ∧ b

(c)MeetCandidates(a, b)

Figure 6.3: Detection of an invalid dominance relation (supposed to define ≤). For each
combination of integrity levels, MeetCandidates colors vertices reachable from both
levels black. A subset of colored vertices is the set of meet candidates.

If there is exactly one such candidate, it is the meet value. Otherwise, there
is no greatest lower bound, which means that the described structure is not an
integrity lattice; in this case, the input is rejected.

⊲ Example 6.5: To represent the partial order that is visualized in Figure 6.3a, the
following LIP formulation can be used:

Listing 6.10: Semantically invalid system model

// invalid.lip
pattern : isolation {
lattice {
a >= c >= e;
b >= d >= e;
a >= d;
b >= c;
b >= e;

}
}

Figure 6.3b illustrates this dominance relation in the form of a directed graph.
During the model resolution procedure, MeetCandidates traverses this graph to
calculate the meet of all integrity level pairs. As shown in Figure 6.3c, there are
two candidates for a ∧ b. This means that none of them is the greatest one and,
therefore, the described structure is not a meet-semilattice.

164 | Chapter 6: Implementation and evaluation

When this input model is supplied to the liptool utility, regardless of speci-
fied command-line options, the following error is reported:

Listing 6.11: Error reporting for an invalid integrity lattice

$ liptool invalid.lip
error: invalid.lip:3: ambiguous meet of a and b

6.2.4 APU configuration procedures
An execution platform library according to Definition 3.9 consists of two com-
ponents: 𝑇 (the set of execution platform types) and gen (a collection of APU
configuration procedures for selected 𝑡 ∈ 𝑇). The reference implementation
provides APU configuration procedures for two of the three execution platform
types: zynqmp and imx8m. In line with Section 4.2.2, each of them provides the
platform-independent root algorithm with four capabilities:

• When triggered by NewBaseConfig, it creates a mutable configuration
object that isolates all instantiated on-chip components from each other.
As described in Section 4.2.2.1, if applicable, the initial state of this object
may be configured to accept a certain set of transactions.

• It extends this configuration object when a call to GrantMemAccess or
to GrantDevAccess makes it necessary to do so.

• Finally, when triggered by WriteCode, it generates C code that applies
the final state of this configuration object to one or more APUs of the
targeted execution platform.

Like the platform-independent root algorithm itself, both implementations
were developed in version 1.22 of the Go programming language.

For the Zynq UltraScale+ MPSoC model (zynqmp), the implementation
makes use of the exact algorithms described in Section 4.2.2.2. The initial state
of its configuration object permits the following transactions:

1) Debug Access Port (DAP)→ all possible slave components
2) Configuration Security Unit (CSU)→ PlatformManagement Unit (PMU)
3) Cortex-A53→ Generic Interrupt Controller (GIC)
4) Cortex-A53→ Global system counter

Granting these access permissions by default served useful during the case
studies (cf. Section 6.3). Allowing the DAP to access all possible slave compo-
nents facilitated debugging tasks, for instance. At the same time, it does not

Section 6.2: Reference implementation | 165

violate requirements of the root algorithm: DAP is not modeled as a platform
component in the sense of Definition 3.8 and, therefore, does not need to be
isolated. The two slave components made accessible from the Cortex-A53 are
highly related to this CPU; since they are not modeled as instantiated on-chip
components, these default permissions are again possible.

⊲ Remark 6.2: The four default permissions specified for the zynqmp type should
be understood as an example for how the initial state of configuration objects can
be chosen. Depending on the particular use case, it is possible to argue that it
should contain more, less, or even no default permissions.

It is also conceivable to populate the execution platform library with multiple
execution platforms types for the same MPSoC—each with its own set of default
permissions and therefore tailored to a particular way of using this MPSoC.

Default permissions are merged with those required by the respective sys-
tem model. In the zynqmp case, this leads to C code that configures all XMPUs
and the XPPU of a Zynq UltraScale+ MPSoC. To support this process, a static
configuration library was developed; Section A.2 in the appendix describes the
interface and implementation of this library in more detail.

In addition, platform-specific generators have the opportunity to output
additional artifacts, such as reports that communicate more knowledge about
derived APU configuration code. The zynqmp generator, for example, comple-
ments generated C code with such a report.

⊲ Example 6.6: The following LIP formulation contains a simple system model
and a request to generate APU configuration code for the main platform:

Listing 6.12: LIP formulation for a simple system model

platform main : zynqmp;
rte a53 : main.a53 {
alloc 0x1000000 - 0x1FFFFFF, uart0;

}

swc app : a53 {
alloc can0;

}

pattern : isolation {
gen_apu main;

}

166 | Chapter 6: Implementation and evaluation

Applying the ‘liptool -gen’ command to this input triggers the zynqmp gen-
erator and results in the following APU configuration code:

Listing 6.13: APU configuration code (partially truncated)

#include "apulib.h"

void apu_apply(void) {
xmpu_clear_configs();
xmpu_set_ddr_region(0, 0x0UL, 0xFFFFFFFFUL, MREG_DAP);
xmpu_set_ocm_region(0, 0x0UL, 0xFFFFFFFFUL, MREG_DAP);
xmpu_set_fpd_region(0, 0x0UL, 0xFFFFFFFFUL, MREG_DAP);
xmpu_set_fpd_region(1, 0xF9000000UL, 0xF90FFFFFUL, MREG_A53);
xmpu_set_ddr_region(1, 0x1000000UL, 0x1FFFFFFUL, MREG_A53);
xmpu_finalize_configs();

xppu_clear_config();
xppu_set_master_profile(0, MREG_DAP);
xppu_set_master_profile(1, MREG_A53);
xppu_set_master_profile(2, MREG_CSU);
xppu_set_permissions(XPPU_APER_IOU_SCNTR, 0x3UL);
xppu_set_permissions(XPPU_APER_IOU_SCNTRS, 0x3UL);
xppu_set_permissions(XPPU_APER_PMU_GLOBAL, 0x5UL);
xppu_set_permissions(XPPU_APER_UART0, 0x3UL);
xppu_set_permissions(XPPU_APER_UART1, 0x1UL);
xppu_set_permissions(XPPU_APER_UART2, 0x1UL);
xppu_set_permissions(XPPU_APER_UART3, 0x1UL);
xppu_set_permissions(XPPU_APER_CAN0, 0x3UL);
// ...
xppu_finalize_config();

}

The code executes a sequence of function calls, each targeting a function from the
library described in Section A.2. Successfully executing this code on any processor
of the main platform leads to the fulfillment of Premise 4.8.

In addition to the APU configuration itself, the generator also creates the report
shown in Figure 6.4. Among other aspects, this report documents the resource
utilization caused by generated APU configuration code. It states, for example,
that two of the 16 XMPU/DDR regions are occupied: one granting the DAP module
full DDR access (which is a default permission) and one granting the Cortex-A53
processor full access to the memory region owned by its RTE.

Section 6.2: Reference implementation | 167

APU configuration report for ‘main’
Creation time: 2024-06-02, 07:49 pm (CEST)
Code generator: zynqmp

Resource utilization

XPPU XMPU/FPD XMPU/DDR XMPU/OCM

3/20 master profiles 2/16 regions 2/16 regions 1/16 regions

Access permissions

Accessible addresses (per APU module)

Master XPPU XMPU/FPD XMPU/DDR XMPU/OCM

dap (*)∆ (*)∆ [0x0, 0xFFFFFFFF]∆ [0x0, 0xFFFFFFFF]∆

a53 iou_scntr∆ gic∆ [0x1000000, 0x1FFFFFF] –
iou_scntrs∆ – – –

uart0 – – –
can0 – – –

csu pmu_global∆ – – –

Legend: [x, y] = memory region from x to y (inclusive); (*) = any address (wildcard); ∆ = default permissions

Figure 6.4: APU configuration report complementing the code from Listing 6.13. Auto-
matically created by the zynqmp generator as a Portable Document Format (PDF) file.

Code generated for imx8m platforms has a structure similar to the code
shown in Listing 6.13. However, it targets the RDC of the i.MX 8M instead
of XPPU and XMPU modules.

6.2.5 Automatic visualization of CF graphs

Inputs supplied to liptool are translated into three graphs: the full CF graph,
its application subgraph, and its context subgraph. Each of them is stored
in the form of an adjacency list. During their execution, tasks are able to
extend these graphs with annotations. While the ‘-verify’ task is executed,
for example, edges and vertices are labeled with integrity levels.

Using the ‘-visualize’ option, the final state of each graph can be writ-
ten out in the form of TikZ code. This code employs the graphdrawing li-
brary to position and connect vertices. All graphs are generated using

168 | Chapter 6: Implementation and evaluation

Cortex-A53

GEM3

UART0

DAP

DDR

PHY

USB

USB

DDR4

Zynq UltraScale+ MPSoC

ZCU102 evaluation board

UART interface

XSDB console

Figure 6.5: Physical hardware setup used for the first case study. Dashed arrows from
the Cortex-A53 to PHY and back describe the loopback test to run.

the layered drawing algorithm from [152]. To achieve the characteristic
bottom-up structure of CF graph visualizations, edges are processed as follows:

1) Dependency-based edges (from 𝐸𝛿) are directly supplied to the algorithm.
2) Activity-based edges (from 𝐸𝜂) are visually reversed: if there is an antipar-

allel edge from 𝐸𝛿 , they are merged into the antiparallel one; otherwise,
the algorithm is instructed to draw them into the opposite direction.

Compiling generated code using LuaTEX, optionally with a custom style
sheet, leads to a vector graphic representation of each graph. Manual post-
processing of the TikZ code can be applied to increase the readability of a
visualization, for example by bending a particular edge. Such postprocessing
was applied to obtain the CF graphs visualized in this thesis.

6.3 Case study: Ethernet controller access

To demonstrate the applicability of the logical isolation pattern, the refer-
ence implementation was first used to generate an APU configuration for
the Zynq UltraScale+ MPSoC in a particular test scenario. Figure 6.5 shows the

Section 6.3: Case study: Ethernet controller access | 169

hardware setup of this scenario; it comprised a ZCU102 evaluation board [153]
connected to a host machine via a Universal Asynchronous Receiver/Trans-
mitter (UART) and the Xilinx System Debugger (XSDB) interface.

The primary goal of the case study was to demonstrate that using gener-
ated APU configuration code, the Cortex-A53 remained able to configure and
use the GEM3 controller. Usage of this Ethernet controller requires correct
interrupt handling and involves a DMA function in which the controller ap-
pears as a master of the on-chip interconnect. Demonstrating that the logical
isolation pattern supports this use case is therefore representative for various
other peripheral devices of the MPSoC. To achieve this, the loopback test illus-
trated in Figure 6.5 was executed. More specifically, an interrupt-driven demo
application shipped with the emacps driver by AMD/Xilinx was executed
on the Cortex-A53. The success status (i.e., whether the transmitted Ether-
net frames were later received correctly) was reported to the host machine
via UART0. The memory region used by the test application was stored in DDR
memory; this region also stored the buffers that GEM3 used for DMA-driven
communication with the Cortex-A53.

As a secondary goal, the case study aimed to demonstrate that CF graphs
are accurate with respect to CF potential that was present in the actual hard-
ware setup. As part of this, certain safety assessment problems were defined,
evaluated by a liptool invocation, and finally verified by manual attempts to
trigger a particular CF using XSDB access to the MPSoC.

Since there was only one SWC to be executed by the Cortex-A53, the RTE
was a simple bare-metal environment directly provided by AMD/Xilinx. It
comprised a bootloader that spawned one binary (the SWC) as the only exe-
cuted application. Any memory region allocated to the RTE was automatically
forwarded to this SWC. Additional management functions (e.g., for inter-SWC
communication) or a scheduler were not present.

6.3.1 Pattern-aware memory partitioning

To exchange Ethernet frame data, GEM controllers depend on receive and
transmit buffers. Along with associated descriptors, these buffers are stored in
memory that needs to be (read and write) accessible from both the application
that uses a GEM controller and the controller itself. The test application
allocates this memory region as part of its own data storage. This kind of
allocation is not directly compatible with the logical isolation pattern, however.
SWC data is stored in a memory region of the underlying RTE, but according
to Definition 3.18, the pattern does not permit to allocate the same region

170 | Chapter 6: Implementation and evaluation

Memory region Description

𝜇A53 = [0x0, 0x7FFFFF]𝔸 DDRmemory region that contains (1) all code
of the test application and (2) all data that
is exclusive to this application. Owned by
the RTE of the Cortex-A53 processor.

𝜇GEM3 = [0x800000, 0xFFFFFF]𝔸 DDR memory region that holds (1) receive
and transmit buffers as well as (2) associated
buffer descriptors. Owned by GEM3.

Table 6.2: Partitioning of the initial application memory to achieve compliance with
requirements of the logical isolation pattern.

also to an I/O controller at the same time. Instead, it expects the pattern user
to allocate the memory region to only the I/O controller. Whichever system
entity is granted access to this controller will then automatically obtain read
and write access to the controller’s memory.

The first step of the case studywas therefore to partition the test application
memory into two portions. The resulting memory regions are given and
described in Table 6.2. From an implementation point of view, this partitioning
was facilitated by a .gem section added to the application’s linker script:

Listing 6.14: Linker script modifications for memory partitioning

MEMORY {
psu_ddr_0_MEM_0 : ORIGIN = 0x0, LENGTH = 0x800000
psu_ddr_0_MEM_1 : ORIGIN = 0x800000, LENGTH = 0x800000

}

SECTIONS {
// .text, .init, .fini, ...
.gem (NOLOAD) : {
. = ALIGN(64);
*(.gem)
. = ALIGN(64);

} > psu_ddr_0_MEM_1
}

In this listing, modifications are highlighted in orange, while the majority of
unchanged lines (.text, .init, . . .) is hidden.

Section 6.3: Case study: Ethernet controller access | 171

Memory region Peripheral device

Step Master 𝜇A53 𝜇GEM3 gem3 uart0 csu crl

Initialization Cortex-A53
GEM3

Loopback test Cortex-A53
GEM3

Table 6.3: Test application steps, each associated with an overview of memory regions
and peripheral devices accessed during this step; the symbol ‘ ’ indicates that a given
master performs at least one read or write access targeted at the given slave.

Afterward, the compiler was instructed to move receive buffers, transmit
buffers, and buffer descriptors into the new .gem section:

Listing 6.15: Source code modifications for memory partitioning

// Compiler attribute to declare GEM-owned memory:
#define GEM __attribute__((section(".gem")))
// Buffer descriptors (in uncached memory):
u8 BdRegion[0x200000] __attribute__((aligned (0x200000))) GEM;
// Transmit buffer:
EthernetFrame TxFrame GEM;
// Receive buffer:
EthernetFrame RxFrame GEM;

With this, memory regions used by both masters were in line with the
abstraction that the logical isolation pattern expects.

6.3.2 System element interactions
Next, to be able to create a suitable system model, it was necessary to analyze
the activities performed by the test application code. This analysis was per-
formed separately for the two main steps of the application: (1) initializing
the GEM controller and (2) running the loopback test. For each step, transac-
tions traversing the on-chip interconnect were identified. The results of this
analysis are summarized in Table 6.3.

During the GEM initialization phase, the Cortex-A53 will read its code
and maintain its variables using 𝜇A53, for example. It will also initialize buffer

172 | Chapter 6: Implementation and evaluation

descriptors in 𝜇GEM3 and access gem3 to initialize this peripheral device. Two
further accesses are not directly related to the GEM controller, however; the
initialization code also accesses the following peripheral devices:

1) LPD clock and reset control registers (modeled as crl)
2) Configuration registers of the CSU (modeled as csu)

The configuration registers of the CSU are read to query the platform version.
This property is then considered during the initialization procedure:

Listing 6.16: Adapted code excerpt comprising the CSU access

#include "xil_io.h"
#include "xil_types.h"
#define CSU_VERSION 0xFFCA0044

// Get platform version to guide the following initialization:
u32 Platform = Xil_In32(CSU_VERSION);

While this access could be eliminated by hard-coding knowledge about
the underlying platform, accesses to LPD clock and reset control registers are
required to configure clocks of the controller. These accesses are an integral
part of the GEM initialization procedure and cannot be eliminated.

During the loopback test itself, the Cortex-A53 processor continues to
access the RTE memory region (𝜇A53). It further interacts with gem3 and uart0
to transmit frames, receive frames, and report the result. The second memory
region (𝜇GEM3) is read and written by both masters.

For the purposes of the case study, it was therefore necessary to decide at
which point in time the APU configuration code would be applied: before or
after the GEM initialization step. Each of these variants has its benefits and
drawbacks. They were therefore evaluated both.

6.3.3 Variant I: Protected initialization

In this case, the APU configuration code was executed before the GEM initial-
ization step. As the name implies, the beneficial property of this approach is
that GEM initialization activities were monitored and controlled by an APU.
However, the initialization-specific peripheral devices, csu and crl, had to be
allocated to the SWC representing the test application.

Section 6.3: Case study: Ethernet controller access | 173

Based on this observation, LIP syntax from Section 6.1 was used to describe
the system model and request the generation of an APU configuration:

Listing 6.17: Input model for variant I of the case study

platform main : zynqmp {
alloc (0x800000 - 0xFFFFFF) to gem3;

}

rte a53 : main.a53 {
alloc 0x0 - 0x7FFFFF;

}

swc loopback : a53 {
alloc gem3, uart0, csu, crl;
out ~success;

}

pattern : isolation {
gen_apu main;

}

The environment output (success) captured the fact that using its uart0 con-
troller, the test setup communicated with the host computer.

Based on this input model, the ‘-gen’ task of liptool was used to gener-
ate APU configuration code for the Zynq UltraScale+ MPSoC platform. This
code was then added to the very beginning of the test application. Executing
the application finally resulted in a successful loopback test, which was the
primary goal of the Ethernet controller case study.

With respect to the secondary goal, the completeness of the CF graph
in Figure 6.6 was checked on a sample basis. Therefore, XSDB was used to
simulate certain CFs. Here, especially the allocation of crl and csu was iden-
tified as a major source for CF potential: by writing to any of these peripheral
devices, it was possible to reconfigure the execution platform itself. This ob-
servation is correctly represented in Figure 6.6. To conclude the CF graph
evaluation, in Figure 6.7, the system model was extended with a safety-critical
body controller to be executed on the Cortex-R5. The loopback application was
labeled with a low inherent integrity, and other susceptible system elements
were labeled with a high inherent integrity. For this case, liptool correctly
returned a negative safety assessment result.

174 | Chapter 6: Implementation and evaluation

platform(main)

mem(main.ddr) proc(main.a53)

dev(main.uart0) dev(main.gem3)dev(main.csu)dev(main.crl) rte(a53)

swc(loopback)

port(loopback.success) W

logic(loopback)

Figure 6.6: CF graph for variant I of the Ethernet controller case study. The two
peripheral devices with platform impact, dev(main.crl) and dev(main.csu), have
outgoing edges to the underlying execution platform.

platform(main)

mem(main.ddr)proc(main.a53) proc(main.r5)

dev(main.uart0) dev(main.gem3)dev(main.csu)

dev(main.crl)

rte(a53) rte(r5)

swc(body)swc(loopback)

port(body.msg) W

err(low/high)

logic(body)

port(loopback.success) W

ok(low/low)

logic(loopback)

lowlow

low

low

low

low

low

low
low lowlow

low

low

low

low

lowlow
low

lowlow

lowlow

Figure 6.7: Safety assessment based on variant I of the Ethernet controller case study.
Given integrity levels 𝐼 = {low, high}, a low inherent integrity of swc(loopback),
and a high required integrity of port(body.msg), the pattern rejects this attempt to
deploy a SWC with safety-critical impact to the Cortex-R5.

Section 6.3: Case study: Ethernet controller access | 175

6.3.4 Variant II: Unprotected initialization

In this case, APU configuration code was executed after the GEM initialization
step. This temporarily violated Premise 4.8 andmeant that it was not possible to
reason about the presence of unreasonable safety risk during the initialization
procedure. In practice, however, such procedures are typically executed during
a well-defined startup phase. During such phases, it might be possible to show
that physical harm cannot be caused.

Therefore, in variant II of the case study, initialization-specific peripheral
devices (csu and crl) were no longer allocated to the SWC:

Listing 6.18: Input model for variant II of the case study

platform main : zynqmp {
alloc (0x800000 - 0xFFFFFF) to gem3;

}

rte a53 : main.a53 {
alloc 0x0 - 0x7FFFFF;

}

swc loopback : a53 {
alloc gem3, uart0;
out ~success;

}

pattern : isolation {
gen_apu main;

}

Based on this LIP input, APU configuration codewas generated and inserted
immediately after the end of the GEM initialization procedure. Executing this
application resulted in a successful loopback test. Therefore, this design (like
the one from variant I) met the primary goal of the case study.

With respect to the secondary goal, the auto-generated CF graph in Fig-
ure 6.8 was again analyzed and compared with CF potential in the hardware
setup. In comparison to Figure 6.6, this version of the graph does no longer con-
tain a directed edge to the underlying execution platform. This is due to the fact
that csu and crlwere no longer in use, i.e., they were not part of𝐶+ as defined
in Section 4.1.1.1. Therefore, they did no longer represent system elements and,

176 | Chapter 6: Implementation and evaluation

platform(main)

mem(main.ddr) proc(main.a53)

dev(main.uart0) dev(main.gem3) rte(a53)

swc(loopback)

port(loopback.success) W

logic(loopback)

Figure 6.8: CF graph for variant II of the Ethernet controller case study. Compared
with variant I, there are no longer edges leading to the execution platform itself.

platform(main)

mem(main.ddr)proc(main.a53) proc(main.r5)

dev(main.uart0) dev(main.gem3) rte(a53) rte(r5)

swc(body)swc(loopback)

port(body.msg) W

ok(high/high)

logic(body)

port(loopback.success) W

ok(low/low)

logic(loopback)

highhigh

high

high

high
low

high highhigh

highlowlow

high

low

highlow

highlow

Figure 6.9: Safety assessment based on variant II of the Ethernet controller case study.
Despite the low integrity of swc(loopback), the pattern accepts this attempt to deploy
a SWC with safety-critical impact to the Cortex-R5.

Section 6.4: Case study: Fail-operational architecture | 177

according to Premise 4.1, were regarded as unable to propagate failures. The
fact that the APU was configured to prevent any Cortex-A53 core from access-
ing these peripheral devices supported the pattern user in verifying that this
premise is valid. To conclude the CF graph evaluation, it was again attempted
to extend the system model with a safety-critical body control SWC. Like for
variant I, in Figure 6.9, this SWC was mapped to an RTE of the Cortex-R5. The
inherent integrity of the test application was kept low, while other suscep-
tible system elements were assigned a high inherent integrity. As shown in
the CF graph, this analysis led to a positive safety assessment result, which is
the expected outcome for this case study variant.

6.4 Case study: Fail-operational architecture

CF potential captures not only how the failure of one system element can
propagate to logically unrelated system elements, e.g., via a shared memory
module. It also considers CFs due to direct dependencies, for instance:

1) The failure of a processing unit causes its SWCs to fail.
2) An algorithm used to drive an actuator is faulty.

Such factors are not directly related to APU configurations. However, they
influence the integrity of individual subsystems and can therefore have an
impact on the logical isolation that is required between subsystems.

One such property is the sufficiency of applied redundancy measures. Re-
dundancy is often required if failed system portions cannot be transitioned into
a safe state—in time or at all. Failures of software controlling an autonomous
road vehicle, for example, cannot always be handled by deactivating the im-
plemented function. Another example of systems without a safe state are
drive-by-wire architectures without a mechanical fallback. ISO 26262-10 [154]
refers to such systems as exhibiting ‘safety-related availability’ requirements.
In this section, the following terminology is used instead:

▶ Definition 6.1: Fail-operational system

A fail-operational system must be able to maintain a certain minimum
level of functionality, even after the manifestation of specified faults.

The author of this thesis published a comparable definition in [10]. As
stated there, this definition is in line with terminology used in [155] and [156].

178 | Chapter 6: Implementation and evaluation

Safety
subsystem

Complex
subsystem

Decision
logic

Plant Sensor
data

Actuator
commands

Figure 6.10: Logical view of the system-level simplex architecture according to [159].
Depending on plant behavior, the decision logic activates one of the subsystems to
generate actuator commands. The safety subsystem and the decision logic must be
executed on dedicated, trusted hardware.

However, it differs from terminology that separates full fail-operational behav-
ior from degraded fail-operational [156] or active fail-safe [157] behavior.

From a control systems perspective, a possible technique to meet the
requirements of fail-operational systems is to apply the simplex architecture
from [158]. It is based on the idea of partitioning a control system into two parts:
a high-assurance-control subsystem and a high-performance-control subsystem.
Decision logic is able to activate either the former or the latter at any time.
The high-performance controller provides a superior performance, while the
high-assurance controller is able to guarantee a safe operation of the plant. To
prevent failures of the high-performance controller from causing physical harm,
the decision logic monitors the plant to recognize imminent safety requirement
violations. If it detects an imminent violation, it activates the high-assurance
controller. This way, the concept provides robustness against systematic faults
in the design of the high-performance controller. It is applicable if incorrect
actions can be tolerated and recovered from.

The system-level simplex architecture [159] is an extended variant of this
approach. As visualized in Figure 6.10, the core structure is kept, but the
employed terminology is changed: the high-performance-control subsystem is
now referred to as the complex subsystem, while the high-assurance-control
subsystem becomes the safety subsystem. It introduces partitioning constraints
to add robustness against additional fault types: both the safety subsystem
and the decision logic must be implemented on isolated, trusted hardware. In
the particular concept from [159], this is custom hardware, for example in the
form of an Application-Specific Integrated Circuit (ASIC). This way, failures

Section 6.4: Case study: Fail-operational architecture | 179

𝑡

𝑡

𝑡

W
Failure causing a
hazardous event

Fault
detected

Fault
detected

Safe state
reached

Safe state
reached

(a)

(b)

Fault tolerant time interval

Fault handling time interval

Fault handling time interval Emergency operation

✗

✓

Figure 6.11: Fault-related time intervals defined by ISO 26262. Visualization published
in and adapted from [10]. Mechanism (a) is unable to transition the system into a safe
state before the failure may cause physical harm. Mechanism (b) transitions the system
into an emergency operation mode to prevent this.

of the employed microprocessor, its operating system, and other underlying
components can be addressed and handled.

Handling failures of a critical component by switching to a safety-oriented
fallback functionality is an interesting concept to tackle fail-operational
requirements—even in cases when the failure cannot be detected by mon-
itoring the plant. It can be used to implement an emergency operation mode
as defined by ISO 26262-1 [16], for example. As shown in Figure 6.11, the
emergency mode supports designers in reacting to conditions in which a safe
state cannot be entered before the fault tolerant time interval expires.

Therefore, in the first step of this case study, a fail-operational architecture
inspired by the system-level simplex architecture was defined as follows:

1) Both a complex and a safety algorithm are available to drive a plant.
2) At any time, a decision algorithm connects either the complex or the

safety algorithm to the plant. When the complex algorithm is operating
correctly, it is selected. Otherwise, the safety algorithm is selected.

3) Both the safety and the decision algorithm are free of systematic faults.
By themselves, neither of them will lead to unsafe plant behavior.

4) The decision logic is able to detect failures of the complex algorithm,
e.g., by monitoring the plant.

Two aspects are deliberately not covered by this architecture specification.
First, it does not describe the fault susceptibility of the complex algorithm. If

180 | Chapter 6: Implementation and evaluation

the complex algorithm is susceptible to systematic faults, its failure can be due
to an inherent fault or a CF affecting its execution. If the algorithm is free of
systematic faults, it can only fail if a CF affects its execution.

Furthermore, the actual implementation of the architecture is not yet speci-
fied. Using the terminology introduced so far, we can say that the context used
to execute these algorithms (SWCs, RTEs, . . .) is still unknown.

In this case study, three variants of the architecture were considered. For
each of them, the base specification from above was completed in a particular
manner. Afterward, the logical isolation pattern’s applicability for reasoning
about certain safety properties was evaluated.

6.4.1 Mapping to cores of a single MPSoC
In this variant, the complex algorithm was considered as potentially affected
by systematic faults. Each algorithm was modeled as a dedicated SWC. We
refer to them as complex, safety, and decision, respectively. They were
mapped to processing units of a single Zynq UltraScale+ MPSoC instance:

1) complex→ Cortex-A53 processor
2) safety→ Cortex-R5 processor
3) decision→ Cortex-R5 processor

To facilitate this mapping, each processing unit was associated with a dedi-
cated RTE, each with its own DDR memory region. Communication between
the RTEs was modeled as taking place via another DDR memory region:

Listing 6.19: System model of the MPSoC mapping

platform main : zynqmp;
rte a53 : main.a53 { alloc 0x0 - 0xFFFFFF; }
rte r5 : main.r5 { alloc 0x1000000 - 0x1FFFFFF; }
swc complex : a53 { out cmd; }
swc safety : r5 { out cmd; }
swc decision : r5 {
in complex, in safety;
out ~res;

}

channel complex.cmd -> decision.complex;
channel safety.cmd -> decision.safety;
path {a53, r5} = 0x10000000 - 0x1000FFFF;

Section 6.4: Case study: Fail-operational architecture | 181

⊲ Remark 6.3: This strategy is similar to the approach presented in [8], where the
safety controller is executed on a soft-core processor in an FPGA.

In this code, environment output ‘decision.res’ represents the outgoing
plant interface. To be able to implement this interface, the SWC will—in
practice—need to allocate one or more peripheral devices. For clarity, this
allocation is not modeled here. Another aspect not reflected in the system
model is the fact that the two controllers (complex and safety) will also need
to read sensor data from the plant. This aspect can be modeled using the logical
isolation pattern, but it is hidden here for the sake of brevity.

To reason about the acceptability of CF potential, two integrity levels
were introduced: 𝐼 = {low, high} with low ≤ high (and, to achieve reflex-
ivity, low ≤ low and high ≤ high). Based on this, the required integrity
of port(decision.res) was set to high. Roughly speaking, this means that
a susceptible system element can be labeled with an inherent integrity of high
if the following condition is met: its failure is sufficiently rare and, there-
fore, CF potential leading to port(decision.res) is acceptable:

Listing 6.20: Pattern application for the MPSoC mapping (1/2)

pattern : isolation {
lattice {
high >= low;

}

port(decision.res) >= high;

From the specification described so far, it was derived that this property
applies to logic(safety) and logic(decision). Furthermore, it was argued
that the following system elements are built in such a way that it is also justified
to set their inherent integrity to high:

1) platform(main), proc(main.r5), and dev(main.ddr)
2) rte(r5), swc(decision), and swc(safety)

Other susceptible system elements were assigned an inherent integrity of low.
The premise that logic(decision) detects failures of logic(complex)

was translated into an input barrier leading from port(decision.complex)
to logic(decision). Finally, the ILP approach from Section 5.4.2 was used
to decide whether APU configuration code or the implementation of process
isolation is required to achieve absence of unreasonable risk.

182 | Chapter 6: Implementation and evaluation

For these inputs, the ILP approach returned that it is necessary to ap-
ply (only) an APU configuration. Therefore, and considering the statements
from above, the pattern application was completed as follows:

Listing 6.21: Pattern application for the MPSoC mapping (2/2)

gen_apu main;
platform(main) = high;
proc(main.r5) = high;
mem(main.ddr) = high;
rte(r5) = high;
swc(safety) = high;
logic(safety) = high;
swc(decision) = high;
logic(decision) = high {
no_in! complex;

}
}

For completeness, an explicit application of the pattern was performed to
confirm that this design does not pose an unreasonable risk. This verification
was successful, as visualized by the annotated CF graph in Figure 6.12.

Note that this result would not be achievable without an APU config-
uration: swc(complex), rte(a53), and proc(main.a53) were all labeled
with an inherent integrity of low. Unless this assignment is changed, the
lack of an APU configuration would mean that they could interfere with a
safety-critical region of the DDR memory, for example.

This demonstrates that the pattern is able to both contribute to and reason
about the safe on-chip integration of the architecture.

6.4.2 Mapping to distributed MPSoC instances
Here, a variation of the previous implementation strategy was defined: instead
of mapping all SWCs to the same MPSoC, two MPSoC instances were used.
For the purposes of this section, we refer to these instances as x and y. Based
on this, the following mapping was performed:

1) complex→ Cortex-A53 processor of the first instance (i.e., of x)
2) safety→ Cortex-R5 processor of the second instance (i.e., of y)
3) decision→ Cortex-R5 processor of the second instance (i.e., of y)

Section 6.4: Case study: Fail-operational architecture | 183

complexsafety

decision

platform(main)

mem(main.ddr) proc(main.a53)proc(main.r5)

rte(a53)rte(r5)

path(a53, r5) swc(complex)swc(safety)

swc(decision)

port(cmd)

logic

port(cmd)

logic

port(complex)port(safety)

port(res) W

ok(high/high)

logic

high highhigh

lowhighhigh high

lowhigh

high

lowhighhigh

lowhigh

high

high

lowhigh

low

lowhigh

high

Figure 6.12: CF graph for the single-MPSoC mapping from Section 6.4.1. Annotations
show that the effective integrity at port(decision.res) is sufficient, i.e., that this
design does not pose an unreasonable safety risk.

To facilitate this mapping, one RTE with a dedicated DDR memory region
was again specified for each utilized processing unit. Due to the distributed
deployment of both RTEs, communication between them made it necessary
to define a global path (instead of a local one). For the purposes of the case
study, this path was implemented using a CAN network. This also meant
that each RTE had to be extended with a CAN controller allocation, and that
this CAN controller had to be attached to the CAN network.

Apart from that, the previous system model was kept unchanged. Most
importantly, the environment output ‘decision.res’ still represented the

184 | Chapter 6: Implementation and evaluation

outgoing plant interface, and additional plant interactions were not modeled
for brevity. This led to the following LIP formulation:

Listing 6.22: System model for the distributed mapping

platform x : zynqmp;
platform y : zynqmp;
rte a53 : x.a53 { alloc 0x0 - 0xFFFFFF, can0; }
rte r5 : y.r5 { alloc 0x1000000 - 0x1FFFFFF, can0; }
swc complex : a53 { out cmd; }
swc safety : r5 { out cmd; }
swc decision : r5 {
in complex, in safety;
out ~res;

}

channel complex.cmd -> decision.complex;
channel safety.cmd -> decision.safety;
bus can = x.can0, y.can0;
path {a53, r5} = can;

The integrity lattice from before (high >= low) was kept, and the required
integrity of the plant interface was again set to high (cf. Listing 6.20). The
second part of the pattern application was changed to the following:

Listing 6.23: Inherent integrities and isolation measures

// Part 1 from previous variant...
platform(y) = high;
proc(y.r5) = high;
dev(y.can0) = high;
mem(y.ddr) = high;
rte(r5) = high;
swc(safety) = high;
logic(safety) = high;
swc(decision) = high;
bus(can) = high;
logic(decision) = high {
no_in! complex;

}
}

Section 6.4: Case study: Fail-operational architecture | 185

complexsafety

decision

platform(x)

mem(x.ddr) proc(x.a53)dev(x.can0)

platform(y)

mem(y.ddr) proc(y.r5)dev(y.can0)

bus(can)

rte(a53)rte(r5)

path(a53, r5) swc(complex)swc(safety)

swc(decision)

port(cmd)

logic

port(cmd)

logic

port(complex)port(safety)

port(res) W

ok(high/high)

logic

low lowlow
high

highhigh low
high

lowlowlowhighhighhigh

lowhigh lowhigh

high

lowhigh

high

high

lowhigh low

lowhigh

high

low

Figure 6.13: CF graph for the mapping from Section 6.4.2. Although no APU configura-
tions are applied, the effective integrity at port(decision.res) is sufficient. This is
due to the physical separation between the two execution platforms.

As before, the application-level barrier from port(decision.complex)
to logic(decision) was used to capture that decision detects and handles
failures of the complex algorithm. APU configuration code was not requested,
because doing so was not necessary for this variant.

As illustrated in Figure 6.13, this design is accepted by the logical isolation
pattern. It is important to emphasize that this positive safety assessment result
was achieved without requesting any APU configuration code to be generated.
For this variant, applying the analysis features of the pattern was sufficient to
infer the absence of unreasonable risk.

186 | Chapter 6: Implementation and evaluation

6.4.3 Background: Mirrored architecture concept
The third case study variant is based on a ‘mirrored superposition’ of two
instances of the architecture. This concept is a secondary contribution of this
thesis and was published in [9] and [10]. Before its compatibility with the
pattern is covered in Section 6.4.4, it is now introduced in more detail.
⊲ Remark 6.4: The content of this background section is a summary of the au-
thor’s contributions to [10]. For a more detailed coverage of the concept and its
prototypical implementation, the reader is referred to this source.

The mirrored architecture concept is concerned with random hardware
faults. Systematic faults introduced during the development of hardware or
software are beyond the scope of the approach. Considered hardware faults
can be transient, intermittent, or permanent. For simplicity, the remainder of
this section treats intermittent faults as a simple repetition of transient ones.
With this, it is possible to say that the approach is concerned with random
hardware faults of transient or permanent duration.

In practice, transient faults are considerably more likely to occur than per-
manent ones [160]. Since permanent faults have a significant impact on the
system behavior, however, they must still be considered and often handled
through the application of space redundancy techniques. One such technique
is Triple Modular Redundancy (TMR), which can be applied at various levels
of the system hierarchy. Especially if it is applied at the system level, how-
ever, triplicating critical components can be prohibitively expensive. This
is especially true if these components are heterogeneous MPSoCs instead of
lightweight microcontrollers. The mirrored architecture concept is a fault
tolerance scheme that attempts to exploit existing redundancy at the system
level to achieve fail-operational behavior in a cost-efficient manner.

Themirrored fail-operational architecture handles transient and permanent
faults by switching to a degraded version of the full system functionality. In
the case of transient faults, the full functionality is restored by resetting the
faulty hardware and reversing the transition. In the case of permanent faults,
the degraded functionality can be used to achieve a temporary emergency
operation (according to ISO 26262) before a safe state is entered.

The approach is applicable whenever there is a pair of execution platforms,
each with spare computational resources that cannot be removed. These
resources are referred to as inherent redundancy and can be due to the fact
that a commercially available MPSoC is not fully utilized, for example. The
approach is now described using an application from the automotive domain,
but it can be transferred to a wide variety of use cases.

Section 6.4: Case study: Fail-operational architecture | 187

Motion

PEℓ

PE𝑟

ECUℓ

ECU𝑟

ECU𝑐

(front left)

(front right)

Figure 6.14: Road vehicle with two electric wheel hub motors. Each front wheel
integrates the power electronics of a motor (PEℓ and PE𝑟). Electronic control units
attached to each of the front wheels (ECUℓ and ECU𝑟) receive commands from a central
car server (ECU𝑐) to control the motor they are associated with.

6.4.3.1 System-level concept

The sample application is a road vehicle with two electric wheel hubmotors. As
shown in Figure 6.14, it comprises a power electronics module attached to both
the left and the right front wheel; they are referred to as PEℓ and PE𝑟 , respec-
tively. Each module is controlled by a dedicated Electronic Control Unit (ECU);
they are referred to as ECUℓ and ECU𝑟 , respectively. To control its respec-
tive motor, each ECU reads from sensors integrated into the wheel and drives
several digital outputs, most importantly to transmit Pulse-Width Modula-
tion (PWM) signals. Due to the safety-critical nature of this application, each
of the ECUs needs to be implemented as a fail-operational system. Ideally,
their read and write operations are executed with a frequency of 10 kHz, but a
reduction of this frequency is possible, e.g., during emergency operation.

ECU𝑐 is a central controller that provides both ECUℓ and ECU𝑟 with set-
points they are expected to maintain, such as torque or rotational frequency.
For the purposes of this section, ECU𝑐 is assumed to be free of faults. ECUℓ

and ECU𝑟 are subject to random hardware faults and exhibit inherent redun-
dancy, i.e., their nominal control task does not lead to a full utilization. Software
executed on this pair of ECUs is trusted, i.e., not subject to systematic faults.

As shown in Figure 6.15, the mirrored version of the fail-operational ar-
chitecture is applied to ECUℓ , ECU𝑟 , and the communication with both power
electronics modules (cf. Figure 6.15). The key idea is as follows:

1) Failures of ECUℓ are handled by controlling PEℓ from ECU𝑟 .
2) Failures of ECU𝑟 are handled by controlling PE𝑟 from ECUℓ .

188 | Chapter 6: Implementation and evaluation

ECUℓ PEℓ

ECU𝑟 PE𝑟

ECU𝑐

Scope of the mirrored
architecture concept

Figure 6.15: Road vehicle use case visualized as an inherently redundant system with
two channels. The scope of the mirrored simplex architecture comprises ECUℓ , ECU𝑟 ,
and the communication with both power electronics modules.

ECUℓ PLℓ IOCℓ PEℓ
P

S

ECU𝑟 PL𝑟 IOC𝑟 PE𝑟
P

S

Proxy unit of channel ℓ

Proxy unit of channel 𝑟

CLℓ CL𝑟

Figure 6.16: Introduction of a proxy unit into both channels. Each proxy unit consists
of its proxy logic (PLℓ /PL𝑟) and all I/O components that are necessary to interact with
the respective power electronics module (IOCℓ /IOC𝑟). Communication links (CLℓ /CL𝑟)
connect each ECU to both the primary port (P) of its own and the secondary port (S) of
its opposite proxy logic.

To facilitate this, the inherent redundancy of each ECU must allow for
the execution of (at least) a degraded version of the opposite wheel’s control
algorithm. In addition, the power electronics interface must be extended with
decision logic that selects exactly one ECU as the active one. This component
is referred to as proxy logic and will be referred to as PLℓ and PL𝑟 , respectively.
Finally, the issue of an increased physical distance between each ECU and its
opposite wheel needs to be addressed. To tackle it, relevant input/output com-
ponents (such as a PWM controller) are also merged into the power electronics
interface. These components are referred to as IOCℓ and IOC𝑟 , respectively.
Together with their proxy logic, they are the proxy unit of a particular channel.

Section 6.4: Case study: Fail-operational architecture | 189

Figure 6.16 visualizes the introduction of these proxy units. Via system-level
communications links, such as a CAN network, each proxy unit is connected
to both ECUs; the ECU connected to the primary port (P) controls the proxy
unit during normal operation, while the ECU connected to the secondary
port (S) controls it after a failure. This symmetrical structure can be described
as ‘mirrored’ with respect to each channel.

The proxy unit is responsible to detect failures of the ECU at its primary
port, and it needs to react to such failures by switching to the ECU at its
secondary port. Therefore, a challenge-response watchdog is used: the proxy
unit transmits periodic watchdog challenges to the ECU at its primary port.
Software on this ECU needs to solve this challenge and transmit the response
back to the proxy unit. If the proxy unit receives an erroneous or no response,
it deducts a failure of the ECU (or the associated communication link).

A final task of the proxy unit is to keep track of the application state: period-
ically, the ECU that is currently responsible for the control of a particular wheel
transmits its state variables to the proxy logic. The proxy logic stores these
state variables internally and, whenever a switch to the opposite ECU takes
place, provides this ECU with the most recent set of state variables.

This architecture imposes one requirement on the availability of ECUs
and CL, and one requirement on the reliability of proxy units:

1) ECUs and communication links are subject to random hardware faults.
At any time, however, there is a sufficient3 probability that at least the
left pair (ECUℓ and CLℓ) or the right pair (ECU𝑟 and CL𝑟) works correctly.

2) The probability that a proxy unit fails is negligible, i.e., its reliability is
in line with the requirements of the power electronics.

Under the assumption that these requirements are fulfilled, the mirrored archi-
tecture concept can be described by the following properties:

1) The system exhibits fail-operational behaviorwith respect to PEℓ and PE𝑟 .
2) Components introduced during the transformation affordable. Most

importantly, no additional ECU needs to be introduced.
3) ECUs and power electronics can remain at their physical locations.
4) Spare resources used to control the opposite power electronics module

remain available during normal (i.e., fault-free) operation.
5) State variables are maintained during mode switches.

3The probability is sufficient if it is in line with the requirements of the power electronics.

190 | Chapter 6: Implementation and evaluation

ECU𝑗 CPU core

CAN controller

Nominal functionality
for PE𝑗

Fallback functionality
for PE𝑗 ′

CL𝑗

1 2 3

Figure 6.17: AURIX configuration used to implement ECU𝑗 with 𝑗 ∈ {ℓ, 𝑟 }. Both the
nominal functionality for PE𝑗 and the fallback functionality for PE𝑗 ′ were implemented
as a shared bare-metal application. Three hardware-managed receive/transmit queues
were created for CAN messages. One of them (1) was dedicated to the watchdog
mechanism and handled with the highest priority. Other queues were used for all
remaining messages; the priority of (2) was configured above that of (3).

6.4.3.2 Prototypical implementation

As part of this work, the mirrored architecture variant was prototypically
implemented. Therefore, a TriBoard (featuring an AURIX microcontroller
by Infineon Technologies) was used to realize each of the ECUs. Each commu-
nication link was realized as a CAN bus combined with a direct reset wire.

For rapid prototyping of the proxy units, a custom FPGA implementation
was developed. More specifically, the FPGA portion of a ZedBoard (featuring
a Zynq-7000 by AMD/Xilinx) was used to implement each proxy unit. The
logic mapped to this FPGA portion was a TMR arrangement of the proxy logic,
two CAN controllers, a PWM controller, and other input/output functions.
Custom voting logic was added to complete the TMR implementation. The
interaction with ECU𝑐 was not implemented.

For 𝑗 ∈ {ℓ, 𝑟 }, the schematic in Figure 6.17 shows how the two control algo-
rithmsweremapped to ECU𝑗 : a shared bare-metal applicationwas developed to
simulate both the nominal functionality for PE𝑗 and the fallback functionality
for PE𝑗 ′ , where 𝑗 ′ refers to the opposite channel of 𝑗 . The built-in CAN con-
troller was configured to hold three bidirectional, hardware-managed message
queues: one for watchdog messages, one for management and payload mes-
sages of the nominal functionality, and a third one for management and payload
messages of the fallback functionality.

Section 6.4: Case study: Fail-operational architecture | 191

Synchronized state size (𝑁)

𝑇cycle 𝑇wdg 32 bit 64 bit 128 bit 256 bit 512 bit

1ms 1ms

2ms 1ms
2ms 2ms

4ms 1ms
4ms 2ms
4ms 4ms

Table 6.4: Design space spanned by 𝑇cycle, 𝑇wdg, and 𝑁 . For each point in this space,
the feasibility calculated in [10] is shown: parameter combinations labeled with ‘ ’ are
feasible, while parameter combinations labeled with ‘ ’ are infeasible.

Both the nominal and the fallback functionality were implemented as
independent periodic procedures, both executed with a cycle time of 𝑇cycle.
During each cycle, both functionalities were designed to perform three tasks:

1) Read 32 bit of data from the power electronics (sensor data).
2) Write 32 bit of data to the power electronics (PWM voltages).
3) Write a state of size 𝑁 to the proxy logic’s state buffer.

In addition, an interrupt-based handler for watchdog challenges was integrated
into the nominal functionality. The proxy logic was designed to issue watchdog
challenges with a period of𝑇wdg and to expect a correct response within a time
of 𝑇deadline after issuing a watchdog challenge.

Then, a feasibility analysis of various ⟨𝑇cycle, 𝑇wdg, 𝑁 ⟩ combinations was
performed. During this analysis, a system was considered feasible if after the
detection of a fault, all CAN messages required to (1) perform the mode transi-
tion and (2) transmit the first set of payload messages do not exceed 𝑇cycle. For
a CAN frequency of 𝑓CAN = 1MHz, the obtained results are shown in Table 6.4.
For a cycle time of 𝑇cycle = 1ms, for example, the theoretical analysis showed
that a system with 𝑇wdg = 1ms and 𝑁 = 32 bit is feasible. This feasible cycle
time is below the ideal frequency of 10 kHz (see above), but it was still possi-
ble to argue an applicability in certain operating modes, e.g., for a degraded
operation of the wheel hub motor.

It is possible to achieve higher operating frequencies by switching to a
communication link with an increased data rate or reducing the frequency
of state synchronizations, for example. During the case study, however, this
design space was not explored further.

192 | Chapter 6: Implementation and evaluation

𝑡

W

𝜏0 𝜏1 𝜏2 𝜏3
Detect fault
manifestation

in ECU𝑗

Activate fallback
functionality
on ECU𝑗 ′

Transfer state
variables from
PL𝑗 to PL𝑗 ′

Reaction timeDetection time

Fault handling time interval

Figure 6.18: Decomposition of the fault handling time interval (according to ISO 26262)
into three sequential steps. The former describes the fault detection phase, while the
latter two capture fault reaction tasks.

Duration / ms

Fault handling interval Minimum Average Maximum

Fault detection (𝜏0 → 𝜏1) 0.40 0.89 1.40
Fallback activation (𝜏1 → 𝜏2) 0.11 0.20 0.52
State transfer (𝜏2 → 𝜏3) 0.14 0.20 0.53

Table 6.5: Fault handling durations for 𝑇cycle = 1ms, 𝑇wdg = 1ms, and 𝑁 = 32 bit.
Per interval, 300 measurements were performed, and the table lists the minimum, the
maximum, and the average value of these measurements.

6.4.3.3 Evaluation results

The prototypical implementation was used to evaluate different metrics, in-
cluding the achievable fault handling time and the computational overhead
that the architecture causes in both ECUs.

The fault handling time interval is the duration it takes for a proxy unit
to (1) detect the fault of its primary ECU, (2) activate the fallback functionality
of its secondary ECU, and (3) read the most recent state variables from the
proxy logic’s state buffer. Figure 6.18 visualizes this interval decomposition.

Due to the symmetrical setup, fault handling times were evaluated for
only one of the channels. To do so, a fault injection module was added to
the FPGA portion of PLℓ . It was able to activate the external reset pin of ECUℓ ,
i.e., to simulate the complete failure of this ECU. For each feasible design,
this mechanism was triggered and measured 300 times. A watchdog deadline
of 𝑇deadline = 0.5ms was used, and ECUs were operated at 𝑓CPU = 200MHz.

Table 6.5 shows minimum, maximum, and average durations that were
measured for the design with 𝑇cycle = 1ms, 𝑇wdg = 1ms, and 𝑁 = 32 bit. With

Section 6.4: Case study: Fail-operational architecture | 193

𝑇cycle = 2ms 𝑇cycle = 4ms

32 64 128

0

2

4

𝑁 / bit

Ti
m
e
/m

s

Fault detection (𝜏0 → 𝜏1)

𝑇wdg = 1ms 2ms

32 64 128 256

0

2

4

𝑁 / bit
Ti
m
e
/m

s

Fault detection (𝜏0 → 𝜏1)

𝑇wdg = 1ms 2ms 4ms

32 64 128

0

1

2

𝑁 / bit

Ti
m
e
/m

s

Fallback activation (𝜏1 → 𝜏2)

𝑇wdg = 1ms 2ms

32 64 128 256

0

1

2

𝑁 / bit

Ti
m
e
/m

s
Fallback activation (𝜏1 → 𝜏2)

𝑇wdg = 1ms 2ms 4ms

32 64 128

0

1

2

𝑁 / bit

Ti
m
e
/m

s

State transfer (𝜏2 → 𝜏3)

𝑇wdg = 1ms 2ms

32 64 128 256

0

1

2

𝑁 / bit

Ti
m
e
/m

s

State transfer (𝜏2 → 𝜏3)

𝑇wdg = 1ms 2ms 4ms

Figure 6.19: Measured fault handling durations for all designs from Table 6.4 with ei-
ther𝑇cycle = 2ms or𝑇cycle = 4ms. For each design, 100 measurements were performed,
and the corresponding bar visualizes the range and average of measured durations.

194 | Chapter 6: Implementation and evaluation

0% 0.5% 1%

𝑁 = 32 bit

𝑁 = 64 bit

𝑁 = 128 bit

0.67%

0.87%

1.25%

0.53%

0.73%

1.11%

Portion of evaluation period (100ms) used for non-functional instructions

𝑇cycle = 2ms

2ms
1ms

𝑇wdg

Figure 6.20: Relative number of clock cycles that an AURIX with 𝑓CPU = 200MHz spent
executing non-functional tasks during a 100ms interval. The plot shows maximum
values obtained for 300 repeated measurements in a worst-case setup.

this design, the proxy logic was able to detect the failure of its primary ECU in
under 1.5ms. It then required up to 1ms to activate the fallback functionality
on its secondary ECU and provide this fallback functionality with the most
recent set of state variables. Therefore, it was able to handle random hardware
faults in the same order of magnitude as the cycle time.

For the 18 remaining designs from Table 6.4, the measured fault handling
times are visualized in Figure 6.19. The results show, for example, that the
watchdog challenge frequency,𝑇wdg, had a significant impact on the duration of
the fault detection interval. For all considered designs, the maximummeasured
fault handling time remained below 10ms.

Finally, to determine the computational overhead in an ECU, the relative
number of clock cycles that were required to execute non-functional tasks
during a reference interval was determined. Non-functional tasks comprise
solving and responding to watchdog challenges, managing the transfer of
internal state variables, and interacting with the CAN controller. To perform
this measurement, one AURIX controller was put into a mode in which it had to
deliver both the nominal functional for its own and the fallback functionality for
the opposite power electronics. This corresponds to the highest computational
overhead that the architecture can cause, i.e., it is the worst-case setup. For
this specific case, integrated performance counters of the AURIX were used to
determine the number of clock cycles spent to execute non-functional tasks.
For a cycle time of 𝑇cycle = 2ms, the obtained results are shown in Figure 6.20;
they did not exceed a value of 1.25 percent.

Section 6.4: Case study: Fail-operational architecture | 195

6.4.4 Applicability to the mirrored variant

From the perspective of each proxy unit, the terminology from Section 6.4.3
can be mapped to the generic architecture as follows:

1) Its integrated proxy logic implements the decision algorithm.
2) The nominal functionality from port P is its complex algorithm.
3) The fallback functionality from port S is its safety algorithm.

To complete the case study, it was determined if the logical isolation pattern is
able to represent the fault tolerance strategy integrated into this concept.

Therefore, it was assumed that each proxy unit, which was previously
evaluated in custom hardware, would be implemented on an execution plat-
form. Like in the prototypical implementation, each ECU was assumed to
run a shared bare-metal application implementing both the nominal and the
fallback functionality. To represent this theoretical scenario using LIP syn-
tax, a special execution platform type (generic) was used. It does not come
with an APU configuration procedure, but it provides the pattern user with
an arbitrary number of processing units (cpu0, cpu1, . . .), selected I/O con-
trollers (can0, can1, . . .), and a large DDR memory.

Based on this, a symmetrical system model was defined. For the left
architecture channel (ECUℓ , CLℓ , and proxy unit ℓ), suitable entities were
created and connected (to each other and their respective counterparts):

Listing 6.24: System model for the left architecture channel

// Left controller (ECU):
platform cl : generic;
rte cl : cl.cpu0 { alloc can0; }
swc cl : cl { out nominal, out fallback; }
// Left proxy unit:
platform pl : generic;
rte pl : pl.cpu0 { alloc can0, can1; }
swc pl : pl { in prim, in sec, out ~res; }
// Infrastructure of the left proxy unit:
channel cl.nominal -> pl.prim;
channel cl.fallback -> pr.sec;
bus left = cl.can0, pl.can0, pr.can1;
path {cl, pl} = left;
path {cl, pr} = left;

196 | Chapter 6: Implementation and evaluation

The excerpt for the right channel is analogous but omitted for brevity.
In comparison to Section 6.4.1 and Section 6.4.2, the mirrored architecture

variant has a considerably different fault model: it assumes that neither algo-
rithm is subject to systematic faults. It also requires that all RTEs, all SWCs,
and the hardware used to implement the proxy unit are fault-free. However,
it considers the possibility that any ECU will be affected by random hard-
ware faults. Compared with the previous mappings, this means that there
is no control algorithm that by itself has a reliable hardware foundation.

Therefore, a third integrity level, mid, was introduced. It is meant to label
hardware entity pairs that will not fail at the same time, i.e., both ECUs along
with their CLs (cf. Section 6.4.3). However, this integrity level alone does not
meet the integrity requirement of the power electronics interface. Although
not strictly necessary in this case, logic decomposition was further applied to
capture that each controller SWC (i.e., cl and cr) hosts two algorithms, one
for the nominal and one for the fallback functionality:

Listing 6.25: Excerpt of the safety pattern application

pattern : isolation {
lattice { high >= mid >= low; }

logic(cl.nominal) = high { no_out! fallback; }
logic(cl.fallback) = high { no_out! nominal; }

logic(cr.nominal) = high { no_out! fallback; }
logic(cr.fallback) = high { no_out! nominal; }

port(pr.res) >= high;
port(pl.res) >= high;

platform(cr) = mid;
// Other hardware entities...

At this point, however, an essential aspect of the architecture’s fault toler-
ance strategy cannot be represented using the logical isolation pattern: the
decision algorithms (pl and pr) are able to elevate the effective integrity they
receive from mid to high. In other words: under the condition that the driver
of a proxy unit’s primary port (prim) does not fail at the same time as the driver
of its secondary port (sec), it is justified to output a high effective integrity. In
theory, this circumstance could be represented using conditional input barriers.

Section 6.5: Summary | 197

port(cl.nominal) port(cl.fallback)

logic(cl.nominal) logic(cl.fallback)

port(pl.prim) port(pl.sec)

port(pl.res) W

logic(pl)

port(cr.nominal)port(cr.fallback)

logic(cr.nominal)logic(cr.fallback)

port(pr.prim)port(pr.sec)

port(pr.res) W

logic(pr)

Figure 6.21: Possible application subgraph for the mirrored architecture variant. Dashed
arrows highlight CF graph edges for which a conditional input barrier could be argued.
If a pair of such edges has an effective integrity of mid, it would be justified to raise the
effective integrity leaving the logic block to high.

Here, they would have to require an effective integrity of at least mid and could
then be applied to all four edges highlighted in Figure 6.21. Such input barriers
are currently not supported by the pattern, however. The safety assessment
result the pattern is able to deliver will therefore be too pessimistic to show
the absence of unreasonable risk.

This is because the pattern was designed to achieve logical isolation, not
fault tolerance. If fault tolerance aspects can be reduced to the requirement that
less trusted system elements must not interfere with critical ones, the pattern
can be used to reason about such aspects. This was the case in Section 6.4.1
and Section 6.4.2. In general, however, its analysis features are unable to
capture arbitrary fault tolerance strategies.

6.5 Summary

The utility described in Section 6.2 is a complete implementation of the logical
isolation pattern. Its input notation can be used to express all aspects from
the formal system model, apply all supported isolation measures, and specify
all supported safety requirements. This demonstrates the practical feasibility
of key concepts from the previous chapters. It further allows us to consider

198 | Chapter 6: Implementation and evaluation

the pattern and its implementation as equivalent—what cannot be represented
in LIP syntax is not supported by the pattern itself.

The case study in Section 6.3 demonstrated that generated APU configu-
ration code is applicable to commercially available execution platforms, such
as the Zynq UltraScale+ MPSoC. Despite the restrictive nature of this code,
the pattern was able to generate it in such a manner that full access to the
platform’s Ethernet controller remained possible. Compared with the built-in
configuration feature of the vendor toolchain, the logical isolation pattern
comes with CF determination and safety assessment procedures that were
shown to capture the potential for possibly unsafe CFs.

The case study in Section 6.4 demonstrated that the pattern’s APU config-
uration and safety assessment capabilities are also applicable to fault-tolerant
system designs. For the on-chip variant, for example, the pattern was able to
generate APU configuration code that was a necessary requirement to achieve
the desired fault tolerance properties. At the same time, the case study identi-
fied limitations in the pattern’s ability to reflect symmetrical fault tolerance
setups. Although support for such setups was not an objective of this thesis,
the concepts can be extended to achieve this support in the future. This is one
of many possible extensions that can be applied to the current version of the
logical isolation pattern; other opportunities for follow-up activities will be
discussed in Section 8.2.

Chapter 7

Toolchain integration

At this point, the logical isolation pattern has been fully described—both
conceptually and in terms of its reference implementation. Up until now,
however, it has been assumed that an embedded software system was already
available and would then be formalized using

1) a system model according to Section 3.2,
2) isolation measures according to Section 4.2, and
3) safety requirements according to Chapter 5.

In practice, it is often desirable to perform an automated implementation of
embedded software systems. The state of the art provides toolchains that
can be used to address this requirement. Three academic examples of such
toolchains were listed in Section 3.1: RAMSES [142], Lingua Franca [144],
and the XANDAR toolchain [1]. In the following, they will be referred to as
toolchains for the synthesis of a software system.

To be of practical importance, the logical isolation pattern must be com-
patible with such synthesis toolchains. An automated generation of the
above-mentioned pattern inputs is a particularly appealing goal. This chapter
gives directions on how such an integration can be realized: in the context of
the XANDAR toolchain, it demonstrates the auto-generation of the system
model and parts of the isolation measure specification. Safety requirements
must still be provided as an external input, but this constraint is not a funda-
mental limitation. The automatic generation of safety requirements is generally
feasible, for example in the context of a HARA procedure.

199

200 | Chapter 7: Toolchain integration

7.1 Overview of the XANDAR project

As described in [1], the XANDAR project was concerned with the development
of embedded software systems for autonomous and distributed applications.
During the project, particular emphasis was put on representative use cases
from both the automotive and the aviation domain.

In such domains, embedded software systems are currently required to
meet an increasingly challenging combination of non-functional requirements.
On the one hand, their features are becoming richer, and the underlying hard-
ware/software architecture needs to reflect this trend. In a self-driving car,
for example, MPSoCs can be necessary to execute AI algorithms, and the de-
mand for vehicle-to-vehicle communication requires a seamless integration
into large-scale networks. On the other hand, such systems are subject to
ever-increasing safety, security, and real-time requirements. An autonomous
road vehicle aiming for ‘high driving automation’ according to the SAE defini-
tion [161], for example, can no longer expect humans to monitor and handle
system malfunctions. Therefore, it is still necessary to ensure that the system
does not pose an unreasonable risk to passengers or the environment.

The outcome of XANDAR is a framework that supports developers of such
systems in the fulfillment of safety, security, and real-time requirements. The
framework consists of two components: (1) the XANDAR toolchain and (2) a
tailored, hypervisor-based runtime architecture. Based on model-based input
specifications, the toolchain generates implementations for embedded software
systems. These implementations are returned as platform binaries, each meant
to be executed on a particular execution platform. Collectively, they exhibit
certain safety, security, and real-time properties. Exhibited properties are
captured in the form of Verification & Validation (V&V) reports, which allow
developers to decide whether relevant requirements are fulfilled.

7.1.1 X-by-Construction (XbC) perspective

From the toolchain user’s point of view, properties documented in V&V reports
are fulfilled by construction and can therefore—to a certain degree—be relied
upon. Generally speaking, the goal of achieving non-functional properties by
construction is an active area of research. Although the precise interpretation
of this goal differs from case to case, approaches to address it share one key
characteristic: instead of first building the system and then checking for the
fulfillment of relevant properties, the impact that a design decision has on
these properties is assessed while it is made.

Section 7.1: Overview of the XANDAR project | 201

This characteristic can also be found in a related, state-of-the-art tech-
nique for developing functionally correct software programs: the step-wise
refinement of a formal program specification into executable code. Based on
a formal framework by Hoare [162] and Dijkstra [163], it is often referred
to as a Correctness-by-Construction (CbC) approach to programming [164].
Recently, this concept been shown to be applicable to non-functional prop-
erties: by incorporating language-based security mechanisms into program
construction, desired confidentiality properties were enforced [102].

Today, the term CbC is also being used for approaches that enforce or
consider non-functional properties of software system implementations. The
methodology from [165], for example, achieves security by detecting and
eliminating faults as early as possible after they are introduced. More recently,
the authors of [166] proposed a CbC approach to parallelize hard real-time
applications for off-the-shelf multicore hardware; they achieve this though
a tight orchestration of all implementation phases (such as timing analysis,
resource allocation, glue code generation, . . .).

To emphasize that an approach does not (primarily) enforce functional
correctness but that it is concerned with non-functional properties, it is also
referred to as an X-by-Construction (XbC) technique. A possible definition
of XbC is given by the authors of [167], for example:

“X-by-Construction (XbC) is concerned with a step-wise refine-
ment process from specification to code that automatically gen-
erates software (system) implementations that by construction
satisfy specific non-functional properties [...]”

Here, the ‘X’ is a placeholder for the respective property. Security, reliability,
and energy efficiency are three examples of what it can be replaced with.

As described in [1], the XANDAR toolchain is generally in line with
this XbC definition: it is a sequential development process that operates
on a model-based specification of the desired system architecture, and it
generates platform binaries (i.e., compiled code) with certain safety, secu-
rity, and real-time properties. It is important to emphasize, however, that
the XANDAR toolchain does not implement a CbC strategy in the sense of [164].
Its approach is instead similar to [165] and [166]. This means that relevant
implementation phases are tightly orchestrated and necessary V&V steps are
performed during (or as soon as possible after) the respective phase. Enforced
properties are documented in V&V reports, and these reports support toolchain
users in proving the fulfillment of all specified requirements.

202 | Chapter 7: Toolchain integration

Model-based frontend

SWC code

Require-
ments

Architecture
modeling

Software
synthesis XbC backend

Behavior
simulation

Building
blocks

Toolchain provider input
Toolchain user input
XANDAR process step ¡ Functional behavior À V&V reports

> Platform binaries

Annotations

✗ ✓

Figure 7.1: XANDAR development process with its two main stages: the model-based
frontend and the XbC backend. Figure adapted from [1].

7.1.2 XANDAR development process

The toolchain of XANDAR implements the development process shown in Fig-
ure 7.1. It is built as an iterative process and can be decomposed into two main
stages: themodel-based frontend and the XbC backend. Toolchain users interact
with graphical and textual user interfaces provided by the frontend. They use
them to capture requirements, model the envisaged system architecture at
different abstraction layers, and provide SWC code (e.g., in C or Rust) that
shall be executed by a synthesized software system.

The integration of SWC code is referred to as software synthesis; this
procedure creates synthesized SWCs, which are artifacts ready to be consumed
by subsequent process steps. In early development phases, this is primarily
the behavior simulation framework. This framework is able to simulate the
interaction of all synthesized SWCs and capture simulation results in the form
of timed execution traces. These traces allow the toolchain user to analyze (and
iteratively refine) the functional behavior of all SWCs.

Afterward, the XbC backend performs a target-aware implementation to
create the desired platform binaries. If it is unable to do so, for example because
of an insufficient input model, it aborts the process and asks the toolchain user
to apply suitable modifications. Figure 7.2 summarizes the internal structure of

Section 7.2: Behavior specification and simulation | 203

Optimization and parallelization Mapping and scheduling Binary generation

Target-aware implementation

Safety/security pattern application

✗

õ Safety/security pattern library

Figure 7.2: Internal structure of the XbC backend, i.e., the second main stage of
the XANDAR development process. Figure adapted from [1].

the XbC backend. During all implementation steps, non-functional properties
that the toolchain is able to reason about are documented in suitable V&V re-
ports. An example of such a report is a timing trace that shows how SWCs will
be executed on the hypervisor-based runtime architecture.

7.1.3 Safety/security pattern library
During the architecture modeling step (cf. Figure 7.1), toolchain users have the
opportunity to annotate system entities with building blocks from an extensible
library. This library contains, for example, AI backends that automate the
integration of inference algorithms based on artificial neural networks.

Furthermore, and this is the relevant feature from the perspective of this
thesis, it comprises safety/security patterns as repeatable procedures to imple-
ment certain safety or security measures. After such a pattern is annotated to
the system model, the XbC backend performs target-aware steps to apply this
repeatable procedure (cf. Figure 7.2).

In this thesis, the logical isolation pattern from Chapter 3 was integrated
into the safety/security pattern library of XANDAR. After the following sec-
tions outline related contributions the author made to the XANDAR toolchain,
this integration will be described in Section 7.4 below.

7.2 Behavior specification and simulation

As part of this thesis, the XANDAR toolchain was extended with an integrated
behavior specification and simulation feature. It is one possible implementa-

204 | Chapter 7: Toolchain integration

SoftwareArchitecture

SoftwareComponent

period : Duration

Channel

Activation

start : Duration

end : Duration

SwcPort

direction : PortDirection

scope : PortScope

PortDirection

INPUT

OUTPUT

SamplingMode

QueuingMode

capacity : EInt

PortScope

INTERNAL

ENVIRONMENT

PortMode

TypeRef

id : EString

DataType

RawType

size : EInt

[0..*] components

[0..*] channels

[0..*] sensitivePorts

[0..*] activations

[0..*] writeTo

[1..1] source

[0..*] ports

[0..1] readFrom

[1..1] sink

[1..1] mode [1..1] dataType

Figure 7.3: Excerpt of the XbCgen software architecture metamodel, here visualized
using an Ecore diagram from the Eclipse Modeling Framework [168]. Attributes and
associations with bold labels are required, i.e., have a cardinality of at least 1.

tion of the software synthesis and behavior simulation sequence shown in the
model-based frontend (cf. Figure 7.1). The feature is based on the author’s
work in [7], implemented into a tool referred to as XbCgen, and expects the
toolchain user to provide it with two inputs: a software architecture model
and SWC code in the C programming language.

7.2.1 Software architecture metamodel
Software architecture models provided to XbCgen need to conform to the
metamodel in Figure 7.3. This metamodel is intentionally aligned with soft-
ware architectures according to Definition 3.21 on page 66. Strictly speaking,
however, it is neither a subset not a superset of the metamodel from this def-
inition. It was derived from Definition 3.21 by removing the opportunity to
specify the RTE on which a given SWC is executed and adding properties that
capture relevant behavioral aspects of SWCs.

Section 7.2: Behavior specification and simulation | 205

In the updated metamodel, SWC ports are additionally characterized by
their mode and their data type. The mode (PortMode in Figure 7.3) specifies
if the port exhibits sampling or queuing behavior. It determines the manner
in which a port handles repeated data events. Sampling ports will always
keep the most recent value, while queuing ports buffer values until their ca-
pacity (QueuingMode::capacity) is exceeded. These modes are comparable
to ‘last-is-best’ and ‘queued’ semantics of AUTOSAR sender-receiver inter-
faces [146], respectively. The data type of a port determines (1) the number of
bytes that each value occupies and (2) which C data type is used to read from or
write to the port. It can either be a reference to a named type (TypeRef::id)
or a plain byte array of arbitrary size (RawType::size).

The second metamodel extension concerns the SWC, which is augmented
with time-triggered execution semantics based on the LET paradigm [169].
Therefore, each SWC can be associated with an arbitrary number of activations.
While a SWC is active, its activations are repeatedly executed; the repetition
period is a property of the SWC itself (SoftwareComponent::period). The
logical start and end time of each activation is specified within this repeated pe-
riod (Activation::start and Activation::end, respectively). In line with
the LET paradigm, input ports will be updated only at the (logical) start time
of an activation, while values written to output ports will become effective
only at the (logical) end time of an activation. To give developers more control
over this process, updated input ports and committed output ports are explic-
itly specified: the model captures them as SWC ports that are sensitive to a
particular activation (Activation::sensitivePorts). This means that the
logical procedure to execute an activation is as follows:

1) At the (logical) start time of an activation, input ports sensitive to this
activation are updated to reflect the value of their channel. During
the (logical) execution of an activation, input ports keep their values.

2) During the (logical) execution of an activation, values written to output
ports of its SWC are buffered locally. At the (logical) end time of an
activation, locally buffered writes to output ports that the activation is
sensitive to become effective, i.e., their channels are updated.

With this semantics in place, logical event times do not necessarily need to
correspond to physical time. As long as data consistency is ensured, inter-SWC
communication and the execution of activations can be realized at any time.
However, there is one important exception: interactions with environment
ports (PortScope::ENVIRONMENT) need to be synchronized to physical time.
In practice, this means that the underlying runtime architecture needs to sched-

206 | Chapter 7: Toolchain integration

Snum
{f64}

source (2ms)

S sample
{f64}

Savg
{f64}

filter (6ms)

Figure 7.4: Excerpt of a software architecture supplied to XbCgen. The graphical
notation is an extended version of that introduced in Section 3.2. Sampling ports are
highlighted with an ‘S’ and labeled with their respective TypeRef identifier in curly
braces. In addition, the repetition period of each SWC is given in parentheses.

ule the environment interaction part of a SWC activation at a particular time.
From a hardware perspective, this is exactly the time at which the SWC needs
to interact with I/O controllers to read or write data.

To facilitate a textual description of such model instances, the LIP syntax
from Section 6.1 was adapted, and the resulting grammar was implemented
into XbCgen. For the purposes of this work, the adapted version of the syntax
is referred to as XbCgen syntax in the following. Files containing this syntax
carry an .xbc extension.

⊲ Example 7.1: The software architecture from Figure 7.4 defines one activation
per SWC. Textually, this software architecture is described as follows:

Listing 7.1: Software architecture in XbCgen syntax (system.xbc)

swc source(2ms) {
out num = f64;
activation run(0..1ms) = num;

}

swc filter(6ms) {
in sample = f64;
out ~avg = f64;
activation run(2..4ms) = sample, avg;

}

channel source.num -> filter.sample;

The data type of all specified ports is f64, which describes double-precision
floating point numbers according to IEEE 754. Values of this type occupy 64 bit
of memory, and their C equivalent are double values. All ports (source.num,
filter.sample, and filter.avg) are declared as sensitive to the run activa-
tion of their SWC. This leads to the logical timing relations visualized in Figure 7.5.

Section 7.2: Behavior specification and simulation | 207

source run run run run run run run

filter run run

𝑡/ms0 2 4 6 8 10 12

avg avg

Figure 7.5: Logical activation and interaction times of the two sample SWCs. Dashed
arrows highlight messages that are read by filter. Solid arrows highlight times at
which writes to avg become visible to the physical environment.

The activation of source terminates at logical times of 1ms, 3ms, and so on.
These are the times at which new num values are written to the outgoing chan-
nel. At the sample port of filter, these values are received only at logical
times of 2ms, 8ms, et cetera. This means that num updates produced at 3ms
and 5ms, for instance, are not sampled at all. Logically, updates to the avg out-
put of filter become effective at 4ms, 10ms, and so on. Since this port has
environment scope, these events need to be synchronized to physical time.

Semantically, the SWCs in this example perform the following tasks: source
generates a sequence of normally distributed random numbers with mean 𝜇 = 3
and variance 𝜎2 = 1; filter samples every third number from this sequence,
calculates the moving average, and outputs this average to the environment. In
the real-world system, this means that a human-readable string representation of
the f64 value shall be written to a UART interface.

⊲ Remark 7.1: Themetamodel from this section is static in the sense that properties
of model instances cannot change during runtime. This applies to SWC periods,
activation timing, or the size of port values, for example. This is a deliberate
limitation to simplify the mapping to XANDAR’s primary runtime architecture,
which maps SWCs to partitions of a type-1 hypervisor [1]. A generalization to
more flexible programming models is generally feasible. This can for example be
achieved by migrating the current metamodel to LF, which is a generalization
of LET [170] and therefore able to capture the current model semantics.

7.2.2 Software synthesis procedure

Based on a software architecture model, such as the one in Listing 7.1, the
software synthesis feature of XbCgen generates a model-specific C interface
that allows custom SWC code to interact with the underlying runtime archi-

208 | Chapter 7: Toolchain integration

tecture. This interface is event-driven in the sense the runtime architecture
will repeatedly distribute events to running SWCs. Each event is directed at
one particular SWC and falls into one of four categories:

1) Activation events communicate that the execution of a particular SWC ac-
tivation is due, and that input ports sensitive to it have been updated.

2) Environment read events mean that a particular environment input shall
be populated with values from the respective I/O controller.

3) Environment write eventsmean that the value of a particular environment
output shall be written to its respective I/O controller.

4) Exit events request the SWC to terminate its operation.

⊲ Example 7.1 (continued): The following C code implements the source appli-
cation, i.e., it handles each run activation by generating a normally distributed
random number and writes it to the num output port:

Listing 7.2: SWC code for the number generator (source.c)

#include "adapter.h"
#include "box_muller.h"

int main() {
xbc_init();
for (int e; (e = xbc_next_event()) >= 0; xbc_commit()) {
if (e == XBC_ACTIVATION_RUN) {
double num = box_muller(3, 1);
xbc_write_f64_port(xbc_ports.num, num);

}
}

return 0;
}

Identifiers starting with ‘ xbc_’ or ‘ XBC_’ are provided by the automatically
generated C interface from adapter.h. The function xbc_init, for example,
establishes a connection to the underlying runtime architecture and returns when
the runtime architecture requests the SWC to start handling events. A dedi-
cated C struct, xbc_ports, contains lightweight descriptors that uniquely identify
each port of the respective SWC. In this case, xbc_ports.num is its only element.
Using the xbc_write_f64_port function, it is possible to write a double value

Section 7.2: Behavior specification and simulation | 209

filter

XBC_ACTIVATION_RUN XBC_WRITE_AVG

sample avgUpdate average Write to UART

𝑡/msVarying physical time
(after inputs are ready)

Fixed physical time
(4ms, 10ms, 16ms . . .)

Figure 7.6: Trigger times and port interactions of the two filter events. While the
activation itself (XBC_ACTIVATION_RUN) is triggered as soon as possible, the write
event (XBC_WRITE_AVG) is synchronized to physical time.

to this output port. In the code above, this is done for each run activation event,
i.e., whenever xbc_next_event() returns XBC_ACTIVATION_RUN.

As described above, the physical trigger time of an activation event does
not necessarily need to conform to its logical trigger time. This is why the
environment-related events exist: each such event relates to a particular envi-
ronment port, and the runtime architecture issues this event when the envi-
ronment interaction is actually expected to take place.

⊲ Example 7.1 (continued): The two main events issued to filter are visual-
ized in Figure 7.6. In response to XBC_ACTIVATION_RUN, the moving average is
updated, and its new value is internally written to avg. Actual writes to standard
output are postponed until the next XBC_WRITE_AVG is issued:

Listing 7.3: SWC code excerpt of the environment writer (filter.c)

if (e == XBC_ACTIVATION_RUN) {
// Update moving average internally...
// Write updated value to the ’avg’ port...

} else if (e == XBC_WRITE_AVG) {
printf("avg=%.3f\n", xbc_read_f64_port(xbc_ports.avg));

}

SWC code executed in response to activation triggers needs to be inde-
pendent of the underlying runtime architecture. In fact, the actual runtime
architecture used to execute a SWC might not even be defined when this

210 | Chapter 7: Toolchain integration

code is composed. SWC code to handle environment-related events, however,
will generally depend on the underlying runtime architecture. While simple
operations (such as writes to a UART controller) might be abstracted by the
programming language itself, hardware-specific operations (such as CAN com-
munication) will need to make use of suitable drivers.

7.2.3 Behavior simulation framework

The distinction between activation-related and environment-related events
facilitates the timing-aware simulation of described software behavior. During
such simulations, the input-output behavior of all activations can be traced
by (1) sending repeated activation triggers to each SWC and (2) keeping track
of all port values. Environment-related events are not dispatched, which makes
it possible to execute the simulation on any host.

As part of this thesis, XbCgen was extended with a feature that automates
the execution of such simulations. Therefore, it compiles each SWC for the
host on which the simulation shall be executed. In the current implementation,
this host is a Linux distribution executed on an x86 architecture. During
this process, the runtime architecture interface of each SWC (i.e., xbc_init,
xbc_next_event, . . .) is implemented in such a way that it uses Unix domain
sockets to communicate with a centralized simulation engine.

This simulation engine orchestrates the temporal execution of the software
architecture, implements all specified channels, and emulates the environ-
ment (connected to environment inputs and environment outputs). It was
implemented using the Ptolemy II framework [171]. XbCgen automatically
synthesizes a discrete-event model in Ptolemy II, spawns a user-space Linux
process for each SWC, and embeds each SWC into the discrete-event model as
a Ptolemy II actor. This integration is further described in [7].

7.3 Target-aware implementation

Another—and particularly important—task of XbCgen is to implement the
software architecture (including all SWCs) on the envisaged target hardware.
This implementation takes place in the XbC backend (cf. Figure 7.2) and is
a semi-automated process. The achieved automation degree depends on the
respective implementation strategy that is applied to a particular design.

XbCgen supports different implementation strategies, and each strategy
defines precisely how the XbC backend handles a provided software archi-

Section 7.3: Target-aware implementation | 211

tecture. The strategy determines, for instance, the physical target hardware,
how SWCs are mapped and scheduled, and how the application of a particular
safety or security pattern influences this process.

Which implementation strategy to apply needs to be explicitly specified
by the toolchain user; in XbCgen syntax, this is achieved by introducing
an impl statement. As part of this thesis, two implementation strategies
have been developed: (1) a target-agnostic one for the deployment to Linux
user space and (2) a more specialized strategy for the deployment to a Linux
distribution running on the Cortex-A53 of an i.MX 8M.

7.3.1 Deployment to Linux user space
The first implementation strategy targets a generic Linux distribution, i.e., one
whose target hardware remains unknown to XbCgen itself. To apply it, the
following impl statement needs to be added to the textual XbCgen input:

Listing 7.4: Strategy selection in XbCgen syntax (system.xbc)

impl(linux);

If this implementation strategy is applied to a software architecture
with |𝑆 | SWCs, the envisaged deployment consists of |𝑆 | + 1 user-space pro-
cesses: one process implementing the behavior of each SWC, and a centralized
orchestrator that manages the execution and communication of all SWCs.

The orchestration process (orchestrator) is a static component written
in Go 1.22. To obtain relevant knowledge about the underlying software
architecture, it expects to be provided with an orchestrator configuration, which
is a binary file generated by XbCgen. To populate this file with required
parameters, XbCgen reads them from XbCgen syntax (i.e., an .xbc file) and
translates them into the binary format. The application binaries representing
each SWC are also generated by XbCgen. This process is largely automated,
but it requires the toolchain user to provide it with the desired C/C++ toolchain
for generating Executable and Linkable Format (ELF) files. This is necessary
because XbCgen lacks knowledge about the target hardware.

⊲ Remark 7.2: To simplify the C/C++ toolchain specification, the implementation
strategy will automatically create a build system based on the make utility (ac-
cording to the POSIX.2 [172] specification). If this build system is invoked from
the envisaged Linux distribution, the native C/C++ toolchain can be used. If it

212 | Chapter 7: Toolchain integration

Target-aware
implementation @ SWC executable (.elf)/

|𝑆 |

@ Orchestrator configuration (.bin)

Safety/security
pattern application

XbC backend

A
.xbc

impl(linux);

Figure 7.7: Overview of the Linux implementation strategy. With this strategy, the
target-aware implementation step creates a global orchestrator configuration and
one ELF file for each SWC of the software architecture.

is invoked from a host machine, a suitable cross-compiler toolchain needs to be
supplied. In any case, the build process creates the |𝑆 | required ELF files.
⊲ Remark 7.3: The orchestrator itself does also need to be compiled for the envis-
aged target hardware. Compared to SWC binaries, however, the orchestrator is a
static component. Thanks to the orchestrator configuration mechanism, it does
not depend on an XbCgen input file or provided SWC code. Therefore, this step
can be handled separately and is not part of the XbC backend.

A visual representation of the output artifacts that XbCgen creates for
the linux strategy is shown in Figure 7.7. To deploy a software architecture, the
generated |𝑆 | +1 output artifacts need to be supplied to the orchestrator. Doing
so causes the orchestrator to process the configuration file, spawn each SWC
binary, and connect to these binaries via Inter-Process Communication (IPC).
Finally, the orchestrator enters the system execution phase, whose process
composition is visualized in Figure 7.8.

During system execution, the orchestrator keeps track of logical time, de-
rives SWC events that need to be triggered, and communicates with SWC bina-
ries to execute them. This includes the implementation of inter-SWC channels
and, if applicable, synchronization with physical time.

For design and debugging purposes, the orchestrator is able to emit different
messages via UART. For example, it is able to capture the standard output
stream of each SWC and replicate it as its own output. Whenever it needs
to wait for physical and logical time to align, it is further able to output
the (physical) slack for which it stalls the distribution of SWC events.

Section 7.3: Target-aware implementation | 213

orchestrator swc_1 · · · swc_n

Linux

Runtime setup

IPC channels

@ Orchestrator configuration

@ SWC executables (𝑛 B |𝑆 | times)

Figure 7.8: Linux user-space deployment generated by XbCgen. SWCs connect to the
centralized orchestration process (orchestrator) via IPC channels, and the orchestra-
tion process manages all inter-SWC communication.

⊲ Example 7.2: For demonstration purposes, this implementation strategy shall
now be applied to the software architecture from Example 7.1. To do so, the previ-
ous XbCgen syntax is extended with an impl(linux) statement. The generated
build system is invoked using the native C/C++ toolchain of an x86-64 machine
running Fedora 39, and a Go toolchain for this system is used to build a compati-
ble version of the orchestrator. By default, the build system writes the |𝑆 | + 1 = 3
output artifacts to a dedicated bin directory.

The orchestrator expects exactly this directory to be provided as its working
directory. A sample invocation leads to the following console output:

Listing 7.5: Truncated output trace of a system execution

$ orchestrator -working-dir bin -print-outputs
filter> avg=2.070
filter> avg=2.704
[...]

filter> avg=3.060
filter> avg=3.066
[...]

This trimmed output trace shows four results generated by the filter binary:
two from the very beginning of the execution and two from a time when the
window of the moving average filter is fully populated.

214 | Chapter 7: Toolchain integration

Invoking the orchestrator with the following command-line argument triggers
a second system execution, but it now causes the program to output the time
synchronization slack whenever the avg output is to be written:

Listing 7.6: Truncated slack time trace for a system execution

$ orchestrator -working-dir bin -print-slack
slack(4ms)=3.571ms
slack(10ms)=4.260ms
slack(16ms)=3.746ms
slack(22ms)=4.257ms
[...]

A negative slack value would mean that a scheduled environment interaction
cannot take place as planned. In this case, however, all reported slack times are
positive. This means that the execution of SWC activations was always completed
before their outputs were needed for an environment interaction.

7.3.2 Deployment to Linux on the i.MX 8M
The second implementation strategy developed in this work is a more spe-
cialized version of that from Section 7.3.1. As before, it targets the user space
of a Linux distribution, spawns every SWC as a dedicated process, and em-
ploys a centralized orchestrator to execute and connect SWC processes. In
this implementation strategy, however, the underlying CPU is known to
be the Cortex-A53 of an i.MX 8M platform. To make use of the strategy,
the impl statement needs to be adapted accordingly:

Listing 7.7: Strategy selection in XbCgen syntax (system.xbc)

impl(imx8m_linux);

With this statement in place, the target hardware is known to XbCgen, but
the XbC backend still requires a limited degree of user interaction. This time,
the toolchain user is expected to provide a compatible Yocto setup building
the Linux distribution that is envisaged for the Cortex-A53 processor. The
output artifact generated by this setup is a complete SD card image (generated
by the Yocto setup and finally provided as a .wic file). As shown in Figure 7.9,
this SD card image contains all components that are necessary to boot and

Section 7.3: Target-aware implementation | 215

Target-aware
implementation @ SD card image (.wic)

Safety/security
pattern application

XbC backend

A
.xbc

impl(imx8m_linux);

@ Bootloader (U-Boot)

@ Linux kernel

@ Orchestrator configuration

@ Orchestrator executable

@ SWC binaries (for all 𝑠 ∈ 𝑆)

Figure 7.9: Overview of the i.MX 8M implementation strategy. The resulting SD card
image is built using the Yocto setup supplied by the toolchain user.

execute the Linux-based system, including a bootloader (U-Boot), a Linux
kernel, and a root file system containing both the orchestrator and the |𝑆 | + 1
outputs of the generic Linux implementation strategy.

As part of this work, the implementation strategy was used and tested
with the official Yocto setup by NXP [173]. Leveraging community and release
layers for the i.MX 8M, the core-image-minimal image of Poky was adapted
and built. The final image boots from DDR memory and does not mount
an SD card partition for persistent storage.

In general, implementation strategies are able to expose certain parameters,
which may then be set using XbCgen syntax. This implementation strategy
uses this feature to make the UART controller used to implement the Linux
console configurable. The following snippet, for instance, configures the Poky
distribution built by Yocto to use UART1 of the underlying platform:

Listing 7.8: UART configuration in XbCgen syntax (.xbc)

impl(imx8m_linux) {
uart_instance = 1;

}

With this parameter in place, XbCgen extends the Yocto setup with a custom
recipe to apply the necessary configuration, most importantly by modifying
the command-line arguments that U-Boot passes to the Linux kernel.

216 | Chapter 7: Toolchain integration

Target-aware
implementation @ SD card image (.wic)

Safety/security
pattern application

liptool

XbC backend

A
.xbc

impl(imx8m_linux);
pattern : isolation;

@ Bootloader (U-Boot)

@ Linux kernel

@ APU configuration code

@ Orchestrator configuration

@ Orchestrator executable

@ SWC binaries (for all 𝑠 ∈ 𝑆)

Figure 7.10: Pattern support in the i.MX 8M implementation strategy. The logical
isolation pattern is delegated to liptool, and APU configuration code to be executed
on the Cortex-M4 processor becomes part of the SD card image.

7.4 Logical isolation pattern

To close this chapter, this section describes and demonstrates a strategy to
invoke the logical isolation pattern as part of the XbC backend.

7.4.1 Pattern invocation procedure

Since the logical isolation pattern is a hardware-aware concept, it can only
be applied if a hardware-aware implementation strategy is used. Therefore,
the final contribution of this thesis is the integration of the pattern into
the imx8m_linux strategy from Section 7.3.2.

This integration is summarized in Figure 7.10 and was successfully imple-
mented as part of XbCgen. As shown in the figure, the XbC backend reacts
to the simultaneous specification of an imx8m_linux strategy and the logical
isolation pattern by adding another component to the SD card image: APU con-
figuration code generated according to Section 4.2.2. This code is generated
for the Cortex-M4 processor; it waits for the Linux to boot on the Cortex-A53
cores, configures the RDC of the platform, and instructs the Linux distribu-
tion to start executing an orchestration process. Communication between the

Section 7.4: Logical isolation pattern | 217

orchestrator swc_1 · · · swc_n

Linux Standalone

Shared-memory
synchronization

Cortex-A53 Cortex-M4

i.MX 8M

APU config-
uration code

Figure 7.11: APU-protected i.MX 8M deployment generated by XbCgen. Before
the SWCs are spawned as individual Linux processes, the APU configuration code is
executed by a standalone OS mapped to the Cortex-M4 processor.

System model LIP transformation + liptoolA
.xbc

Isolation measures

Safety requirements

+

Part of the XbC backend

Figure 7.12: Strategy to delegate XbCgen inputs to liptool from Section 6.2. Using
knowledge about performed deployment steps, the system model is translated into
a LIP representation, and automatically applied isolation measures are reflected.

two CPUs is performed via a shared memory region in on-chip RAM. This
leads to a deployment as shown in Figure 7.11.

The liptool delegation, which generates the core part of the APU config-
uration code, is realized as shown in Figure 7.12. Here, the specified system
model in XbCgen syntax, which consists of the software architecture and a
deployment annotation, is supplied to the LIP transformation procedure. Dur-
ing this procedure and under consideration of the respective implementation
strategy, the system model is translated into an equivalent LIP system model
according to Section 3.2. Furthermore, isolation measures from the pattern
annotation are automatically extended using knowledge about the implementa-

218 | Chapter 7: Toolchain integration

tion strategy. In case of the i.MX 8M strategy, a gen_apu statement is inferred.
In general, it is also conceivable to infer prot_rte! statements.

⊲ Example 7.3: To illustrate how the LIP transformation works in practice, the
software architecture from Example 7.1 is extended as follows:

Listing 7.9: Extension of previous XbCgen syntax (system.xbc)

pattern : isolation;
impl(imx8m_linux) {
uart_instance = 1;

}

Provided with this extended input, XbCgen infers a system model according
to Section 3.2 and extends the pattern annotation with a gen_apu statement. The
result is equivalent to the following LIP formulation:

Listing 7.10: Transformed input in LIP representation (system.lip)

swc source : linux { out num; }
swc filter : linux { in sample, out ~avg; }
channel source.num -> filter.sample;

platform target : imx8m;

rte linux : target.a53 {
alloc 0x40000000 - 0xFFFFFFFF, uart1;

}

rte standalone : target.m4 {
alloc 0x7E0000 - 0x81FFFF;

}

path {linux, standalone} = 0x900000 - 0x90007F;

pattern : isolation {
gen_apu target;

}

Section 7.4: Logical isolation pattern | 219

�
Host computer
(XbCgen + Yocto)

Deployment
Û

Monitoring

Serial port
(UART1 via USB)

i.MX 8M platform
(on MCIMX8M-EVK)

Figure 7.13: Physical hardware setup used to validate the i.MX 8M implementation
strategy. Platform binaries generated by XbCgen and Yocto were deployed to the
hardware, and the correct system operation was validated.

Note that this representation was manually created to describe the input that
is provided to the wrapped liptool instance. In reality, it exists only in the
application memory of XbCgen, not as a file in LIP syntax.

During the LIP transformation process, safety requirements are kept un-
changed. This means that while populating a file in XbCgen syntax, the user
has full access to the safety assessment framework from Chapter 5. If an in-
tegrity lattice is specified and integrity levels are assigned to model entities, for
example, the safety assessment procedure is automatically applied to the syn-
thesized model. XbCgen can also be instructed to execute the liptool tasks
described in Section 6.2.1. Using this feature, it is for instance possible to
trigger an automatic generation of CF graphs.

⊲ Remark 7.4: It should be emphasized that in order to use the features described
above, the toolchain user is not required to specify either the runtime or the
hardware architecture. Both of them are inferred from knowledge about the
employed implementation strategy.

7.4.2 Practical validation
To complete the prototypical toolchain integration of the logical isolation pat-
tern, a practical validation procedure was performed. Therefore, the extended
input model from Example 7.3 was used to generate an SD card image for
the i.MX 8M platform, and this image was deployed to an MCIMX8M-EVK
evaluation board by NXP (cf. Figure 7.13). By interacting with the Linux con-

220 | Chapter 7: Toolchain integration

source filter

platform(target)

mem(target.ddr) mem(target.tcml)mem(target.ocram) proc(target.a53)

proc(target.m4)

dev(target.uart1)

rte(linux)

rte(standalone)

path(linux, standalone)swc(filter)

swc(source)

port(num)logic port(sample) port(avg) Wlogic

Extension generated by the LIP transformation

Figure 7.14: CF graph generated for the APU-protected i.MX 8M deployment. System
elements that result from the automatic LIP transformation are wrapped in a dashed
polygon, which was manually added to the auto-generated visualization.

sole exposed via the UART1 controller, it was ensured that (1) the functional
behavior of the system was as expected and (2) the RDC protection (enforced
by auto-generated APU configuration code) was operating correctly.

Finally, using the liptool integration of XbCgen, a CF graph for the
deployed system was generated. An annotated version of this CF graph is
shown in Figure 7.14. It captures the fact that the correct functionality of
either SWC depends on the correct functionality of the DDR module, for
instance. At the same time, it shows that the platform itself remains unaffected
by possible failures of the Linux distribution.

7.4.3 Closing remarks

This concludes the description of the performed toolchain integration. Using
the XANDAR toolchain as an illustrative example, it was shown that a seamless
interaction of the logical isolation pattern and an automated toolchain for
software system synthesis is practically feasible.

Section 7.4: Logical isolation pattern | 221

Compared with a standalone application of the pattern, the integrated
variant reduces the number of inputs that need to be provided by the tool-
chain user. This can reduce both the development effort and the likelihood of
inconsistencies between a system model and its implementation.

At the same time, a standalone application of the logical isolation pat-
tern provides the user with more flexibility. In the toolchain-driven variant,
the exploitable design space is determined by the respective implementation
strategy. The strategy-based parameterization concept, which was used to
allocate a particular UART controller in Example 7.2, is one possible approach
to add some degree of flexibility to implementation strategies and still provide
a usable abstraction of the logical isolation pattern.

Chapter 8

Conclusion

APUs, which are part of the shared on-chip interconnect of modern MPSoCs,
play a pivotal role in the ongoing consolidation of embedded computing ar-
chitectures. Semiconductor vendors are progressively integrating them into
commercially available devices, positioning them as keymechanisms to achieve
spatial isolation on MPSoCs. Despite this steadily increasing availability, how-
ever, a structured methodology for the proper configuration of APUs has not
been the subject of active research.

Based on the cascading failure concept from ISO 26262 [16], this work in-
troduced the logical isolation abstraction. Logical isolation captures the impact
that APUs and other isolation measures have on CF potential in embedded
software systems. This abstraction was then used to define a pattern for

1) the configuration of APUs in a network of MPSoCs,
2) reasoning about the remaining CF potential, and
3) evaluating functional safety properties.

This pattern is one of the first approaches that perceive and solve APU config-
uration as a complex and cross-layered decision problem.

The results of this thesis comprise the pattern definition, formal models for
the inputs required by the pattern, a prototypical implementation (including
platform models for two MPSoCs), and practical case studies that demonstrate
the pattern’s applicability in real-world scenarios. They further comprise
approaches that complement the decision capability of the pattern. The pre-
sented ILP formulation, for example, determines an optimum composition
of APU configurations that in combination lead to the fulfillment of given

223

224 | Chapter 8: Conclusion

safety requirements. These outcomes demonstrate that automatically config-
uring APUs and reasoning about the functional safety impact of generated
configurations is feasible, which is a remarkable result.

In addition to this conceptual finding, the obtained results offer practical
potential—both in their current version and as a starting point for further work.
The following paragraphs give an overview of these perspectives.

8.1 Application potential

To make full use of its capabilities, the logical isolation pattern can be applied
as documented in Chapter 3, i.e., by creating a full (three-layered) system
model, generating APU configurations, and using the introduced analysis
features to reason about CFs and their safety impact. The reference imple-
mentation from Chapter 6 is readily available to do so. The central car server
example, which appeared repeatedly in this thesis, demonstrated how such an
application is able to support the ongoing process of E/E architecture central-
ization [21]. While the integrity lattice that was finally applied to this example
defined only two levels (low and high), it can easily be extended to a finer
granularity, e.g., according to the Automotive Safety Integrity Level (ASIL)
concept from [16]. Non-comparable integrity levels (e.g., left and right) are
also conceivable and facilitate a strict partitioning of system elements.

The pattern is also integrated into the XANDAR toolchain. This means that
it is automatically applied as part of the XANDAR development process (cf. [1]
and Chapter 7). Since the supported implementation strategy maps all SWCs
to only one (multicore) processor, APU configurations are currently not re-
quired for partitioning purposes. Nevertheless, prohibitive APU configurations
contribute to both the detection and the confinement of failures. In addition,
analysis features of the logical isolation pattern provide active support in
verifying the absence of unreasonable safety risk.

The proposed ILP formulation (cf. Section 5.4) is available to optimize
certain figures of merit, such as the number of APU configurations that are
required to meet given safety requirements. Currently, this part of the method-
ology is not fully automated; it requires a certain degree of user interaction.
Nevertheless, the ILP framework was used successfully as part of the second
case study (cf. Section 6.4.1), and numerous other application scenarios come
to mind. It can, for instance, be adapted in such a way that it performs a
safety-aware allocation of SWCs to RTEs.

Section 8.1: Application potential | 225

In addition to these primary use cases, the presented results can also be
applied in a partial or more specialized manner:

No generation of APU configurations As mentioned in Chapter 3, it is
feasible to apply only the static analysis capabilities of the pattern, i.e., without
issuing any APU configuration request. In a network of execution platforms
without APUs, for example, it can still be useful to have the safety assessment
procedure determine the absence of unreasonable risk.

No (or custom) safety assessment The safety assessment procedure
from Chapter 5 is based on the premise that only environment output ports
of SWCs are able to cause physical harm. In scenarios where this premise
does not hold, the safety assessment procedure is not directly applicable. In
this case, the pattern can still be used to auto-generate APU configurations
and CF graphs. A generated CF graph can then be processed manually, e.g.,
using fault trees or other traditional safety assessment techniques.

Partial system model Rather than providing the pattern with a full system
model, it is conceivable to specify only one layer (a hardware architecture)
or two layers (a runtime architecture mapped to a hardware architecture).
In both cases, CF graphs will be generated, and certain guarantees about
the CF potential in the system can be extracted. Since there will be no SWCs
and therefore no environment output ports in such system models, the safety
assessment procedure from Chapter 5 is no longer applicable. It needs to be
replaced, e.g., as described in the previous paragraph.

Execution platform library A populated execution platform library (in the
sense of Definition 3.9) has value, even if it is not used to create a system model.
By maintaining it, designers are able to capture and communicate knowledge
about execution platforms using a formal syntax and precise semantics. Manu-
ally consulting this library can help to identify factors that limit a platform’s
applicability to mixed-criticality systems. The relationships formally captured
as Γ1, Γ2, and Γ3 are examples of such factors. Considering them can also sup-
port the design of novel MPSoC architectures. Section 6.3 has demonstrated
how a shared clock control register for multiple peripheral devices can lead to
undesired CF potential in the system. Individual clock control registers would
help to eliminate this CF potential.

226 | Chapter 8: Conclusion

Application-specific refinements The goal of this thesis was to develop
a highly automated approach for the proper usage of APUs, similar to how
hypervisors use MMUs. This goal necessitated a trade-off between the degree
of automation and the achievable flexibility. To navigate this trade-off, the
proposed formalism was made configurable via selected interfaces for user
intervention: the system model, isolation measures, and safety requirements.
In practice, more flexibility might be necessary to cover particular applications.
In such situations, the concepts introduced by this work can serve as a for-
mal starting point and be refined on a case-by-case basis. For example, it is
conceivable to use the system model of this work, generate a CF graph, manu-
ally remove edges from the CF graph, and then apply the safety assessment
from Chapter 5. Doing so is no longer an application of the pattern, because
the pattern does not allow for the manual modification of CF graphs. However,
this process is still guided by the proposed methodology.

Security perspective In certain cases, the pattern can be used to support
security processes. In the automotive domain, for example, the cybersecurity
standard ISO/SAE 21434 [174] recommends assessing the impact of damage
scenarios with respect to four categories: safety, financial, operational, and pri-
vacy. An infamous example of a safety-relevant damage scenario was identified
by Miller and Valasek, who showed that vulnerabilities in a production vehicle
could be remotely exploited and used to transmit arbitrary CANmessages [175].
This allowed the security researchers to control steering and braking func-
tions using a wireless interface of the vehicle. The logical isolation pattern
can be used to identify and eliminate such attack paths. To do so, the environ-
ment input introducing untrusted data needs to be considered faulty (in the
sense of Section 3.3). CFs that propagate from this port to more critical system
elements are then identified by the safety assessment procedure.

8.2 Future work

This work creates various opportunities for further research. The following
paragraphs highlight particularly interesting ones.

Evaluation First and foremost, it will be beneficial to evaluate the pattern’s
applicability in additional contexts. From a theoretical point of view, the pattern
is fully agnostic to the application domain. Illustrative examples and practical
case studies, however, were so far based on requirements from the automotive

Section 8.2: Future work | 227

domain. An application to safety-critical systems from other domains, such as
avionics or industrial automation, is a topic for future work.

Further and future MPSoC architectures It will also be insightful to
extend the current execution platform library with models and code generators
for additional MPSoCs. Tracking the ongoing evolution ofMPSoC architectures
will especially help to identify hardware capabilities that are currently not
used or cannot be represented by the pattern. At the time of writing, one
such feature is TrustZone protection, which is supported by APUs of many
commercially available MPSoCs. However, the pattern does not make use of
this feature. With future hardware generations, it is likely that APUs will
become increasingly capable, and an extension of the pattern is warranted.

Pattern-specific hardware It is conceivable to design MPSoCs for particu-
larly high compatibility with the logical isolation pattern. Specific hardware
choices, such as designated clock control registers for each peripheral, can
minimize the cardinality of Γ1, Γ2, and Γ3. This will lead to reduced CF poten-
tial and simplify the fulfillment of given safety requirements. Today’s open
hardware initiatives are a fertile starting point for such work.

Automatic enforcement of isolation measures With respect to isolation
measures, it would be beneficial to reduce the support for barrier declarations
and put more emphasis on generation requests (cf. Section 3.1). At the time
being, the pattern is able to generate APU configurations, but knowledge about
process isolation or application-level barriers can only be declared. This was a
deliberate decision, because this knowledge is usually managed by other enti-
ties (such as a hypervisor) or provided by external processes (such as a formal
analysis of an algorithm). Since asking the user to transfer this knowledge
leaves a residual risk of human error, approaches to automate this process
would strengthen the pattern. Chapter 7 mentioned how process isolation can
generally be inferred from a particular implementation strategy, but such a
feature has not been implemented. Knowledge about application-level barriers
might be inferable using language-based IFT concepts, but this topic was be-
yond the scope of this work. Therefore, the automatic enforcement of isolation
measures remains a direction for future research.

System model extensions With respect to the system model from Sec-
tion 3.2, several possible extensions come to mind. The extension process

228 | Chapter 8: Conclusion

involves a crucial trade-off, however. With each additional capability intro-
duced into the system model, the CF determination framework needs to be
adapted. An example is the support for overlapping memory regions: the cur-
rent systemmodel allows every memory region to have up to one owner (e.g., a
peripheral device, an RTE, or a local path); in CF graphs, it is therefore not
necessary to represent memory regions as dedicated vertices. Relaxing such re-
strictions could be beneficial, but may not be necessary for practical use cases
and would increase the complexity of the CF determination framework. The
proposed system model was shown to be applicable in practical case studies,
and it still resulted in CF graphs that could easily be visualized to the reader.
Nevertheless, the controlled relaxation of current restrictions is an interesting
research question for future work.

Dynamic usage of APUs We close this thesis by discussing the idea to con-
figure APUs dynamically, i.e., under consideration of time-dependent system
states. On commercially available MPSoCs, doing so is technically possible: bus
masters with sufficient access permissions are capable of rewriting APU con-
figuration registers an arbitrary number of times. However, this practice is
often discouraged by semiconductor vendors: for safe and secure systems us-
ing the Zynq UltraScale+ MPSoC, the vendor recommends to lock at least
the XMPU [24]. In addition, a reconfiguration of APUs would introduce novel
perspectives that are currently not reflected by this work: time-dependent
system models, time-dependent CF potential, and therefore time-dependent
safety properties. Arguably, these factors turn the dynamic configuration idea
into the most ambitious research direction listed here. Nevertheless, it can be
seen as the logical continuation of this work, and its pattern-based solution
would provide users of modern MPSoCs with additional options to design
mixed-criticality systems of the future.

Appendix

A.1 Total unimodularity of ILP constraints

This section is concernedwith amatrix𝐴 ∈ {−1, 0, 1}𝑚×𝑛 representing the𝝈 co-
efficients from the following system of inequalities (cf. Section 5.4.1):

∀⟨𝑣 𝑗 , 𝑣𝑘⟩ ∈ 𝐸 : 𝜎𝑘 − 𝜎 𝑗 ≤ 0, (5.1)
∀𝑣 𝑗 ∈ 𝑉𝑠 : 𝜎 𝑗 ≤ int′ (𝑣 𝑗), (5.2)
∀𝑣 𝑗 ∈ 𝑉𝑤 : −𝜎 𝑗 ≤ − ireq′ (𝑣 𝑗). (5.3)

Section 5.4.1 claims that 𝐴 is a totally unimodular matrix. This means that the
determinant of every square submatrix of 𝐴 must be 0, 1, or −1. To show that
every ℓ × ℓ submatrix 𝑄 of 𝐴 has determinant 0 or ±1, we argue based on the
structure that is used to prove Lemma 8.2.5 from [52, p. 146].
⊲ Proof: The proof is made by induction. For ℓ = 1, the submatrix𝑄 contains a
single coefficient of either 0 or ±1. Therefore, det(𝑄) is either 0 or ±1.

For ℓ > 1, the submatrix 𝑄 consists of rows that (by construction) have
either no, one, or two non-zero entries. If there is a row with only zeros,
then det(𝑄) = 0. If there is a row 𝑖 with exactly one non-zero entry, and if
this entry is located in column 𝑗 , the Laplace expansion along row 𝑖 can be
applied. This expansion is based on𝑄𝑖 𝑗 , which is the (ℓ −1) × (ℓ −1) submatrix
obtained by removing row 𝑖 and column 𝑗 from 𝑄 :

det(𝑄) = (−1)𝑖+𝑗 · 𝑞𝑖 𝑗 · det(𝑄𝑖 𝑗).

Each factor of this product is either 0 or ±1, which leads to det(𝑄) ∈ {0,±1}.
Finally, if every row of 𝑄 contains exactly two non-zero entries, then these
rows must originate from Equation 5.1, and the two non-zero entries of each
row are +1 and −1. In this case, the sum of all columns in 𝑄 is 0, i.e., a column

229

230 | Appendix

vector composed of ℓ zeros. This means that the columns of 𝑄 are linearly
dependent and, therefore, that det(𝑄) = 0. □

A.2 XMPU/XPPU configuration library

This section describes a C library that was developed as part of the pattern’s
reference implementation. As reported in Section 6.2.4, this library encapsu-
lates the static part of APU configuration code generated for zynqmp platforms.
It is here described as a representative example of how the actual APU configu-
ration process can be performed. Although the description is platform-specific,
underlying ideas are transferrable to most MPSoCs.

In this specific case, the library is capable of configuring all XMPUs and
the XPPU of a Zynq UltraScale+ MPSoC instance. A high-level description of
how these APUs need to be configured is given in Section 4.2.2.2. For a detailed
explanation of the expected configuration process, the reader is referred to the
platform’s reference manual [33] and its register reference [39].

The following code excerpts assume that the ‘xil_types.h’ header pro-
vided by AMD/Xilinx is included. This header defines the data type u32 to
hold unsigned 32-bit integers. They further expect that a function

void write_reg(u32 addr, u32 value);

writing a value (value) to a memory-mapped register (addr) is available.

A.2.1 Public interface
This section documents the public interface of the library, i.e., the macros and
functions that the dynamic part of APU configuration code uses or calls. First,
it contains macros that identify specific bus masters:

Listing A.1: Master description macros

// Register value for a particular master profile:
#define MREG(id, msk) (((msk & 0x3FFUL) << 16) | (id & 0x3FFUL))
// Precomputed values (excerpt):
#define MREG_A53 (MREG(0x080UL, 0x3C0UL))
#define MREG_GEM3 (MREG(0x077UL, 0x3FFUL))
#define MREG_DAP_APB (MREG(0x062UL, 0x3FFUL))
#define MREG_CSU (MREG(0x050UL, 0x3FFUL))

MREG_A53 identifies any core of the Cortex-A53, for example.

Section A.2: XMPU/XPPU configuration library | 231

For the specific task of configuring the platform’s eight XMPU instances,
the library exposes the following interface:

Listing A.2: XMPU configuration interface

// XMPU constants:
#define XMPU_REGION_COUNT (16)
// XMPU configuration functions:
void xmpu_clear_configs(void);
void xmpu_set_ddr_region(u32 id, u32 start, u32 end, u32 mreg);
void xmpu_set_ocm_region(u32 id, u32 start, u32 end, u32 mreg);
void xmpu_set_fpd_region(u32 id, u32 start, u32 end, u32 mreg);
void xmpu_finalize_configs(void);

Clients are first expected to call xmpu_clear_configs to reset all XMPUs.
They may then issue an arbitrary number of xmpu_set... calls to grant specific
permissions. A call to xmpu_finalize_configs finalizes the XMPU configu-
ration. When granting permissions, the id parameter specifies the XMPU re-
gion to populate; it may range from 0 to XMPU_REGION_COUNT−1. Using start
and end, the address region to be made accessible is described; the correspond-
ing bus master is specified via the mreg parameter.

Analogously, the following public interface is provided to configure the
single XPPU of an execution platform instance:

Listing A.3: XPPU configuration interface

// XPPU constants (excerpt):
#define XPPU_MASTER_COUNT (20)
#define XPPU_APERTURE_COUNT (401)
#define XPPU_APER_UART0 (0)
#define XPPU_APER_IOU_SCNTR (37)
#define XPPU_APER_IOU_SCNTRS (38)
#define XPPU_APER_PMU_GLOBAL (216)
// XPPU configuration functions:
void xppu_clear_config(void);
void xppu_set_master_profile(u32 id, u32 mreg);
void xppu_set_permissions(u32 aper, u32 perm);
void xppu_finalize_config(void);

Analogous to the XMPU case, the configuration needs to be started by a call
to xppu_clear_config and finalized by a call to xppu_finalize_config.
In between, clients may issue an arbitrary sequence of xppu_set... calls
to configure master profiles and grant access permissions to these master

232 | Appendix

profiles. When a master profile is configured, the id may range from 0
to XPPU_MASTER_COUNT − 1. When permissions are set, the aper parame-
ter identifies the specific aperture to configure; predefined macros support
clients in specifying it. The perm parameter is a bit field that encodes whether
each of the 20 master profiles may access the aperture.

A.2.2 XMPU configuration functions
The implementation of XMPU configuration functions is based on knowledge
about how XMPU register sets are structured:

Listing A.4: XMPU structure macros

#define XMPU_REGION_COUNT (16)
#define XMPU_REGIONS_OFFSET (0x100UL)
#define XMPU_REGION_OFFSET (0x10UL)
#define XMPU_REGION_START_OFFSET (0x0UL)
#define XMPU_REGION_END_OFFSET (0x4UL)
#define XMPU_REGION_MASTER_OFFSET (0x8UL)
#define XMPU_REGION_CONFIG_OFFSET (0xCUL)

Based on this, the library implements the following (internal) helper func-
tion to configure a specific region of a given XMPU:

Listing A.5: XMPU region configuration helper

void xmpu_set_region(u32 xmpu, u32 id, u32 start, u32 end, u32 mreg) {
// Base address of the XMPU region:
u32 base = xmpu + XMPU_REGIONS_OFFSET + id∗XMPU_REGION_OFFSET;
// Rxx_START[ADDR] = precomputed ’start’ value:
write_reg(base + XMPU_REGION_START_OFFSET, start);
// Rxx_END[ADDR] = precomputed ’end’ value:
write_reg(base + XMPU_REGION_END_OFFSET, end);
// Rxx_MASTER[MASK] = precomputed mask from ’mreg’ value and
// Rxx_MASTER[ID] = precomputed ID from ’mreg’ value:
write_reg(base + XMPU_REGION_MASTER_OFFSET, mreg);
// RxxCONFIG[Enable] = 1 (enable region),
// RxxCONFIG[RdAllowed] = 1 (permit read access),
// RxxCONFIG[WrAllowed] = 1 (permit write access),
// RxxCONFIG[RegionNS] = 1 (declare non-secure), and
// RxxCONFIG[NSCheckType] = 0 (relaxed TrustZone checking):
write_reg(base + XMPU_REGION_CONFIG_OFFSET, 0xFUL);

}

Section A.2: XMPU/XPPU configuration library | 233

This helper is used from the functions implementing the public interface.
These functions are provided with more specialized knowledge about the
particular XMPU to configure. For the XMPU/FPD case, for instance:

Listing A.6: XMPU/FPD configuration macros

#define XMPU_FPD_BASE (0xFD5D0000UL)
#define XMPU_FPD_ADDR(x) (x >> 12)

With these macros, the region configuration helper is invoked as follows:

Listing A.7: XMPU/FPD region configuration

void xmpu_set_fpd_region(u32 id, u32 start, u32 end, u32 mreg) {
xmpu_set_region(XMPU_FPD_BASE, id,

XMPU_FPD_ADDR(start),
XMPU_FPD_ADDR(end),
mreg);

}

XMPU-specific macros are also used in helpers such as the following:

Listing A.8: XMPU/FPD finalization helper

void xmpu_finalize_fpd_config(void) {
// CTRL[PoisonCfg] = 1 (enable address poisoning),
// CTRL[DefWrAllowed] = 0 (disable default write access), and
// CTRL[DefRdAllowed] = 0 (disable default read access):
write_reg(XMPU_FPD_BASE + XMPU_CTRL_OFFSET, 0x4UL);

}

The public finalization function invokes all finalization helpers:

Listing A.9: XMPU finalization

void xmpu_finalize_configs(void) {
xmpu_finalize_mem_config(XMPU_OCM_BASE);
for (int i = 0; i < XMPU_DDR_INSTANCES; i++)

xmpu_finalize_mem_config(XMPU_DDR_BASE + i∗XMPU_DDR_OFFSET);
xmpu_finalize_fpd_config();

}

234 | Appendix

Note how the public finalization function calls the finalization helper of
all XMPUs, including those of all XMPU/DDR instances. This strategy is
also applied when XMPU/DDR regions are configured: any activity related to
an XMPU/DDR is automatically applied to all instances.

A.2.3 XPPU configuration functions
Compared with the XMPU configuration process, XPPU-related activities
involve less logic. They mainly forward parameters to XPPU configuration
registers. This forwarding is based on the following platform knowledge:

Listing A.10: XPPU structure macros

#define XPPU_BASE (0xFF980000UL)
#define XPPU_MASTERS_OFFSET (0x100UL)
#define XPPU_MASTER_OFFSET (0x4UL)
#define XPPU_APERTURES_OFFSET (0x1000UL)
#define XPPU_APERTURE_OFFSET (0x4UL)

The function to configure a master profile is implemented as follows:

Listing A.11: XPPU master configuration

void xppu_set_master_profile(u32 id, u32 mreg) {
// MASTER_IDxx[MASK] = precomputed mask from ’mreg’ value and
// MASTER_IDxx[ID] = precomputed ID from ’mreg’ value:
write_reg(XPPU_BASE + XPPU_MASTERS_OFFSET +

id∗XPPU_MASTER_OFFSET, mreg);
}

Aperture permissions are forwarded as follows:

Listing A.12: XPPU permission configuration

void xppu_set_permissions(u32 aper, u32 perm) {
// APERPERM_xxx[PERMISSION] = precomputed ’perm’ value,
// APERPERM_xxx[TRUSTZONE] = 1 (accept non-secure access), and
// APERPERM_xxx[PARITY] = 0 (clear parity bits):
write_reg(XPPU_BASE + XPPU_APERTURES_OFFSET +

aper∗XPPU_APERTURE_OFFSET, (0x1UL << 27) | perm);
}

Section A.2: XMPU/XPPU configuration library | 235

Finalizing an XPPU configuration means to enable the XPPU protection:

Listing A.13: XPPU finalization

void xppu_finalize_config(void) {
// CTRL[ENABLE] = 1 (enable XPPU protection),
// CTRL[MID_PARITY_EN] = 0 (disable master ID parity), and
// CTRL[APER_PARITY_EN] = 0 (disable aperture parity):
write_reg(XPPU_BASE + XPPU_CTRL_OFFSET, 0x1UL);

}

Note that this specific code does not make use of a particular safety feature
provided by the XPPU: the possibility to execute parity checks before con-
figuration entries are considered and enforced. This was done to keep this
appendix concise. Extending the library in such a way that parity checks are
performed is easily possible.

Bibliography

First-author publications

[1] T. Dörr, F. Schade, J. Becker, G. Keramidas, N. Petrellis, V. Kelefouras, M.
Mavropoulos, K. Antonopoulos, et al. XANDAR: An X-by-Construction Frame-
work for Safety, Security, and Real-Time Behavior of Embedded Software
Systems. In: 2024 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), Valencia, Spain, Mar. 2024.

[2] T. Dörr, T. Sandmann, and J. Becker. A Formal Model for the Automatic Con-
figuration of Access Protection Units in MPSoC-Based Embedded Systems.
In: 2020 23rd Euromicro Conference on Digital System Design (DSD), Kranj, Slove-
nia, Aug. 2020.

[3] T. Dörr, T. Sandmann, and J. Becker. Model-based configuration of access
protection units for multicore processors in embedded systems.Microprocessors
and Microsystems, 87, Nov. 2021.

[4] T. Dörr, T. Sandmann, H. Mohr, and J. Becker. Employing the Concept of Multi-
level Security to Generate Access Protection Configurations for Automotive
On-Board Networks. In: 2021 24th Euromicro Conference on Digital System De-
sign (DSD), Palermo, Italy, Sept. 2021.

[5] T. Dörr, F. Schade, L. Masing, J. Becker, G. Keramidas, C. P. Antonopoulos,
M. Mavropoulos, V. Kelefouras, et al. Safety by Construction: Pattern-Based
Application of Safety Mechanisms in XANDAR. In: 2022 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), Nicosia, Cyprus, July 2022.

[6] T. Dörr, F. Schade, and J. Becker. Pattern-Based Information Flow Control
for Safety-Critical On-Chip Systems. In: J. Guiochet, S. Tonetta, and
F. Bitsch, editors, Computer Safety, Reliability, and Security (SAFECOMP 2023).
Springer, Cham, 2023.

237

238 | Bibliography

[7] T. Dörr, F. Schade, A. Ahlbrecht, W. Zaeske, L. Masing, U. Durak, and J. Becker.
A Behavior Specification and Simulation Methodology for Embedded Real-Time
Software. In: 2022 IEEE/ACM 26th International Symposium on Distributed Sim-
ulation and Real Time Applications (DS-RT), Alès, France, Sept. 2022.

[8] T. Dörr, T. Sandmann, F. Schade, F. K. Bapp, and J. Becker. Leveraging the Par-
tial Reconfiguration Capability of FPGAs for Processor-Based Fail-Operational
Systems. In: C. Hochberger, B. Nelson, A. Koch, R. Woods, and P. Diniz, edi-
tors, Applied Reconfigurable Computing (ARC 2019). Springer, Cham, 2019.

[9] T. Dörr, T. Sandmann, P. Friederich, A. Leitner, and J. Becker. An Approach to
Cost-Efficient Fault Tolerance in Inherently Redundant Fail-Operational Sys-
tems. In: 2020 23rd Euromicro Conference on Digital System Design (DSD), Kranj,
Slovenia, Aug. 2020.

[10] T. Dörr, T. Sandmann, P. Friederich, A. Leitner, and J. Becker. Achieving
cost-efficient fail-operational behavior based on inherent redundancy at the
system level. Microprocessors and Microsystems, 87, Nov. 2021.

Co-author publications (selection)

[11] A. Leitner, J. Becker, T. Dörr, and F. Bapp. Method for controlling an elec-
trical drive of a motor vehicle and computer program product. Patent num-
ber WO 2019/242804 A1. Dec. 2019.

[12] L. Masing, T. Dörr, F. Schade, J. Becker, G. Keramidas, C. P. Antonopoulos, M.
Mavropoulos, E. Tiganourias, et al. XANDAR: Exploiting the X-by-Construction
Paradigm in Model-based Development of Safety-critical Systems. In: 2022
Design, Automation & Test in Europe Conference & Exhibition (DATE), Antwerp,
Belgium, Mar. 2022.

[13] F. Schade, T. Dörr, and J. Becker. Hypervisor-Based Target Deployment Strate-
gies for Time Predictability in Model-Based Development. In: 2022 IEEE 35th
International System-on-Chip Conference (SOCC), Belfast, UK, Sept. 2022.

[14] F. Schade, T. Dörr, A. Ahlbrecht, V. Janson, U. Durak, and J. Becker.
Automatic Deployment of Embedded Real-Time Software Systems to
Hypervisor-Managed Platforms. In: 2023 26th Euromicro Conference on Digital
System Design (DSD), Golem, Albania, Sept. 2023.

Further references | 239

Further references

[15] J. C. Knight. Safety critical systems: challenges and directions. In: Proceedings
of the 24th International Conference on Software Engineering (ICSE ’02), Orlando,
Florida, USA, May 2002.

[16] ISO 26262-1:2018: Road vehicles — Functional safety — Part 1: Vocabulary, In-
ternational Organization for Standardization (ISO), Dec. 2018.

[17] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T. Dang,
U. Franke, et al. Making Bertha Drive—An Autonomous Journey on a Historic
Route. IEEE Intelligent Transportation Systems Magazine, 6(2), Sum. 2014.

[18] G. Cooper. The Evolution of Neural Processing for Embedded Applications.
2022. url: https://www.synopsys.com/designware-ip/technical-bulletin/neural-
processor-npx-ip.html (visited on 13 Aug. 2023).

[19] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of ion-implanted MOSFET’s with very small physical dimen-
sions. IEEE Journal of Solid-State Circuits, 9(5), Oct. 1974.

[20] S. Borkar and A. A. Chien. The future of microprocessors. Communications of
the ACM, 54(5), May 2011.

[21] O. Burkacky, J. Deichmann, and J. P. Stein. Automotive Software and Electronics
2030, McKinsey & Company, July 2019.

[22] V. Bandur, G. Selim, V. Pantelic, and M. Lawford. Making the Case for Central-
ized Automotive E/E Architectures. IEEE Transactions on Vehicular Technology,
70(2), Feb. 2021.

[23] ISO 26262-6:2018: Road vehicles — Functional safety — Part 6: Product de-
velopment at the software level, International Organization for Standardiza-
tion (ISO), Dec. 2018.

[24] S. McNeil, P. Schillinger, A. Kolarkar, E. Puillet, and U. Gertheinrich.
Isolation Mechanisms in Zynq UltraScale+ MPSoCs (XAPP1320), Xilinx,
Inc., July 2021.

[25] ISO 21448:2022: Road vehicles — Safety of the intended functionality, Interna-
tional Organization for Standardization (ISO), June 2022.

[26] I. Allende, N. Mc Guire, J. Perez, L. G. Monsalve, N. Uriarte, and R. Obermaisser.
Towards Linux for the Development of Mixed-Criticality Embedded Systems
Based on Multi-Core Devices. In: 2019 15th European Dependable Computing
Conference (EDCC), Naples, Italy, Sept. 2019.

[27] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 5th edition, Sept. 2011.

https://www.synopsys.com/designware-ip/technical-bulletin/neural-processor-npx-ip.html
https://www.synopsys.com/designware-ip/technical-bulletin/neural-processor-npx-ip.html

240 | Bibliography

[28] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger, B. Orgogozo, J. Reybert,
and T. Strudel. A Distributed Run-Time Environment for the Kalray MPPA-256
Integrated Manycore Processor. Procedia Computer Science, 18, 2013.

[29] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani, S. Hutsell,
R. Agarwal, et al. Knights Landing: Second-Generation Intel Xeon Phi Product.
IEEE Micro, 36(2), Mar.–Apr. 2016.

[30] A. Kamaleldin and D. Göhringer. AGILER: An Adaptive Heterogeneous
Tile-Based Many-Core Architecture for RISC-V Processors. IEEE Access,
10, 2022.

[31] C. Kühbacher, T. Ungerer, and S. Altmeyer. Redundant dataflow applications
on clustered manycore architectures. In: Proceedings of the 37th ACM/SIGAPP
Symposium on Applied Computing (SAC ’22), 25 Apr. 2022.

[32] Y. Gao and P. Zhang. A Survey of Homogeneous and Heterogeneous System
Architectures in High Performance Computing. In: 2016 IEEE International
Conference on Smart Cloud (SmartCloud), New York, USA, Nov. 2016.

[33] Advanced Micro Devices, Inc. Zynq UltraScale+ Device: Technical Refer-
ence Manual (UG1085), Jan. 2023.

[34] W. Wolf, A. Jerraya, and G. Martin. Multiprocessor System-on-Chip (MPSoC)
Technology. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 27(10), Oct. 2008.

[35] M. Hassan. Heterogeneous MPSoCs for Mixed-Criticality Systems: Challenges
and Opportunities. IEEE Design & Test, 35(4), Aug. 2018.

[36] Arm Ltd. AMBA AXI and ACE: Protocol Specification (IHI 0022 H), Mar. 2020.

[37] Advanced Micro Devices, Inc. AXI Interconnect: LogiCORE IP Prod-
uct Guide (PG059), May 2022.

[38] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo. Is Your Bus
Arbiter Really Fair? Restoring Fairness in AXI Interconnects for FPGA SoCs.
ACM Transactions on Embedded Computing Systems, 18, 5s, Oct. 2019.

[39] Advanced Micro Devices, Inc. Zynq UltraScale+ Devices Register Refer-
ence (UG1087), Mar. 2024.

[40] A. S. Tanenbaum. Modern Operating Systems. Pearson, 4th edition, 2015.

[41] N. Asokan, J.-E. Ekberg, K. Kostiainen, A. Rajan, C. Rozas, A.-R. Sadeghi, S.
Schulz, and C. Wachsmann. Mobile Trusted Computing. Proceedings of the IEEE,
102(8), Aug. 2014.

[42] GlobalPlatform, Inc. Introduction to Trusted Execution Environments.
May 2018. url: https://globalplatform.org/resource-publication/introduction-
to-trusted-execution-environments (visited on 27 Aug. 2023).

https://globalplatform.org/resource-publication/introduction-to-trusted-execution-environments
https://globalplatform.org/resource-publication/introduction-to-trusted-execution-environments

Further references | 241

[43] S. Pinto and N. Santos. Demystifying Arm TrustZone: A Comprehensive Survey.
ACM Computing Surveys, 51(6), Nov. 2019.

[44] Arm Ltd. ARM Security Technology: Building a Secure System using TrustZone
Technology (PRD29-GENC-009492), Apr. 2009.

[45] NXP B.V. i.MX 8M Dual/8M QuadLite/8M Quad Applications Processors Refer-
ence Manual (IMX8MDQLQRM), June 2021.

[46] M. Masmano, I. Ripoll, and A. Crespo. XtratuM: a Hypervisor for Safety Crit-
ical Embedded Systems. In: 11th Real-Time Linux Workshop, Dresden, Ger-
many, 2009.

[47] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[48] J. A. Bondy and U. S. R. Murty. Graph Theory. S. Axler and K. A. Ribet, edi-
tors, volume 244 of Graduate Texts in Mathematics. Springer London, 2008.

[49] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 4th edition, 2022.

[50] N. Mahadev and U. Peled. Threshold Graphs and Related Topics, volume 56 of
Annals of Discrete Mathematics. Elsevier, 1995.

[51] G. Grätzer. Lattice Theory: Foundation. Birkhäuser Basel, 2011.

[52] J. Matoušek and B. Gärtner. Understanding and Using Linear Programming.
Universitext. Springer Berlin, Heidelberg, 2007.

[53] lp_solve v5.5. url: https://lpsolve.sourceforge.net/5.5/ (visited on 3 May 2024).

[54] J. P. Cerrolaza, R. Obermaisser, J. Abella, F. J. Cazorla, K. Grüttner, I. Agirre,
H. Ahmadian, and I. Allende. Multi-core Devices for Safety-critical Systems: A
Survey. ACM Computing Surveys, 53(4), Aug. 2020.

[55] D. Kliem and S.-O. Voigt. Scalability evaluation of an FPGA-based multi-core
architecture with hardware-enforced domain partitioning. Microprocessors and
Microsystems, 38, 8B, Nov. 2014.

[56] G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, andM. Caccamo.
Designing Mixed Criticality Applications on Modern Heterogeneous MPSoC
Platforms. In: 31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Volume 133, Leibniz International Proceedings in Informatics (LIPIcs). 2019.

[57] P. Modica, A. Biondi, G. Buttazzo, and A. Patel. Supporting temporal and spatial
isolation in a hypervisor for ARM multicore platforms. In: 2018 IEEE Interna-
tional Conference on Industrial Technology (ICIT), Lyon, France, Feb. 2018.

[58] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. Kvm: the Linux Virtual
Machine Monitor. In: Proceedings of the Linux Symposium, Volume One, Ottawa,
Ontario, Canada, June 2007.

https://lpsolve.sourceforge.net/5.5/

242 | Bibliography

[59] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer. Look Mum, no VM Exits!
(Almost). In: Proceedings of the 13thWorkshop on Operating Systems Platforms for
Embedded Real-Time Applications (OSPERT 2017), Duprovnik, Croatia, June 2017.

[60] J. De Bonfils Lavernelle, P.-F. Bonnefoi, B. Gonzalvo, and D. Sauveron. Assess-
ment of spatial isolation in Jailhouse: Towards a generic approach. Computer
Networks, 245, May 2024.

[61] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto. Bao: A Lightweight
Static Partitioning Hypervisor for Modern Multi-Core Embedded Systems.
In:Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2020).
Volume 77, Open Access Series in Informatics (OASIcs). 2020.

[62] B. Sá, J. Martins, and S. E. S. Pinto. A First Look at RISC-V Virtualization
from an Embedded Systems Perspective. IEEE Transactions on Computers,
71(9), Sept. 2022.

[63] AUTOSAR. Specification of Operating System, Nov. 2020. No. 34, CP R20-11.
[64] IEC 61508-3:2010: Functional safety of electrical/electronic/programmable elec-

tronic safety-related systems — Software requirements, International Elec-
trotechnical Commission (IEC), Apr. 2010.

[65] J. Perez, D. Gonzalez, S. Trujillo, and T. Trapman. A Safety Concept for an
IEC-61508 Compliant Fail-Safe Wind Power Mixed-Criticality System Based
on Multicore and Partitioning. In: J. A. De La Puente and T. Vardanega, edi-
tors, Ada-Europe 2015. Springer, Cham, 2015.

[66] T. Nojiri, Y. Kondo, N. Irie, M. Ito, H. Sasaki, and H. Maejima. Domain
Partitioning Technology for Embedded Multicore Processors. IEEE Micro,
29(6), Nov.–Dec. 2009.

[67] A. Hattendorf, A. Raabe, and A. Knoll. Shared memory protection for spatial
separation in multicore architectures. In: 7th IEEE International Symposium on
Industrial Embedded Systems (SIES ’12), Karlsruhe, Germany, June 2012.

[68] J. Porquet, C. Schwarz, and A. Greiner. Multi-compartment: A new archi-
tecture for secure co-hosting on SoC. In: 2009 International Symposium on
System-on-Chip, Tampere, Finland, Oct. 2009.

[69] J. Porquet, A. Greiner, and C. Schwarz. NoC-MPU: A secure architecture for
flexible co-hosting on shared memory MPSoCs. In: 2011 Design, Automation &
Test in Europe, Grenoble, France, Mar. 2011.

[70] D. M. Ancajas, K. Chakraborty, and S. Roy. Fort-NoCs: Mitigating the threat of a
compromised NoC. In: 2014 51st ACM/EDAC/IEEE Design Automation Conference
(DAC), San Francisco, California, USA, June 2014.

[71] A. Shalaby, Y. Tavva, T. E. Carlson, and L.-S. Peh. Sentry-NoC: A
Statically-Scheduled NoC for Secure SoCs. In: 2021 15th IEEE/ACM International
Symposium on Networks-on-Chip (NOCS), Oct. 2021.

Further references | 243

[72] B. Tan, M. Biglari-Abhari, and Z. Salcic. A system-level security approach for
heterogeneous MPSoCs. In: 2016 Conference on Design and Architectures for
Signal and Image Processing (DASIP), Rennes, France, Oct. 2016.

[73] B. Tan, M. Biglari-Abhari, and Z. Salcic. Towards decentralized system-level se-
curity for MPSoC-based embedded applications. Journal of Systems Architecture,
80, Oct. 2017.

[74] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee. FlexPRET: A processor plat-
form for mixed-criticality systems. In: 2014 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS), Berlin, Germany, Apr. 2014.

[75] M. Schoeberl, W. Puffitsch, S. Hepp, B. Huber, and D. Prokesch. Patmos: a
time-predictable microprocessor. Real-Time Systems, 54(2), Apr. 2018.

[76] E. R. Jellum, S. Lin, P. Donovan, C. Jerad, E. Wang, M. Lohstroh, E. A. Lee, and M.
Schoeberl. InterPRET: a Time-predictableMulticore Processor. In: Proceedings of
Cyber-Physical Systems and Internet of Things Week 2023 (CPS-IoT Week ’23), San
Antonio, Texas, USA, May 2023.

[77] L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst. A mixed critical memory controller
using bank privatization and fixed priority scheduling. In: 2014 IEEE 20th In-
ternational Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), Chongqing, China, Aug. 2014.

[78] J. Jalle, E. Quiñones, J. Abella, L. Fossati, M. Zulianello, and F. J. Cazorla. A
Dual-Criticality Memory Controller (DCmc): Proposal and Evaluation of a
Space Case Study. In: 2014 IEEE Real-Time Systems Symposium (RTSS), Rome,
Italy, Dec. 2014.

[79] F. Kluge, M. Schoeberl, and T. Ungerer. Support for the logical execution
time model on a time-predictable multicore processor. ACM SIGBED Review,
13(4), 3 Nov. 2016.

[80] S. Reder and J. Becker. Interference-Aware Memory Allocation for Real-Time
Multi-Core Systems. In: 2020 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), Sydney, Australia, Apr. 2020.

[81] C. Bradatsch, F. Kluge, and T. Ungerer. A Cross-Domain SystemArchitecture for
Embedded Hard Real-Time Many-Core Systems. In: 2013 IEEE 10th International
Conference on High Performance Computing and Communications (HPCC) &
2013 IEEE International Conference on Embedded and Ubiquitous Computing
(EUC), Zhangjiajie, China, Nov. 2013.

[82] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso, J. Garside, K.
Goossens, S. Goossens, et al. T-CREST: Time-predictable multi-core architecture
for embedded systems. Journal of Systems Architecture, 61(9), Oct. 2015.

244 | Bibliography

[83] A. Larrucea, I. Martinez, V. Brocal, S. Peirò, H. Ahmadian, J. Perez, and R.
Obermaisser. DREAMS: Cross-Domain Mixed-Criticality Patterns. In: 2016
4th International Workshop on Mixed Criticality Systems (WMC), Porto, Portu-
gal, Nov. 2016.

[84] H. Kim and R. Rajkumar. Predictable Shared Cache Management for Multi-Core
Real-Time Virtualization. ACM Transactions on Embedded Computing Systems,
17(1), Jan. 2018.

[85] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory Bandwidth
Management for Efficient Performance Isolation in Multi-Core Platforms. IEEE
Transactions on Computers, 65(2), Feb. 2016.

[86] A. Crespo, P. Balbastre, J. Simo, J. Coronel, D. Gracia-Perez, and P. Bonnot.
Hypervisor-Based Multicore Feedback Control of Mixed-Criticality Systems.
IEEE Access, 6, 2018.

[87] A. Saeed, D. Dasari, D. Ziegenbein, V. Rajasekaran, F. Rehm, M. Pressler, A.
Hamann, D. Mueller-Gritschneder, et al. Memory Utilization-Based Dynamic
Bandwidth Regulation for Temporal Isolation in Multi-Cores. In: 2022 IEEE 28th
Real-Time and Embedded Technology and Applications Symposium (RTAS), Mi-
lano, Italy, May 2022.

[88] D. Costa, L. Cuomo, D. Oliveira, I. M. Savino, B. Morelli, J. Martins, F. Tronci,
A. Biasci, et al. IRQ Coloring: Mitigating Interrupt-Generated Interference on
ARM Multicore Platforms. In: F. Terraneo and D. Cattaneo, editors, Fourth
Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2023).
Volume 108, Open Access Series in Informatics (OASIcs). 2023.

[89] R. Achermann, L. Humbel, D. Cock, and T. Roscoe. Formalizing Memory Ac-
cesses and Interrupts. In: H. Hermanns and P. Höfner, editors,Models for Formal
Analysis of Real Systems (MARS 2017). Volume 244, Electronic Proceedings in
Theoretical Computer Science. Mar. 2017.

[90] devicetree.org. Devicetree Specification (v0.4), June 2023.

[91] R. Achermann, L. Humbel, D. Cock, and T. Roscoe. Physical Addressing on Real
Hardware in Isabelle/HOL. In: J. Avigad and A. Mahboubi, editors, Interactive
Theorem Proving (ITP 2018). Springer, Cham, 2018.

[92] R. Achermann, D. Cock, R. Haecki, N. Hossle, L. Humbel, T. Roscoe, and D.
Schwyn. Generating correct initial page tables from formal hardware descrip-
tions. In: Proceedings of the 11th Workshop on Programming Languages and
Operating Systems (PLOS ’21), Virtual Event, Germany, Oct. 2021.

[93] B. Fiedler, D. Schwyn, C. Gierczak-Galle, D. Cock, and T. Roscoe. Putting out
the hardware dumpster fire. In: Proceedings of the 19th Workshop on Hot Topics
in Operating Systems (HOTOS ’23), Providence, Rhode Island, USA, June 2023.

Further references | 245

[94] B. Fiedler, R. Meier, J. Schult, D. Schwyn, and T. Roscoe. Specifying the de-facto
OS of a production SoC. In: Proceedings of the 1st Workshop on Kernel Isolation,
Safety and Verification (KISV ’23), Koblenz, Germany, Oct. 2023.

[95] J. Oberg, W. Hu, A. Irturk, M. Tiwari, T. Sherwood, and R. Kastner. Information
flow isolation in I2C and USB. In: 2011 48th ACM/EDAC/IEEE Design Automation
Conference (DAC), San Diego, California, USA, June 2011.

[96] W. Hu, A. Ardeshiricham, and R. Kastner. Hardware Information Flow Tracking.
ACM Computing Surveys, 54(4), May 2022.

[97] D. E. Denning. A lattice model of secure information flow. Communications of
the ACM, 19(5), May 1976.

[98] K. Biba. Integrity Considerations For Secure Computer Systems.
MTR-3153, Mitre Corporation, June 1975.

[99] D. E. Denning and P. J. Denning. Certification of programs for secure informa-
tion flow. Communications of the ACM, 20(7), July 1977.

[100] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow
analysis. Journal of Computer Security, 4(2-3), Jan. 1996.

[101] A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security. IEEE
Journal on Selected Areas in Communications, 21(1), Jan. 2003.

[102] I. Schaefer, T. Runge, A. Knüppel, L. Cleophas, D. Kourie, and B. W. Watson.
Towards Confidentiality-by-Construction. In: T. Margaria and B. Steffen, ed-
itors, Leveraging Applications of Formal Methods, Verification and Validation:
Modeling (ISoLA 2018). Springer, Cham, 2018.

[103] T. Runge, A. Knüppel, T. Thüm, and I. Schaefer. Lattice-Based Information
Flow Control-by-Construction for Security-by-Design. In: Proceedings of the 8th
International Conference on Formal Methods in Software Engineering (FormaliSE
’20), Seoul, Republic of Korea, Oct. 2020.

[104] T. Runge, A. Kittelmann, M. Servetto, A. Potanin, and I. Schaefer. Informa-
tion Flow Control-by-Construction for an Object-Oriented Language. In: B.-H.
Schlingloff and M. Chai, editors, Software Engineering and Formal Methods
(SEFM 2022). Springer, Cham, 2022.

[105] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried, C. Lewis,
X. Gao, et al. seL4: FromGeneral Purpose to a Proof of Information Flow Enforce-
ment. In: 2013 IEEE Symposium on Security and Privacy, Berkeley, California,
USA, May 2013.

[106] C. Brant, P. Shrestha, B. Mixon-Baca, K. Chen, S. Varlioglu, N. Elsayed, Y. Jin,
J. Crandall, et al. Challenges and Opportunities for Practical and Effective
Dynamic Information Flow Tracking. ACM Computing Surveys, 55(1), Jan. 2023.

246 | Bibliography

[107] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. TaintTrace: Efficient Flow Tracing
with Dynamic Binary Rewriting. In: 11th IEEE Symposium on Computers and
Communications (ISCC ’06), Cagliari, Italy, 2006.

[108] J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint analysis framework.
In: Proceedings of the 2007 International Symposium on Software Testing and
Analysis (ISSTA ’07), London, UK, July 2007.

[109] M. G. Kang, S. McCamant, P. Poosankam, and D. Song. DTA++: Dynamic
Taint Analysis with Targeted Control-Flow Propagation. In: Proceedings of the
Network and Distributed System Security Symposium 2011 (NDSS), San Diego,
California, USA, Feb. 2011.

[110] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P.
McDaniel, et al. TaintDroid: An Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. ACM Transactions on Computer Systems,
32(2), June 2014.

[111] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières. Making Information
Flow Explicit in HiStar. In: 7th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’06), Seattle, Washington, USA, Nov. 2006.

[112] X. Guo, H. Zhu, Y. Jin, and X. Zhang. When Capacitors Attack: Formal
Method Driven Design and Detection of Charge-Domain Trojans. In: 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence,
Italy, Mar. 2019.

[113] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and R. Kastner.
Theoretical Fundamentals of Gate Level Information Flow Tracking. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
30(8), Aug. 2011.

[114] J. Oberg, T. Sherwood, and R. Kastner. Eliminating Timing Information Flows
in a Mix-Trusted System-on-Chip. IEEE Design & Test, 30(2), Apr. 2013.

[115] W. Hu, J. Oberg, J. Barrientos, Dejun Mu, and R. Kastner. Expanding Gate Level
Information Flow Tracking for Multilevel Security. IEEE Embedded Systems
Letters, 5(2), June 2013.

[116] W. Hu, D. Mu, J. Oberg, B. Mao, M. Tiwari, T. Sherwood, and R. Kastner.
Gate-Level Information Flow Tracking for Security Lattices. ACM Transac-
tions on Design Automation of Electronic Systems, 20(1), Nov. 2014.

[117] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. A Hardware Design Language
for Timing-Sensitive Information-Flow Security. In: Proceedings of the 20th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’15), Istanbul, Turkey, Mar. 2015.

Further references | 247

[118] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program execution
via dynamic information flow tracking. ACM SIGARCH Computer Architecture
News, 32(5), Dec. 2004.

[119] H. Kannan, M. Dalton, and C. Kozyrakis. Decoupling Dynamic Information Flow
Tracking with a Dedicated Coprocessor. In: 2009 IEEE/IFIP International Confer-
ence on Dependable Systems & Networks (DSN), Lisbon, Portugal, June–July 2009.

[120] V. Nagarajan, H.-S. Kim, Y. Wu, and R. Gupta. Dynamic Information Flow
Tracking on Multicores. In: 12th Workshop on Interaction between Compilers and
Computer Architectures (INTERACT-12), Salt Lake City, Utah, USA, Feb. 2008.

[121] Z. Jiang, S. Dai, G. E. Suh, and Z. Zhang. High-Level Synthesis with
Timing-Sensitive Information Flow Enforcement. In: 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), San Diego,
California, USA, Nov. 2018.

[122] C. Pilato, K. Wu, S. Garg, R. Karri, and F. Regazzoni. TaintHLS: High-Level
Synthesis for Dynamic Information Flow Tracking. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 38(5), May 2019.

[123] J. Porquet and S. Sethumadhavan. WHISK: An uncore architecture for Dy-
namic Information Flow Tracking in heterogeneous embedded SoCs. In: 2013
International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), Montreal, Quebec, Canada, Sept.–Oct. 2013.

[124] L. Piccolboni, G. Di Guglielmo, and L. P. Carloni. PAGURUS: Low-Overhead
Dynamic Information Flow Tracking on Loosely Coupled Accelerators. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
37(11), Nov. 2018.

[125] L. P. Carloni. The Case for Embedded Scalable Platforms. In: 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, Texas,
USA, June 2016.

[126] P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman, E. G.
Cota, M. Petracca, C. Pilato, et al. Agile SoC Development with Open ESP.
In: Proceedings of the 39th International Conference on Computer-Aided Design
(ICCAD ’20), Virtual Event, USA, Nov. 2020.

[127] M. Hassan, V. Herdt, H. M. Le, D. Große, and R. Drechsler. Early SoC security
validation by VP-based static information flow analysis. In: 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Irvine, California,
USA, Nov. 2017.

[128] P. Pieper, V. Herdt, D. Grose, and R. Drechsler. Dynamic Information Flow Track-
ing for Embedded Binaries using SystemC-based Virtual Prototypes. In: 2020
57th ACM/IEEE Design Automation Conference (DAC), San Francisco, California,
USA, July 2020.

248 | Bibliography

[129] T. Prosvirnova, M. Batteux, P.-A. Brameret, A. Cherfi, T. Friedlhuber, J.-M.
Roussel, and A. Rauzy. The AltaRica 3.0 Project for Model-Based Safety Assess-
ment. In: 4th IFAC Workshop on Dependable Control of Discrete Systems (DCDS
’13), York, UK, Sept. 2013.

[130] G. Point and A. Rauzy. AltaRica: Constraint automata as a description language.
European Journal on Automation, 33(8-9), 1999.

[131] A. Rauzy. Mode automata and their compilation into fault trees. Reliability
Engineering & System Safety, 78(1), Oct. 2002.

[132] M. Güdemann and F. Ortmeier. A Framework for Qualitative and Quantitative
Formal Model-Based Safety Analysis. In: 2010 IEEE 12th International Sym-
posium on High-Assurance Systems Engineering (HASE), San Jose, California,
USA, Nov. 2010.

[133] S. Getir, A. van Hoorn, L. Grunske, and M. Tichy. Co-Evolution of Software
Architecture and Fault Tree models: An Explorative Case Study on a Pick and
Place Factory Automation System. In: 5th InternationalWorkshop Non-functional
Properties in Modeling: Analysis, Languages and Processes (NiM-ALP), Miami,
Florida, USA, Sept. 2013.

[134] F. Mhenni, N. Nguyen, and J.-Y. Choley. SafeSysE: A Safety Analysis Integration
in Systems Engineering Approach. IEEE Systems Journal, 12(1), Mar. 2018.

[135] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, M. Roveri, and R.
Wimmer. A Model Checker for AADL. In: T. Touili, B. Cook, and P. Jackson, edi-
tors, Computer Aided Verification (CAV 2010). Springer, Berlin, Heidelberg, 2010.

[136] M. Bozzano, H. Bruintjes, A. Cimatti, J.-P. Katoen, T. Noll, and S. Tonetta.
COMPASS 3.0. In: T. Vojnar and L. Zhang, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2019). Springer, Cham, 2019.

[137] P. H. Feiler, D. P. Gluch, and J. J. Hudak. The Architecture Analysis & Design
Language (AADL): An Introduction. CMU/SEI-2006-TN-011, Carnegie Mellon
University, Feb. 2006.

[138] SAE AS5506D: Architecture Analysis & Design Language (AADL), SAE Inter-
national, Apr. 2022.

[139] J. Delange and P. Feiler. Architecture Fault Modeling with the AADL
Error-Model Annex. In: 2014 40th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), Verona, Italy, Aug. 2014.

[140] J. Brunel, P. Feiler, J. Hugues, B. Lewis, T. Prosvirnova, C. Seguin, and L. Wrage.
Performing Safety Analyses with AADL and AltaRica. In: M. Bozzano and
Y. Papadopoulos, editors, Model-Based Safety and Assessment (IMBSA 2017).
Springer, Cham, 2017.

Further references | 249

[141] J. Hugues, B. Zalila, L. Pautet, and F. Kordon. From the prototype to the final
embedded system using the Ocarina AADL tool suite. ACM Transactions on
Embedded Computing Systems, 7(4), July 2008.

[142] F. Cadoret, E. Borde, S. Gardoll, and L. Pautet. Design Patterns for Rule-Based
Refinement of Safety Critical Embedded Systems Models. In: 2012 IEEE
17th International Conference on Engineering of Complex Computer Systems
(ICECCS), Paris, July 2012.

[143] F. Singhoff, J. Hugues, H. Nam Tran, G. Bardaro, D. Blouin, M. Bozzano, P.
Denzler, P. Dissaux, et al. ADEPT 2022 workshop: a summary of strengths and
weaknesses of the AADL ecosystem. ACM SIGAda Ada Letters, 43(1), June 2023.

[144] M. Lohstroh, C. Menard, S. Bateni, and E. A. Lee. Toward a Lingua Franca for
Deterministic Concurrent Systems. ACM Transactions on Embedded Computing
Systems, 20(4), July 2021.

[145] ISO 11898-1:2015: Road vehicles — Controller area network (CAN) — Part 1:
Data link layer and physical signalling, International Organization for Stan-
dardization (ISO), Dec. 2015.

[146] AUTOSAR. Virtual Functional Bus, Nov. 2022. No. 56, CP R22-11.

[147] M. Lohstroh. Reactors: A Deterministic Model of Concurrent Computation for
Reactive Systems. UCB/EECS-2020-235, PhD thesis, University of California,
Berkeley, Dec. 2020.

[148] T. Coe, T. Mathisen, C. Moler, and V. Pratt. Computational aspects of the
Pentium affair. IEEE Computational Science and Engineering, 2(1), Spr. 1995.

[149] N. Wirth. What can we do about the unnecessary diversity of notation for
syntactic definitions? Communications of the ACM, 20(11), Nov. 1977.

[150] The Go Programming Language Specification, Feb. 2024. url: https://go.dev/
ref/spec/ (visited on 13 Apr. 2024).

[151] R. Bernstein. Testing for semilattices. ACM SIGACT News, 18(1), Sum. 1986.

[152] J. Pohlmann. Configurable Graph Drawing Algorithms for the TikZ Graphics
Description Language. Diploma thesis, Universität zu Lübeck, Oct. 2011.

[153] Advanced Micro Devices, Inc. ZCU102 Evaluation Board (UG1182), Feb. 2023.

[154] ISO 26262-10:2018: Road vehicles — Functional safety — Part 10: Guidelines on
ISO 26262, International Organization for Standardization (ISO), Dec. 2018.

[155] R. Ernst. Automated Driving: The Cyber-Physical Perspective. Computer,
51(9), Sept. 2018.

[156] K. Becker, S. Voss, and B. Schätz. Formal analysis of feature degradation
in fault-tolerant automotive systems. Science of Computer Programming,
154, Mar. 2018.

https://go.dev/ref/spec/
https://go.dev/ref/spec/

250 | Bibliography

[157] R. Isermann, R. Schwarz, and S. Stölzl. Fault-tolerant drive-by-wire systems.
IEEE Control Systems, 22(5), Oct. 2002.

[158] L. Sha. Using Simplicity to Control Complexity. IEEE Software,
18(4), July–Aug. 2001.

[159] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha. The
System-Level Simplex Architecture for Improved Real-Time Embedded System
Safety. In: 15th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), San Francisco, California, USA, Apr. 2009.

[160] P. Pop, V. Izosimov, P. Eles, and Z. Peng. Design Optimization of Time- and
Cost-Constrained Fault-Tolerant Embedded Systems With Checkpointing and
Replication. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
17(3), Mar. 2009.

[161] SAE J3016: Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles, SAE International, Apr. 2021.

[162] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10), Oct. 1969.

[163] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18(8), Aug. 1975.

[164] D. G. Kourie and B. W. Watson. The Correctness-by-Construction Approach to
Programming. Springer Berlin, Heidelberg, 2012.

[165] A. Hall and R. Chapman. Correctness by construction: developing a commercial
secure system. IEEE Software, 19(1), Jan.–Feb. 2002.

[166] K. Didier, D. Potop-Butucaru, G. Iooss, A. Cohen, J. Souyris, P. Baufreton,
and A. Graillat. Correct-by-Construction Parallelization of Hard Real-Time
Avionics Applications on Off-the-Shelf Predictable Hardware.ACMTransactions
on Architecture and Code Optimization, 16(3), Sept. 2019.

[167] M. H. ter Beek, L. Cleophas, I. Schaefer, and B. W. Watson. X-by-Construction.
In: T. Margaria and B. Steffen, editors, Leveraging Applications of FormalMethods,
Verification and Validation: Modeling (ISoLA 2018). Springer, Cham, 2018.

[168] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, editors. EMF: Eclipse
Modeling Framework. Addison-Wesley Professional, 2nd edition, 2009.

[169] C. M. Kirsch and A. Sokolova. The Logical Execution Time Paradigm.
In: S. Chakraborty and J. Eberspächer, editors, Advances in Real-Time Systems.
Springer Berlin, Heidelberg, 2012.

[170] E. A. Lee and M. Lohstroh. Generalizing Logical Execution Time. In: J.-F. Raskin,
K. Chatterjee, L. Doyen, and R. Majumdar, editors, Principles of Systems Design.
Springer, Cham, 2022.

Further references | 251

[171] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,
et al. Taming heterogeneity - the Ptolemy approach. Proceedings of the IEEE,
91(1), Jan. 2003.

[172] ANSI/IEEE 1003.2-1993 — Information technology–Portable Operating System
Interface (POSIX(R)) — Part 2: Shell and Utilities, Dec. 1993.

[173] NXP B.V. i.MX Yocto Project User’s Guide (LF6.6.23_2.0.0), June 2024.

[174] ISO/SAE 21434:2021: Road vehicles — Cybersecurity engineering, Interna-
tional Organization for Standardization (ISO), Aug. 2021.

[175] C. Miller. Lessons Learned from Hacking a Car. IEEE Design & Test,
36(6), Dec. 2019.

	Introduction
	Context and motivation
	Problem formulation
	Contributions and outline
	Previous publications

	Background and related work
	Multicore systems
	Manycore architectures
	Heterogeneous computing systems
	Multiprocessor System-on-Chip (MPSoC) devices
	On-chip isolation mechanisms
	Operating systems and hypervisors

	Mathematical foundation
	Fundamentals
	Graph theory
	Ordered sets and Hasse diagrams
	Lattice theory
	Linear programs

	Related work
	Spatial isolation in multicore systems
	Temporal isolation in multicore systems
	Decoding nets and the de-facto OS
	Information Flow Tracking (IFT) approaches
	Model-based safety analysis
	Comparison with the proposed methodology

	Concept and system model
	Overview of the logical isolation pattern
	APU configuration and CF determination
	Safety assessment

	Formal system model
	Execution platform library
	Hardware architecture (layer I)
	Runtime architecture (layer II)
	Software architecture (layer III)
	Auxiliary functions

	Fault model for system elements
	System element mapping
	Fault susceptibility

	APU configuration and CF determination procedure
	Introduction to CF graphs
	Structure and visualization
	Illustrative examples of CF potential

	Measures for logical isolation
	Isolation measure specification
	APU configuration for MPSoCs
	Semantics of barrier declarations

	CF determination procedure
	Formal foundation
	CF potential transfers
	CF graph creation

	Closing remarks

	Safety assessment framework
	Safety impact of CF potential
	Safety-relevant system elements
	Fault manifestation and physical harm

	Interference whitelist approach
	Safety requirements specification
	Assessment algorithm

	Integrity assignment procedure
	Safety requirements specification
	Assessment algorithm

	Safety-aware system design using ILP
	LP formulation of the safety assessment
	ILP-based search and optimization framework

	Implementation and evaluation
	Language specification
	Lexical elements and top-level grammar
	Grammar for system model entities
	Grammar for pattern-specific annotations

	Reference implementation
	Command-line interface
	Execution platform types
	Input model resolution
	APU configuration procedures
	Automatic visualization of CF graphs

	Case study: Ethernet controller access
	Pattern-aware memory partitioning
	System element interactions
	Variant I: Protected initialization
	Variant II: Unprotected initialization

	Case study: Fail-operational architecture
	Mapping to cores of a single MPSoC
	Mapping to distributed MPSoC instances
	Background: Mirrored architecture concept
	Applicability to the mirrored variant

	Summary

	Toolchain integration
	Overview of the XANDAR project
	X-by-Construction (XbC) perspective
	XANDAR development process
	Safety/security pattern library

	Behavior specification and simulation
	Software architecture metamodel
	Software synthesis procedure
	Behavior simulation framework

	Target-aware implementation
	Deployment to Linux user space
	Deployment to Linux on the i.MX 8M

	Logical isolation pattern
	Pattern invocation procedure
	Practical validation
	Closing remarks

	Conclusion
	Application potential
	Future work

	Appendix
	Total unimodularity of ILP constraints
	XMPU/XPPU configuration library
	Public interface
	XMPU configuration functions
	XPPU configuration functions

	Bibliography
	First-author publications
	Co-author publications (selection)
	Further references

