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Abstract

In body-centered cubic metals and alloys, screw dislocations are considered to control
the strength due to their high critical stress. However, recent experimental and
theoretical works on multicomponent solid solutions indicate a similar critical stress
for edge dislocations in these alloys. With increasing atomic misfits due to different
atomic sizes, the critical stress increases for edge dislocations, until a transition from
screw to edge dislocation-controlled strength is achieved. While individual alloys
have been identified as either screw or edge dislocation-controlled, the transition
has not been observed in a systematic study yet. Consequently, the prerequisites to
achieve this transition are not yet known.
While in multicomponent systems superimposed strengthening contributions from
precipitation or local atomic ordering might occur, an investigation of binary solid
solutions precludes potential problems from chemical complexity. Here, Mo-Ti and
Mo-Nb solid solutions were investigated systematically. Both systems cover a similar
range of lattice parameters, however, while the lattice parameter in Mo-Ti solid
solutions increases strongly non-linearly with Ti content, the one in Mo-Nb changes
almost linearly. Accordingly, the former presents a system where both small and
large atomic misfits are realized within a single system and the latter serves as
reference system with an intermediate misfit value. Mechanical testing from the
nanometer to the millimeter scale revealed no significant strength contributions from
grain boundaries or oxides potentially formed at grain boundaries. The combination
of several chemical analysis methods revealed a significant amount of O dissolved
in Ti-rich Mo-Ti solid solutions. As the O impacts the total yield strength, it
is corrected for, consistent to the applied strengthening models. The remaining
substitutional solid solution strengthening is compared to the models by Labusch,
Suzuki as well as Maresca and Curtin to identify the strength-controlling dislocation
types. While the strength in both systems can be described as controlled by screw
dislocation motion, when appropriate energy parameters are used in the models, the
parameter-free model for edge dislocation-controlled strength by Maresca and Curtin
indicates competitive strengthening in both systems when certain misfit thresholds
are surpassed.
These threshold values, when taking the shear modulus into account, allow for a
comprehensive screening of binary and multicomponent solid solutions for candidate
systems with edge dislocation-controlled strength to aid future model-guided alloy
design.
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Zusammenfassung

In kubisch-raumzentrierten Metallen und Legierungen gelten Schraubenversetzun-
gen als bestimmend für die Festigkeit, da eine hohe Schubspannung für ihre Bewe-
gung aufgewandt werden muss. Aktuelle experimentelle und theoretische Ergebnisse
in Mehrkomponentenlegierungen zeigen allerdings ähnlich hohe Schubspannungen
für Stufenversetzungen. Mit steigendem atomaren Volumenunterschied zwischen
den Komponenten steigt auch die kritische Schubspannung für Stufenversetzun-
gen, bis ein Übergang von schrauben- zu stufenversetzungskontrollierter Festigkeit
möglich ist. Während einzelne Legierungen eindeutig als schrauben- oder stufen-
versetzungskontrolliert identifiziert worden sind, gibt es bisher keine systematischen
Untersuchungen, die den Übergang abbilden. Dementsprechend sind die Vorausset-
zungen für diesen Übergang bisher unbekannt.
In Mehrkomponentenlegierungen können Ausscheidungen und lokale atomare Ord-
nung zusätzlich die Festigkeit erhöhen, während eine Untersuchung in binären Sys-
temen mit reduzierter chemischer Komplexität diese Probleme vermeidet. In dieser
Arbeit wurden daher Mo-Ti- und Mo-Nb-Mischkristalle systematisch untersucht.
Die Gesamtänderung des Gitterparameters bei hohen Ti und Nb-Gehalten ist ähnlich,
allerdings steigt der Gitterparameter in Mo-Ti stark nicht-linear mit steigendem
Ti-Gehalt, während er in Mo-Nb nahezu linear ansteigt. Dementsprechend liegen
in dem ersten System Legierungen mit kleinen und großen Volumenunterschieden
vor, während das zweite System als Vergleich mit mittelgroßem Volumenunterschied
dient. Mechanische Prüfverfahren von der Nanometer- bis zur Millimeterskala kon-
nten signifikante Beiträge durch Korngrenzenverfestigung oder möglichen Ausschei-
dungen ausschließen. Die Kombination von mehreren chemischen Analyseverfah-
ren ergab eine signifikante Menge von interstitiell gelöstem O in den Ti-reichen
Mischkristallen. Dieser Einfluss auf die Festigkeit konnte mit modellkonsistenten
Ansätzen korrigiert werden. Die verbleibende Substitutionsmischkristallverfestigung
wurde mit Modellen von Labusch, Suzuki, sowie Maresca und Curtin verglichen,
um die festigkeitsbestimmenden Versetzungstypen zu identifizieren. Beide Systeme
können durch die Modelle für Schraubenversetzungen beschrieben werden, wenn
entsprechende Energieparameter gewählt werden. Das parameterfreie Modell für
die stufenversetzungskontrollierte Festigkeit beschreibt die Festigkeit in beiden Sys-
temen, sobald ein bestimmter Grenzwert für den Volumenunterschied überschritten
wird.
Unter Berücksichtigung des Schubmoduls lässt es dieser Grenzwert zu, alle binären
und auch mehrkomponentigen Mischkristalle auf eine mögliche stufenversetzungskon-
trollierte Festigkeit zu untersuchen, um Vorhersagen für modellgestützte Legierungs-
entwicklung zu verbessern.
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Nomenclature

Abbreviations

Abbreviation Description
APT Atom probe tomography
BCC Body-centered cubic
BE Base element
BSE Backscattered electron
DDI Dislocation-dislocation interactions
DFT Density-functional theory
EDS Energy-dispersive X-Ray emission spectroscopy
FCC Face-centered cubic
GND Geometrically necessary dislocations
HCGE Hot carrier gas extraction
HCP Hexagonally-closed packed
HT Homogenization treatment

ICP-OES Inductively-coupled plasma - optical emission spectroscopy
ISE Indentation size effect
MSS Multicomponent solid solution
NI Nanoindentation

SEM Scanning electron micropscopy
SS Solid solution

TEM Trasmission electron microscopy
TRIP Transformation-induced plasticity
TWIP Twinning-induced plasticity
UPS Ultrasonic phase spectroscopy
VRH Voigt-Reuss-Hill
XRD X-ray diffraction
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Symbols

Symbol Description Unit
a Lattice parameter m
aP Potential valley distance m
A Area m2

AV Area of Vickers indent m2

A0 Initial sample area m2

α weighting factor -
αV Angle between pyramid faces ◦

b Length of the Burgers vector m
B Bulk modulus Pa
Cij Single crystal stiffnesses Pa
di Indent diagonal lengths m
davg Average indent diagonal length m
dG Grain size m
dhkl Distance of planes with Laue indices hkl m
D Numerical factor in the Labusch model -
D′ Numerical factor in the Labusch model -
δ Varvenne misfit -
δF Fleischer misfit -
eA Number of valence electrons per atom -
E Young’s modulus Pa
Ered Reduced modulus Pa
EInd Indentation modulus Pa
ESD Solute-dislocation interaction energy J
Ekink Kink formation energy J
ESI Energy to form self-interstitials J
EV Energy to form vacancies J
∆Eb Energy barrier J

∆Ẽp Change in solute-dislocation interaction energy J
εE Engineering strain -
εF strengthening parameter in the Fleischer model -
εL strengthening parameter in the Labusch model -
ε̇ Experimental strain rate 1/s
ε̇0 Reference strain rate 1/s
η Dielastic interaction parameter -
η′ Corrected dielastic interaction parameter -
fcorr Correction function -
fedge Edge dislocation pressure field -
fEb Numerical factor -
f τy0 Numerical factor -
F Force N
g Gravitational acceleration m s−2

G Shear modulus Pa
Γ Dislocation line tension Jm−1
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h Indentation depth m
ℏ Reduced Planck constant J s
H Vickers hardness Pa
HV Vickers hardness kgfm−2

nH Nanohardness Pa
∆H Experimental enthalpy barrier J
I X-ray intensity Wm−2

k Boltzmann constant JK−1

kG Number of counted grains -
K Effective anisotropic shear modulus Pa
Km Misfit volume ratio for interstitial species m -
κ Energy barrier parameter -
l0 Initial sample height m
L Kink glide distance m
LG Length of lines for grain size determination m
L0 Kink glide distance at critical stress m
λ Wavelength m
∆l Change in sample height m
m Strain rate sensitivity -
µ Pearson correlation coefficient -
n Constituent elements of a solid solution -
ν Poisson’s ratio -
νD Debye frequency Hz
P Load N
PS Term used in the Suzuki model Pa4

Q Term used in the Suzuki model -
R Term used in the Suzuki model Pa4

R2 Coefficient of determination -
R2

adj Adjusted coefficient of determination -
ρ Dislocation density m−2

S Term used in the Suzuki model Pa3

Sc Contact stiffness Nm−1

Sij Single crystal compliances Pa−1

σpx% x% Offset yield strength Pa
σE Engineering stress Pa
σy Yield strength Pa
T Temperature K
Θ Scattering angle -
ΘD Debye temperature K
τb Backstress for kink glide Pa
τc Critical stress Pa
τch Characteristic stress in the Maresca-Curtin model Pa
τk Stress required for kink glide Pa
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τP Stress required for Peierls-like advancement Pa
τxk Stress required for cross-kink breaking Pa
τy Yield strength Pa

∆τc,F Increase in critical stress in the Fleischer model Pa
∆τc,L Increase in critical stress in the Labusch model Pa
TD Temperature of onset of diffusion-controlled strength K or ◦C
TK Knee temperature K or ◦C
TM Melting temperature K or ◦C
TS Solidus temperature K or ◦C
∆U Solute-dislocation interaction energy J
v Velocity m s−1

V Unit cell volume m3

VP Potential barrier J
V ∗ Activation volume m3

∆V Misfit volume m3

wc Bow-out of a dislocation m
wk Kink width m
x Solute concentration at%
ξ Line tension parameter -
ζC Characteristic dislocation segment length m
ζSI Characteristic length scale for self-interstitial formation m
ζV Characteristic length scale for vacancy formation m
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1 Introduction and Motivation

Refractory metals are those with high melting temperatures, TM ≳ 2000◦C. Espe-
cially the refractory metals of the fourth to sixth group of the periodic table have
thus gathered an increasing interest for high temperature applications [1]. For the
application in moving parts, for example in turbines of aircraft engines, a high yield
strength and creep resistance are desired for mechanical stability, while a low density
is required for engine efficiency. In practice, the required strength for high temper-
ature applications is achieved by combining several strengthening mechanisms. In
Ni-based superalloys, the current industry standard for turbine blades [2], the high
yield strength is achieved by alloying elements for solid solution strengthening and
precipitation strengthening as well as the use of single crystalline materials [3].

Recently developed multicomponent solid solutions (MSS) made from refractory
metals show a competitive yield strength solely caused by solid solution strengthen-
ing, and maintain this high strength even at high temperatures, see Fig. 1.1 [4]. Two
refractory metal solid solutions, equimolar Nb-Mo-Ta-W (red) and V-Nb-Mo-Ta-W
(blue), retain their large yield strength up to 1600◦C. The strength of two com-
mercially available Ni-based alloys, Inconel718 (black dashed line) and Haynes230
(black solid line), which use a combination of several strengthening mechanisms,
decreases rapidly above 700◦C. These results are a promising starting point for
further developments based on refractory metal alloys, but the densities of these
alloys are still too high for a competitive commercial application. Thus, low-density
refractory metals might be added or replace the ones used. However, this might
impact the effectiveness of solid solution strengthening in these systems. For finding
the optimal balance between these properties, computer-assisted alloy design can
be used [5], where algorithms screen a large number of possible alloy compositions
automatically. However, this process relies on accurate model predictions for the
material properties, and established assumptions for the modelling of solid solution
strengthening have been disputed recently [6], as outlined in the following.
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Figure 1.1: The yield strength as a function of temperature of two refractory metal
solid solutions, equimolar Nb-Mo-Ta-W (red) and V-Nb-Mo-Ta-W (blue), compared to
two commercially available Ni-based superalloys used in high temperature applications,
Inconel718 (black dashed line) and Haynes230 (black solid line). While the Ni-based
superalloys require the combination of several strengthening mechanisms for their appli-
cation profile, refractory alloys can obtain competitive strength solely by solid solution
strengthening. Reproduced with permission from Ref. [4].

For yielding, the onset of plastic deformation, dislocations must glide through the
material. For body-centered cubic (BCC) metals and alloys, like many refractory
metals and their solid solutions, screw dislocations are known to control the yield
strength due to their high intrinsic energy barrier [7]. This barrier increases with the
introduction of solutes, leading to solid solution strengthening [7]. In solid solutions,
screw dislocations were still considered to control the yield strength [8]. This widely
accepted assumption was recently challenged by experimental results [9, 10] and by
theoretical considerations [11]. The combination of specific solute and matrix atoms
might increase the energy barrier for edge dislocations until it becomes as high as,
or even higher as for screw dislocations, leading to a yield strength controlled by
edge dislocations [11].
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Currently, it is not well understood which alloy compositions show either the com-
monly assumed strength controlled by screw dislocation motion or the unexpected
edge dislocation-controlled one. Only reports on individual or a few selected alloy
compositions are available, where contributions of both dislocation types are inves-
tigated [10, 11, 12, 13]. Criteria for the transition from screw to edge dislocation-
controlled strength can thus not be clearly identified. As a consequence, the prereq-
uisites for alloy compositions to exhibit either screw or edge dislocation-controlled
strength are unclear. Thus, predictions for unknown material compositions are diffi-
cult. The transition from screw to edge dislocation-controlled strength was studied
systematically in this work to address the following main questions:

� Is it possible to identify a transition between screw and edge dislocation-
controlled yield strength in BCC solid solutions?

� Do the observations allow the derivation of general guidelines for this transi-
tion?

To this end, two binary solid solution series, Mo-Ti and Mo-Nb, are investigated in
this work. After a review of the plastic deformation mechanisms in BCC metals and
models for solid solution strengthening, experimental strength and hardness data
are analyzed which allow to isolate solid solution strengthening in these systems.
The strength-controlling dislocation type is then identified for each alloy based on
the available models on solid solution strengthening and, finally, criteria are derived
for screw or edge dislocation-controlled yield strength in BCC solid solutions.
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2 Fundamentals

This chapter begins with a review of the mechanisms of dislocation motion in BCC
metals. In the second part, these fundamentals are then extended to dislocation
motion in solid solutions. The models for solid solution strengthening are then
discussed which have been applied to the Mo-based solid solutions in this work.

2.1 Plastic Deformation in BCC Metals

On a macroscopic level, the yield strength describes the upper stress limit for a
material to undergo exclusively elastic, reversible deformation. At a microscopic
level, several processes can lead to plastic, irreversible deformation, for example
transformation-induced plasticity (TRIP), where the applied stress leads to a crystal-
lographic transformation of the material [14], twinning-induced plasticity (TWIP),
where the applied stress causes twinning [15] or dislocation glide, where yielding is
determined by the onset of screw and edge dislocation motion [16]. This work will
focus on the last mechanism as there were no indications for the earlier mechanisms
in the alloys studied here.

Peierls [17] was the first to quantify the stress required to move an edge disloca-
tion in a simple cubic model system. In this model, a dislocation has to overcome
an energy barrier between favourable low-energy positions along the glide plane with
the help of applied stress. Due to the periodicity of the lattice, low and high energy
positions alternate periodically, see Fig. 2.1. The additional half-plane of atoms
that forms the dislocation is shown in grey. Light grey indicates the low-energy
positions, the intermediate high energy position is shown in dark grey. The graph in
b) illustrates the barrier height with respect to the Peierls energy barrier VP for the
different dislocation positions, where aP indicates the distance between low-energy
positions. Based on this derivation, the low-energy positions are called Peierls val-
leys, while the energy barrier itself is called Peierls barrier. The stress necessary
to overcome this barrier, the critical stress, is then called Peierls stress. Although
Peierls’ original concept was developed for a simplified model system, these terms
are sometimes also adopted for any periodic energy barrier to dislocation motion,
irrespective of the crystal structure or dislocation type [18]. These terms will also be
used here due to their simplicity, while keeping the conceptual imprecision in mind.
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a)

b)

aP

1 2

Figure 2.1: a) An edge dislocation gliding in a simple cubic structure, following the
derivation of Peierls [17]. The additional half-plane of atoms is colored in grey. The
bright grey color indicates low-energy positions, the Peierls valleys. The dark grey
intermediate state indicates the position with highest energy. The dotted line indicates
the glide plane. b) The corresponding Peierls barrier VP, assuming a sinusoidal barrier,
as a function of the dislocation position in units of the Peierls valley distance aP.

A second energy barrier needs to be considered as well for dislocation motion. Dislo-
cations form along many different directions within a crystal or grain. Consequently,
other dislocations intersect the glide plane of a given dislocation. Dislocation-
dislocation-interactions (DDI) then can lead to pinning points against glide, which
need to be overcome. The combination of the Peierls barrier and the barrier set by
DDI then determines the onset of dislocation motion and, consequently, yielding [19].

When the yield strength of body-centered cubic and face-centered cubic (FCC)
metals is compared at different temperatures, different behaviors become apparent.
In Fig. 2.2, the yield strength of polycrystalline Mo as typical BCC metal [20] (grey
dashed line) and Ni as typical FCC metal [21] (black solid line) are shown as a func-
tion of temperature. The strength of Ni decreases almost linearly with increasing
temperature. The slight inflection at approximately 550◦C, marked as TD, indi-
cates the onset of diffusion-controlled dislocation motion, which further reduces the
strength. For Mo, the yield strength decreases with a steep slope until approximately
300◦C, the so-called knee temperature marked with TK. Above this temperature,
the yield strength behavior of Mo and Ni show similar trends. This transition will
be explained below. At around 1000◦C, diffusion processes become significant in
Mo, leading to the steeper drop in strength with increasing temperature.
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Figure 2.2: Yield strength of polycrystalline Mo [20], a typical BCC metal (grey dashed
line), and polycrystalline Ni [22], a typical FCC metal (black solid line), as a function
of temperature. Below the knee temperature TK of Mo, both metals behave differently
with increasing temperature. Above TK, the behavior becomes similar. TD marks the
approximate onset of diffusion-controlled strength, leading to inflection points in the
functions.

In addition to the different low-temperature slopes of Mo and Ni, BCC metals also
show strain rate-sensitivity below TK, i.e., the yield strength increases with higher
applied strain rate [23]. Both low-temperature phenomena indicate that dislocation
motion must differ in both crystal structures below this critical temperature.

A peculiarity of screw dislocations in BCC metals leads to this different behavior
between both structures [8]. Screw dislocations are aligned along ⟨111⟩ directions in
a BCC structure. Viewed along this direction, local stresses around the screw dislo-
cation core simultaneously extend on several non-parallel planes [24]. Fig. 2.3 shows
results of a simulation of the atomic displacements around a screw dislocation in Mo
as differential-displacement maps. The arrows indicate the difference in atomic po-
sitions around the dislocation compared to the non-distorted crystal, normalized to
b/3, where b is the length of the Burgers vector [25]. Fig. 2.3 a) shows displacements
along the dislocation line, out of the paper plane, b) shows displacements perpen-
dicular to it, magnified by a factor of 15 [26]. The displacements are localized along
three non-parallel {110} planes, indicated as arrows in the bottom left. In BCC
structures, these are the close-packed ones, thus these are also the expected glide
planes. However {112} and {123} planes, which also contain the 0.5 a ⟨111⟩ Burgers
vector, have also been reported [27]. This dislocation core extension onto several
non-parallel planes, its non-planar core structure, is unique to screw dislocations in
BCC metals from among dislocations in BCC and FCC metals [28] and leads to the
different behavior of BCC and FCC metals.
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[011] [101] [011] [101]

a) b) 

Figure 2.3: Differential displacement maps for a screw dislocation in Mo, viewed along
⟨111⟩. The arrows indicate the difference in nearest-neighbor positions of atoms between
an undistorted crystal and a crystal with dislocation. All arrows are normalized so that
the longest arrows indicate a displacement by b/3 [25]. The 110 planes are indicated.
a) For displacements along the dislocation line direction, i.e, out of the paper plane,
and b) for displacements perpendicular to it. These arrows have been magnified by a
factor of 15. The threefold symmetry parallel to the 110 planes becomes apparent, i.e.,
the non-planar core structure of screw dislocations. Reproduced with permission from
Ref. [26]. Copyright ©2006 Taylor & Francis Group.

In order to advance a screw dislocation, its core has to be transformed temporarily
into a planar one, extended only on one distinct glide plane, which is an energetically
costly process [28]. Thus, screw dislocations in BCC structures have a much larger
energy barrier against motion and, accordingly, much higher critical stresses are
required to advance screw dislocations. For example, simulations in Mo indicate a
critical stress ten [29] or 30 times [30] as high for screw as for edge dislocations.
For screw dislocations, it is thus more favorable to advance only small segments at
once instead of the entire dislocation, see Fig. 2.4. The non-planar dislocation core
becomes planar for this small segment only, which then is able to advance into the
next Peierls valley, where the core relaxes again into its non-planar configuration.
This small dislocation segment is still connected to the remaining dislocation line
via step-like extensions across the energy barrier, which are called kink-pairs. With
applied stress, the kinks can glide along the barrier away from each other, moving the
dislocation stepwise into the next valley. The required stresses for kink glide along
the constant energy barrier are small compared to the ones required for kink-pair
formation [8].
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Figure 2.4: An illustration of the dislocation advancement via kink-pair formation.
a) A screw dislocation lying in ⟨111⟩ direction in an Peierls valley (dashed line). The
non-planar dislocation core is illustrated as the three extending lobes along the (110),
(101) and (011) planes, cf. also Fig. 2.3. b) When a stress τ is applied, the latter two
lobes become confined onto the (110) plane. c) The now planar core segment extends
across the barrier into the neighboring Peierls valley. d) The core of the small advanced
dislocation segment becomes non-planar again to lower its energy. The now formed
kink-pair is able to glide along the dislocation line. Reproduced from Ref. [28] with
permission.

The formation of kink-pairs can be assisted by thermal energy and/or applied
stress [19]. This explains the strong temperature dependency of the yield strength
in BCC metals: With increasing temperature, the number of kink-pairs formed in
a given time interval increases, leading to additional dislocation motion and thus
lower resistance against applied stress. At a constant temperature, only a limited
number of kink-pairs is formed in a given time interval via thermal assistance. Thus,
to accommodate higher deformation rates, additional activation of kink-pair forma-
tion via applied stress is required, leading to a higher yield strength. Above TK,
sufficient thermal energy is available so that kink-pair formation does not limit the
dislocation motion, and only DDI controls the motion. Thus, BCC and FCC metal
behave similarly above TK.
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As the energy barriers for screw and edge dislocations are very different in BCC
metals, one might assume that plastic deformation should be controlled exclusively
by the motion of edge dislocations, i.e., the process with lower energy barrier. It is
activated at lower applied stresses than screw dislocation motion. The experimen-
tal results show, however, that the high energy process, the advancement of screw
dislocations, is the rate-limiting one. To explain this discrepancy, the process of
dislocation multiplication needs to be taken into consideration. To obtain plastic
deformation on a macroscopic scale, more dislocations have to glide than are in-
trinsically available. Thus, additional dislocations have to be generated for plastic
deformation, e.g., by activation of Frank-Read sources [31]. These sources generate
a dislocation loop, a combination of screw and edge dislocation segments. Both
types of segments have to glide away from the source before new dislocations can
be generated [32]. Thus, the higher energy barrier for screw dislocation motion con-
trols the dislocation source activation and, correspondingly, the plastic deformation
behavior.

2.2 Solid Solution Strengthening

The yield strength of solid solutions, i.e. single-phase alloys containing more than
one atom species, changes compared to a pure metal. Except for the uncommon
case of solid solution softening [33], solid solutions show a larger yield strength com-
pared to the pure base element, the so-called solid solution strengthening. Thus,
solute atoms must act as additional energy barriers against dislocation motion and
thus cause the observed solid solution strengthening. As the high energy barrier
for screw dislocations is a phenomenon based on the crystallographic properties of
BCC structures, screw dislocations were considered to be deformation rate-limiting
in BCC solid solutions as well (see, e.g., Refs. [7, 8]).

Modelling of solid solution strengthening attempts to quantify the resulting increase
in yield strength based on the interactions between solute atoms and dislocations.
Some early models, like the ones developed by Fleischer [34] and Labusch [35], did
not consider the advancement of screw dislocations by kink-pair formation. They
assumed both screw and edge dislocations to glide with low intrinsic energy barriers,
only hindered by DDI. Solute atoms would then locally increase the barrier, pin-
ning the dislocation [34, 35]. Suzuki [36] developed the first model for solid solution
strengthening that includes the advancement via kink-pair formation and kink glide.
In this model, the kink-pair formation itself is not altered by the addition of solutes.
However, solute atoms increase the energy barrier for kink glide along the barrier,
which then leads to an increase in stress required to advance a screw dislocation
into the neighboring valley.
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With the development of MSS in the last decades, solid solution strengthening in
BCC alloys found new interest (see Ref. [1], for example), and the models developed
by Labusch [37] and Suzuki [38], initially developed for binary solid solutions, were
expanded to include an arbitrary number of different solute atoms. Experimen-
tal results indicated an unexpected contribution of edge dislocation motion [9, 10].
Maresca and Curtin [11] developed a model to explain this observation: Due to
strong interactions between the strained lattice and edge dislocations [35, 39], the
energy barrier might increase until it becomes as large as or even surpass the barrier
for screw dislocations, which then would lead to edge dislocation-controlled yield
strength in these alloys. Based on the same framework as for edge dislocation mo-
tion, Maresca and Curtin also developed a model for screw dislocation motion in
the presence of solutes which respects the high intrinsic barrier [40].
All models mentioned above have been applied in the past three years to model the
strength of BCC solid solutions [11, 38, 40, 41]. However, comprehensive compar-
isons of the applicability of these models in concentrated BCC solid solutions are
not available. To that end, in this work, strengthening controlled by screw and edge
dislocations will be evaluated using four different models. They will be reviewed and
then compared to experimental results in order to determine the strength-controlling
dislocation types:

(i) The Labusch model [35], which is able to model both screw and edge dislocation-
controlled solid solution strengthening. Although it does not consider the large
difference in energy barrier for both dislocation types, it has been applied to
BCC solid solutions [41, 42, 43].

(ii) The Suzuki model [36], which only considers screw dislocation-controlled strength
by increasing the kink glide barrier due to solutes. This model has been applied
successfully to many BCC solid solutions, e.g., in Refs. [44, 45]. It continues
to be developed and extended [46]. However, its mathematical complexity
and the necessity for input parameters calculated by density-functional theory
(DFT) have limited its application.

(iii) The Maresca-Curtin models for a) screw dislocation-controlled strength [40,
47] and b) edge dislocation-controlled strength [11]. Based on common as-
sumptions, but considering the differences in energy barrier, two individual
models were developed for screw and edge dislocations.
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2.3 Fleischer Model

In the Fleischer model [34, 48], a dislocation glides unhindered under applied stress
until it encounters solute atoms on its glide plane. Upon contact, the dislocation
becomes pinned at these anchor points and it bows out between the solutes. It is
assumed that the dislocation bows out between solutes until solutes are contacted at
a constant distance. These pinning points for the dislocation can be overcome, when
the critical stress is reached. Dislocation segments then break away from the anchor
points and advance freely until the next solutes are encountered. This situation is
illustrated in Fig. 2.5.

c) t  < t  < t1 2 cb) t  < t1 c d) t = tca) t = 0

Figure 2.5: Schematic representation of dislocation-solute interactions in the Fleischer
model [34, 48]. a) Without applied stress τ , the black dislocation line lies straight on the
glide plane between point-like solute atoms located on the plane (red dots). b) When a
small stress τ1 is applied, the dislocation glides, until it contacts the solutes. c) At higher
applied stress, τ2 > τ1, the dislocation bows out more strongly between the solutes, but
remains pinned. d) When a critical stress τc is reached, dislocation segments break away
and advance to the next solutes, indicated as grey and black line before and after the
local breakaway, respectively.

Fleischer assumed that the energy barrier is equal for all solutes and can be described
as a step-like function, i.e., either the dislocation encounters the full potential barrier
or none at all [49]. According to Fleischer [34, 48], the barrier height, and conse-
quently the required critical stress, is determined by two contributions:
(i) Due to the different atomic sizes of solute and matrix atoms, the lattice is locally
distorted. This distortion, also called lattice misfit, then interacts with the stress
field around a dislocation. Fleischer quantifies this contribution via

δF =
1

a
· da
dx

(2.1)

Where a is the lattice parameter and x the solute concentration [48].
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(ii) A local change in shear modulus due to solute atoms leads to a change in elastic
energy stored in the dislocation, analogously to (i) called modulus misfit.

η′ =
η

0.5η + 1
with (2.2)

η =
1

G
· dG
dx

(2.3)

Where G is the alloy shear modulus.
The considerations of Fleischer then lead to an increase in critical stress compared
to the pure base element as

∆τc,F ∝ ε
3/2
F x1/2 (2.4)

Here, εF combines the contributions of both misfits assuming a linear superposition
of both effects as εF = α δF + η′. The numerical factor α quantifies the interaction
strength of the lattice misfit with screw and edge dislocations, suggested to be
α = 16 for edge dislocations and α = 3 for screw dislocations based on correlation
plots with experimental data [34]. These numbers reflect the stronger interactions
between the hydrostatic stress components of the solute and the edge dislocation
compared to the short range stress components of the screw dislocation.
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2.4 Labusch Model

The Labusch model [35] builds upon some of the considerations described above.
However, a number of improvements are incorporated, see Fig. 2.6:

(i) The model accounts for the random distribution of solute atoms, i.e., the
assumption of a constant distance between pinning solutes is lifted.

(ii) It introduces a gradually changing interaction potential over distance between
solutes and dislocation instead of a step-like function. Accordingly, an inter-
action range of the potential also needs to be assumed.

(iii) Not just solutes directly on the glide plane are considered, but those on neigh-
boring parallel planes as well, leading to dislocation obstacles with different
strengths.

(iv) The total dislocation energy is minimized in a trade-off between dislocation
line tension and local energy maxima due to the solute configuration. This
allows local deviations from a straight dislocation line to avoid unfavorable
solute configurations.

b) t = tca) t = 0 c) t = tc

Figure 2.6: Schematic representation of the dislocation motion in the Labusch
model [35]. a) Without applied stress τ , the black dislocation line bows out between
solutes. The red solutes lie in the glide plane, the smaller blue ones on neighboring
planes. Accordingly, their interaction strengths are different, indicated as circle size.
b), c) When the critical stress τc is reached, dislocation segments can overcome locally
the energy barrier set by the solute configuration. In b), the outer two segments have
advanced. The former positions are indicated by the grey line. In c), also the center
segment has advanced.
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In order to advance the dislocation, additional energy is required to overcome these
local barriers. Labusch [35] derives a system of equations to describe the interplay
between line tension and a random distribution of solutes. This system can then be
solved for the energetically most favorable dislocation shape, and consequently the
expected energy barrier for the most unfavorable solute configuration. The critical
stress to overcome this barrier, ∆τc,L, is [35]

∆τc,L = DGε
4/3
L x2/3 (2.5)

Which, as in the Fleischer model, has to be added to the critical stress of disloca-
tion motion in the pure base element (BE), leading to the total stress of the solid
solution as τSS = τBE + ∆τc,L. Labusch [35] adopted the misfit parameters δF and
η′ from Fleischer, but his calculations lead to a different combination of both mis-
fits, εL =

√
η′2 + α2δ2F. Again, α is assumed to be 16 for edge dislocations and 3 for

screw dislocations. D subsumes several numerical factors dependent on the assumed
shape, height and interaction range of the solute barriers. While no numerical val-
ues for D were provided initially [35], Refs. [50] and [51] give D = 0.0013, while
Ref. [52] gives D = 0.0018 for Cu solid solutions based on experimental data. The
latter value has also been adapted for Mo solid solutions [42, 43].

In a comprehensive comparison between the Fleischer and Labusch models of solid
solution strengthening, Leyson and Curtin [53] found that the latter should be pre-
ferred over the Fleischer model for solute concentrations x ≳ 0.01 at%, where the
exact transition concentration depends on the used input values. Thus, for all prac-
tical applications, the Labusch model should be used. As the Labusch model has
been applied to model solid solution strengthening in BCC solid solutions [41, 42, 43]
it will be evaluated here against the experimental data.

A formulation for two different solute species was presented as ∆τc,L = DG (x1 ε
2
1+

x2 ε
2
2)

2/3 [49] and adopted in an early model for solid solution strengthening in
MSS in generalized form [37]. Recent works [41, 43] applied the Labusch model
to experimental data in binary BCC refractory solid solutions. In Ref [43], the av-
erage measured change in hardness per solute concentration was compared to the
Labusch strengthening parameter in dilute Mo solid solutions, evaluating ∆H/∆x ≃
∂H/∂x ∝ εL. The highest correlation factor R2 was found for α = 18. Ref. [41] used
the difference in measured hardness between concentrated, refractory solid solutions
and the pure constituent metals in comparison to the Labusch model prediction,
∆H ∝ Gε

4/3
L x2/3. The best correlation quality was achieved for α = 16. Both re-

sults thus indicate edge dislocations as strength-controlling dislocation type in these
solid solutions.

Due to the large difference in critical stress for screw and edge dislocations in BCC
metals, an experimental determination of ∆τc,L always refers to (the higher) τc,screw.
Thus, values obtained for ∆τc,L resemble a lower bound for strengthening and, there-
fore, a lower bound for α.
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2.5 Suzuki Model

In contrast to the Fleischer and Labusch models described above, the Suzuki model
[36, 54, 55] addresses the high critical stress for screw dislocation motion and the
resulting motion by kink glide in BCC alloys. The energy required for kink-pair
formation is assumed to be much lower than the energy required for kink glide and
is therefore neglected. Accordingly, kink-pair formation is not considered a defor-
mation rate-limiting contribution, and it is assumed that there is always a sufficient
number of kink-pairs available [36]. The concepts used in the Suzuki model are
presented in Fig. 2.7. An initially straight dislocation line (a) spontaneously forms
kink-pairs when stress is applied (b). These kinks then can glide along the disloca-
tion line when sufficient stress is applied to overcome the energy barrier set by the
solute fluctuations, advancing the dislocation segment-wise (c). When kink-pairs on
different glide planes form (d) and glide, they form cross-kinks, which serve as high
energy barrier positions for kinks.

During kink glide, the atomic environment around a screw dislocation changes, de-
pending on the number of solute atoms entering or leaving the vicinity. According
to Suzuki’s calculations [36], the six closest atom columns around the dislocation
line interact significantly with the dislocation and impact the energetic environment
during kink glide. Therefore, these six closest positions are used in the model, see
Fig. 2.8.

b) c) d) e)a)

Figure 2.7: Fundamental concepts used in the Suzuki model. a) Without applied stress,
the dislocation line (black line) lies straight in the glide plane. Light and dark blue atoms
indicate constituent atoms in a binary solid solution. b) When stress is applied, kink-
pairs form spontaneously along the dislocation line. c) Kinks glide along the dislocation
line (red arrows), changing the local atomic environment of the dislocation. d) Kink-
pairs can form on different possible glide planes. Here, the orange shaded kink-pair
forms on a different glide plane. e) When kinks from different glide planes collide, a
cross-kink is formed, which represents a strong pinning point against further dislocation
motion.
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Stress is required for kinks to glide along the dislocation line to counteract the
mutual attraction of the kinks in a pair [8]. However, due to the constantly changing
energetic environment during kink glide, the stress for kink glide in a solid solution
increases significantly compared to the kink glide in a metal. The solute distribution
and thus the distribution of encountered energy barriers is a statistical process and
the following equation is derived for the average kink glide distance L [55]:

1√
2 π

∫ ∞

κt

exp(−0.5 y2)dy =
b

3Lx (1− x)
(2.6)

x is the solute concentration1, b is the length of the Burgers vector and κ is a di-
mensionless parameter characterizing the energy barrier height for kink glide. The
average glide distance is then calculated based on the probability for a kink to en-
counter a barrier of threshold height κt or larger [44]. This barrier is eventually
overcome by thermal assistance after a dwell time based on the Debye frequency νD.
This waiting time is assumed to be large compared to the actual glide duration for
the calculation of the velocity of a kink vkink [44]. Each kink on a screw dislocation
glides by L on average, moving the entire dislocation by the distance of one Peierls
valley aP. Thus, L/vkink = aP/vdislocation. This provides a link between the statistics
of individual kink motion and macroscopic deformation [55].

Using an equation for the dislocation density [56] and a term for the activation
enthalpy of kink motion, the following expression for the stress required to move
kinks, τk, was derived [44]:

0 = τ 4k + S · τk −R (2.7)

where

S =
18κ2

t E
2
SD x (1− x) kT

a3P b
4w2

k

· ln
(
(5 π kT )2 νD aP b

2

(GbV ∗)2ε̇ wk

)
(2.8)

R =
27κ4

t E
4
SD x2 (1− x)2

a4P b
6w2

k

(2.9)

V ∗ =
3κ2

t E
2
SD x (1− x)

2 τ 2k aP b
2

+
τ 2k a

3
P b

4w2
k

6κ2
t E

2
SD x (1− x)

(2.10)

In these equations, ESD denotes the interaction energy between a solute and the
dislocation. k T is the thermal energy using Boltzmann’s constant k and the absolute
temperature T . wk is the kink width, the average distance between the kinks of a
kink-pair, which is typically assumed as wk ≈ 10 b [40, 45]. V ∗ is the activation
volume of deformation. ε̇ denotes the experimental strain rate. νD is the Debye
frequency, which is used to estimate the dwell time and calculated from the Debye
temperature as νD = ΘD · k

ℏ using the thermal energy and the reduced Planck
constant ℏ.

1In contrast to Ref. [55], Refs. [36, 38, 44, 54] replace the term x(1 − x) by x. None of the
authors, not even Suzuki, comment on this difference. The first version is symmetrical around
x = 0.5, when the solute element becomes the matrix and vice versa. The second term can be
considered an approximation for small concentrations, x (1 − x) ≈ x for x ≪ 1. As the model is
applied to concentrated solid solutions in this work, the complete term will be used.
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In the second term of Eq. 2.10 for the activation volume, the term x (1−x) appears
in the denominator. For dilute solid solutions, the equation then results in unre-
alistically large activation volumes. In these cases, the strength contribution from
kink-pair formation cannot be neglected in comparison to the other processes, thus
a fundamental model assumption is invalid. Rao et al. [46] give a minimum solute
concentration of x = 5at% for the Suzuki model.

Kink-pairs can form on different glide planes. When gliding kinks from different
planes collide, cross-kinks are formed. These cross-kinks represent a high energy
barrier against any further kink glide with κ ≥ κt, see Fig. 2.7. Thus, cross-kinks
are assumed to form at an average distance of 2L and can be overcome by bowing
out of the dislocation in between the cross-kinks, similar to the process in precipitate
strengthening. The stress to overcome these cross-kinks τxk is then calculated as [55]

τxk =
Gb

4L
(2.11)

The strength contributions of kink glide and the cross-kink mechanism add up to
the total strength τtotal,

τtotal = τk + τxk (2.12)

τxk decreases with increasing glide distance L, while τk increases. Thus, the total
strength reaches a minimum value for an intermediate distance of L0, i.e. ∂τtotal/∂L =
0 at L0. The critical stress required to advance the dislocation is then the value of
τtotal at that glide distance, τtotal(L0) = τy. The minimization of τtotal with respect
to L results in the following equation [44]:

κ2
t − ln

(
κ2
t

)
− 2 ln

(
3Gx (1− x)

4
√
2π τkQ

)
= 0 (2.13)

With the abbreviations Q and P

Q =
2S τk − 4R− PS

3S τk − 4R− PS

(2.14)

PS =
4 kT

V ∗
3S τk − 2R

τk
(2.15)

where all quantities are defined above, see Eqs. 2.7 to 2.10. When PS is omitted to
simplify the calculations [54, 55], a relative error of less than 1% is made [44]. As
the inclusion of PS does not change the calculation times significantly on modern
computers, it is included in the calculations presented below. Eqs. 2.6, 2.7, 2.11,
2.12, 2.13, together with the equations for PS, Q, R, S and V ∗ have to be solved
simultaneously. The complexity of this set of interdependent equations has hindered
a widespread application and further developments based on this model for a long
time.
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Twenty years after its original publication, an approximation for small concentra-
tions was derived and applied to dilute Fe solid solutions [44]. However, this simpli-
fied set of equations still required numerical solutions using a computer. A strongly
simplified approximation was also suggested [55]:

τy,simple =
E2

SD x (1− x)

3 kT b3
(2.16)

The recent advancements in computation power allow to determine the interaction
energy ESD via DFT calculations more precisely than earlier estimates and allow to
find numerical solutions for the set of equations more rapidly. Based on the success
in predicting the strength in several MSS [38], the model was subsequently expanded
by Rao and co-workers [45, 46, 57]. Several modifications to the original formulation
have been proposed:
(i) Instead of an Orowan-like mechanism for the bow-out between cross-kinks, break-
ing is considered, which requires the formation of vacancy-self-interstitial dipoles.
Thus, Eq. 2.11 is replaced:

τxk = 0.707
ESI + EV

4 b2 L
(2.17)

where ESI and EV are the energies required to form self-interstitials and vacancies,
respectively [45].
(ii) For systems containing more than two components, two different extensions are
proposed. Following the concept that all constituent elements can be considered
solutes in a virtual average alloy [40], strengthening contributions by all constituent
elements n are calculated individually [45]. The total MSS strength is then cal-
culated as τtotal, MSS =

∑
n τn. Alternatively, the interaction energies for different

solutes En are combined via E2
total =

∑
nE

2
n ·xn with their respective concentrations

xn to a total interaction energy. This then replaces the value ESD in the original
model.
(iii) Suzuki [36, 54, 55] assumed a constant energy interaction parameter ESD be-
tween atoms of the six closest columns (nearest and second-nearest neighbors) and
the screw dislocation. In the extension, this interaction is expanded to more atom
columns. Additionally, the interaction energy is allowed to be different among the
different neighboring columns based on DFT calculation results, see Fig. 2.8. In
a), the relative interaction energy between solute positions and a dislocation (blue
dot) are presented as numbers in the circles according to Suzuki’s original cal-
culations [36]. Nearest neighbor atomic columns are indicated as orange circles,
second-nearest ones as brown circles, and their energies are assumed to be equal,
0.93 ≈ 1. Farther neighboring positions, which are shown in white, are not in-
cluded in the Suzuki model calculations. In b), DFT calculated, relative energy
values are presented exemplary for Mo solutes in Nb [46]. The relative strengths
of third-(yellow) and fourth-nearest (light red) neighbors were also included in the
calculation of the total interaction energy. The reference value for nearest neighbors
is E1,Mo in Nb = 200meV.
In the three closest shells of atomic columns surrounding the dislocation, the re-
spective energy contributions would be E1, E2 and E3, for the columns in the first,
second, and third nearest shells, respectively. By counting how many atoms change
their relative position to the dislocation after a glide to the next Peierls valley, an
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equation for the total change in interaction energy ESD is obtained. This change in
energy is redistributed onto the six closest atoms, which maintains the fundamental
statistical considerations from Refs. [36, 54, 55]. For the three closest neighboring
columns, the formula yields

6E2
SD = 6E2

3 + 2E2
2 + 2 (E1 − E3)

2 + 2 (E3 − E2)
2 + 2 (E1 − E2)

2 (2.18)

The authors of Ref. [46] note the generality of this Ansatz to include interactions
with farther atom columns. Values for these interaction energies are currently only
available by first-principles simulations, e.g., for Mo, Ti and W solutes in Nb [46].
(iv) At high temperatures, diffusion leads to a recombination of vacancy-self-interstitial
dipoles. During dislocation advancement, this leads to a gradient of vacancy and
self-interstitial concentrations with respect to the dislocation, and, as a consequence,
an additional drag on the cross-kinks and an increase in strength [45]. Rao et al. [45]
estimate this phenomenon to be active above ≈ 0.5TS. It will not be considered
further here, as in this work, only room temperature behavior (e.g., Troom ≈ 0.13TS

for Mo-50Ti) is studied.

In addition to the modifications for substitutional solid solution strengthening,
Ref. [57] proposes an adaptation for interstitial strengthening in BCC refractory
metals. A linear dependency of yield strength on the interstitial solute concentra-
tion was reported, for example, for up to 0.24 at% O in Nb.
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Figure 2.8: Atomic columns in a BCC structure, viewed along a ⟨111⟩ direction.
The blue dot represents a screw dislocation. Colored circles represent the atomic
columns that are considered for solute-dislocation interactions in (a) the original Suzuki
model [55] and (b) the extended model by Rao et al. [46]. Nearest-neighbor to fourth
nearest-neighbor atomic columns of the dislocation are coded using orange, brown, yel-
low and light red, respectively. Columns of white circles are not considered in the
respective models. The numbers in the circles indicate the relative strength of inter-
action energy between dislocation and solute atoms located in the respective column,
according to (a) Suzuki’s calculations relative to a fundamental interaction energy ESD

for each alloy system [55] and (b) according to DFT calculations for Mo solutes in Nb,
using EF,Mo in Nb = 200meV as reference.
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2.6 Maresca-Curtin Models

The Maresca-Curtin models [11, 40] were developed for solid solutions with an ar-
bitrary number of constituent elements n. Each atom, also the matrix atoms in a
binary solid solution, is considered a solute in a hypothetical “average alloy”, which
has the macroscopic properties of the random solid solution [39]. Interactions be-
tween a dislocation and the atoms arise then from the local deviations between the
properties of the average alloy and the properties due to the actual atomic configu-
ration. If experimental data of the properties of the macroscopically average alloy
are not available, they can usually be approximated by a linear rule-of-mixture of
the respective constituent element properties (e.g., Refs. [11, 12, 13, 58], but see
Ref. [59] for a counter-example).

Following the considerations by Labusch [35], the dislocation shape can deviate
from a straight line in a trade-off between dislocation line tension and energetically
unfavorable local element fluctuations [39]. However, shortcomings of the Labusch
model, e.g., the necessary assumption of the interaction range, are addressed [39].
Two characteristic length scales arise naturally for a non-straight dislocation from
the calculations: Assuming the dislocation is aligned along the z-direction, segments
of a characteristic length ζc parallel to z bow out. In the x − y-plane, perpendicu-
lar to the dislocation line, these segments bow by an average distance of wc away
from the initially straight dislocation line. In the Maresca-Curtin models, the total
change in solute-dislocation interaction energy by bowing out, ∆Ẽp(wc), is described
as [39] (

∆Ẽp(wc)
)2

=
∑
n,i,j

xn∆Un(xi, yj)
2 with (2.19)

∆Un(xi, yj) = Un(xi + wc, yj)− Un(xi, yj) (2.20)

By bowing out by wc (arbitrarily set along the x-direction), the interaction energy
Un between a solute of species n at position (xi, yj) and the dislocation changes by
∆Un. The changes in interaction energy are then subsumed for all solute species at
all possible positions (xi, yj), weighted by their respective concentrations xn, in the
parameter ∆Ẽp.

Again, adapting the assumptions of the Labusch model as described in Sec. 2.4,
the bow-out reduces the potential energy while the elastic energy of the dislocation
increases. For edge dislocations, this is considered via an elastic energy proportional
to the dislocation line tension, Γelastic ∝ ξ G b2, with ξ being a numerical constant.
Due to the low intrinsic barrier, the dislocation bow-out wc can extend across sev-
eral Peierls valleys. For screw dislocations with high barrier, the dislocation can
only bow out into the next Peierls valley by forming kink-pairs, and then wc = aP.
Accordingly, the energy increase is calculated using the kink formation energy Ekink.
Calculating the minimum of the total dislocation energy with respect to wc and ζc
yields results for these length scales and allows to derive the energy barriers required
to advance a dislocation [11, 40].
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2.6.1 Edge Dislocation Model

When only elastic interactions between a dislocation and solute atoms are assumed,
the solute-dislocation interaction energy can be described as [11]

Un(xi, yj) = − G

3π

1 + ν

1− ν
fedge(xi, yj)∆Vn (2.21)

Where G and ν are the shear modulus and Poisson’s ratio of the alloy, respectively.
This allows to separate the solute specific misfit volume ∆Vn from the dimensionless
dislocation stress field for an edge dislocation fedge(xi, yj), which is independent of
the solute species. Using Eqs. 2.19 and 2.20 and minimizing the total dislocation
energy, fedge(xi, yj) reduces to two numerical values, f τy0 and fEb for the zero Kelvin
strength and the energy barrier, respectively. In Ref. [11], numerical values for these
parameters were obtained by comparing the elastic approximation to exact numerical
simulations for different solute-matrix combinations. A single set of f τy0 and fEb

yielded good agreement between the approximated model and simulated data for
alloys containing two, three, four and five elements [11]. The resulting equations for
τy0,edge and ∆Eb are then

τy0,edge = 0.04 ξ−1/3G

(
1 + ν

1− ν

)4/3 [∑
n xn∆V 2

n

b6

]2/3
(2.22)

∆Eb = 2 ξ1/3 Gb3
(
1 + ν

1− ν

)2/3 [∑
n xn∆V 2

n

b6

]1/3
(2.23)

Combining these results with equations for the strain rate and shear strength as
a function of energy barrier, a phenomenological equation for the yield strength is
obtained

σy,edge(T, ε̇) = 3.06 · τy0,edge · exp

(
− 1

0.55

(
kT

∆Eb

· ln
(
ε̇0
ε̇

))0.91
)

(2.24)

where ε̇0 = 104 s−1 is a reference strain rate [11], ε̇ the experimental strain rate and
k T the thermal energy. A Taylor factor of 3.06 was included here for edge dislocation
slip in polycrystalline BCC alloys (⟨111⟩ slip directions, {110} slip planes) [60].
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One important contribution to edge dislocation strengthening in this model is the
misfit volume term

∑
n xn ∆V 2

n , which quantifies the difference in atomic volume of
the actual solid solution compared to the hypothetical average alloy. In Ref. [61],
the formal definition for ∆Vn is presented as

∆Vn =
∑
m

xm

(
∂ Valloy

∂ xn

− ∂ Valloy

∂ xm

)
(2.25)

with n and m both indicating solute species. For MSS, this definition thus requires
full information about the change in atomic volume of the alloy as a function of
all constituent elements. Instead, an approximation is commonly used, where the
difference between the atomic volumes of the constituent elements Vn and the alloy
Valloy is calculated [5, 12, 13]

∆Vn =
∑
m

xm (Vn − Valloy) (2.26)

For binary solid solutions, the change in atomic volume as a function of the concen-
trations of the constituent elements can be obtained. Accordingly, a more precise
calculation of the volume misfit is possible and, as a consequence, a more precise
calculation of edge dislocation-controlled strengthening. Using the chain rule, the
partial derivatives in Eq. 2.25 can be rewritten as

∂V

∂xn

=
∂V

∂a

∂a

∂xn

= 1.5 a2
∂a

∂xn

(2.27)

where V = a3/2 as atomic volume for BCC structures was used. Thus,

∆Vn = 1.5 a2
∑
m

xm

(
∂ a

∂ xn

− ∂ a

∂ xm

)
(2.28)

This leads in a binary system with m = 1 or 2 to

∆V1 = 1.5 a2 x2

(
∂a

∂x1

− ∂a

∂x2

)
(2.29)

∆V2 = 1.5 a2 x1

(
∂a

∂x2

− ∂a

∂x1

)
(2.30)

When the lattice parameter is expressed as function of one of the constituent ele-
ments, a = a(x1), then

∆V1 = 1.5 a2 (1− x1)
da

dx1

(2.31)

∆V2 = −1.5 a2 x1
da

dx1

(2.32)

Similar to the lattice misfit used in the Fleischer and Labusch models, δF, a dimen-
sionless volume misfit parameter has been defined [61]

δ =
1

3Valloy

√∑
n

xn∆V 2
n (2.33)

where Valloy is the unit cell volume of the alloy. Inserting Eqs. 2.31 and 2.32 reveals
a relationship between both misfit quantities for binary systems as

δ = δF
√

x (1− x) (2.34)
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2.6.2 Screw Dislocation Model

In contrast to the model for edge dislocations, a separation of dislocation pressure
field and solute dependent properties (like the volume misfit) is not possible. Thus,
the interaction energy between dislocation and solutes remains in the model as pa-
rameter. Due to the high energy barrier, the bow-out distance wc becomes the
separation of neighboring Peierls valleys aP. The combination of reducing the dis-
location energy due to local favorable solute configuration, described by ∆Ẽp, and
the necessity to form kink-pairs, included as kink formation energy Ekink, leads to a
characteristic length scale ζc

ζc =

(
1.083

Ekink

∆Ẽp

)2

b (2.35)

The average dislocation segment length is then 2.5 ζc.
As the dislocation is already kinked in its inital state, the stress for kink-pair forma-
tion is not included in this model. Ghafarollahi and Curtin [47] developed a model
for dilute solid solutions, where kink formation is included. In this model, addi-
tional input data are required, which can be obtained, e.g., by DFT calculations.
As they estimate a significant impact only below solute concentrations of 5 at%, it
is not further considered for the concentrated solid solutions studied in this work.
Three mechanisms are considered for the advancement of screw dislocations, see also
Fig. 2.9:

(i) A mechanisms similar to the original concept developed by Peierls, where a
complete segment of length 2.5 ζc advances by aP simultaneously, accordingly
denoted as “Peierls-like advancement”.

(ii) The glide of kinks along the dislocation line with an average glide distance
2.5 ζc in a changing energy environment.

(iii) The breaking of cross-kinks, which form when kinks on different glide planes
collide.
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b) c) d) f)a) e)

Figure 2.9: Fundamental concepts used in the Maresca-Curtin screw dislocation
model [11]. a) A straight dislocation line (black line) in a MSS (different atomic species
indicated as blue shades) spontaneously forms kinks to lower its total energy (b). c)
When stress is applied, these kinks glide along the dislocation and advance it to an
unstable high-energy position (lower red arrows). At low temperatures or high stresses,
entire dislocation segments can also advance simultaneously (upper red arrow). d) The
high-energy segment obtained by kink glide advances another valley into a lower energy
configuration, thereby forming a new kink-pair. e) Kink-pairs can form on different pos-
sible glide planes. Here, the orange shaded kink-pair forms on a different glide plane. f)
When kinks from different glide planes collide, a cross-kink is formed, which represents
a strong pinning point preventing further dislocation motion.

For screw dislocation motion, the breaking of cross-kinks is always necessary. Addi-
tionally, the mechanism of lower energy, either the Peierls-like advancement or kink
glide, is active.

σy,screw = 2.74 (τxk +min [τk, τP]) (2.36)

where a Taylor factor of 2.74 for screw dislocation slip in a random BCC polycrystal
by pencil-glide (⟨111⟩ slip directions, multiple sets of slip planes) [60] is used. The
three mechanisms will be briefly described below.

Peierls-like Advancement

This mechanism describes the advancement of an entire dislocation segment of length
2.5 ζc into the next Peierls valley [47], similar to the original concept derived by
Peierls [17]. The stress required for Peierls-like advancement,τP, is calculated as [47]

τP = τP,0

[
1−

(
∆H

∆Eb,P

)2/3
]

(2.37)

with (2.38)

τP,0 =
πVP

aP b
+

0.44Ekink

aP b ζc

(
1− 5VPζc

20VP ζc + 0.7Ekink

)
(2.39)

∆H = kT ln

(
ε̇0
ε̇

)
(2.40)

∆Eb,P =
(10VPζc + 0.7Ekink)

3

(20VPζc + 0.7Ekink)
2 (2.41)
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with the zero Kelvin stress τP,0, the total energy barrier ∆Eb,P, VP the intrinsic
Peierls barrier of the average alloy, and the experimentally set enthalpy barrier ∆H
using the same values as discussed above. For this phenomenon to be significant,
either thermally assisted kink-pair formation and glide must be suppressed or large
applied stress reduces the required energy sufficiently to advance entire segments.
Accordingly, this mechanism is only active at high stresses and/or low temperatures.
For example for Mo-Nb solid solutions, this mechanism was found to be active below
100K at a strain rate of 0.001 1/s [11] and is, thus, not further considered here.

Cross-Kink Breaking

Figure 2.10: The mechanisms for the formation of vacancy and self-interstitial loops to
break cross-kink pinning. In the left part of each image, the atomic positions close to the
dislocation core as obtained from molecular dynamics simulations are shown. The right
part of each image shows a corresponding sketch using the dislocation line visualization.
i) A dislocation, where three kink-pairs formed, abbreviated as “kp”. The dark blue
and green colors indicate the formation on different glide planes. Dark blue and green
atoms indicate the formation of the respective kink-pairs. ii) A new kink-pair, kp4,
forms on the plane parallel to kp2 and kp3 in the neighboring Peierls valley. iii) kp2
advances on the plane parallel to kp1, closing the loop marked at ck1. At ck2, another
cross-kink between green and blue kinks forms. A new kink-pair colored in light blue,
forms on the blue segment which closed the loop at ck1. iv) The light blue kink-pair
glides along the dark blue segment, separating the vacancy loop from the dislocation.
The dislocation configuration at ck2 will leave a self-interstitial loop when the dark blue
segments have been connected. At the bottom, the new cross-kinks ck3 and ck4 have
formed by collision of blue and green kinks. Reproduced with permission from Ref. [62].
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Kink-pairs can form on different glide planes, when the local energy distribution
allows for it. When these kinks glide under applied stress, they will eventually
collide, forming a cross-kink. To advance the dislocation, these cross-kinks can be
broken by the formation of vacancies and self-interstitial loops, each with their as-
sociated energy barriers EV and ESI, respectively. See Fig. 2.10 for the concept of
cross-kink breaking. The kink-pairs “kp1” and “kp2” collide, forming a cross-kink.
Depending on surrounding kink-pair formation, cross-kinks, denoted as “ck1” and
“ck2”, can be overcome either by formation of self-interstitials of vacancies. Note
that this process includes the formation of new kink-pairs, which contradicts the
fundamental assumptions of the Maresca-Curtin model. However, the additional
strength contribution due to required kink-pair formation can be neglected against
the overall energy requirement for this process. Since both mechanisms are simulta-
neously active, the one with higher energy barrier controls the cross-kink breaking.
The respective temperature and stress dependent strength for both mechanisms is
modelled as

τxk = τxk,0

[
1−

(
∆H

∆EV/SI

)2/3
]

(2.42)

τxk,0 =
π∆EV/SI

aP b ζV/SI

(2.43)

where τxk,0 is the zero Kelvin cross-kink strength with ∆EV/SI and ζV/SI being the
energy barrier and a characteristic length scale for vacancy and self-interstitial for-
mation, respectively, modelled as ζV = 7.5 ζc and ζSI = 15 ζc.

Kink Glide

The dislocation is initially kinked to lower its total energy according to the solute
distribution. For glide, kinks need to overcome an energy barrier based on the
overall change of solute concentration. This barrier height has been derived from
simulations to be 2.7Ekink over the glide distance 2.5 ζc. While this is the overall
energy increase of this distance, local energy fluctuations due to the solute distri-
bution have to be considered, too. A statistical analysis of these local fluctuations
within the framework of a Wiener process or “random walk” [63], in this case with
a preferred drift direction due to the applied stress, leads to the following equation
for the kink glide stress in concentrated solid solutions

τk (ε̇, T ) = τb + τch

3.26(∆H

∆Ẽp

− 0.06
Ekink

∆Ẽp

+ 1.07
√
wk/b

)−1

− 1.58
∆Ẽp

Ekink


(2.44)

where wk ≈ 10 b is the kink width. τch = ∆Ẽp/(aP b
2) is a characteristic stress based

on the local solute fluctuations, and τb = 2.7Ekink/ (2.5 aP b ζc) describes the overall
stress due to the energy change over the entire length as described above.
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2.6.3 Interstitial Strengthening in the Maresca-Curtin Models

The Maresca-Curtin models allow for modelling substitutional solid solution strength-
ening, but interstitial solid solution strengthening is not captured. While the simu-
lation of interaction energies between interstitial atoms and screw dislocation cores
in refractory metals have been published [57, 64, 65], the incorporation of interstitial
atoms into the models for solid solutions is still challenging. Accordingly, the impact
of interstitial solutes can only be estimated, and the mathematically simple edge dis-
location model will be used for this estimate. The following three simplifications
and approximations are made:

(i) Only the zero Kelvin strength (Eq. 2.22) is considered and only ratios between
strengths will be compared, which remain approximately constant as a function
of temperature (cf. Eq. 2.24).

(ii) The addition of interstitial atoms does not change the elastic properties of the
alloy, in contrast to experimental results, e.g., for O in Nb, Ta and V [66] or
a BCC Ti–Nb–Ta–Zr alloy [67].

(iii) The strengthening by interstitials is treated like strengthening by substitu-
tional atoms, using the mathematical form of a misfit volume.

Using these assumptions, interstitial atoms contribute to the misfit
∑

i xi ∆V 2
i . Con-

sidering m interstitial atom species and n substitutional atom species,∑
i=n,m

xi ∆V 2
i =

∑
n

xn∆V 2
n +

∑
m

xm ∆V 2
m (2.45)

The total strength in the presence of interstitials τy0,total can then be written in
terms of the strength in the absence of interstitials τy0,subst as

τy0,total = τy0,subst ·
(
1 +

∑
m xm ∆V 2

m∑
n xn∆V 2

n

)2/3

= τy0,subst ·

(
1 +

∑
m

Km xm

)2/3

(2.46)

The coefficients Km thus quantify the ratio of the respective hypothetical intersti-
tial misfit volume for each interstitial species m relative to the total misfit due to
substitutional species n. Values for Km have to be obtained either by simulations
or can be estimated using experimental data on strength as a function of interstitial
content.
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3 Experimental Methods

This chapter describes the experimental methods that have been used to character-
ize the Mo-based solid solutions. The synthesis, the homogenization treatment (HT)
and the metallographic preparation are described first, as these processes form the
foundation for all subsequent characterization methods. Microstructural analysis
by scanning electron microscopy (SEM) was used to verify the homogeneity of the
polycrystalline samples and to determine the grain size. As the mechanical prop-
erties will be compared to models for solid solution strengthening in BCC alloys,
the structure needs to be verified by X-ray diffraction (XRD). Simultaneously, XRD
also allows to determine the lattice parameters of the alloys, which is a crucial input
parameter for some of the models.
In order to verify that the alloys were synthesized with the desired compositions, sev-
eral analysis methods were applied. Energy-dispersive X-ray emission spectroscopy
(EDS) and optical emission spectroscopy by inductively-coupled plasma excitation
(ICP-OES) allow to determine the composition with respect to substitutional atoms.
Inevitable interstitial uptake also needs to be quantified to account for potential
strengthening contributions of the respective atom species. Here, hot carrier gas
extraction (HCGE) and atom probe tomography (APT) were used.
The chapter then closes with the methods of mechanical testing. Nanoindentation
(NI), Vickers hardness and compression testing were combined in order to isolate
solid solution strengthening from other strengthening mechanisms, which then can
be compared to the models.

28



3.1 Synthesis

All alloys were synthesized by arc melting in an AM/0.5 arc melter (Edmund Bühler
GmbH, Bodelshausen, Germany) equipped with a water-cooled Cu crucible. Prior
to melting, the device chamber was evacuated to a pressure of 5· 10−2mbar and
consequently purged with Ar (99.998 at% purity) for three times. A final evacuation
to 2· 10−4mbar was performed before an Ar pressure of 600mbar was set for melting.
To ensure an O2-lean atmosphere, a Zr getter was liquefied for 10 s before each
melting step in order to extract residual O2. Each button was flipped and remelted
four more times to ensure compositional homogeneity. Details on the used raw
materials are listed in Tab. 3.1. An investigation by HCGE (see Sec. 3.4) revealed
quality problems in the Mo supplied by EvoChem GmbH (Offenbach am Main,
Germany, 99.95wt%), thus Mo supplied by Plansee SE (Reutte, Austria, 99.97wt%)
was used for Mo-Nb solid solutions. Ti (99.8wt%) and Nb (99.9wt%) were supplied
by ChemPur GmbH, Karlsruhe, Germany.
Mo-Ti solid solutions were synthesized in increments of ∆xTi = 10 at% in order to
capture potential changes in strengthening mechanism due to the non-linear behavior
of the lattice parameter. Samples containing xTi = 0...50 at% were synthesized by
S.Obert (IAM-WK, KIT) [68]. Mo-Nb solid solutions were synthesized in increments
of ∆xNb = 25 at%. To obtain consistent results within each solid solution series, two
separate Mo buttons were synthesized using the Mo from the different suppliers.

Table 3.1: Raw elements used for the synthesis of the solid solutions, suppliers and
the purity according to the supplier.

solid solution series elements used supplier purity

Mo-Ti
Mo EvoChem 99.95wt%
Ti ChemPur 99.8wt%

Mo-Nb
Mo Plansee 99.97wt%
Nb ChemPur 99.9wt%

3.2 Homogenization Treatment

Bulk material of Mo-Ti solid solutions containing at least 40 at% Ti was homogenized
in a HRTH tube furnace (Carbolite Gero GmbH, Neuhausen, Germany) by annealing
at 1600 ◦C for 24 h with a heating and cooling rate of 100Kh−1 under Ar flow. The
used Al2O3 carrier boats were covered in Mo foil to prevent any reaction between the
boat and the samples. In each homogenization treatment, an additional boat filled
with new Ti sponge (99%, ChemPur GmbH, Karlsruhe, Germany) was included in
the furnace to extract residual O2 from the Ar flow.
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3.3 Sample Preparation

For compression testing and NI, parallel sample faces are required for reliable re-
sults. These samples were extracted from the as-cast buttons and homogenized
bulk material using electrical discharge machining to ensure sample shape. Speci-
mens for compression testing were 5 · 3 · 3mm3, specimens for NI 10 · 5 · 3mm3 in
size. Other samples, e.g., for microstructural and compositional analyses, XRD and
Vickers hardness testing, were extracted from the buttons or homogenized material
using a diamond wire saw model 7500 (well Diamantdrahtsägen GmbH, Mannheim,
Germany), as there are no specific requirements for the dimensions.

The contact faces of compression testing samples were prepared by subsequent man-
ual grinding with grit P320, P600, P1000 and P2500 SiC papers in a special sample
holder to ensure parallel contact faces. All other samples were hot mounted in
EpoMet F (Buehler, Lake Bluff, Illinois, USA) and automatically ground to grit
P4000 SiC paper following the preparation recipe in Tab. 3.2 on an AutoMet 300
automatic grinding and polishing device (Buehler, Lake Bluff, Illinois, USA). After
each preparation step, the samples were ultrasonically cleaned in an ethanol bath.
The samples were polished using a mixture of OP-S (Struers, Ballerup, Denmark),
which is an alkaline (pH = 9.8) suspension of colloidal 40 nm-SiO2 particles, and a
30% concentrated H2O2-water solution in a ratio of 5 (OP-S):1 (H2O2 solution) [69].
By the addition of hydrogen peroxide, surface defects are preferably oxidized and
abraded [70]. This way, a mirror-smooth surface finish was obtained. Due to differ-
ent etching rates, slight height differences were observed for individual grains.
All samples used in HCGE and ICP-OES as well as bulk material for HT were
cleaned from potential synthesis and extraction process contaminations by manu-
ally grinding all surfaces with grit P320 and P600 SiC papers, followed by ultrasonic
cleaning in an ethanol bath.

Table 3.2: The steps performed for metallographic preparation of the samples to obtain
a mirror-smooth surface. ”C” indicates central force application to the sample holder in
the automatic grinding/polishing device, ”I” indicates force application to the individual
samples. All steps were performed using counter-rotation between plate and head of the
device.

Rotation speed / min−1

Grit size Time / s Head Plate Force / N Appl.
320, 600, 1000 30 150 200 20 C

2500 120 150 200 20 C
4000 600 150 200 20 C

Polishing steps
OPS+H2O2 600 150 150 20 I

H2O 120 150 150 20 I
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3.4 Compositional Analyses

All solid solutions were characterized to determine the ratios of Mo and Ti as well as
Mo and Nb. EDS was applied to all alloys, and its results were then cross-checked
using ICP-OES on selected samples to detect potential systematic errors. In EDS,
an incident electron beam is used to excite electrons bound to the sample atoms from
their ground state. During relaxation, these electrons emit X-rays of characteristic
wavelengths for each element. Thus, the sample composition can be determined from
the intensity and energy of detected X-ray peaks. All samples were investigated by
EDS using a Si drift detector (Thermo Fisher Scientifc Inc., Waltham, MA, USA)
in an EVO50 SEM (Carl Zeiss AG, Oberkochen, Germany). Measurements were
performed at an acceleration voltage of 10 keV. At least five representative regions
of 320 µm by 240µm were evaluated, where each measurement included the X-ray
emission data collected from the entire region. The software package accompanying
the Si drift detector (Thermo Fisher Scientifc Inc., Waltham, MA, USA) identified
and quantified the elements found in EDS automatically.

On selected samples (Mo-30Ti and Mo-50Nb), the EDS results were confirmed by
ICP-OES using an iCAP 7600 DUO (Thermo Fisher Scientific Inc., Waltham, MA,
USA), operated by Dr.T.Bergfeldt (IAM-AWP, KIT). Three samples per composi-
tion were analyzed in ICP-OES. The working principle is presented in Fig. 3.1. The
samples are liquefied in acid and nebulized into an Ar plasma torch. Collisions be-
tween Ar ions and the sample atoms ionize the latter. Recombination of the sample
ions and electrons and the consequent relaxation processes lead to emission of light
with a characteristic energy spectrum for each element [71], similar to the X-ray
emissions used in EDS measurements. Again, the detected energy and intensity
distribution allow the identification of the sample composition. Depending on the
atomic shells considered during the relaxation processes, either X-ray or visible light
emission is detected and used for element identification in the respective method.

Interstitial O and N contents also need to be considered due to their potential
strengthening contribution. While HCGE yields global O and N contents of an
entire sample volume, i.e., including potential oxides, the interstitially dissolved
amounts of O and N need to be known. To compare both data sets, APT was used
as complementary method.
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Figure 3.1: The operation principle of ICP-OES: A sample is dissolved in an acidic
solution. Via a pump, the solution is transferred to a nebulizer, which sprays the
solution into a SiO2 chamber with Ar flow. The RF Power Supply introduces energy
via electromagnetic fields oscillating at radio frequencies to ignite an Ar plasma, which
in turn ionizes the sample solution via collisions. During recombination at the cool
end of the chamber, optical light is emitted, which is recorded using a CCD detector.
The resulting intensity distribution allows for identification and quantification of the
elements in the sample. Image taken from “Inductively coupled plasma optical emission
spectroscopy (ICP-OES) Overview” by Z.G. Neale, U.S. Naval Research Laboratory,
USA, licensed under CC-BY [71].

Global contents were analyzed by HCGE using a TC600 device (Leco Instrumente,
Mönchengladbach, Germany), operated by Dr.T.Bergfeldt (IAM-AWP, KIT). For
each alloy, at least three samples were analyzed. In this method, a sample is evap-
orated in a graphite crucible using an electric arc. In a He gas stream, evaporated
O2 from the sample and C from the crucible react to CO2, while the evaporated
N forms N2. After filtering other gaseous components, the gas mixture is analyzed
in both an infrared photo cell and a thermal conductivity cell. The concentration
of CO2 is determined via its absorption of infrared light in the photo cell. The N2

concentration is determined using the difference of thermal conductivity of the gas
mixture compared to the pure carrier gas. This way, the global contents of O and
N can be detected simultaneously from a single measurement [72].
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Samples of Mo-10Ti and Mo-80Ti were investigated in APT by Dr. S. Seils (IAM-
WK, KIT) to compare global interstitial content with dissolved interstitial contents.
Sharp tips suitable for APT analysis were formed using a standard procedure for
APT sample preparation, where a cantilever is extracted from the sample and placed
on Si posts. On these posts, individual tips are then formed using annular ion milling
(see Ref. [73], Fig. 3 a) ). In this case, the cantilevers were extracted from grain cen-
ters to minimize the impact of potential O enrichment at grain boundaries. Annular
milling was then performed using Ga+ ions accelerated at 30 kV in a Strata400 dual
beam SEM/focused ion beam device (FEI, Hillsboro, OR, USA). The diameter of
the milling was decreased to an inner diameter of 0.2 μm. Final milling with a closed
circular pattern was performed at 5 kV acceleration voltage to minimize the layer
affected by Ga+ ions on the tip surface [74]. Fig. 3.2 shows a secondary electron
micrograph of a representative tip prepared for APT analysis made from a Nb-Al-O
alloy, provided by M.K.Eusterholz (IAM-WK, KIT).

Figure 3.2: A secondary electron micrograph of a typical tip prepared for APT, in this
case a tip prepared from a Nb-Al-O alloy. The inset is a magnified image of the apex.
Micrograph provided by M.K. Eusterholz (IAM-WK, KIT).
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In APT, these tip specimens are placed in vacuum with a remaining pressure of
1 · 10−8 Pa or better. A high voltage of up to 10 kV is applied between the tip and
the counter electrode, see also Fig. 3.3. Due to the sample geometry, large electric
fields build up at the apex, leading to a high potential energy for atoms close to the
tip surface. Using a laser pulse, the energy of these atoms is increased to overcome
their bond energy, leading to an evaporation of the topmost atomic layer of the
tip. These ionized atoms are projected onto a detector. The arrival location on the
detector allows to reconstruct the tip location from which an ion was evaporated and
the time between laser pulse and arrival allows to determine the mass-to-charge-ratio
of each detected ion. By sequential evaporation of sample layers, a three-dimensional
distribution of evaporated ions with near-atomic resolution can be obtained [73]. By
comparing the data set to known atomic weights and ionic states of elements, the
element distribution in the sample is obtained.
APT analyses were conducted in a LEAP 4000X HR (Cameca SAS, Gennevilliers,
France). The device was operated in laser mode (UV laser with λ = 355 nm) at a
pulse energy of 100 pJ and a pulse repetition rate of 100 or 125 kHz. The temperature
was set to 50K and the standing high voltage was controlled according to a detection
rate of 0.3 or 0.5%. APT data were reconstructed and analyzed by the IVAS
3.8.8 software (Cameca SAS, Gennevilliers, France). The chemical composition was
determined using the peak deconvolution analysis of the software to take the possible
overlap of peaks into account, especially the overlap of TiO2+ and O2

+ at 32 u
e
. Both

Mo and Mo2 ions were detected in APT and analyzed separately by the software.
Results will be discussed for the dominant Mo ions only in Sec 4.3.
A frequency distribution analysis was performed by Dr.T.Boll (IAM-WK, KIT) to
determine the homogeneity of element distribution. In this method, the detected
atoms from a tip are randomly distributed into packages of 100 atoms. The frequency
of atomic compositions of these packages is then compared to (perfectly random)
binomial distributions using the so-called Pearson coefficient µ [75]. It quantifies the
likelihood that the hypothesis The solute is distributed randomly must be rejected
based on the frequency distribution of packages. Thus, µ= 0 indicates a perfectly
random distribution, while µ= 1 indicates a perfectly ordered structure.
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Figure 3.3: Working principle of APT. A high voltage VDC is applied between tip
and counter electrode. The laser pulse then evaporates the topmost atomic layer of the
specimen. These ions are accelerated towards the position-sensitive detector, where,
based on the detected signal position and time of flight, the original position and the
mass-to-charge ratio are determined. Reproduced with permission from Ref. [73].

3.5 Microstructural Analysis

The microstructure was analyzed using an EVO50 SEM (Carl Zeiss AG, Oberkochen,
Germany) operated at an acceleration voltage of 25 keV and equipped with a backscat-
tered electron (BSE) detector. The samples were characterized with regard to grain
size and dendrite formation. The average grain size was determined for Mo-Ti solid
solutions following DIN ISO 643 [76]. On a representative BSE micrograph, five
horizontal and five vertical lines are drawn. For each line of length LG, the number
kG of completely crossed grains is counted. If a line ends in a grain, kG is increased
by 0.5. The grain size dG is then calculated as dG = LG/kG per line. For each
composition, five BSE micrographs were evaluated this way and the results were
averaged. The grain size in Mo-Nb solid solutions was not quantified.
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3.6 X-ray Diffraction

In a crystal, lattice planes scatter incident X-rays. Based on constructive inter-
ference of these scattered X-rays, phase composition and the lattice parameter of
the analyzed sample can be determined. When the crystal surface is irradiated at
a specific angle Θ, the radiation scattered from adjacent lattice planes interferes
constructively, leading to an increased X-ray intensity. This angle depends on the
wavelength λ of the incident X-rays and the distance dhkl of adjacent lattice planes.
The mathematical description of this phenomenon is known as Bragg’s law [77]:

2 dhkl sin(Θhkl) = λ (3.1)

This equation is fulfilled for several plane families with their respective distances
dhkl and angles Θhkl, where hkl indicates the Laue indices of the respective plane
family. Thus, for a constant X-ray wavelength, the interplanar distances dhkl can be
calculated when the respective angles of peak intensity are known. Combining this
information with the relation between interplanar distance and the lattice parame-
ter a in a cubic crystal, dhkl = a/

√
h2 + k2 + l2, the lattice parameter of the crystal

can be calculated for each detected intensity peak with known indices. Based on
the atom positions and the resulting electron distribution in a unit cell, additional
restrictions for constructive interference arise. For a BCC unit cell, this so-called
structure factor yields constructive interference only if h+k+ l is even, thus limiting
the number of detectable peaks [77].

A D2 Phaser in Bragg-Brentano geometry (Bruker Corp., Billerica, MA, USA) was
used with a Cu X-ray tube (wavelength λKα1 =1.5406 Å). Both the source and the
detector each rotate by an angle Θ, leading to the total angle of 2Θ between incident
and scattered radiation. A range of 2Θ = 10 . . . 145◦ was covered in the measure-
ments. The step size was 2Θ = 0.01◦, and the intensity at each step was measured
for 384 s. The sample was rotated during the measurement to increase the surface
area covered by the X-ray beam. The background intensity was subtracted using
the device software. The scattering of Kα1 and Kα2 radiation, two different X-ray
wavelengths due to different spin orientations, leads to two distinct peaks per lattice
plane family. For the lattice parameter determination, the position of Kα1 was used
whenever the peaks could be differentiated.
According to Ref. [78], errors in interplanar distance determination arise, for exam-
ple, from a vertical displacement of the sample from the X-ray focal point or from
a not perfectly flat sample surface. Accordingly, the resulting lattice parameter
values deviate from the actual value. Thus, the results for dhkl, and as a conse-
quence a, need to be compensated for these errors. They scale as ∝ cot2(Θ) and
∝ cos(Θ) cot(Θ), respectively [78]. The average of both scalings was suggested in
Ref. [77] as a correction function fcorr to account for these errors.

fcorr(Θ) = 0.5
(
cot2(Θ) + cos(Θ) cot(Θ)

)
(3.2)

The calculated lattice parameters of all identified peaks are weighted by their re-
spective value of fcorr(Θ). The resulting set of data points is linearly extrapolated
to fcorr = 0 (equivalent to Θ = 90◦), where both error contributions reach their
minimal value [77]. The lattice parameter at fcorr = 0 is then considered as the
lattice parameter of the alloy.
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3.7 Mechanical Testing

In order to unambiguously determine substitutional solid solution strengthening, the
impact of other strengthening contributions needs to be evaluated and accounted
for. A multiscale approach was used for mechanical characterization to address this
complication, bridging from the nano- to the macroscopic scale:

(i) Nanoindentation (up to ≈ 1 µm depth) performed in the centers of individual
grains is unaffected by grain boundary effects, for example grain size dependent
strength [8] or a strengthening by oxide particles, which preferably form at
grain boundaries [79].

(ii) Vickers hardness (around 100µm depth) is measured over many grains, yield-
ing an average hardness value for the material, including effects by grain
boundaries. Vickers hardness is correlated to the 8% offset yield strength
σp8% [80], which allows for a comparison to macroscopic testing.

(iii) Macroscopic compression testing averages the strength over many grain ori-
entations, but is also affected by grain boundary effects. The yield strength
necessary for solid solution strengthening modelling can be obtained (or ap-
proximated) by compression testing results.

Combining all measurement methods, the impact of superimposed strengthening
contributions can be assessed. Solid solution strengthening can thus be isolated and
compared to the model-compatible descriptions of solid solution strengthening to
identify the mechanisms of plastic deformation.
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3.7.1 Nanoindentation

In NI, a tip is pushed into the sample surface. Based on the recorded data for applied
load and indentation depth, together with information on the tip shape, hardness
and indentation modulus of the indented sample can be determined [81]. This sets
NI apart from conventional indentation testing, e.g., Vickers hardness testing as
described below, where no depth-dependent data are acquired. Accordingly, only
the hardness can be extracted, and only after the completion of the indentation [82].
The principle of a nanoindentation measurement cycle is shown in Fig. 3.4 a) for a
measurement in Mo-10Ti, where the applied load is shown as a function of contact
time between tip and sample surface. The corresponding load-displacement data
are shown in Fig. 3.4 b). Different segments of the measurement cycle are indicated
by the grey dashed lines in a) and are marked by their numbers in b). In segment
1, when contact is made between tip and sample, load P is increased according to
the equation Ṗ /P = 0.05 s−1, i.e., a constant strain rate is maintained [83], until the
maximum possible load or the maximum indentation depth is reached. At maximum,
segment 2, the load is held for 10 s to account for any potentially time-dependent
deformation behavior of the sample [84]. In segment 3, the tip is retracted to 10%
of the maximum load. The tip is held at this load for 100 s to record information
on thermal drift of the sample-tip system [85]. Afterwards, the tip is retracted fully
from the sample, Segment 5, and the tip is moved to the next indentation position.
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Figure 3.4: The measurement principle of nanoindentation, exemplary for an indent
in Mo-10Ti. Load on the sample as a function of time in a) and the according load as a
function of displacement data in b). The segments of an indentation cycle are marked
with the grey dashed lines in a) and are explained in the body text. The grey numbers in
b) indicate the same segments in the load-displacement data. Marked as orange dashed
line in b) is a power law fit to the onset of unloading, after the transition from segment
2 to 3. The slope of this function can be used to calculate the contact stiffness S, which
is required in the analysis after Oliver and Pharr [86, 87].
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Using the tip area calibration, the projected contact area A can be determined based
on the displacement data. Together with the applied load P , the nanohardness nH
can be calculated as [81, 86]

nH =
P

A
(3.3)

To determine the contact depth, the actual displacement into the sample, several
processes need to be considered, which all lead to an overall change of measured tip
displacement:

(i) An elastic deformation of the sample surface around the indentation, the so-
called “sink-in”.

(ii) The elastic deformation of the tip during indentation.

(iii) The elastic deformation of the device.

(iv) Elastic and plastic deformation of the sample below the indent.

These values will be determined following the analysis after Oliver and Pharr [86, 87].
While alternative analysis methods exist, for example a comparison of elastic and
plastic deformation work [88, 89], the Oliver-Pharr method is the most established
one and was used for all analyses here (assuming ν = 0.3 for all alloys).
According to Ref. [86], the sink-in depth hs can be estimated as

hs = 0.75
P

S
(3.4)

where S is the contact stiffness, which will be explained below. The contact depth hc

is then the indentation depth minus the sink-in depth, hc = hind − hs. The relevant
quantities are schematically shown in Fig. 3.5.

Indenter
hs

hc hInd

Figure 3.5: A sketch of the relevant dimensions used in NI: The indentation depth hInd
as measured from the undistorted surface, the sink-in depth hs as elastic deformation
of the sample surface surrounding the indent and the actual contact depth hc between
indenter and sample.

The contact stiffness is defined in two ways, linking the experimental data to a
theoretical description [86]. The experimental definition is using the derivative of
the load-displacement data at the onset of unloading, i.e., immediately after the
transition from segment 2 to 3 in Fig. 3.4 b) [86]:

S = (dP/dh)at unloading (3.5)

In the Oliver-Pharr analysis, segment 3 of the load-displacement data in Fig. 3.4 b)
is fitted to a power law function. The corresponding fit is indicated as orange dashed
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line in Fig. 3.4 b) and was found to be P = 0.58mN/nm1.22 (h− 1437 nm)1.22 for
this measurement. This calculates to S = 1900 kN/m for the experimental contact
stiffness. The theoretical description of S models the elastic contact of a Berkovich
indenter and surface as [86]

1

S
=

√
π

2

1

Er

√
A

+
1

Sdevice

(3.6)

where the compliance of the measurement setup, 1/Sdevice is included. Er, the
reduced modulus combines the elastic properties of sample and tip [86] to

1

Ered

=
1− ν2

tip

Etip

+
1− ν2

sample

Esample

(3.7)

with Esample and νsample being the indentation modulus and Poisson’s ratio of the
sample, respectively. For the diamond tip, Etip = 1141GPa and νtip = 0.07 were
used [87]. The tip area function and the frame stiffness are obtained via calibration
measurements in a material with known mechanical properties [87]. Here, fused
quartz with EFQ = 74.4GPa, νFQ = 0.17 and nHFQ = 10GPa was used. The inden-
tation modulus as determined in the Oliver-Pharr method assumes isotropic elastic
properties of the indented material, which is not true in practical small scale exper-
iments [90]. The value noted above for fused quartz is the value for the macroscopic
Young’s modulus, which has been suggested by Oliver and Pharr as substitute value
for the theoretical indentation modulus [87]. In the discussion below, the indenta-
tion modulus data will also be compared to Young’s modulus data of the alloys.
Based on the load-displacement data shown in Fig. 3.4 b), a single value is obtained
for the contact stiffness S, at the transition from segment 2 to 3. Thus, all therefrom
derived values can only be calculated precisely at that depth. This problem can be
solved by using the continuous stiffness measurement method [86]. A small, vertical
oscillation of the tip is superimposed on the load signal during the loading part of
the indentation (segment 1 in Fig. 3.4 b) ), see Fig. 3.6. During each of the oscillation
cycles, unloading is performed, and a contact stiffness value can be calculated [91].
Using this depth-dependent contact stiffness data, depth-dependent hardness and
modulus values can be calculated according to the method described above.
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Figure 3.6: A sketch of the continuous stiffness measurement method. A small oscil-
lation is superimposed on the load signal. During each oscillation cycle, unloading is
performed, allowing to determine a contact stiffness S during each cycle. Reproduced
with permission from Ref. [91]

NI measurements of Mo-Ti solid solutions were performed using a Nanoindenter XP
(MTS, Eden Prairie, Minnesota, USA), while Mo-Nb solid solutions were measured
using a FT-NMT04 (Femtotools, Buchs, Switzerland) mounted in a Supra 50VP
SEM (Carl Zeiss AG, Oberkochen, Germany). Both devices used a diamond tip in
Berkovich geometry. The tip area function and device compliance were calibrated
using at least 10 indents in fused quartz to a depth of 2 µm. All samples were mea-
sured at room temperature and were indented to a maximum depth of 1.5µm. A
distance of at least 20µm was kept between indents. This follows the suggestion
of maintaining a distance of at least 10 times indentation depth between indents
to avoid dislocation-dislocation interactions [92]. The same distance was also kept
to grain boundaries to avoid grain boundary effects. Mo-Ti solid solutions contain-
ing xTi = 40 at% and more showed a dendritic microstructure in the as-cast state,
which can have an impact on the hardness detected in NI due to the small indenta-
tion depth. Thus, homogenized samples were tested, using the method described in
Sec. 3.2.
At least 10 indents per sample were analyzed using the continuous stiffness measure-
ment method. In the MTS nanoindenter, an oscillation amplitude and frequency of
2 nm and 45Hz were used, in the Femtotools nanoindenter, 3 nm and a frequency
of 200Hz were used. For the MTS data, hardness and indentation modulus data
were averaged between 1.1 and 1.3µm. For the Femtotools data, hardness data
were averaged from 1.2 to 1.4 µm depth, except for Mo-50Nb, where hardness data
were averaged between 1 and 1.2 µm. The indentation modulus was averaged for all
samples between 0.4 and 0.8µm in the Femtotools indenter.
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3.7.2 Vickers Hardness Testing

The Vickers hardness HV of a material is defined in DIN6507 [82]. It is calculated as
the load Fkgf with [Fkgf] = kgf, which is applied to a quadrilateral diamond pyramid
indenter, divided by the projected surface area AV of the indent left in the sample
after indentation,

AV =
d2avg

2 sin (αV/2)
(3.8)

where davg is the average length of the indent diagonals using [davg] = mm and
αV = 136◦ the angle between opposite faces of the Vickers pyramid. The Vickers
hardness is then

HV =
Fkgf

AV

=
2 sin (αV/2) Fkgf

d2avg

= 1.8544
Fkgf

d2avg

(3.9)

An exemplary Vickers indent is shown in Fig. 3.7 for the indentation of Nb.

Figure 3.7: A Vickers indent in Nb, imaged in an optical microscope. The red vertical
and green horizontal lines indicate the diagonals required for determining the Vickers
hardness. With dhorizontal =575 µm and dvertical =552 µm, values of HV = 58HV and
H = 0.57GPa are calculated.

When the load Fkgf is replaced by FN with [FN] = N and davg is given using [davg] =
m, the definition 3.9 then yields

H = 1.8544
FN

d2avg
(3.10)

where H is then the hardness in Pa. In the following, all hardness values denoted
with H are always given in SI units.
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For all Mo-Ti and Mo-Nb solid solutions, room temperature Vickers hardness mea-
surements were performed according to DIN6507 on a QA10+ device (QATM, Mam-
melzen, Germany). A load of FN = 10 kg · g = 98N was used with a holding time
of 10 s at maximum load. Here, g = 9.81m s−2, gravitational acceleration, converts
the load from kgf to N. A distance of three times the average diagonal was kept
between indents and the sample boundary in agreement with Ref. [82]. The diag-
onals of at least ten indents per alloy were analyzed using the camera system of
the device. For Nb, the indent diagonals were evaluated using a calibrated Leica
Aristomet optical microscope (Ernst Leitz Wetzlar GmbH, Wetzlar, Germany; now
Leica Microsystems), as the indents were larger than the field of view of the QA10+
camera system.

3.7.3 Compression Testing

Macroscopic compression testing was performed on a universal testing machine 1478
(ZwickRoell, Ulm, Germany) at room temperature. The cross-head speed was set
to 0.03mm/min to obtain an initial nominal strain rate of ε̇ = 10−4 s−1 for samples
with an initial height of l0 ≈ 5mm. The dimensions of each sample were measured
three times with 1 µm resolution and averaged before testing using a digital indi-
cator (Sylvac SA, Yverdon-les-Bains, Switzerland). The ground sample faces were
coated with hexagonal BN to reduce friction between the faces and the punch con-
tacts, which in turn reduces barrelling of the sample during compression testing. At
least three compression tests per composition were analyzed. The displacement was
measured using a capacitive sensor connected to the punch contacts. In contrast
to a position measurement of the entire cross-head, the impact of device compli-
ance on the displacement is thus minimized, and the measured displacement can be
considered the actual change in sample height ∆ l. The engineering strain is then
calculated as

εE =
|∆ l|
l0

(3.11)

In compression testing, displacements and strains are negative, as the final sample
height is smaller than the initial one. For simplicity, the absolute value for the
displacement and thus positive values for the strain are used throughout this work.
Using the applied force F and the initial sample area A0, the engineering stress σE

is given as

σE =
F

A0

(3.12)
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Figure 3.8: The analysis principle, which has been automated using Matlab for this
work, using a compression testing measurement of Mo-50Ti as example. a) The original
engineering stress-strain data set (black solid line) and a linear function fit around the
maximum slope (orange dashed line). b) Using the fit parameters from the linear fit,
the non-linear initial part of the compression test data (black solid line) is replaced by
the linear function (orange solid line), and this combined function is shifted to start in
the origin. The blue dashed line indicates the 5% offset yield strength, using the slope
of the linear function.

The resulting stress-strain data sets were evaluated automatically using a Matlab
script, the principle of which is shown in Fig. 3.8 for a measurement of Mo-50Ti.
Imperfect alignment of sample faces and punch contacts as well as the application of
a ≈ 50N pre-measurement force lead to a non-linear initial slope of the stress-strain
data set. To correct for these deviations, the data set is extrapolated and shifted
horizontally towards the origin. A linear function is fitted to a small region around
the largest slope of the stress-strain data set (orange dashed and black solid lines
in Fig. 3.8 a). The linear function fit and the original data set are then combined
by replacing the initial non-linear slope part of the stress-strain data set with the
linear function (orange and black solid lines in Fig. 3.8 b). The combined curve is
then shifted horizontally into the origin.
The slope of the linear fit, the “modulus of compression”, is then used to determine
the respective offset yield strength values, shown for σp5% in Fig. 3.8 b) as blue
dashed line with an value of σp5% = 1205MPa. This automated approach allows to
analyze a larger number of data sets in a short time compared to a manual analysis,
especially when more than one value, e.g., 0.2% and 5% offset yield strength, need to
be extracted. While this approach reduces human bias during the analysis, errors like
device malfunctions might go undetected. Thus, intermediate analysis steps were
exported as graphs and inspected. All data sets analyzed this way are compiled in
Sec. 7.1 for the measurements used in this work.
As a distinct yield point was not observed in any sample, the 0.2% offset yield
strength σp0.2% was determined for all alloys as comparison value for the modelled
yield strength σy in Secs 5.3 to 5.5.3. σp5% was determined for all alloys to correlate
compression and Vickers hardness testing, see Sec. 4.7.3. The suggested value of
σp8% [80] was not reached in some alloys due to intergranular fracture, thus σp5%

was used instead.
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4 Experimental Results and Discussion

In this chapter, the experimental results will be presented and discussed. First,
the quality of the synthesized alloys needs to be evaluated with respect to the mi-
crostructure and crystal structure as well as the alloy compositions including in-
terstitial contaminations. The lattice parameter and indentation modulus will be
discussed in detail as these values are required for the modelling of solid solution
strengthening. The last section describes the mechanical properties obtained from
nanoindentation, Vickers hardness testing and compression testing; including a cor-
relation analysis to estimate the impact of other strengthening contributions besides
solid solution strengthening.

4.1 Microstructure

Representative microstructures of all solid solutions are shown in Figs. 4.1 for Mo-
Nb and 4.2 for Mo-Ti solid solutions. In these figures as well as throughout the
chapter, all results for Mo-Nb solid solutions are indicated in orange colors, all results
for Mo-Ti are indicated in blue. For solid solutions with at least 40 at% Ti, the
microstructures after HT are shown. All Mo-Ti solid solutions show consistently a
large grain size of at least 200 µm, which increased during homogenization treatment.
The grain size of Mo-Nb solid solutions appears generally higher than the one for
Mo-Ti, but was not quantified. Some alloys showed minor pore formation from
casting, visible as black spots in Figs. 4.1 and 4.2. The white spots in high-Ti solid
solutions in Fig. 4.2 were found to be La2O3 particles where the origin could not
be identified. While La2O3 is typically added to W arc melting electrodes, the arc
melter used for the synthesis works with a pure W electrode. Thus, the particles
were likely already contained in the raw material.
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Figure 4.1: BSE images of the microstructures of Mo-Nb solid solutions. The scale
bar is for all images. For all samples, a large grain size was obtained. Some pores from
the casting process can be seen as black spots.

Mo 10Ti 20Ti
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Figure 4.2: BSE images of the microstructures of Mo-Ti solid solutions. The scale bar
is for all images. Alloys with at least 40 at% Ti are shown after HT. For all samples,
a large grain size was obtained. The dark spots are pores formed during the casting
process, while for high-Ti solid solutions, La2O3 particles were found in the alloys, which
show as bright spots in the images.
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4.2 Crystal Structure

All X-ray diffraction patterns revealed a BCC structure (Strukturbericht A2, W
prototype, space group no. 229), see Fig. 4.3 a) for Mo-Ti solid solutions and 4.3 b)
for Mo-Nb solid solutions. All intensities are normalized to the maximum value of
the respective measurement. The graphs are offset vertically with increasing solute
content for better visibility. The small peak observed at 2Θ ≈ 35◦ is the (110)-peak
from CuKβ radiation due to incomplete monochromatization. The peaks that are
allowed according to the structure factor selection rules are indicated at the top of
each graph. In Mo-Nb solid solutions, Fig. 4.3 b), fewer peaks were observed than
in Mo-Ti solid solutions (Fig. 4.3 a)). As the probed total area is identical in all
measurements, fewer grains are probed in samples with larger grain size, leading to
fewer observed diffraction peaks. The varying intensity of the peaks also results from
the large grain size. Depending on the area fraction probed per grain orientation by
the X-ray beam, the intensity of the respective peak varies. The (222)-peak was not
observed in the Mo-Nb solid solutions. The slight shift of the peaks towards smaller
diffraction angles with increasing solute content is a result of the increasing lattice
parameter, see Eq. 3.1. All solid solutions show peaks consistent with single-phase
BCC structures.
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Figure 4.3: The diffraction patterns for a) the Mo-Ti (blue) and b) the Mo-Nb (or-
ange) solid solutions. Solid solutions with increasing solute content are offset vertically.
The peaks that are allowed according to the structure factor are indicated at the top.
The arrow denoted with (110)Kβ indicates the (110)-peak position due to scattering of
CuKβ radiation. All alloys showed a single-phase BCC structure and increasing lattice
parameter with increasing solute content.
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For Mo-Nb solid solutions, only a fully miscible BCC phase has been reported [93].
For Mo-Ti, the equilibrium phase diagram, Fig. 4.4, shows a miscibility gap and a
monotectoid reaction in the range of studied Mo-Ti solid solutions [94]. Necessary
annealing durations to achieve equilibrium were for example 650 h at 600 ◦C [95]
or 120 h at 750 ◦C [96]. Here, due to the fast cooling rates in the water-cooled Cu
crucible after arc melting as well as after HT during furnace cooling, no indica-
tions for either of the two reactions were observed. This agrees with earlier reports
on arc melted Mo-Ti alloys [97]. Additionally, martensitic transformation and the
formation of ω phase have been reported [94]. However, they were not observed
in the solid solutions studied here, consistent with reported concentration limits of
xMo,mart < 6 at% [98] and xMo,ω < 15 at% [99].

Figure 4.4: The Ti-Mo phase diagram. Note that the horizontal axis denotes increas-
ing Mo content. α indicates the hexagonally-closed packed (HCP), β the BCC solid
solutions. Data from Refs. [95] (Triangles, crosses), [96] (circles), [100] (squares) and
[101] (crosses) were considered. All alloys up to 80 at% Ti showed a single-phase BCC
structure due to fast cooling, contrary to the predicted phase separation at high Ti
contents. Reproduced with permission from Ref. [94].

The Pearson correlation coefficient was determined for Mo-10Ti and Mo-80Ti via
APT to determine if Mo and Ti are distributed randomly. The value for Ti remained
almost constant between Mo-10Ti and Mo-80Ti with 0.02 and 0.03, respectively.
The coefficient of Mo increased from 0.02 to 0.15. Still, both values are close to zero
and thus indicate a random distribution. An additional nearest-neighbor analysis
in Mo-80Ti revealed a slightly smaller average distance between Mo atoms than in
randomized data, (658 ± 3) pm compared to (673 ± 2) pm. While this might be a
first indication of beginning ordering of Mo, the shift is not sufficient to perform
a meaningful cluster analysis. Thus, both Mo and Ti can be considered randomly
distributed in the investigated alloy.
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4.3 Composition

4.3.1 Substitutional Element Contents

All Mo-Ti and Mo-Nb solid solutions showed good agreement between the com-
positional analysis by EDS measurements and the desired composition, as can be
seen in Tab. 4.1. For Mo-Ti, the largest deviation between desired composition
and EDS was detected in Mo-40Ti with 1.5 at%. A reference measurement by ICP-
OES yielded 28.5 at% Ti in Mo-30Ti compared to 29 at% Ti determined by EDS.
In APT, the Mo-10Ti sample revealed an average Ti content of 10.1 at% after peak
deconvolution, which confirms the EDS results for this sample of 9.4 at% within the
resolutions of the techniques. The APT analysis of Mo-80Ti revealed a slightly lower
Ti content after peak deconvolution (76.5 at%) than in the EDS measurements.
In Mo-Nb, EDS analyses resulted in consistently about 2-3 at% higher Nb contents
than the desired compositions for all solid solutions. However, a reference measure-
ment by ICP-OES revealed 49.8 at% Nb compared to the EDS average of 52.9 at%
for Mo-50Nb. This difference is probably due to an inaccurate estimate of the ZAF
factor, which corrects for atomic number (Z), absorption (A) and fluorescence (F)
effects, in the software for two neighboring elements of the periodic table of elements.
Detailed results of all compositional analyses are found in Tab. 4.1.

Table 4.1: Chemical composition of the Mo alloys studied. For both alloy systems,
EDS, ICP-OES and HCGE data is presented. For Mo-Ti, additional data was obtained
using APT. Balance is Mo. Values marked with a were below detection limit. Errors
in APT measurements are below the given decimal places and therefore omitted. For
EDS, a conservative estimate of error is given based on the maximum observed error
among all measurements.

desired xTi/at% xO / at-ppm xN / at-ppm
xTi/at% EDS ICP-OES APT HCGE APT HCGE APT

0 - - - 965 ± 296 - - -
10 9.4 ± 0.5 - 10.1 496± 0a 0a 104± 0a 0a

20 19.6 ± 0.5 - - 955 ± 577 - 123 ± 44 -
30 29.0 ± 0.5 28.5 ± 1.3 - 617 ± 113 - 111 ± 41 -
40 38.5 ± 0.5 - - 959 ± 187 - 137 ± 59 -
50 50.0 ± 0.5 - - 1232 ± 372 - 113 ± 10 -
60 60.3 ± 0.5 - - 3268 ± 690 - 110 ± 36 -
70 70.0 ± 0.5 - - 4316 ± 924 - 133 ± 42 -
80 80.0 ± 0.5 - 76.5 3626 ± 787 3300 185 ± 58 < 100

xNb/at% xNb/at% xO / at-ppm xN / at-ppm
0 - - - 360± 0a - 102± 0a -
25 26.7 ± 0.5 - - 357± 0a - 102± 0a -
50 52.9 ± 0.5 49.8 ± 1.4 - 354± 0a - 101± 0a -
75 77.4 ± 0.5 - - 351± 0a - 100± 0a -
100 - - - 575 ± 125 - 239 ± 80 -

50



4.3.2 Interstitial Element Contents

The Mo-Ti alloys show a significant increase in O content with increasing Ti content,
see Tab. 4.1. Samples up to xTi = 50 at% contained O of up to 0.1 at%; for higher
Ti the O contents increased strongly to at least 0.3 at% O. In Mo-10Ti, the results
for O were below the detection limit of 0.05 at%. N content was below 0.02 at%
for all alloys. The Mo-Nb alloys showed O contents below the detection limit of
0.04 at%, except for Nb, where 0.06 at% O was detected. Similarly, N content was
below 0.01 at% for all Mo-Nb alloys except Nb, where 0.02 at% N was detected.
Both O and N data are listed in detail in Tab. 4.1. The O data are also presented in
Fig. 4.5. These data correlate well with the O contents of the raw materials, which
are also included in Fig. 4.5, where 0.02, 0.08 and 0.31 at% O were found for Mo,
Nb and Ti, respectively. N contents were below 0.02 at% in the raw materials. The
impact of the low N contents will not be considered further.
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Figure 4.5: O contents of remelted alloys and raw materials. Mo-Ti solid solutions
are shown as blue columns, Mo-Nb solid solutions as orange columns. The raw material
analyses are shown as black columns. O content of columns without error bars were
smaller than the detection limit, so this limit is shown as upper limit of O content.
The Mo-Ti solid solutions show a significant increase in O content for concentrations
of at least 60 at% Ti compared to lower Ti concentrations, which is consistent with the
concentrations found in raw and remelted Ti. Mo-Nb solid solutions showed consistently
low O contents below the detection limit.

Results acquired in APT are consistent with the data acquired by HCGE. In Mo-
10Ti no significant O content was detected within the detection limits. In Mo-80Ti,
an O content of 0.33 at% was determined. Due to the large number of ions detected,
the statistical error is by several orders of magnitude smaller than the indicated
two decimal places and therefore omitted. This is consistent with the HCGE value
of (0.36±0.07) at% O. As the tips for APT were extracted from grain centers, the
entire O, within the margins of error, is found dissolved in the grains. The impact
of the detected La2O3 particles on the detected O content is thus small.
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Mo does not dissolve significant amounts of O. Ref. [102] for example reports 4 at-
ppm at 1700 ◦C. By contrast, Ti dissolves up to 33 at% O in the HCP phase and up
to 8 at% in the BCC phase at around 1700 ◦C [103]. Thus, an increase of O solubility
in Mo-Ti solid solutions is expected for increasing Ti content. Comparison data is
scarce in literature; diffusion experiments in Ti-rich alloys yielded 2 at% O in BCC
grains with 16 at% Mo, while the HCP matrix contained up to 19 at% O [104]. One
model describes a qualitative correlation between the number of valence electrons
per atom, eA, and interstitial solubility of O for refractory metals and solid solu-
tions [105]. When a threshold of eA = 5.7 is exceeded, no dissolved O is detected.
While later data contradict the determined O solubility values [106], models based
on the electron density of states confirm the threshold [107, 108]. The APT results
for Mo-10Ti and Mo-80Ti also agree with the suggested threshold; Assuming six and
four valence electrons per atom for Mo and Ti [109], the electron per atom ratios
are (eA)Mo-10Ti = 5.8 and (eA)Mo-80Ti = 4.4.

HCGE of raw Ti revealed an O content of 0.30±0.07 at% O, which is similar to
the values found in Ti-rich Mo-Ti solid solutions. For reference, Ti was remelted
and 0.29±0.03 at% O was found here as well. For raw Mo supplied by EvoChem,
HCGE yielded a large range of O contents depending on the lot. Values between
0.02 at% and 0.72 at% were found, which indicates quality problems of the raw Mo.
The unintentional incorporation of La2O3 in varying amounts in the raw Mo might
contribute to the range of O contents detected. Albeit Mo from a lot with a de-
tected amount of 0.02 at% O was used for the synthesis of the Ti-rich Mo-Ti solid
solutions, it cannot be ruled out that the raw Mo is the source of the La2O3 as the
distribution of La2O3 in the Mo foil is unknown. Consequently, the raw Mo might
also contribute to the global O contents in high-Ti solid solutions The lot used for
the solid solutions up to Mo-50Ti was not analyzed. For Mo-Nb solid solutions, Mo
supplied by Plansee was used, where HCGE revealed an O content of ≤0.02 at%.
Raw Nb contained 0.08 at% O, remelted Nb 0.05 at% O. In line with the low O
contents of the raw and remelted elements, O content in the Mo-Nb solid solutions
was ≤0.04 at%, below the detection limit.

Nb can dissolve up to 5 at% O at 1700 ◦C [110], which is similar to the value for BCC
Ti. Therefore, an increase in O solubility is also expected for Mo-Nb solid solutions
with increasing Nb content. The eA-threshold proposed in Ref. [105] is reached at
xNb = 30 at%. However, the Mo-50Nb and Mo-75Nb solid solutions do not show an
O content above the detection limit. The combined results of the Mo-Ti and Mo-Nb
alloys indicate that the arc melting process does not contribute significantly to the
O content of the alloys, but the interstitial content of the raw materials is the main
source for interstitial contamination of the remelted alloys.
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4.4 Lattice Parameter

The lattice parameters for Mo-Ti and Mo-Nb are presented in Fig. 4.6, with Mo-
Ti data as blue triangles and Mo-Nb as orange diamonds. For both solid solu-
tion series, good agreement with literature data is found (grey symbols, taken from
Refs. [95, 100] for Mo-Ti and Refs. [111, 112] for Mo-Nb). The experimental lattice
parameter of Nb, 3.30 Å, and the extrapolated value for BCC Ti, 3.28 Å, are similar.
However, while the lattice parameters of Mo-Nb solid solutions change only with a
small deviation from a linear rule-of-mixture, the lattice parameters of Mo-Ti solid
solutions increase strongly non-linearly as a function of composition: The lattice
parameter remains almost constant up to around Mo-20Ti. Between 30 at% and
50 at%, the curvature changes strongly and, for higher Ti contents, an almost linear
increase of lattice parameter is observed. The same trend is also found in W-Ti solid
solutions [113].
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Figure 4.6: Results for the lattice parameter measurements of Mo-Ti (blue triangles)
and Mo-Nb (orange diamonds) solid solutions. For each system, literature data are given
as grey symbols of the same shape [95, 100, 111, 112]. The fits used in solid solution
strengthening modelling are shown as dashed lines. A good agreement with literature
data is obtained. A quadratic fit can describe the lattice parameter values of Mo-Nb
solid solutions, while a cubic fit is necessary to capture the non-linearity of Mo-Ti solid
solution lattice parameters.
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For the modelling of solid solution strengthening, polynomial functions are fitted to
the data of the lattice parameter. For Mo-Nb, a second order polynomial was used.
Due to the strong non-linearity of Mo-Ti, a third order polynomial was fitted for
this system. The results for both fits are also presented in Fig. 4.6 as dashed lines
and the corresponding functions for the lattice parameter a are:

aMo-Ti = (−0.0572x3
Ti + 0.2430x2

Ti − 0.0493xTi + 3.1492) Å (4.1)

aMo-Nb = (0.0373x2
Nb + 0.1192xNb + 3.1460) Å (4.2)

with x being the atomic concentrations of Ti and Nb, respectively. Both fits corre-
late very well to the experimental data with R2

adj = 0.996 for Mo-Ti and R2
adj = 0.999

for Mo-Nb, respectively. According to the fit function for Mo-Ti, the lattice param-
eter for Mo is larger than for Mo-10Ti and than the experimental results. This is a
modelling artefact; due to the almost constant lattice parameter at low Ti contents,
the local minimum of the cubic function is fitted to approximate this plateau. This
results in the slight increase of the lattice parameter for Mo compared to the mini-
mum value. However, this artefact would impact only the modelling of dilute solid
solutions, which are not the focus of this work.

4.5 Misfit Parameter

The Fleischer [48] and Labusch [35] models use the Fleischer misfit parameter
δF = 1

a
da
dx

to quantify the lattice strain due to differently sized solutes in a solid
solution. Using the polynomial fits in Eq. 4.1, the misfit values can thus be cal-
culated for both systems (see Fig. 4.7 a). The misfit of Ti-lean solid solutions is
negative, δF,Mo = −0.015 for the smallest Ti concentrations, due to the decrease in
lattice parameter modelled by Eq. 4.1. It increases monotonously and reaches ap-
proximately δF = 0.07 for Mo-80Ti with the axis intercept, δF = 0, at approximately
Mo-10Ti. The misfit of Mo-Nb solid solution remains almost constant, rising from
approximately 0.04 to 0.05 from Mo to Nb. This corresponds to the almost linear
increase in lattice parameter with increasing Nb content.

The Maresca-Curtin model [11] for edge dislocation strengthening includes a vol-
umetric misfit parameter due to different atomic volumes. In a binary system,
this parameter can be calculated similar to the Fleischer parameter. According to
Eq. 2.34, δ =

√
x · (1− x) 1

a
da
dx
. The resulting misfit values for Mo-Ti and Mo-Nb

are presented in Fig. 4.7 b. Due to the factor
√
x · (1− x), the misfit values are 0 in

pure metals. For Mo-Ti solid solutions, δ = 0 is again modelled for Mo-10Ti with a
small concave part between 0 and 10 at% Ti, which is due to the modelling artefact
of the lattice parameter fit function. The maximum value of the misfit is reached at
Mo-72Ti with 0.03 and decreases again for higher Ti contents.
The Mo-Nb solid solutions show an almost symmetrical misfit, peaking at Mo-60Nb
with 0.025. While the term

√
x · (1− x) is symmetrical around 50 at%, the small

increase of δF with increasing Nb content results in a peak shift towards Nb-rich
solid solutions.
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A correlation analysis between Vickers hardness data from Ref. [41] and the edge
dislocation strengthening model revealed a threshold value δth = 0.035, where alloy
strength is expected to be controlled by edge dislocation motion, which is included
in Fig. 4.7 b) as black dashed line. No similar considerations have been made for
the Fleischer misfit. In the latter, the strengthening for both dislocation types is
included via the weighting factor α.
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Figure 4.7: The misfit parameter after Fleischer [48] in a) used in the Fleischer [48] and
Labusch [35] models and the misfit parameter after Varvenne [61] used in the Maresca-
Curtin [11] model in b). The black dashed line in b) presents an estimated misfit
threshold, above which edge dislocation motion controls alloy strength. There is no
similar threshold available for the Fleischer misfit.

The Ti-rich Mo-Ti solid solutions show a large misfit, with a maximum of 0.030
or 85% of the proposed threshold; thus the strength by edge dislocations might be
of a similar fraction compared to the strength based on screw dislocation motion.
However, these alloys are still below the threshold, so screw dislocation-controlled
strength is expected. Also for Mo-Nb solid solutions, with misfits up to 0.025, and
the Ti-lean Mo-Ti solid solutions, where the misfit is close to 0, screw dislocations
are expected to control the strength.
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4.6 Indentation Modulus

Indentation modulus data were obtained for all solid solutions and the results are
shown in Fig. 4.8. Mo-Ti solid solutions are shown as blue symbols, Mo-Nb solid
solutions as orange symbols. Measurement errors smaller than their respective sym-
bol size were omitted. Note that the horizontal axis is flipped for Mo-Nb for better
visibility. The moduli of both solid solution series decrease approximately linearly
with increasing Ti or Nb content, ranging from EMo-0Ti,exp = (332 ± 3)GPa to
EMo-80Ti,exp = (130 ± 1)GPa, and from EMo-0Nb,exp = (348 ± 9)GPa to ENb,exp =
(115 ± 2)GPa. For comparison, Young’s modulus data for Nb and Mo have been
reported as ENb,lit = 106GPa [114] and EMo,lit = 330GPa [115], respectively. The
latter values are close, but slightly lower than the moduli obtained in NI. For con-
centrated solid solutions, deviations from the linear decrease become apparent; com-
pared to the respective linear trends in both systems, Mo-40Ti and Mo-50Ti show
moduli slightly below the linear trend, while Mo-50Nb exhibits a modulus value that
is too high.
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Figure 4.8: Indentation modulus data EInd for Mo-Ti (blue) and Mo-Nb (orange). Note
that the horizontal axis is flipped for Mo-Nb compared to the normal depiction for better
visibility. Error bars smaller than the symbol size were omitted. An approximately linear
decrease is detected for both solid solution series with decreasing Mo content.
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4.7 Mechanical Properties

4.7.1 Hardness

Results of Vickers hardness testing and nanohardness measurements are presented in
Fig 4.9 for Mo-Ti solid solutions. Vickers hardness data are shown as blue squares,
nanohardness as blue triangles. Values for Mo were determined as HMo, Mo-Ti =
1.8GPa and nHMo, Mo-Ti = (3.2±0.1)GPa. Values in this section without given error
showed standard deviation values smaller than the number of significant decimal
places. Both data sets show an increase in hardness with increasing Ti content,
with a slight convexity at low Ti contents. The peak in hardness is reached at 30 or
40 at% Ti for both data sets, where both compositions show similar hardness values
(within the experimental errors) with Hpeak = (4.1 ± 0.1)GPa for both alloys or
nHMo-30Ti = (5.8±0.2)GPa and nHMo-40Ti = (5.7±0.2)GPa. For higher Ti contents,
both data sets decrease approximately linearly. Mo-50Ti shows a nanohardness
slightly smaller than the linear trend of other high-Ti solid solutions. At 80 at% Ti,
values of HMo-80Ti = 2.7GPa and nHMo-80Ti = 4.1GPa are obtained. In Fig. 4.9,
Vickers hardness data from literature [41] are also included as grey squares. These
values are uniformly higher than the values measured in this work. As the interstitial
contamination of the alloys was not reported in Ref. [41], a higher interstitial content
might lead to the difference in hardness values.
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Figure 4.9: Vickers hardness (squares) and nanohardness (triangles) for Mo-Ti solid
solutions (blue symbols). Error bars indicate the standard deviation of measurements.
The grey symbols are taken from Ref. [41]. The maximum in hardness and nanohardness
is detected for 30 or 40 at% Ti, where the values are similar.
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The hardness and nanohardness data for Mo-Nb solid solutions are presented in
Fig. 4.10 as orange symbols, with Vickers hardness data shown as squares and
nanoindentation data as triangles. The hardness of this Mo sample shows good
agreement with the value of the one measured for the Mo-Ti solid solution se-
ries with HMo, Mo-Nb = 1.7GPa. Nanohardness, however, is slightly smaller with
nHMo, Mo-Nb = 2.9GPa. Both data sets increase with increasing Nb content and
the maximum is reached for Mo-50Nb with Hpeak = (3.9 ± 0.1)GPa and nHpeak =
(5.3± 0.1)GPa. The values decrease with larger Nb contents, until HNb = 0.6GPa
and nHNb = 1.1GPa are reached. Vickers hardness data from literature [41] indi-
cates an almost linear increase with increasing Nb content until the peak at 50 at%
is reached, followed by an approximately linear decrease with steeper slope for larger
Nb contents. Similar to the data for Mo-Ti solid solutions, the literature values are
uniformly higher.
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Figure 4.10: Vickers hardness (squares) and nanohardness (triangles) for Mo-Nb solid
solutions (orange symbols). The error bars indicate the experimental standard deviation.
The grey symbols are taken from Ref. [41]. The maximum hardness is obtained for Mo-
50Nb in both measurements as well as the literature data.
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4.7.2 Offset Yield Strength

No alloy showed a distinct yield phenomenon in the compression tests, thus the 0.2%
offset yield strength σp0.2% is presented for all alloys in Figs. 4.11 and 4.12. All cor-
responding stress-strain data are presented in Sec. 7.1. For the rest of this section,
the 0.2% offset yield strength is abbreviated as “strength” of the investigated alloys.

The strength of Mo-Ti solid solutions is presented in Fig. 4.11 as filled circles to-
gether with the 5% offset yield strength data as open circles. The strength increases
approximately linearly from (170±20)MPa for Mo up to 40 at% Ti. While the av-
erage value is higher for Mo-40Ti, the strength of Mo-40Ti and Mo-50Ti must be
considered equal within the margins of error with σp0.2%,Mo-40Ti = (967±42)MPa and
σp0.2%,Mo-50Ti = (873±55)MPa. For higher Ti contents, the strength decreases again
approximately linearly, until a strength of (644±30)MPa is detected for 80 at% Ti.
The fact that the peak strength is offset from 50% towards lower Ti contents is
consistent with the hardness data presented before. It can be rationalized in the
framework of the Maresca-Curtin models and will be discussed in Sec. 5.5. No
literature data is available for comparison.
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Figure 4.11: 0.2% (filled symbols) and 5% offset yield strength (open symbols) in
Mo-Ti. No literature data are available for comparison. Similar to the hardness data,
the maximum strength is obtained for Mo-40Ti.
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In Mo-Nb, the increase in strength with increasing solute content is larger on the Nb-
rich side than on the Mo-rich side, leading to a slightly asymmetrical shape leaning
towards Nb-rich solid solutions, see Fig. 4.12. Strengths of Mo and Nb were detected
to be σp0.2%,Mo = (219 ± 10)MPa and σp0.2%,Nb = (54 ± 3)MPa, respectively. The
maximum strength is obtained at xNb = 50 at% with σp0.2%,Mo-50Nb = (930±44)MPa,
which is consistent with the results obtained in hardness measurements presented
above.
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Figure 4.12: The 0.2% offset yield strength measured in polycrystalline Mo-Nb sam-
ples (orange symbols) agree well with available single crystal data from literature (grey
symbols, from Refs. [116, 117, 118, 119]), recalculated according to the body text.
The small numbers indicate detected O contents in at-ppm in Ref. [119]. These values
might indicate that other, unexpectedly high yield strength data around 80 at% Nb are
due to undetected O uptake during synthesis.

In contrast to Mo-Ti solid solutions, literature data are available for Mo-Nb solid
solutions, which have all been obtained in single crystals [116, 117, 118, 119]. In
order to compare the literature data for critical stress with the polycrystalline data
obtained in this work, several experimental parameters were considered:

(i) All literature data were obtained in single crystals. Therefore, the values for
critical stress were multiplied by a Taylor factor of 2.74 for the corresponding
yield strength σy in polycrystalline samples [60].

(ii) Assuming a linear change of strain rate sensitivity m for Mo-Nb solid solutions
(mMo ≈ 0.04 [120] and mNb ≈ 0.11 [121]), the data (original strain rates
ε̇ = 1 . . . 6 · 10−4 s−1) were recalculated to a strain rate of ε̇ = 1 · 10−4 s−1.

(iii) Ref. [117] reported no difference in critical stress for compression and tensile
testing, thus results for both loading directions are shown.

(iv) Ref. [116] does not report interstitial content of the tested samples. Ref. [117]
presents “typical” analysis results for O and N contents, Ref. [118] gives an
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“estimated” content of O and N. These values are similar to the values pre-
sented in this work. As samples for all three publications were synthesized
by electron-beam float zone melting, the interstitial contents are assumed to
be similar for samples in these works. Ref. [119] investigated the impact of
interstitial O and thus oxidized the samples before compression testing. Their
reported O values are included as small numbers in Fig. 4.12.

In Ref. [118], samples of different crystal orientations were tested. The results for the
critical stress projected on the [110]⟨111⟩ slip system showed a large scatter, which
results in the error bars for the literature data at Mo-50Nb in Fig. 4.12. However,
a good agreement is obtained between the average value of the single crystal data
and the polycrystalline results of this work.
The values between 75 and 80 at% Nb show a large scatter, between (630±30)MPa
obtained in this work and 940MPa [117] and 960MPa [119]. The latter value was
obtained in intentionally oxidized samples with 800 at-ppm O (see also the small
number noted in Fig. 4.12). Thus, an undetected increase of interstitial contami-
nants might be an explanation also for the high strength values reported in Refs. [117]
and [116]. However, this cannot be verified.

4.7.3 Correlation Analyses

Nanohardness and Vickers hardness as well as Vickers hardness and offset yield
strength are correlated to investigate the impact of grain size and oxides as well as
the grain orientation. Nanohardness is not affected by grain boundaries or oxides
at grain boundaries, since the experiments are performed in the centers of a single
or a few grains, while macroscopic compression testing is affected and averages over
different grain orientations. Vickers hardness testing and nanoindentation both are
indentation methods, where the sample is deformed to similar strain states, but the
impact of the indentation size effect (ISE) needs to be considered [122]. Vickers
hardness and offset yield strength of a material are correlated by the Tabor relation
σp8% = 0.33H [80]. As some of the samples investigated in this work failed before
8% plastic strain was reached, σp5% is used in the correlation investigations.
The correlation investigations for Mo-Ti solid solutions are shown in Fig. 4.13. Hard-
ness and nanohardness data sets can be correlated as nH = 1.07H+1.36GPa, with
a very good correlation coefficient R2

adj = 0.93 (blue line and symbols, right axis).
The offset between both data sets is attributed to the ISE. A correlation investiga-
tion in steels yields also the slope 1.07 between nH and H, and reports different
offset values depending on the maximum load [123]. The correlation of offset yield
strength and Vickers hardness yields the equation σp5% = 0.285H with a good cor-
relation coefficient R2

adj = 0.84 (black line and symbols, left axis). As the offset yield
strength at 5% instead of 8% strain has been used, the value of 0.33 is not reached.
However, 0.285 is close to the expected value.
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Figure 4.13: Good correlations have been obtained between Vickers hardness H and
5% offset yield strength σp5 (black, left axis) as well as H and nanohardness nH (blue,
right axis) for the investigated Mo-Ti solid solutions.

The correlation graphs for Mo-Nb solid solutions are shown in Fig. 4.14. The cor-
relation between hardness and nanohardness is shown as orange symbols and line
using the vertical axis on the right. Note that this axis has been offset for better
visibility. The correlation between hardness and 5% offset yield strength is shown
as black symbols and line using the vertical axis on the left. For the correlation
between H and nH, the equation nH = 1.22H + 0.4GPa was found, with a very
good R2

adj = 0.97 between both data sets. The correlation slope of 1.22 is larger
than the one observed in Mo-Ti, but is consistent with a study of Ni-based alloys
and steels [124], while the offset is much smaller. Offset yield strength and hardness
can be correlated by σp5% = 0.273H with R2

adj = 0.99. Similar to the results in
Mo-Ti solid solutions, this value is slightly below, but close to the expected value of
0.33.
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Figure 4.14: Correlation graphs between 5% offset yield strength σp5 and H (black,
left axis) and nanohardness nH and Vickers hardness H (orange, right axis). Note the
offset on the right axis for better visibility of the data set. Very good correlations are
found for the mechanical properties of Mo-Nb solid solutions.

Albeit predicted to be small [125], the difference in indenter shape between Vickers
hardness testing and nanoindentation might impact the correlation functions be-
tween hardness and nanohardness. A systematic comparison of H and nH in the
solid solution series, which encompasses different strain rates and maximum loads, a
thorough analysis of the ISE and other parameters is outside the scope of this work.
The good correlations with R2

adj ≥ 0.84 show that neither grain boundary effects
nor grain orientation have a significant impact on the hardness of the solid solutions
investigated here, and, consequently, also on the offset yield strength required for
modelling. So far, this is only known for Mo, which shows only a weak grain size de-
pendency for the hardness [43]. It is assumed to be true for several dilute Mo-based
solid solutions, but is not experimentally confirmed in Ref. [43]. Nanohardness
measurements in Mo yield only an approximately 3% deviation between different
grain orientations [126], but again, data for Mo-based solid solutions have not been
reported.
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5 Modelling Results and Discussion

In order to identify the contributions by screw and edge dislocations to the yield
strength, the experimental data have to be compared to the respective model pre-
dictions. Before a detailed discussion of the modelling results, the shear modulus
determination is discussed in Sec. 5.1. The shear modulus G is required for the
modelling after Labusch [35] and for the Maresca-Curtin model for edge dislocation-
controlled strengthening [11]. As experimental data are not readily available for the
solid solutions, the approach of the shear modulus calculation needs to be justified,
including the assumption of linearly changing single crystal stiffnesses.
Then in Sec. 5.2, the expected impact of interstitial O on the yield strength is eval-
uated. While strengthening by O contamination can be neglected for Mo-Nb solid
solutions, the O values are significantly larger in Mo-Ti. Accordingly, methods are
presented and discussed to quantify and correct for interstitial strengthening by O
in Mo-Ti solid solutions.
Using the corrected data, the results for modelling of substitutional solid solution
strengthening are then discussed in the framework of several models:
In Sec. 5.3, the Labusch model [35] is applied to Mo-Ti solid solutions, while in
Sec. 5.4, the Suzuki model [54] is applied to both solid solution systems, including re-
cently suggested changes that are relevant for room temperature measurements [45].
In Sec. 5.5, both models developed by Maresca and Curtin [11, 40] are applied to
both alloy systems. As the models for screw dislocation-controlled strength include
conceptually similar key energy parameters, the values obtained for Mo-Ti and Mo-
Nb solid solutions are compared in Sec. 5.6.
Sec. 5.7 then discusses the strength-controlling dislocation types for the alloys based
on the modelling results. Continuing this discussion, a mathematical relationship is
derived in Sec. 5.8 to predict the strength-controlling dislocation type for arbitrary
BCC solid solutions.
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5.1 Shear Modulus Modelling

The elastic properties of the solid solutions are required in the models, however, the
data are not known for all compositions tested here. The single crystal stiffnesses,
which can be used to calculate the shear modulus G and the bulk modulus B,
can be obtained experimentally, e.g., from ultrasonic phase spectroscopy (UPS).
Using G and B, Poisson’s ratio ν and, consequently, Young’s modulus E can be
derived [8, 127]:

B = (C11 + 2C12)/3 (5.1)

ν =
3B − 2G

2 (3B +G)
(5.2)

E = 2G (1 + ν) (5.3)

The calculated Young’s modulus can then be compared to the experimental inden-
tation modulus to verify the calculated values, see also Sec. 4.6. Several different
methods have been suggested in literature to calculate the shear modulus G from
the single crystal stiffnesses Cij or compliances Sij in Voigt notation.

One common method is the Voigt-Reuss-Hill method: Voigt [128] and Reuss [129]
both developed models to average the elastic response of polycrystalline material
based on single crystal properties. Voigt considers a state of uniform strain, Reuss
one of uniform stress across grains [27]. Hill recognized that both calculations rep-
resent boundary cases for the true state in a polycrystalline material, and suggests
to average both values [127]. The resulting method of calculating the shear modulus
is thus sometimes called the Voigt-Reuss-Hill (VRH) method [127]:

5GV = (C11 − C12) + 3C44 (5.4)

5G−1
R = 4 (S11 − S12) + 3S44 (5.5)

GH = 0.5 (GV +GR) (5.6)

where the subscripts are used for the respective models of Voigt, Reuss and Hill.

An approach used by, e.g., Hirth and Lothe [130] and Foreman [131] yields equa-
tions for an effective shear modulus. Elastic energy is stored in the stress field of
a dislocation. When the dislocation is deformed, for example, a pinned dislocation
segment under applied stress, the energy increases, leading to a force counteracting
the deformation. This results in the concept of a dislocation as a flexible string [27].
In an isotropic medium, the stored energy per dislocation line segment, the line
tension Γ, scales as Γiso ∝ Gb2 with G the shear modulus and b the length of the
Burgers vector [27]. However, real metals are not isotropic, and the dislocation line
tension depends on the Burgers vector and dislocation line directions, as well as
the single crystal stiffnesses to account for the material anisotropy. Mathematically,
the anisotropic line tension can be described analogous to the isotropic one, with
Γani ∝ K b2. K, called the “energy factor” [130, 131], replaces the isotropic shear
modulus and has to be calculated for each combination of Burgers vector and dislo-
cation line direction as a function of the stiffnesses. Thus, this energy factor can be
considered an effective shear modulus in anisotropic media for a specific dislocation
configuration.
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Foreman [131] performed the calculations for dislocations in cubic crystals with
Burgers vector and dislocation line directions along [101], i.e. screw dislocations in
FCC metals, as

K[101],[101] =
√

0.5C44 (C11 − C12) ≡ GF (5.7)

Hirth and Lothe [130] calculated K for Burgers vector and dislocation line directions
along [111], K[111],[111], for cubic crystals. This results in the effective shear modulus
for a screw dislocation in BCC metals. The resulting formula can easily be calculated
as a function of Cij using computer assistance. However, it extends across several
lines when written out and is not shown here for the sake of clarity. A formula
provided by Kocks et al. [132] yields a good approximation to the exact formula.
However, no derivation for this approximation is given:

GKocks =
1

3
(C11 − C12 + C44) ≈ K[111],[111] (5.8)

Table 5.1: The single crystal stiffnesses for Mo, Ti and Nb used in the calculations for
Young’s modulus. Note that the single crystal stiffnesses of BCC Ti were acquired at
1000 ◦C.

Element C11 / GPa C12 / GPa C44 / GPa

Mo [133] 463 158 109

Ti (1000 ◦C) [134] 134 110 36

Nb [135] 245 138 29

In Fig. 5.1, results for the discussed calculation methods are compared for the Mo-Ti
system. Results for the energy factors after Foreman [131] and Hirth-Lothe [130]
are shown as red and purple dashed lines, respectively. The approximation by
Kocks et al. [132] to the latter is shown as grey dashed line. Results based on the
shear modulus after Hill [127] are shown as green solid line, where the light green area
indicates the range of the results using the Voigt [128] and Reuss [129] moduli. For
each method, the concentration-weighted single crystal stiffnesses given in Tab. 5.1
were used. Note that the single crystal stiffnesses of BCC Ti were acquired at
1000 ◦C, but are used for room temperature modelling here. Using Eqs. 5.1 to 5.3,
Young’s modulus is calculated for each method and compared to the experimental
indentation modulus values, shown as blue symbols in Fig. 5.1.
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Figure 5.1: The results for the indentation modulus in Mo-Ti, EInd (also shown in
Fig. 4.8). Young’s modulus E calculated using the energy factors after Foreman [131]
and Hirth and Lothe [130] are shown as red and purple dashed lines, respectively. The
approximation to the latter suggested by Kocks et al. [132] is shown as grey dashed line.
The Hill shear modulus [127] was used to calculate the solid dark green line. The light
green area around the Hill calculations indicates the boundaries set by the Voigt [128]
and Reuss [129] moduli. The moduli after Hirth and Lothe [130] and the approximation
after Kocks et al. [132] result in too high moduli, while the VRH [127, 128, 129] and the
Foreman [131] method yield similar results and close to the experimental data.

The overall differences between the different methods are small. The largest dif-
ference between the experimental data and the modelling methods are largest in
Mo-50Ti with ≈ 20GPa when compared to the VRH and Foreman methods and
≈ 30GPa when compared to the Hirth-Lothe and Kocks methods. This deviation
might be explained by deviations from a simple linear change in single crystal stiff-
nesses in these concentrated solid solutions. In order to remain consistent with pub-
lished literature on the Maresca-Curtin models [11, 12, 13, 58], the effective modulus
after Foreman, GF, will be used in all solid solution strengthening modelling.
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The calculations of elastic properties presented here assume a simple, linear concen-
tration-weighted average of single crystal stiffnesses. While the good agreement of
experimental indentation and modelled Young’s moduli in Mo-Ti is a strong indica-
tion, it might be coincidence. In Ref. [136], the values for single crystal stiffnesses
in Mo-Nb solid solutions were determined using UPS. Their experimental results
together with linear functions based on the weighted pure element values are pre-
sented in Fig. 5.2. Deviations up to ≈ 20GPa can be seen, for example between the
calculated and measured value of C44 in the Mo-66Nb sample.
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Figure 5.2: Measured single crystal stiffnesses of Mo-Nb solid solutions [136]: C11 as
red diamonds, C12 as green squares and C44 as purple circles. Functions for linearly
weighted data of pure elements are shown in the same colors as solid, dashed and dash-
dotted lines, respectively. The assumption of linearly changing single crystal stiffnesses
describes the overall trend very well.
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To investigate the impact of these deviations further, GF is used to calculate Young’s
modulus using the experimental data from Ref. [136] and the linear rule-of-mixture
using the data from Refs. [133, 135]. These results are compared to the data obtained
in this work by nanoindentation, see Fig. 5.3. For Mo-rich solid solutions, all data
sets show good agreement. The deviation at Mo-50Nb of ≈30GPa between the
measured and the modelled value also remains compared to the literature data point
at Mo-48Nb.
Similar to the difference in experimental and modelled single crystal stiffnesses, a
deviation of ≈ 30GPa is found for the Mo-66Nb sample compared to the linear
rule-of-mixture. The indentation modulus at 75 at% Nb also shows a smaller value
than the modelled Young’s modulus with a difference of ≈ 15GPa. Based on these
results, the too large modulus at 50 at% Nb cannot be explained by the differences
between experimental single crystal stiffnesses and the approximated linear rule-
of-mixture. The source of error in the experimental result of Mo-50Nb remains
currently unknown.
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Figure 5.3: The results for the indentation modulus EInd in Mo-Nb (dark orange
dots), shown in Fig. 4.8. For comparison, Young’s modulus E was calculated using
GF and single crystal stiffnesses obtained in Ref. [136] (light orange dots) and a linear
rule-of-mixture of the elemental data from Tab. 5.1 and Refs. [133, 135] (black dashed
line). Overall, good agreement is found between both experimental data sets and the
modelling using a linear rule-of mixture.
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To conclude this section, the modelling results using GF are compared to the ex-
perimental data in Fig. 5.4 for both solid solution series in a single figure. The
results of the modelling are presented as dashed lines in their respective colours.
For Mo and Nb, ENb,model = 110GPa and EMo,model = 331GPa are modelled, close
to the experimental indentation modulus values of ENb,exp = (115±2)GPa as well as
EMo-0Ti,exp = (332± 3)GPa and EMo-0Nb,exp = (348± 9)GPa, respectively. For both
systems, the approximately linear trend is also reproduced. The largest deviations
from the experimental values are found for Mo-40Ti and Mo-50Ti with 20GPa each
and for Mo-50Nb with approximately 30GPa. Overall, a good agreement between
modelling and experiments is obtained.
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Figure 5.4: Results for indentation moduli for Mo-Ti (blue) and Mo-Nb (orange) and
the modelled Young’s moduli using GF and a linear rule-of-mixture of the single crystal
stiffnesses. Note that the horizontal axis is flipped for Mo-Nb compared to the normal
depiction for better visibility. Error bars smaller than the symbol size are omitted. An
approximately linear trend is detected for both solid solution series and in agreement
with the modelling.
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5.2 Interstitial Strengthening

While the Mo-Nb solid solutions contained only small O contents below 0.05 at%,
the Mo-Ti solid solutions show comparatively large O contents up to 0.4 at% O, as
has been shown in Fig. 4.5. These might have a significant impact on mechanical
properties, similar to observations in the refractory metals Ta [137], Nb [138] or
V [139]. The potential impact of interstitial O on solid solutions has been discussed
in Sec. 4.7.2 for literature data for Mo-Nb. In Ref. [140], an increase in Vickers hard-
ness of quenched Ti-9Mo solid solutions was detected for O contents up to 1.6 at% O.
Thus, a method is required to account for interstitial strengthening contributions.

The impact of interstitial strengthening is modelled in two ways: A correction based
on the Labusch model, which has been published in Ref. [58], and the already de-
scribed interstitial correction within the Maresca-Curtin models, see Sec. 2.6.3. For
both approaches, the data from Ref. [140] are used. In order to apply the models,
it is assumed that the hardness ratio of O-containing and O-free alloys is equal to
the ratio of offset yield strengths, (HO-rich/HO-free)Ref. [140] = (σO-rich/σO-free)this work.
According to the threshold based on the electron-per-atom ratio [105], only solid
solutions with ≥ 20 at% Ti are corrected.
While the original Labusch model includes contributions from G and εL, which both
vary with solute concentration, a simplified approach is used here,

HO-rich = A · x2/3
O +HO-free (5.9)

where the parameter A subsumes all numerical constants as well as G and εL. When
the latter two are assumed to be constant over the investigated concentration range,
A also remains constant. This simplified model then contains two free fit parameters,
A and HO-free.
For the Maresca-Curtin-consistent approach, Eq. 2.46 is used, HO-rich = HO-free ·
(1 +KO xO)

2/3, with KO, which quantifies the strengthening by O, and HO-free as
free fit parameters.
For both approaches, the equations are fitted to the published data to obtain values
for the free parameters, see Fig. 5.5. The experimental data from Ref. [140] are
shown as black squares. The simplified Labusch model is shown as red solid line,
while the Maresca-Curtin-consistent approach is shown as green dashed line. The
top axis shows the O content in wt% for comparison. Both the single and double-
hatched areas indicate the concentration range for O in the Mo-Ti solid solutions:
In the double-hatched area, the impact of O on the hardness is interpolated from
the literature data. The single hatched area indicates the concentration range in
which the O impact is extrapolated to lower O concentrations.
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Figure 5.5: Vickers hardness in quenched Ti-9Mo solid solutions as a function of O
content from Ref. [140]. At the top, the O contents are presented in wt% for comparison.
The solid red and dashed green lines show fits to the data using a Labusch- and a
Maresca-Curtin-consistent approach, respectively. The purple hatched area shows the
O content in Mo-Ti solid solutions determined by HCGE, where the double hatched
area shows interpolated and the single hatched area extrapolated O contents. Both
models show good correlation to the data, and both indicate an approximately linear
increase in hardness for large O contents. At smaller O concentrations, like the ones
measured in Mo-Ti solid solutions, the differences in modelled O strengthening become
more pronounced.

The fitted functions are

HO,Labusch =
(
1.23 · x2/3

O + 1.76
)
GPa (5.10)

HO,MC = 2.06 · (1 + 0.73xO)
2/3GPa (5.11)

Both fitted functions yield similarly good correlations, with R2
adj = 0.94 for the sim-

plified Labusch fit and R2
adj = 0.92 for the fit according to the Maresca-Curtin model.

Both modellings result in an approximately linear increase in hardness for large O
contents. However, in the O range of Mo-Ti alloys studied here, the difference be-
tween both approaches is more pronounced. This is also reflected in the extrapolated
hardnesses for an O-free alloy, HO-free, L = 1.76GPa and HO-free, MC = 2.06GPa, re-
spectively. Accordingly, the Maresca-Curtin model predicts a smaller impact of
interstitial O than the Labusch approach.
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Using the respective O contents determined by HCGE (Fig. 4.5 and Tab. 4.1), the
increase in strength is calculated for each Mo-Ti solid solution and corrected for
according to the fit functions. The measured σp0.2% values together with corrected
values are shown in Fig. 5.6, where the blue circles show the measured offset yield
strength. The red filled circles are used for the correction following the Labusch
approach and the green diamonds are for the Maresca-Curtin approach.
For the high-Ti solid solutions, where the O contents are above 0.3 at%, a correction
for interstitial O is necessary. Here the corrected values are significantly smaller,
approximately 200MPa, than the uncorrected values. However, both models yield
corrected values within one experimental standard deviation of each other. Thus,
both approaches indicate the relevance of correction, but yield too similar results
within the limits of the presented experiments for a clear distinction.
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Figure 5.6: 0.2% offset yield strength of Mo-Ti solid solutions (blue open circles) and
corrected for interstitial O values using both approaches. The red filled circles show a
correction using the simplified Labusch model, the green diamonds a correction using
a Maresca-Curtin-consistent approach. While both models indicate the necessity of
correction for interstitial O, the corrections according both models are too similar to
each other to make a clear decision.
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Reports on interstitial strengthening by O in the refractory metals Nb, Ta and V
indicate a concentration dependency for small O concentrations consistent with the
Labusch model [137, 138, 139]. These results contradict the approximately linear
increase as modelled in the Maresca-Curtin approach. However, this modelling
includes the substitutional misfit volumes in the denominator of the strengthening
parameter KO. As there is no volume misfit in pure metals, it cannot be applied in
these systems, but must be restricted to solid solutions only.
Available literature data on solid solutions are not suitable to clarify the applicability
of either modellings in solid solutions: Either an insufficient number of data points
is given in the desired concentration range [119], too large O contents are probed,
where Labusch and Maresca-Curtin approaches show similar trends [141], or the
precipitation of oxides is described [142]. Thus, more data is required to make a
comprehensively informed decision. Here, the conservative approach after Labusch
is used to correct the results for interstitial strengthening. This way, the results are
also consistent with the published corrections from Ref. [58]. As the Mo-Nb solid
solutions contain only O below the detection limit, no correction is necessary.
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5.3 Labusch Model

The Labusch model [35] is only fitted to the data on Mo-Ti solid solutions, where
a larger data set is available, see Sec. 4.7.2. It does not include new results made
after its publication in 1970. However, it is still used today [41, 43]. The increase
in yield strength in a solid solution compared to the base element is calculated as

∆σp0.2 = D′ Gε
4/3
L x2/3

which includes the strengthening parameter εL =
√
η′2 + α2δ2F. The values for δF

have been calculated using the polynomial fits to the lattice parameter, see Eq. 4.1,
and have been presented in Fig. 4.7 a). η′, which is based on the change in shear
modulus with solute concentration, is calculated using GF and the single crystal
stiffnesses presented in Tab. 5.1 in the previous section, assuming a linear rule-of-
mixture.

Both D′ = 2.74D, which accounts for polycrystalline samples, and α remain as
free parameters. Agreement between model and experimental data can be achieved
for many combinations of D′ and α as they are interdependent: For a high value of
α, a correspondingly small D′ can be found, and vice versa. If the factor D′ was
known for Mo solid solutions, α could be obtained by fitting. However, D′ is only
known for Cu solid solutions. Thus, the method of Ref [41] is adopted: Fitting of
D′ is performed for pre-set values of α between α = 1 and a reasonable upper limit
of α = 30 in increments of 1. The quality of each fit is evaluated using R2

adj. The
highest value of R2

adj then determines the best value of α to describe the data and,
as a consequence, the dislocation type controlling the strength [41]. A fundamental
assumption in this method is that the factor D′ remains constant across the entire
fitted concentration range. If the value of Cu solid solutions is used as a reference,
as was in Ref. [43], a value of D′ between 0.004 and 0.006 is expected.

The Labusch model distinguishes between solvent and solute atoms, and thus one
fit for Mo-based solid solutions containing between 10 and 40 at% Ti and one for
Ti-based solid solutions with at least 50 at% Ti are made. As the data shows a de-
crease in strength between 40 and 50 at% Ti, which is not captured by the Labusch
model, this concentration range is not included in either fit. σp0.2% of pure Mo is
used as reference value for this part. For Ti-based fits, σp0.2% for BCC Ti at room
temperature is required as reference value, which cannot be obtained. Thus, a sec-
ond free parameter is included, σBCC-Ti. As the slope of the model function is only
determined by D′, while σBCC-Ti represents a constant offset, the parameters are not
interdependent like α and D′ would be.
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The results of the fitting procedures are presented in Fig. 5.7. The fits with the
highest R2

adj are shown as purple dashed lines for both fit regimes as a function of Ti
content. The colored areas indicate the ranges of modelled strengths between α = 1
and the best fit α (green checkered area) and between the best fit α and α = 30
(red hatched area). The experimental data are shown as blue symbols.
For the Mo-based alloys, α = 16 is found as the best value, with R2

adj = 0.99, which
decreases to R2

adj = 0.91 for both limit values. In the Ti-based alloys, α = 1 is found
as best value, with R2

adj = 0.95. This value decreases to R2
adj = 0.86 for α = 30. For

σBCC-Ti, values between 210 and 240MPa are extrapolated by the fittings, which is
higher as for pure Mo (170MPa). The obtained values for D′ are 0.017 and 0.015 for
the best α-values in the Mo-rich and Ti-rich solid solutions, respectively. Compared
to the data on Cu, these values are higher by a factor of ≈ 3− 4.
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Figure 5.7: 0.2% offset yield strength of Mo-Ti solid solutions in comparison to the
results of fitting procedures for the Labusch model. Two seperate procedures are made
for Mo-based and Ti-based solid solutions. The strengths using the best fit values for
α are 16 and 1 for Mo-based and Ti-based solid solutions, respectively, shown as purple
line. The green checkered and red hatched areas depict the ranges of strength between
the best fit value and the borders of the tested α values between 1 and 30. All modelled
values are close to the experimental ones.
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The obtained best fit values indicate a transition from edge (between 10 to 40 at% Ti)
to screw dislocation-controlled deformation between 50 and 80 at% Ti as the value
for the optimal α changes from 16 to 1. However, the values for R2

adj are consistently
high for all values of α in both data sets. Small differences in the experimental data
might lead to different results of the fit quality and the resulting best fit α. Thus,
the identification of the strength-controlling dislocation type is ambiguous at best.
The high values for D′ might indicate that the values for FCC Cu solid solutions
cannot easily be used for BCC Mo solid solutions, questioning its application in
Ref. [43]. In Ref. [42], the strengthening after the Labusch model in Mo-Si solid
solutions underestimates the measured increase in yield strength by a factor of ≈ 5
when using D′ = 0.006, supporting the results obtained here. However, the validity
of the higher values for D′ is based on the fundamental assumption that the Labusch
model can be applied to BCC solid solutions.

Two problems in application of the Labusch model become apparent here:

(i) Due to the large difference in critical stress for screw and edge dislocations
in BCC metals, the reference stress in the pure base element is always con-
trolled by screw dislocation motion. This leads to an intrinsic contradiction of
apparently identifying edge dislocation-controlled strength by using the screw
dislocation-controlled base element value.

(ii) The fit to the Ti-based solid solutions results in values for σBCC Ti between 210
to 240MPa compared to σMo =170MPa. Both the calculated shear moduli
(GMo ≈ 6GBCC-Ti) and the experimental Vickers hardness values (HMo ≈
1.5HHCP-Ti) do not indicate a higher yield strength for the hypothetical BCC
Ti.

While the application of the model is attractive due to its simplicity, the problems
show that the Labusch model is not suitable to identify the strength-controlling
dislocation type in BCC substitutional solid solutions. However, the model can
capture the correct order of magnitude for the strengthening. As shown in Fig. 5.7
by the green and red areas, all values of α between 1 and 30 and their corresponding
values of D′ provide a strengthening similar to the experimental data. Similarly,
the estimate of interstitial strengthening is probably also of the correct magnitude,
justifying the simplified Labusch approach to estimate the strengthening by O in
Mo-Ti solid solutions.
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5.4 Suzuki-Rao Model

The assumptions of the Suzuki model [36, 54, 55] are briefly repeated here:

(i) Only the closest neighbouring solutes interact with a screw dislocation.

(ii) These interactions increase the energy barrier for kink glide, which has to be
overcome by thermal assistance.

(iii) The waiting time for thermal activation is much larger than the kink pair
formation time, thus the latter effect is neglected.

(iv) Cross-kinks form when two gliding kinks on different glide planes meet. These
cross-kinks are insurmountable barriers against further kink glide.

(v) These cross-kinks are overcome either by a Orowan-like bow-out of the disloca-
tion between cross-kinks (Suzuki’s assumption) or by breaking away, leading to
the formation of a self-interstitial-vacancy pair (assumption by Rao et al. [45]).

The resulting equations are then:
√
2π b

3Lx (1− x)
=

∫ ∞

κt

exp(−0.5 y2)dy (5.12)

(5.13)

which links the average kink glide distance L to the probability of finding an insur-
mountably high energy barrier, quantified by the dimensionless parameter κt;

0 = τ 4k + S · τk −R (5.14)

(5.15)

An equation to calculate the stress τk required to move kinks. S and R both are
abbreviations, which have been described in Sec. 2.5;

τxk = 0.707
ESI + EV

4 b2 L
(5.16)

(5.17)

A formula derived by Rao et al. [45] to calculate cross-kink breaking by self-interstitial-
vacancy dipole formation;

σy = 2.74 (τk + τxk) at L0 (5.18)

The yield strength is defined as the sum of both strength contributions at a specific
glide distance L0. The stress to move kinks increases with increasing glide distance
L, the stress required to overcome cross-kinks increases with decreasing L. L0 is
the glide distance, where the minimum of the function is found. This minimization
process also yields the equation:

0 = κ2
t − ln

(
κ2
t

)
− 2 ln

(
3Gx (1− x)

4
√
2π τkQ

)
(5.19)

(5.20)

The definitions for all abbreviations and input parameters have been presented in
Sec. 2.5.
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For the modelling, several composition dependent parameters are required. Unless
stated otherwise, a linear change of the respective parameters with concentration is
assumed. DFT calculated values for the formation energies for vacancies, EV, and
self-interstitials, ESI, of the elements are used [143, 144]. For Ti, the HCP values are
used [144, 145] as there are no value for the BCC phase available. These values are
listed in Tab. 5.2. The shear modulus is calculated using GF =

√
0.5C44 (C11 − C12)

and the single crystal stiffnesses presented before in Tab. 5.1. The values are re-
peated in Tab. 5.2 for convenience. Tab. 5.2 also presents the Debye temperature
values to determine the Debye frequency and, as a consequence, estimate the kink
dwell time to overcome energy barriers.

Table 5.2: Single crystal stiffnesses Cij for Mo [133], Ti (BCC, at 1000 ◦C) [134] and
Nb [135], the self-interstitial and vacancy formation energies ESI [143, 145] and EV [144]
as well as the Debye temperatures ΘD [134, 146, 147] used in the Suzuki modelling.

Quantity C11 C12 C44 ESI EV ΘD

Units GPa eV K

Mo 463 158 109 7.42 2.9 370

Ti 134 110 36 2.45 1.55 272

Nb 245 138 29 5.25 2.85 285

The length of the Burgers vector b =
√

3
4
· a [40] and the distance between Peierls

valleys aP =
√

2
3
· a [40] both depend on the lattice parameter a. For the modelling,

the polynomial functions described in Eq. 4.1 are used for the lattice parameter.

In Ref. [46], dislocation-solute interaction energy values are reported for a variety
of solute-matrix atoms combinations, which are all determined using DFT calcula-
tions. These values are calculated using an extension of Eq. 2.18 for the four closest
neighbouring atom columns surrounding the dislocation. The values relevant for the
modelling here are presented in Tab. 5.3.

Table 5.3: Solute-dislocation interaction energies used in the Suzuki model implemen-
tation here, obtained via DFT calculations [46].

ETi in Mo 41meV

ENb in Mo 39meV

EMo in Nb 123meV

For Mo-Ti, the single value ETi in Mo was used for the entire system as there is
no value available for strengthening by solutes in Ti. For Mo-Nb solid solutions,
both values are used and combined according to the method proposed in Ref. [45],
E2

Mo-Nb = xNbE
2
Nb in Mo + xMoE

2
Mo in Nb.

79



Solving Eqs. 5.12 to 5.18 is not trivial due to the interdependencies. Here, an
iterative procedure is developed to solve the set of equations. In increments of
1 at%, the following steps are performed:

(i) Using κt = 2.23 from solutes in Fe [44] as a starting seed, L is calculated using
Eq. 5.12.

(ii) This allows to solve Eq. 5.14 numerically, as then only τk is left as variable.

(iii) With τk, Eq. 5.19 can be solved for an improved value for κt, which then is
used again for an improved calculation of L.

20 of these cycles are used to ensure reliability of the results. This method is free
of any fit parameters when the relevant energy values are known, e.g., by DFT cal-
culations. However, this also means that the modelling results depend critically on
correct values of these input values.

Two important limitations must be noted: (i) Although the results settle to a fixed
value after ≈ 10 cycles, and deviations continue decreasing for up to 50 cycles, there
is no mathematically strict proof for convergence. There are also no boundary
conditions or ranges of material parameters known for such convergence. (ii) The
“converged” values might not be actually the physically correct ones, as Eq. 5.14
yields up to four solutions when S = S(τk) is not taken into account, and Eq. 5.19
up to two. The process for numerical solving gives only the solution closest to the
starting seed. For Eqs. 5.14 and 5.19 these are kept constant as τk,start = 109GPa
and κt,start = 2 for all modellings.

Results for the Suzuki-Rao modelling are shown in Figs. 5.8 and 5.9 as red solid lines
for the Mo-Ti and Mo-Nb solid solutions, respectively. As the model does not apply
to dilute solid solutions, the modelling results are not shown below 5 at%. The exper-
imental offset yield strength values are shown as blue (Mo-Ti) and orange (Mo-Nb)
symbols, respectively. Literature values for Mo-Nb solid solutions [116, 117, 118, 119]
are shown as grey symbols.
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Figure 5.8: 0.2% offset yield strength of Mo-Ti (blue symbols) in comparison to the
results of the Suzuki-Rao model (red solid line). As the Suzuki-Rao model does not
apply to dilute solid solutions, values below 5 at% solute content are not shown. The
modelled yield strength is much lower than the experimental values across the entire
system.
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Figure 5.9: 0.2% offset yield strength of Mo-Nb (orange) and literature data on yield
strength (grey) in comparison to the results of the Suzuki-Rao model (red solid line). All
literature data [116, 117, 118, 119] are shown in a single color and symbol for clarity (see
Fig. 4.12 for a detailed overview). As the Suzuki-Rao model does not apply to dilute
solid solutions, values below 5 at% solute content are not shown. The experimental
values of the entire system are well-captured by the modelling.
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The strength in Mo-Ti solid solutions is underestimated in the model. While the
maximum strength is reached at xTi = 45 at%, similar to the experimental maximum
at ≈ 40 at%, the modlled strength is only 240MPa compared to the experimentally
obtained 900MPa. The correlation of experimental and modelling results yields
R2

adj = 0.99. However, the modelled strength is only 30% of the experimental one
across the entire system. By contrast, the strength in the Mo-Nb system is well-
modelled by the implementation. For the correlation investigation, own data and
data published by Milne et al. [118] are compared to the modelling results in or-
der to increase the number of data points. Both data sets contain results over the
entire solid solution series and are obtained at the same strain rate, thus no as-
sumption about the strain rate sensitivity is required. A correlation plot yielded
σmodel = 0.93σexp with a good R2

adj = 0.95. The model underestimates the strength
only for Mo-rich solid solutions: At xNb = 15 at%, the model yields only about 45%
of the experimental value.

Several problems arise in the application of the Suzuki model or its extension by
Rao et al., both from a conceptual as well as a practical perspective, which need to
be discussed. Ghafarollahi and Curtin describe fundamental problems in the Suzuki
model in Ref. [47], which also hold true for the extension: (i) The enthalpy barrier
for dislocation glide shows a singularity for τ → 0, i.e. at negligible applied stress,
the barrier for kink motion is infinitely high. (ii) The activation volume is finite and
nonzero for T → 0, in contrast to theoretical [148] and experimental results [149].
Although these are valid points of criticism from a theoretical perspective, these
limits are far off the practical experimental conditions investigated here.
The interdependent equations of the Suzuki-Rao model cannot be solved analytically
but only numerically. Suzuki [55] only mentions “numerical methods” for solving
the equations and Hattendorf and Büchner solve only a simplified version, which
still requires numerical calculations [44]. Rao et al. describe their solving process
as “numerical minimization with respect to κt” of Eq. 2.12 [45]. However, neither
are further details, nor is their implementation code published. An independent
analysis of their methods is thus not possible.
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The only publicly available solving algorithm for the Suzuki-Rao model has been
presented in Ref. [150]. For each atom species and for each concentration, the
following steps are performed:

(i) A set of values for the energy barrier parameter κt is used to calculate the
average glide length L. In their implementation, κt ∈ [1, 1.5, . . . 4].

(ii) The cross-kink breaking stress τxk is calculated using ESI and EV for each κt.

(iii) Together with the solute-dislocation interaction energies ESD,i from Ref. [46],
a value for the kink glide stress τk is calculated by solving the equation τ 4k +
S τk −R = 0 numerically for each κt.

(iv) τtotal = τxk + τk is calculated for each κt and the resulting data set of κt and
τtotal is fitted to a fourth order polynomial. The κt-value of the global minimum
of this polynomial is then used to calculate the yield strength τy.

These calculation steps for the yield strength are performed for each atom species
i independently and have to be added to obtain the total yield strength for a
given composition, τy, total =

∑
i τy,i. This follows one of the suggestions for MSS

from Ref. [45]. E.g., for each concentration in Mo-Nb solid solutions, the total
yield strength is calculated as sum of strength contributions from Mo and Nb,
τy, total = τy,Mo + τy,Mo.

Results for the different implementation methods are presented in Fig. 5.10. Rao et al.
only published results for solid solutions with 8.5 at% and 19 at% Mo (blue trian-
gles) [46]. A factor of 2.74 was included to account for polycrystalline samples and
the published data is corrected for the strain rate as described in Sec. 4.7.2. The
implementation after Ref. [150] is adapted to model at the correct strain rate; and
the concentration dependency in the model is altered from x to x (1− x) to remain
consistent with the approach used here for concentrated solid solutions. Increments
of ∆ xNb = 10 at% are modelled. The strength at 8.5 at% and 19 at% Mo are also
calculated, where the data from Rao et al. is available. The results are shown as
green dashed line. Results for the implementation method presented here are shown
as red solid line.

83



0 2 0 4 0 6 0 8 0 1 0 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0  E x p e r i m e n t a l  d a t a
 L i t e r a t u r e  [ 1 1 6 - 1 1 9 ]
 O w n  i m p l e m e n t a t i o n
 A f t e r  W e n  a n d  T i t u s  [ 1 5 0 ]
 R a o  e t  a l .  [ 4 6 ]

s y 
, s

p0
.2 /

 M
Pa

x N b  /  a t %
Figure 5.10: The yield strength of Mo-Nb solid solutions in the Suzuki-Rao model
as implemented in Ref. [150] (green dashed line), Ref. [46] (blue triangles) and as pre-
sented here (solid red line) in comparison to experimental results. Own data are shown
as orange circles, literature data as grey circles [116, 117, 118, 119]. The here presented
model implementation and the modelling results from Ref. [46] agree well with exper-
imental data. The implementation presented in Ref. [150] overestimates the strength
significantly.

The available results of Rao et al. [46] show a similar strength as the implementation
introduced here, which both agree with experimental data. The implementation af-
ter Ref. [150], however, predicts a too large strength for all concentrations. For
example for Mo-50Nb, about twice the experimental strength is modelled. The
implementation of the Suzuki-Rao model presented here yields results similar to
the implementation by Rao and co-workers, who are the leading proponents of this
model. Additionally, good agreement with experimental data is achieved, further
supporting the validity of the implementation. In contrast to the implementation by
Rao et al. [46], the code used here is publicly available [151]. This allows everyone
to apply and adapt the code according to their needs.

While the implementation from Ref. [150] is also publicly available, the results in-
dicate issues in modelling binary solid solutions. The original implementation from
Ref. [150] uses the linear concentration term x and yields an approximately linear
increase in strength with increasing Nb concentration from 500MPa at 10 at% Nb
to 1300GPa at 90 at% Nb (not shown here). As independent strength contributions
of the Mo-based and Nb-based solid solutions are added in this implementation, the
predicted strength is dominated by the strength of the Nb-based solid solutions due
to the larger interaction energy with EMo in Nb/ENb in Mo ≈ 3. When the parabolic
concentration dependency x (1 − x) for concentrated solid solutions is used, the
parabolic strength shown in Fig. 5.10 is obtained, which is also too high.
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The implementation from Ref. [150] is also tried for modelling the strength in Mo-
Ti solid solutions, using the parabolic concentration dependency and the correct
experimental strain rate. As in the own implementation, ETi in Mo = 41meV was
used for the entire system. The results are shown in Fig. 5.11 as green dashed line.
For comparison, the implementation as developed here is shown as red solid line,
while the experimental data are shown as blue dots. Similar to the results in Mo-Nb
the implementation after Ref. [150] results in approximately twice as large predicted
strengths, however the experimental data are still not reproduced.
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Figure 5.11: The yield strength of Mo-Nb solid solutions in the Suzuki-Rao model
as implemented in Ref. [150] (green dashed line) and as presented here (solid red line)
in comparison to experimental results (blue symbols). The here presented model im-
plementation, as well as the implementation from Ref. [150] both underestimate the
strength of Mo-Ti solid solutions when the available interaction energy is used. Similar
to Mo-Nb solid solutions, the implementation after Wen and Titus predicts approxi-
mately twice the strength of the implementation presented here.
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Several assumptions in the implementation of Ref. [150] might contribute to the
large deviation from the implementation presented here. The coarse increment step
size of κt of 0.5 can be ruled out. For an increment size of 0.01, a plausible increment
based on the results of the presented implementation, the approximately twice as
high yield strength is still predicted. Remaining sources for the large deviation are
then:

� The use of a fourth order polynomial for finding the minimum value of κt. It
is not explained in the publication nor can it be derived from the Suzuki-Rao
equations.

� The addition of species-specific strength contributions to the total alloy strength.
It is suggested by Rao et al. [45] as one option to calculate the strength in
MSS. This approach assumes that there are several independent kink glide
processes, one for each atom species, and the results of these processes can
simply be added. Thus, dislocation motion would be hindered independently
by each atom species. As the energy landscape encountered for each kink is
always a combination of interactions with all atom species, the use of an ef-
fective interaction energy, which combines contributions of all species, is more
plausible.

Only the interaction energy for Ti solutes in Mo has been reported, ETi in Mo =
41 meV [46], and this value is used to model the strength of the entire system. While
this might explain deviations for Ti-rich solid solutions, the strength for small Ti
contents should be predicted reasonably well, similar to Mo solutes in Nb. Still,
at 10 at% Ti, the model yields 100MPa, while the experimental value is 400MPa.
Based on the results in Mo-Nb solid solutions, the model implementation can yield
plausible results for the strength in BCC solid solutions. The dislocation-solute
interaction energies are obtained by model-independent DFT simulations and, as
such, should provide a robust estimate for strengthening. This seems to be true
for Mo solutes in Nb-rich solid solutions with EMo in Nb = 123 meV [46], but the
strengthening by solutes in Mo is underestimated. While there is only a slight un-
derestimation for Nb in Mo (ENb in Mo = 39 meV) [46], the predicted strength for Ti
in Mo (ETi in Mo = 41 meV) [46] is underestimated drastically.

According to Ref. [46], these interaction energies are among the smallest calculated
energies for solutes in Mo, even smaller than for W in Mo (EW in Mo = 47 meV).
Based on the interaction energies, strengthening by W, Ti and Nb should be similar
in Mo, with W showing the largest strengthening. However, experimental results
in literature do not correlate to these energy values: In Ref. [152], tensile testing
reveals an almost 20 times as large increase in strength in Mo-1Ti and Mo-1Nb com-
pared to Mo-1W. Similarly, Ref. [43] reports an increase in Vickers hardness of 7HV
per 1 at% Ti compared to 1HV per 1 at% W in dilute Mo solid solutions. These
underestimations underline the need for correct interaction energy values in order
to model the strength correctly. However, based on the modelling results discussed
here and the trends in literature, the interaction energies published for Ti and Nb
in Mo need to be considered wrong.
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In Ref. [153], DFT simulations for Ti in W showed a strong contribution by solutes
at fifth nearest neighboring sites. As the calculations in Ref. [46] are only performed
up to the fourth nearest neighbors, any potentially large impact of farther sites is not
captured. Due to the chemical similarity of Mo and W, it is reasonable to assume a
similar situation for Ti in Mo, and, as a consequence of the modelling results here,
probably also for Nb in Mo.

In order to determine the optimal interaction parameter for the Mo-Ti system, a least
squares algorithm was applied to the Suzuki implementation. ETi in Mo = 91meV
was found by the algorithm, see Fig. 5.12. The experimental data is shown as blue
symbols. The modelling result using the DFT calculated value is shown as red solid
line, the modelling using the optimized value is shown as green dashed line. A good
agreement is obtained between the model and the experimental data. This value is
similar to ones that have been calculated by DFT for Ti solutes in Nb (90meV) and
Zr solutes in Mo (99meV) [46].
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Figure 5.12: The yield strength of Mo-Ti solid solutions is not reproduced by the
Suzuki-Rao model when the DFT calculated energy parameter ETi in Mo,DFT = 41meV is
used (red solid line). A least squares (LS) fitting algorithm found ETi in Mo,LS = 91meV
as best parameter to describe the experimental data (symbols).
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5.5 Maresca-Curtin Models

The fundamental assumptions for the Maresca-Curtin models are briefly repeated:

(i) Local energy fluctuations due to different solute concentrations lead to a non-
straight dislocation line in its lowest energy state.

(ii) Applied stress is required to advance the dislocation to the closest solute con-
figuration with low energy in an average distance wc.

(iii) For edge dislocations, this glide distance arises naturally from the calculations.
Due to the high energy barrier, this distance is limited to wc = aP for screw
dislocation advancement.

(iv) The energy barrier arising from the local solute fluctuation is quantified by
the energy parameter ∆Ẽp(wc).

5.5.1 Edge Dislocation Model

For edge dislocations with long-range pressure field, the energy parameter can be
approximated using elastic theory. This includes the local lattice deformation quan-
tified by the misfit volume of each constituent element n as ∆Vn and the alloy’s
shear modulus G and Poisson ratio ν. Remaining free parameters of the model
are derived in Ref. [11] using a comparison of full-scale simulations and the elastic
approximation. The results for Mo-Ti are published in Ref. [58]. The resulting
equations are then

τy0,edge = 0.04 ξ−1/3G

(
1 + ν

1− ν

)4/3 [∑
n xn∆V 2

n

b6

]2/3
(5.21)

∆Eb = 2 ξ1/3 Gb3
(
1 + ν

1− ν

)2/3 [∑
n xn∆V 2

n

b6

]1/3
(5.22)

σy,edge(T, ε̇) = 3.06 τy0,edge exp

(
− 1

0.55

(
kT

∆Eb

ln

(
ε̇0
ε̇

))0.91
)

(5.23)

The modelling of edge dislocation-controlled strength is identical for both alloy
systems, except for the respective material-dependent inputs. The lattice parameter
as a function of solute content is included via the two polynomial fits presented
in Sec. 4.1. The shear modulus is calculated from the single crystal stiffnesses
of the constituent elements, assuming a linear change with solute concentration.
To calculate the shear modulus, GF =

√
0.5C44 (C11 − C12) is used. The volume

misfit, the difference in atomic volume between the actual alloy and a hypothetical
average alloy, is calculated using the polynomial fits to the lattice parameter and
the formulae for the volume misfits in binary systems, ∆V1 = 1.5(1− x1) a

2 d a
dx1

and
∆V2 = −x1∆V1/x2, where xi describes the concentrations of Mo and Ti or Mo and
Nb, respectively. A line tension parameter ξ = 1/8 is used.
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The strength of Mo-Nb solid solutions is well described across the entire concentra-
tion range, see Fig. 5.13. The results of the edge dislocation model are shown as
red solid line. The results of the screw dislocation model (green dashed line) will
be discussed below. Experimental data are shown as symbols: Own data are shown
in dark orange, the data by Milne et al. [118], measured at the same strain rate, is
shown as light orange symbols. Other literature data, corrected for the strain rate,
are shown in grey [116, 117, 119]. A correlation plot reveals overall a slight underes-
timation of the values, σmodel = 0.88σexp, but good correlation (R2

adj = 0.97). The
underestimation becomes more pronounced for Nb-rich solid solutions. This under-
estimation can occur for example from slight deviations in the implemented single
crystal stiffnesses compared to actual values, for example in Mo-50Nb, or from the
selection of the line tension parameter ξ = 1/8. For example, recently, ξ = 1/6 was
reported to improve the correlation to experimental data of W-Ta solid solutions
compared to 1/8 [13].
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Figure 5.13: 0.2% offset yield strength of Mo-Nb (dark orange symbols) together
with literature data in comparison to the results for the Maresca-Curtin screw dislo-
cation model with two independent interaction parameters (green dashed line) and the
edge dislocation model (red solid line). The light orange symbols show the data by
Milne et al. [118], which were also used for fitting the screw dislocation model. All other
literature data [117, 116, 119] were not used for fitting (shown in a single grey color). As
the screw dislocation models do not apply to dilute solid solutions, values below 5 at%
solute content are not shown. Both models can describe the experimental data over the
entire system.
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The strength of Mo-Ti solid solutions is matched only in high-Ti solid solutions
with 60 at% Ti and more as shown in Fig. 5.14. The edge dislocation model is
shown as red solid line, while the screw dislocation model (green dashed line) will
be discussed below. Experimental 0.2% offset yield strength is shown as symbols.
σedge model = 0.63σexp with R2

adj = 0.78 is found as correlation over the entire system,
while the correlation plot yielded σedge model = 0.99σexp with R2

adj = 0.99 when only
the high-Ti solid solutions are considered.
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Figure 5.14: 0.2% offset yield strength of Mo-Ti (blue symbols) in comparison to the
yield strength results of the Maresca-Curtin models. The red solid line shows results for
the edge dislocation model, the green dashed line the fitted screw dislocation model. As
the screw dislocation model does not apply to dilute solid solutions, values below 5 at%
solute content are not shown. While the single-parameter screw dislocation model is able
to describe the entire Mo-Ti system, the edge dislocation model shows good agreement
for Ti-rich solid solutions.

The edge dislocation model does not require any fitting, but only relies on material
properties which can be obtained from independent experimental analyses. In Mo-
Nb solid solutions, the yield strength of the entire system can be described by
this model with a slight underestimation of 12%. In Mo-Ti, only the high-Ti solid
solutions with at least 60 at% Ti showed good agreement, while the strength is
strongly underestimated in solid solutions with a lower Ti content. In both systems,
the shape of the edge dislocation strengthening model is strongly influenced by the
shape of the misfit function that has been described in Sec. 4.5. The second major
contributing factor in the model is the shear modulus. As the shear modulus of Mo
is larger than the moduli of both Ti and Nb, the peaks as observed in the misfit
function are shifted towards the Mo-richer solid solutions.
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5.5.2 Screw Dislocation Modelling in Mo-Ti

For screw dislocations, no elastic approximation is available. The solute-dislocation
interaction energy ∆Ẽp(wc) remains as parameter that needs to be determined e.g.
by DFT calculations. As these are not within the scope of this work, ∆Ẽp(wc) is
treated as a fit parameter to the data. By leaving a free fit parameter, the result-
ing modelling might reproduce the experimental data although the fitted parameter
might not represent the physical reality. Thus, the obtained fitted values must be
evaluated against known literature data to determine its plausibility. The results
for Mo-Ti are published in Ref. [58].

The model applied here does not consider kink-pair formation as rate-limiting con-
tribution to dislocation advancement. It is assumed that there is always a large num-
ber of kinks available along the dislocation line due to the local energy fluctuation.
A model extension for dilute solid solutions was developed to include the impact
of double-kink nucleation [154]. Within the framework of this model, double-kink
formation contributes significantly to the total yield strength below 5 at% solute
content [47]. Similar to the Suzuki-Rao model, cross-kink breaking is one of the
strength determining processes in the Maresca-Curtin model. Thus, vacancy and
self-interstitial formation energies, EV and ESI, are required. The same values as for
the Suzuki-Rao model are used, see Tab. 5.4, and again a linear change with solute
concentration is assumed. Additionally, the kink formation energy, Ekink, is needed.
For the entire Mo-Ti system, the value for Mo, Ekink = 0.5 eV [155], is used, as there
is no data available for kink formation in BCC Ti. Tab. 5.4 also presents the data
for Nb used in the modelling of Mo-Nb solid solutions.

Table 5.4: Self-interstitial, vacancy and kink formation energies for Mo, Nb and Ti [143,
144, 145].

Element ESI / eV EV / eV Ekink / eV
Mo 7.42 2.9 0.5
Nb 5.25 2.85 0.64
Ti 2.45 1.55 0.5

The self-interstitial formation energies are larger for all elements, thus it is the
strength-controlling contribution for cross-kink breaking and ζV/SI = ζSI = 15 ζc.
As in the Suzuki-Rao model, a kink width of wk = 10 b is used. The Peierls-like
mechanism is only active at high stresses and/or low temperatures, thus it is not
considered here. For example for Mo-Nb solid solutions, the Peierls-like mechanisms
has been modelled to be active below 100K at a strain rate of 0.001 1/s [40, 47].
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In order to obtain values for ∆Ẽp(wc), the interaction energies ∆UTi in Mo and
∆UMo in Ti are required, which have to be calculated for each position (i, j) rela-
tive to the dislocation line before and after dislocation glide. For the simplification
required for fitting, it is assumed that:
(i) The position-dependent solute-dislocation energy can be subsumed in a single,
collective interaction energy value for each type of solute,

(∆UTi in Mo)
2 =

∑
i,j

(
∆UTi in Mo(i, j)

)2
(5.24)

(∆UMo in Ti)
2 =

∑
i,j

(
∆UMo in Ti(i, j)

)2
(5.25)

(ii) These values scale linearly with solute concentration,

∆UTi-Mo = xMo∆UTi in Mo and ∆UMo-Ti = xTi ∆UMo in Ti (5.26)

(iii) The dilute interaction energies are identical,

∆UTi in Mo = ∆UMo in Ti (5.27)

then, ∆Ẽp can be written as

∆Ẽp = ∆UTi in Mo

√
xTi (1− xTi) (5.28)

And only ∆UTi in Mo remains as single free fit parameter in Eqs. 2.42 and 2.44.
When fitting the equation of the total yield strength to the O-corrected data of
Mo-Ti solid solutions, a ∆UTi in Mo = 151 meV is obtained. This matches the exper-
imental data for the entire system well, a correlation plot yielded σmodel = 0.99σexp

with R2
adj = 0.99. The experimental and modelling results are presented in Fig. 5.14

in the previous section, where the fitted screw dislocation model is shown as green
dashed line, the edge dislocation model as red solid line and the experimental data
as symbols.

92



5.5.3 Screw Dislocation Modelling in Mo-Nb

The modelling of the Mo-Ti system assumes that the dilute interaction energies,
∆UTi in Mo and ∆UMo in Ti, are identical. However, this is a simplification. DFT
calculations show that interaction energies can differ by up to a factor of four when
solute and matrix element are interchanged [46]. Thus, a more detailed modelling
should allow for two distinct dilute interaction energies. Following the derivation
in Sec. 5.5.2, but omitting the assumption (iii), a different term for ∆Ẽp is ob-
tained [13]:

∆Ẽp =
√
xNb (1− xNb) ·

√
(xMo ∆U2

Nb in Mo + xNb∆U2
Mo in Nb) (5.29)

For Nb-rich solid solutions, ∆UMo in Nb = 190meV is found in Ref [40]. Then
∆UNb in Mo remains as single free parameter. For EV, ESI and Ekink in Mo, the same
values are used as before, see Tab. 5.4. Again, self-interstitial energies are larger than
vacancy formation energies. The resulting equations for screw dislocation-controlled
strengthening are fitted to own data and the data published by Milne et al. [118]
due to the identical strain rate. The fitting yields ∆UNb in Mo = 121meV for Nb
solutes in Mo with σmodel = 1σexp and R2

adj = 0.98. The results for screw and edge
dislocation modelling in Mo-Nb are shown in Fig. 5.13 as green dashed and red solid
lines, respectively. Experimental data are presented as dark orange for own results,
light orange for the data by Milne et al. [118], which is also used for fitting, and grey
symbols [116, 117, 119].

In both systems, the fitted screw dislocation model was able to reproduce the ex-
perimental strength well. The asymmetry in strength for Mo-Ti solid solutions is
obtained in the screw dislocation modelling. The large difference in self-interstitial
energies (ESI,Mo = 7.24 eV and ESI,Ti = 2.45 eV) results in a strong decrease in
the cross-kink strength contribution with increasing Ti content, which causes the
maximum strength to be shifted towards the Mo-rich alloys. In Mo-Nb, the self-
interstitial energies are similar, and thus cannot explain the experimentally observed
asymmetric shape. The different interaction energies, ∆UMo in Nb = 190 meV [40]
and ∆UNb in Mo = 121 meV can explain this asymmetry. However, using ∆UNb in Mo

as explanation must be done with reservations. As it is fitted to the experimental
data, its value is found to describe the experimental data best, independent of a
physical basis of the value for ∆UNb in Mo. Here, an independent method of energy
determination is necessary to clarify the question, which is not available except via
DFT calculations.
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As the Maresca-Curtin model has been only recently published, literature data is
scarce for comparison. Similar values to the ones found in Mo-Ti and Mo-Nb are
presented in Ref. [13]: ∆UTa in W = 137 meV is determined by DFT simulations and
∆UW in Ta = 194 meV is calculated analytically. Also in Ref. [13], ∆Ẽp is calculated
for W-50Ta and Nb-50Ti as 84meV and 55meV, respectively. Using Eqs. 5.28 and
5.29, ∆Ẽp,50Ti = 75 meV and ∆Ẽp,50Nb = 80 meV are found, respectively, similar to
the DFT calculated values.
The similarity of the values supports the plausibility of the fit results. Qualitatively,
all these values agree with the Vickers hardness data from Ref. [41]. A confirmation
of the fitted results can only be obtained by DFT calculations. Rao et al. published a
large database for interaction energies for the use in the Suzuki model [46], covering
DFT calculations for 12 species of refractory and non-refractory atoms as solutes
in four species of refractory atoms as matrix. A similar database for the Maresca-
Curtin model is not available. The adaptation of the available energies from the
Suzuki to the Maresca-Curtin model is not as straightforward as one would expect
as will be discussed in the next section.

5.6 Comparison of Interaction Energy Parameters

While own DFT calculations are not within the scope of this work, values for the
interaction energy between a dislocation and specific solutes in a given matrix are
available in literature, e.g. in [13, 40, 46, 156]. These energies are the basis for
the strength controlled by screw dislocation motion in the Suzuki-Rao and the
Maresca-Curtin model. Due to the conceptual similarity of the energy parame-
ters in both models, they can be correlated to each other [46, 153]: Both reduce
solute-dislocation interactions into a collective energy and calculate this value as
energy difference before and after dislocation glide. Accordingly, both parameters
share a common mathematical formulation. The difference between both models is
that the Suzuki-Rao model distributes the total energy among the six atoms closest
to the dislocation, while the Maresca-Curtin model merges this energy into a single
atom. Thus, the following relation is obtained:

6E2
Rao = (∆UMaresca-Curtin,collective)

2 (5.30)

Therefore, the relevant input values from both models can be compared directly. For
the Suzuki-Rao model, EMo in Nb = 123 meV and ENb in Mo = 39 meV from Ref. [46]
are used. These values calculate to ∆UMo in Nb,Rao = 301 meV and ∆UNb in Mo,Rao =
96 meV in the Maresca-Curtin models. For comparison, ∆UMo in Nb,fit = 190meV
and ∆UNb in Mo,fit = 121meV are obtained by fitting the Maresca-Curtin model to
the data. The results for Nb solutes in Mo agree, when a slight underestimation of
ENb in Mo is taken into account. For Mo in Nb, however, the recalculated value is
more than 100meV larger than the value obtained by fitting. For this parameter,
a factor of (∆U/ESD)Mo in Nb = 190/123 ≈ 1.55 is required instead of

√
6 = 2.45 to

correlate both parameters.
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For Mo-Ti, where a single parameter is used for the entire system, ETi in Mo = 41 meV
does not yield plausible results in the Suzuki-Rao model, not even for dilute Mo-Ti
solid solutions. If the fitted value from the Maresca-Curtin model is taken as refer-
ence, the respective Suzuki energy parameter should be ETi in Mo = 151/

√
6 meV=

61 meV, which is only 2/3 of the value obtained via fitting (ETi in Mo = 91meV). Ac-
cordingly, for the interaction energy in the Mo-Ti system, a factor of 151/91 ≈ 1.65
is required instead of the value of

√
6, which has been proposed by proponents of

both models [46, 153].

A factor of approximately 1.6 appears in both alloy systems between the fitted
values from the Maresca-Curtin model and the values for the Suzuki-Rao model.
In Mo-Ti solid solutions this value is obtained for the single interaction parameter
in the entire system; for Mo-Nb solid solutions this factor is found for Mo solutes
in Nb. However, there is currently no theoretical basis to explain this factor sim-
ilar to

√
3 ≈ 1.7 and, based on the limited number of systems investigated here,

it must be considered coincidence. For the W-Ta system, ∆UTa in W = 137meV
and ∆UW in Ta = 194meV are found for the application in the Maresca-Curtin mod-
els [13]. These are four and 1.3 times larger than the respective values calculated
by DFT for the Suzuki model [46]. Again, the suggested factor of

√
6 ≈ 2.45 is not

found.

The DFT calculated interaction energies between solutes and dislocation provide a
model-independent quantity. As such they should be applicable in both the Suzuki-
Rao and the Maresca-Curtin model, when the correct recalculation factor is taken
into consideration. The proposed value of

√
6 to recalculate between both models

does not seem to be a reliable method. There are three possible conclusions from
the observation of these discrepancies:

(i) Either model (or even both models) implements correct DFT values in a wrong
way, leading to the observed differences between fitted and DFT calculated
values.

(ii) The currently available DFT calculations are too imprecise, because, e.g., far-
ther locations have to be taken into consideration.

(iii) The alloys used for fitting might not all be suitable, e.g., their strength is
controlled by edge dislocation motion instead.

In the extreme case, all possible conclusions might be true at the same time. Ap-
parently correct modelling results thus might be a result of errors which cancel each
other out. Based on the limited data available, neither conclusion can be excluded.
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5.7 Deformation Mechanisms

Both, the presented solving method for the Suzuki model, as well as the Maresca-
Curtin model for screw dislocation-controlled strengthening, are able to describe the
experimentally observed yield strength of Mo-Ti and Mo-Nb solid solutions. DFT
calculated values from literature [46] yield good agreement only for the Suzuki model
applied to Mo-Nb solid solutions. In all other cases (Suzuki model applied to Mo-
Ti, both applications of the Maresca-Curtin model), fitting procedures are required
to obtain the energy parameters necessary for agreement with experimental data.
The results are summarized in Fig. 5.15 as red solid (Suzuki-Rao) and green dashed
(Maresca-Curtin) lines in a) for Mo-Ti and b) for Mo-Nb. In both systems, good
correlations to the experimental data with R2

adj > 0.95 are obtained.

In Mo-Ti, alloys containing 60 at% Ti and more show comparable strength as mod-
elled by screw and edge dislocation models. In Mo-Nb, all three tested solid solu-
tions, Mo-25Nb, Mo-50Nb and Mo-75Nb show comparable strengths with R2

adj >
0.97 when tested against the models. The results are shown in Fig. 5.15 as purple
dash-dotted lines in a) for Mo-Ti and in b) for Mo-Nb solid solutions. The respective
experimental data are shown as blue and orange symbols, respectively. Values from
literature are shown as grey symbols [116, 117, 118, 119].
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Figure 5.15: Experimental and modelling results for Mo-Ti solid solutions in a) and
Mo-Nb solid solutions in b). Blue and orange circles indicate own experimental data,
grey circles literature data [116, 117, 118, 119]. In both alloy systems, the results of the
Suzuki-Rao model are shown as red solid line. The Maresca-Curtin models are shown
as green dashed line for the screw dislocation model and as purple dash-dotted line
for the edge dislocation model, respectively. Both screw dislocation models are able to
model the strength in their respective systems when appropriate energy parameters are
used. All three Mo-Nb and the Ti-rich solid solutions can also be modelled by the edge
dislocation model.
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Thus, strength in both solid solution series can be controlled by screw dislocations,
which agrees with the established assumptions for BCC metals and alloys [7]. How-
ever, contrary to the traditional understanding, edge dislocation motion might also
control the strength of solid solutions in both systems. Experimental verification of
the strength controlling dislocation type is possible, e.g. by transmission electron
microscopy (TEM) [10]. As this is not within the scope of this work, the models are
evaluated against each other regarding their plausibility.

The edge dislocation model requires only readily available experimental values as
input, the lattice parameter, Poisson’s ratio and the shear modulus or single crystal
stiffnesses. The yield strength can then be calculated using analytical equations
with reproducible results. Both screw dislocation models share similar drawbacks,
and thus are both inferior to the edge dislocation model regarding their reliability.
Both rely on correct input values for the solute-dislocation interaction energy and
self-interstitial and vacancy formation energies. If DFT calculations are not avail-
able to obtain these values, fitting or estimating these values is required. However,
this process might result in an apparently good prediction of the yield strength.
Even after comparison to similar available literature data, it is not clear if these
values reflect the actual underlying physics of the system or if a wrong input value,
combined with a wrong model, leads to good agreement with experimental results.

In a direct comparison of both screw dislocation strengthening models, the Maresca-
Curtin model should be preferred over the Suzuki-Rao model. The yield strength
predictions are very similar, as can be seen in Fig. 5.15. However, the Maresca-
Curtin model uses a set of equations that can be solved analytically, and thus yields
identical results for identical input parameters. By contrast, the Suzuki model re-
quires numerical methods to obtain yield strength results. Not all implementation
methods are publicly available [45, 150], thus a comprehensive, critical analysis of the
different methods is not possible. Different algorithms thus might lead to different
results without the possibility of independent verification. Until there is a singular,
generally accepted implementation of this model, all results using this model have
to be interpreted carefully.

Based on the above discussion, the yield strength of Mo-Ti solid solutions containing
xTi ≥ 60 at% is likely edge dislocation-controlled. Below this concentration, only the
screw dislocation models reproduce the experimental data; thus, these alloys must
be considered screw dislocation-controlled. In Mo-Nb solid solutions, while there
is a slight underestimation especially for dilute Nb-rich solid solutions, the overall
trend of the data is well-captured by the edge dislocation model. Thus, the major-
ity of Mo-Nb solid solutions shows also most likely edge dislocation-controlled yield
strength. Both independent models for screw dislocation strengthening reproduced
the yield strength for Ti-rich solid solutions and the entire Mo-Nb solid solution
system. A strength contribution by screw dislocations can therefore not be ruled
out for any of these alloys. These alloys can thus be considered as being of “com-
petitive” strength (of both dislocation types) until the dislocation type has been
identified conclusively in experiments.

97



A threshold for competitive strengthening by both dislocation types has been pro-
posed recently based on the Maresca-Curtin models [13]. The authors in Ref. [13]
correlate Vickers hardness measurements from Ref. [41] to the edge dislocation model
and find δth ≥ 0.035 as threshold misfit value for a good correlation parameter R2

adj

between hardness and model data. Neither the Mo-Ti nor the Mo-Nb solid solu-
tions surpass this threshold. For Mo-Ti solid solutions, competitive strengthening
is reached for alloys with at least 60 at% Ti or with a misfit of δth, Mo-Ti ≥ 0.028.
In Mo-Nb, competitive strengthening is observed for all three tested solid solu-
tions with δth, Mo-Nb ≥ 0.019. The threshold of δth = 0.035 is obtained as aver-
age value across all binary refractory solid solutions, and the impact of the shear
modulus on the modelled strength is not considered. The shear modulus of Mo,
GMo ≈ 120GPa, is the second largest shear modulus from among all BCC met-
als [114]. Accordingly, edge dislocation-controlled strengthening can become com-
petitive already for lower misfit values than the average threshold. The shear modu-
lus for BCC Ti can be calculated from the single crystal stiffnesses in Tab. 5.1 to be
GTi = 21GPa, which compares well to shear moduli of Ti-rich BCC solid solutions
(GTi-rich BCC ≈ 20 . . . 30GPa) [157]. The shear modulus of Nb is experimentally
available, GNb = 38GPa [114]. As the shear modulus of Nb is larger than the one
of BCC Ti, the threshold misfit for competitive strength is even smaller in Mo-Nb
compared to Mo-Ti solid solutions.
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5.8 Implications for Alloy Design

Based on these considerations, a correlation between misfit parameter and shear
modulus is investigated with respect to the identified strength-controlling dislocation
type, see Fig. 5.16. Misfit and shear modulus data for solid solutions from the
Mo-Ti and the Mo-Nb systems investigated here (squares and upward triangles,
respectively) as well as Nb-Ti (circle), W-Ta (downward triangle) and several MSS
(star) from Ref. [13] are included. Alloys, which have been identified as having screw
dislocation-controlled yield strength are shown in black, alloys with competitive
strength in orange and alloys with edge dislocation-controlled strength in red.
Note that the misfit values published in Ref. [13] are obtained using the approximate
formula ∆Vn =

∑
m xm (Vn − Valloy), and thus might not be as precise as the ones

calculated here using the exact formulae and the polynomial fits.
All shear moduli are calculated using GF =

√
0.5C44 (C11 − C12), and using concen-

tration-weighted single crystal stiffnesses. All input values used for the data points
in Fig. 5.16 are presented in Tabs. 5.5 and 5.6.
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Figure 5.16: Misfit δ plotted over the shear modulus G for the solid solutions in-
vestigated here and in Ref. [13]. Different symbols indicate different alloy systems.
Red symbols indicate solid solutions with clearly identified edge dislocation-controlled
strength, orange symbols those with competitive strength from both dislocation types,
black for clearly screw dislocation-controlled strength. The green dashed line indicates
a proposed threshold function for competitive strength between both dislocation types.
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The dashed green line in Fig. 5.16 indicates an estimated lower boundary for combi-
nations of misfit δ and shear modulus G, above which edge dislocation strength-
ening becomes competitive. To determine this threshold, the alloys with low-
est and highest shear modulus among own results, Mo-80Ti and Mo-25Nb, are
used with δMo-80Ti = 0.028 and GMo-80Ti = 46GPa and δMo-25Nb = 0.019 and
GMo-25Nb = 107GPa, respectively. A linear function with

δ = −1.53 · 10−4 (G/GPa) + 0.0353 (5.31)

is found. The reproduction of the already suggested threshold δth = 0.035 as in-
tercept of the function is coincidence. If Mo-75Nb was used as lower data point
for the function instead, δ = 0.03 would be obtained as intercept. The exact tran-
sition between screw and edge dislocation-controlled strength depends on several
energy contributions in the screw dislocation model and elastic properties in the
edge dislocation model. Thus, the phenomenological function presented here must
be understood more as a guideline for competitive strengthening by edge dislocations
than a strict transition value.

Table 5.5: The misfits δ and shear moduli G of all Mo-Ti and Mo-Nb solid solutions
presented in this work, which are used in Fig. 5.16. The misfits are calculated using
the polynomial fits for the lattice parameter in Eq. 4.1 and the exact formula given
in Eq. 2.33. The shear moduli are calculated using the single crystal stiffnesses given
in Tab. 5.1 and using Eq. 5.7. Note that the misfits are scaled by 1000 for better
readability. The next row gives the solute-dislocation interaction energy parameter ∆Ẽp,
as calculated in the respective modellings. The final row indicates, if screw dislocations
are predicted to control the strength (“S”), or if competitive strengthening by screw and
edge dislocations was found (“C”).

at% Ti 10 20 30 40 50 60 70 80

G / GPa 119 109 99 88 78 67 57 46

1000 δ / - 0.2 5 12 18 24 28 30 28

∆Ẽp / meV 45 60 69 74 75 74 69 60

strength S S S S S C C C

at% Nb 25 50 75

G / GPa 107 85 63

1000 δ / - 19 25 23

∆Ẽp / meV 61 80 76

strength C C C
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Table 5.6: Alloy compositions, the misfits δ , the shear moduli G, and ∆Ẽp for the
alloys investigated in Ref. [13]. The final column indicates if the respective alloy was
identified as being edge (“E”) or screw dislocation-controlled (“S”) or if competitive
strength was found (“C”). The misfits are scaled by a factor of 1000 for better readabil-
ity. The elemental inputs used are presented in Tab. 5.7.

Composition / at% 1000 δ / - G / GPa ∆Ẽp / meV strength

W-50Ta 22 116 84 C

W-40Ta 22 126 79 C

W-20Ta 17 144 60 E

Ta-40Nb-18V 31 57 84 E

Ta-1Hf-9W 15 77 67 S

Nb-22.4Hf-5.9W 35 48 87 E

Nb-20Hf-6.4W-2.6Ta-2.6Zr 36 49 95 E

Nb-20Hf-9.2W-2.6Ta-2.6Zr 37 53 96 E

Nb-5.4Hf-2.6Ti-0.74Zr-0.26Ta-0.26W 28 43 56 S

Nb-50Ti 5 35 55 S

Nb-61Ti 5 32 65 S

Nb-18.1Ti-11.9Mo 15 51 83 S

Nb-18.1Ti-14.1Mo 16 53 87 S

Nb-32.5Ti-32.8Mo 21 67 108 S
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Table 5.7: The BCC lattice parameters a and single crystal stiffnesses of the elements
used in Ref. [13] to calculate the misfits δ using the linear approximation and the shear
modulus using Eq. 5.7. Note that for Mo and Nb, different single crystal stiffnesses are
used compared to the modelling in this work. The difference in G is ≈ 2. . . 3GPa for Mo
and Nb. This data was originally compiled in Ref. [12] including Cr. Although none of
the alloys contains Cr, it is shown here for the screening process described below.

Element a / Å C11 / GPa C12 / GPa C44 / GPa

W 3.16 533 205 163

Ta 3.3 266 158 87

Nb 3.3 253 133 31

V 3.03 232 119 46

Hf 3.56 131 103 45

Ti 3.26 134 110 36

Zr 3.58 104 93 38

Mo 3.14 450 173 125

Cr 2.91 350 68 100

Using Eq. 5.31, refractory metal alloys can be screened effectively for candidate
systems with edge dislocation-controlled strength. Ref. [12] compiled data on the
(partially extrapolated) BCC lattice parameters and single crystal stiffnesses for all
nine stable elements of the fourth to sixth group of the periodic table (Ti, Zr, Hf, V,
Nb, Ta, Cr, Mo, W). These values are presented in Tab. 5.7, as they are also used
for the calculations in Ref. [13]. All 9 · 8/2 = 36 binary alloy systems are modelled
using the edge dislocation model in increments of 10 at% using this data set.

For simplicity, alloy lattice parameters and misfits were calculated using the lin-
ear approximation for the volume misfit,

Valloy =
∑
n

xn Vn (5.32)

∆Vn = Vn − Valloy (5.33)

δ =
1

3Valloy

√∑
n

xn (∆Vn)2 (5.34)

As this approach does not capture non-linear behavior of the lattice parameter, none
of the Mo-Ti solid solutions would be considered edge dislocation-controlled in this
simplified approach. Also, this screening does not consider the thermodynamically
stable phases of the tested alloys.
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Calculations for hard spheres predict solid solutions to form for misfit values δBCC ≤
0.06 [158]. This result can be confirmed for the refractory binary alloys using the
SpringerMaterials database [159]. However, also below this threshold, each system
needs to be analyzed individually. For example, Ti-Zr solid solutions fulfil the
predicted misfit range for edge dislocation-controlled BCC solid solutions, but form
HCP solid solutions at room temperature [160]. As this is true for all alloys from
among the fourth group elements Ti, Zr and Hf, these combinations are excluded
from the screening. For other systems, such a clear decision cannot be made. For
example in Mo-Cr solid solutions, a separation in two BCC phases is predicted,
which has not been observed in recent experiments [161]. Thus, all alloy systems
except for those among fourth group elements are included. Results for the screening
of binary alloys are presented in Fig. 5.17. Screw dislocation-controlled alloys are
shown as black filled dots, edge dislocation-controlled alloys as red filled dots, and
alloys above the threshold for stable BCC solid solutions are shown as empty black
dots.
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Figure 5.17: A screening of all possible binary solid solutions among refractory met-
als in increments of 10 at%. Solid black symbols are screw dislocation-controlled solid
solutions, red symbols are edge dislocation-controlled. The alloys with the empty black
symbols above δ = 0.06 do not form BCC solid solutions. Alloys among fourth group
elements are excluded as they form HCP solid solutions.
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Alloys with the largest misfits are alloys containing Cr, Zr and Hf. The lattice pa-
rameter of Cr is the smallest of all refractory metals (aCr =2.91 Å, all data in this
paragraph from Ref. [12]), while the extrapolated BCC lattice parameters of Zr and
Hf are the largest, aZr =3.58 Å and aHf =3.56 Å, respectively. Due to the extreme
values of lattice parameters, the according misfits are large in their alloys. From the
alloys screened, a total of 46 compositions have misfits larger than the BCC stability
threshold. 22 compositions contain Cr, 22 Zr and 18 Hf. Note that this includes
alloys between these elements, thus the total of the numbers is larger than 46. Also
among solid solutions with a large misfit, 0.04 < δ < 0.06, most contain Cr, Zr and
Hf with 22, 22 and 19 out of 66, respectively. This makes these elements the most
promising ones for edge dislocation-controlled strength in BCC solid solutions, if
BCC solid solutions can be obtained.

In contrast to the modulus-independent threshold from Ref. [13], additional alloys
can now be identified as likely edge dislocation-controlled. In total, 55 out of 157
alloys are below the threshold of 0.035, but have a sufficiently large moduli to cross
the threshold function from Eq. 5.31. Accordingly, W and Mo, the metals with the
largest shear moduli, are the most common components among those alloys (20 and
18 alloys, respectively).

The threshold function is found for binary alloys, however the Maresca-Curtin mod-
els have been developed for systems with an arbitrary number of constituents. Based
on the limited number of data points available for Fig. 5.16, MSS also follow the
suggested function. While the lattice parameter and, consequently, also the misfit
volume can be accurately described by concentration-dependent functions for bi-
nary solid solutions, linear approximations of lattice parameters and misfit volumes
are commonly used for the modelling of MSS [5, 11, 12, 13, 162] and have been
found experimentally [9]. The same approximations have been used in the screening
of binary alloys. Elastic properties are estimated from the concentration weighted
single crystal stiffnesses. Even when alloys are considered that contain elements
not included here, for example Al-containing MSS [59], shear moduli and lattice
parameters can be obtained via independent experimental methods, and the model
can be applied accordingly. Thus, regarding the edge dislocation model, there are
no additional considerations necessary to transfer the threshold function to MSS or
alloys containing non-refractory metals. Similarly, the energy contributions to form
self-interstitials, vacancies and kink pairs are obtained as concentration weighted
averages of the elemental properties, both for binary as well as for MSS. The limits
of these quantities are solely determined by the elemental values, and no further
complexity arises with an increasing number of constituents. Thus, the strength
contribution from cross-kink breaking in the model for screw dislocation-controlled
strength also can readily be calculated for MSS.
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A final contribution that needs to be considered is the interaction energy ∆Ẽp. For
Mo-25Nb and Mo-80Ti, the anchoring points of the threshold function, ∆Ẽp,25Nb =
61meV and ∆Ẽp,25Nb = 60meV are found. Values from Ref. [13] for alloys with com-
petitive strengthening were ∆Ẽp,W-50Ta = 84meV and ∆Ẽp,W-40Ta = 79meV. The al-
loy W-20Ta with ∆Ẽp,W-20Ta = 60meV was identified as edge dislocation-controlled.
On the other hand, Nb-50Ti was identified as screw dislocation-controlled with a
value of ∆Ẽp,Nb-50Ti = 55meV. Thus, based solely on the dislocation-solute interac-
tion energy, no clear trend for either dislocation type can be observed for binary solid
solutions. This situation is similar for MSS: In Ref. [13], two MSS of the Nb-Hf-W-
Ta-Zr system are identified as edge dislocation-controlled with ∆Ẽp-values of 95 and
96meV. One alloy of the Nb-Hf-Ti-W-Ta-Zr system is identified as screw dislocation-
controlled with a ∆Ẽp-value of 56meV. Again, no trend is observed. Thus, based
on the currently available data, the screw-to-edge dislocation-controlled threshold
can not be reliably estimated using ∆Ẽp. This supports the approach to determine
the threshold using parameters from the edge dislocation model. With a larger
number of available data sets or theoretical progress to correlate the interaction en-
ergy to other material properties, patterns might emerge, which then might allow
to properly distinguish screw and edge dislocation-controlled strength including this
parameter.
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6 Conclusions

Two questions have been stated in the introduction of this work:

� Is it possible to identify a transition between screw and edge dislocation-
controlled yield strength in BCC solid solutions?

� Do the observations allow the derivation of general guidelines for this transi-
tion?

To answer these, Mo-Ti and Mo-Nb solid solutions have been investigated experi-
mentally, and the results have been correlated to available models of solid solution
strengthening. Indeed, a transition between both dislocation types as strength-
controlling has been found, and the results yield a generalized correlation for arbi-
trary BCC solid solutions.

Both systems have been thoroughly characterized across several length scales. Very
good correlations of nanoindentation, Vickers hardness and compression testing are
obtained in both systems, indicating no significant impact of grain size, oxide for-
mation or grain orientation on the yield strength. The combination of HCGE and
APT reveals up to 0.4 at% interstitial O in the Mo-Ti solid solutions with high
Ti contents. Two different model-consistent approaches are applied to account for
the strengthening contributions from interstitial O. For Mo-Nb solid solutions, no
correction is required as O contents are below detection limit. X-ray diffraction
measurements confirm a single-phase BCC structure for all alloys and two distinct
behaviors: While the lattice parameters in Mo-Nb solid solutions increases approxi-
mately linearly with increasing Nb content, the lattice parameters in Mo-Ti increases
non-linearly. The slope of the lattice parameter function quantifies the atomic misfit,
which is an important contribution to edge dislocation-controlled strength.
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Different established models have been applied to model the yield strength con-
trolled by screw and edge dislocations in both systems. Although the Labusch
model is still used today, there are fundamental problems in the application to BCC
solid solutions. Accordingly, no reasonable results are obtained using this model.
The Suzuki model, including recent changes, models the strength solely controlled
by screw dislocations. Its mathematical complexity results in the necessity to use
numerical solving methods, and, as a result, different modelling results by different
authors. However, the strength in both solid solution series can be reproduced in this
model using the solving approach presented here. The screw dislocation strength-
ening model by Maresca and Curtin can be solved analytically, and also models the
strength in both systems. However, both screw dislocation models require the use of
interaction energy parameters which have to be obtained either by DFT calculations
or by fitting the data to the experimental results. The edge dislocation model by
Maresca and Curtin is specifically developed for BCC solid solutions and can be
solved analytically. Its input parameters can be obtained by independent experi-
mental methods, thus no fitting of the model is required. It reveals that the strong
change in slope in the Mo-Ti lattice parameter function results in a competitive
strength by edge dislocation motion compared to screw dislocations. However, also
in Mo-Nb solid solutions, with a smaller slope in the function, competitive strength
by edge dislocation motion is obtained for all tested concentrations.

Based on the obtained results on competitive strengthening by both dislocation
types in Mo-Ti and Mo-Nb, a generalization is proposed: Assuming that a general
misfit threshold must be surpassed to obtain competitive edge dislocation strength-
ening, a linear dependency on the shear modulus is found. Based on this relation,
all binary solid solutions of refractory metals can be screened, and 62% of the solid
solutions might be edge dislocation-controlled. As the Maresca-Curtin models are
developed for systems with arbitrary numbers of constituent elements, the threshold
function holds also for MSS. Based on these results, the selection of the models used
for solid solution strengthening can be refined vastly, leading to a faster and more
reliable alloy design.

However, the identification of edge dislocation-controlled solid solutions and the fol-
lowing derivation are based exclusively on model comparison. Experimental proof,
for example using dislocation character analyses in TEM have been successfully ap-
plied to MSS, where edge dislocations have been found as predominant dislocation
type [10, 12]. A similar analysis is not yet available in binary solid solutions. Thus,
no data are available that confirm (or falsify) the determined threshold function
for competitive screw and edge dislocations. The function is found using Mo-80Ti
and Mo-25Nb solid solutions, and accordingly both screw and edge dislocation are
expected in these alloys. However, binary alloys with larger misfit-shear modulus
combination, for example solid solutions of Mo or W with Zr or Hf, might be a
better starting point for TEM analyses. So far, proof for edge dislocation-controlled
strength in binary solid solutions is missing in the first place, and these solid so-
lutions are more promising due to their larger misfit than Mo-Ti and Mo-Nb solid
solutions.
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If this threshold is confirmed experimentally, the found function allows for more
precise design of BCC alloys: For good mechanical stability at high-temperatures,
high-melting point refractory metals (e.g., W and Ta) are desired. However, these
come with the downside of high densities. By contrast, low-melting point refractory
metals (e.g. Ti, Cr) also have lower densities and are desired for increased engine
efficiency. Using the threshold function described here, computer-assisted alloy de-
sign can be improved regarding finding a compositional balance between the yield
strength and density.

Besides the use of substitutional solutes, interstitials might also be used to adjust the
strength-controlling dislocation type. As interstitials cause large local lattice strains,
a transition from screw to edge dislocation-controlled strength might thus also be
triggered by interstitial content. Mo-50Ti is a promising alloy for an investigation
of this phenomenon as it is already close to competitive strengthening, making edge
dislocation motion very sensitive to additional misfit contributions. The selection
of interstitial atoms however requires some additional preliminary investigation in
order to avoid evaporation or precipitation of metal-interstitial compounds.

The application of the models, especially of the screw dislocation strengthening
models is restricted to a small number of research groups due to their complexity
and the need for DFT calculated energy values. While the model code used in
this work cannot provide support on DFT calculations, it allows to apply the mod-
els either by fitting the model to experimental data or by using published energy
parameters as input. The code is commented thoroughly so that adaptation to dif-
ferent model systems can easily be made. Additional theoretical work is required to
derive methods for predicting the solute-dislocation interaction energy without the
need of DFT calculations to open up this topic of research for more researchers.
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7 Appendix

7.1 Compression Testing Data
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Figure 7.1: Engineering stress-strain data for all Ti-lean Mo-Ti solid solutions. Data
marked with ”x” indicate sample failure.
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Figure 7.2: Engineering stress-strain data for all Ti-rich Mo-Ti solid solutions. Data
marked with ”x” indicate sample failure.
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Figure 7.3: Engineering stress-strain data for all Mo-Nb solid solutions. Data marked
with ”x” indicate sample failure.
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7.2 Nanoindentation Data

On the following pages, the data obtained in nanoindentation is presented. For
each alloy, the load-displacement data is shown as large image, while the therefrom
derived Young’s modulus and nanohardness data are shown as smaller images. Note
that the established colour coding is not maintained in this section.

7.2.1 Mo-Ti solid solutions
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Figure 7.4: Load-displacement (top) and Young’s modulus and nanohardness data
(bottom) for Mo in Mo-Ti solid solutions.
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7.2.2 Mo-Nb solid solutions
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Figure 7.13: Load-displacement (top) and Young’s modulus and nanohardness data
(bottom) for Mo in Mo-Nb solid solutions.
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