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Zusammenfassung

Der Fokus dieser Arbeit liegt auf dem menschliches Fahrverhalten im
Straßenverkehr. Davon werden zwei Aspekte abgedeckt: Dessen Vorher-
sage, einschließlich der Identifikation relevanter Einflussfaktoren, sowie
die Verhaltensgenerierung für autonome Fahrzeuge.

Die Verhaltensvorhersage basiert auf einer Feldstudie, bei der Proban-
den mit einem Messfahrzeug innerstädtische Kreuzungen durchfahren
haben. Die gefahrene Trajektorie und Lidar-Aufnahmen werden dazu
genutzt, umKomplexitätseigenschaften zu definieren, die die Umgebung
an der Kreuzung, den Verkehr dort sowie den Fahrweg beschreiben. Das
Fahrverhalten wird über weitere Eigenschaften charakterisiert. Basie-
rend auf den Komplexitätseigenschaften werden Regressionsmodelle
trainiert, um die Verhaltenseigenschaften vorherzusagen. Dazu werden
lineare Regression, Random Forest und Gradient Boosting Machine ge-
nutzt. Verschiedene Mengen der Komplexitätseigenschaften, inklusive
einiger, die durch einen Autoencoder reduziert werden, werden für die
Vorhersage verwendet. Die Ergebnisse zeigen, dass das Fahrverhalten
zuverlässig vorhergesagt werden kann. Werden jedoch Komplexitäts-
eigenschaftsmengen mit nur wenigen Eigenschaften verwendet, ist die
Vorhersageleistung reduziert.

Um einen Komplexitätswert zu erhalten, der sichmit dermenschlichen
Wahrnehmung von Komplexität deckt, wurde eine Onlinestudie durch-
geführt, bei der Videos von Anfahrten an Kreuzungen genutzt wurden.
In Paarvergleichenwaren die Teilnehmer aufgefordert, die komplexere Si-
tuation zu identifizieren. Anhand dieser Daten werden Komplexitätswer-
te für die in der Studie beinhalteten Kreuzungsdurchfahrten berechnet.
Mehrere Methoden kommen zum Einsatz, um diese Werte den Durch-
fahrten der ursprünglichen Feldstudie zuzuweisen. Diese zugeordneten
Komplexitätswerte werden benutzt, um Verhaltens-Regressionsmodelle
zu trainieren. Die Ergebnisse zeigen, dass die Verhaltensvorhersage mit
den Komplexitätswerten möglich ist, jedoch erfordern es die meisten
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Varianten, dass zusätzlich die Abbiegerichtung als zweite Eigenschaft
berücksichtigt wird.

Die Verhaltensgenerierung zur Entscheidungsfindung an T-Kreuzun-
gen basiert auf einem ereignisdiskreten System. Für dieses werden meh-
rere Eigenschaften genutzt, um Ereignisse zu definieren, welche den
Status des Entscheidungsfindungsprozesses an der Kreuzung beschrei-
ben. Die Ereignisse lösen die Übergänge zwischen den Zuständen des
ereignisdiskreten Modells aus. Allen Zuständen ist entweder offensives
oder defensives Fahrverhalten zugewiesen, welches über das Intelligent
DriverModel implementiert wird. Der Algorithmuswird über eine Simu-
lationsumgebung validiert. Unter Nutzung einer generischen Karte und
mehrerer realer Karten wird das Entscheidungsfindungsmodell 14 400
mal simuliert, während es mit weiteren Kooperationsfahrzeugen inter-
agiert. Keiner dieser Durchläufe führte zu einer Kollision des Fahrzeugs,
das den Algorithmus ausführte, und die Zeiten zur Durchquerung der
Kreuzung können mit der Anzahl von Kooperationsfahrzeugen sowie
den Kreuzungsformen erklärt werden. Weitere Simulationen dienen
dazu, den Einfluss eingeschränkter Sicht an den Kreuzungen auf das
Modell zu untersuchen.
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Abstract

The focus of this work is on human driving behavior in road traffic. Two
aspects of it are covered, the prediction of it, including the identification
of relevant influencing factors, as well as the behavior generation for
autonomous vehicles.

The behavior prediction is based on a field study during which partic-
ipants drove a measurement vehicle through inner-city traffic. Using the
driven trajectories and lidar recordings complexity features to describe
the surroundings at the intersection, the traffic there and the driving
path are defined. The driving behavior is characterized by further fea-
tures. Based on the complexity features regression models are trained to
predict the behavior features. For that, linear regression, random forest
and gradient boosting machine are utilized. Different complexity feature
sets, including ones that are reduced with the help of an autoencoder,
are used for prediction. The results show that the driving behavior can
be predicted reliably. However, when using complexity feature sets with
only few features the prediction performance is reduced.

In order to obtain a complexity score that is in line with human per-
ception of complexity, an online study using videos of approaches to
intersections was conducted. In pairwise comparisons participants were
asked to identify the more complex situation. From that data complexity
scores for the intersection passes included in the study are calculated.
Several methods are used to assign these scores to the runs of the original
field study. Behavior regression models are trained using these assigned
complexity scores. The results show that behavior prediction with the
complexity scores is possible, however, most variants require to also
consider the turning direction as a second feature.

The behavior generation for decision-making at T-intersections is based
on a discrete event system (DES). For it, several features are used to define
events that describe the status of the decision-making process at the
intersection. The events trigger the transitions between the states of the
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DES. All states are associated with either offensive or defensive driving
behavior, which is implemented using the intelligent driver model. The
algorithm is validated with a simulation framework. Using a generic
map and several real maps, the decision-making model is simulated
14 400 times while interacting with further cooperation vehicles. None
of these runs resulted in a collision involving the vehicle running the
algorithm and the times to pass the intersection can be explained by the
numbers of cooperation vehicles and the intersection layouts. Further
simulations are used to investigate the influence of limited visibility at
the intersections on the model.

vi



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Using Intersection Complexity for Behavior Prediction . . . . 9
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Factors Influencing Driving Behavior . . . . . . . 11
2.1.2 Methods for Behavior Prediction . . . . . . . . . . 14

2.2 Field Study and Data Processing . . . . . . . . . . . . . . 18
2.3 Intersection Complexity Features . . . . . . . . . . . . . . 22

2.3.1 Driving Path Features . . . . . . . . . . . . . . . . 23
2.3.2 Stationary Features . . . . . . . . . . . . . . . . . . 23
2.3.3 Traffic Features . . . . . . . . . . . . . . . . . . . . 31

2.4 Behavior Features . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Behavior Prediction Results . . . . . . . . . . . . . . . . . 33

2.5.1 Full Feature Sets . . . . . . . . . . . . . . . . . . . 34
2.5.2 Importance of Features . . . . . . . . . . . . . . . . 37
2.5.3 Reduced Feature Sets . . . . . . . . . . . . . . . . . 42
2.5.4 Autoencoder for Feature Set Reduction . . . . . . 45
2.5.5 Comparison of the Feature Sets . . . . . . . . . . . 48

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



Contents

3 Complexity Measure for Intersections . . . . . . . . . . . . . . 55
3.1 Pairwise Comparisons . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Bradley-Terry Model . . . . . . . . . . . . . . . . . 58
3.1.2 Elo Model . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Video Study . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Complexity Score . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.1 Intersections Ranked by Complexity . . . . . . . . 67
3.3.2 Complexity Reconstruction Using Inter-

section Features . . . . . . . . . . . . . . . . . . . . 73
3.4 Behavior Prediction Based on Complexity Scores . . . . . 74

3.4.1 Intersections of Video and Field Study . . . . . . . 75
3.4.2 Generalization to Unknown Intersections . . . . . 81

3.5 Conclusions & Outlook . . . . . . . . . . . . . . . . . . . . 84

4 Decision-Making at Intersections . . . . . . . . . . . . . . . . . 87
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.1.1 Decision-Making for Autonomous Driving . . . . 89
4.1.2 Decision-Making at Intersections with

V2x Communication . . . . . . . . . . . . . . . . . 91
4.1.3 Decision-Making at Intersections with-

out V2x Communication . . . . . . . . . . . . . . . 95
4.1.4 Discrete Event Systems and their Appli-

cation in Traffic . . . . . . . . . . . . . . . . . . . . 97
4.2 Decision-Making at Intersections Using DES . . . . . . . 99

4.2.1 Relevant Vehicles for Decision-Making . . . . . . 100
4.2.2 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.3 Visibility . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.4 Features . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2.5 Events . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2.6 Decision-Making Model . . . . . . . . . . . . . . . 118
4.2.7 Behavior Generation . . . . . . . . . . . . . . . . . 122

4.3 Simulation Framework . . . . . . . . . . . . . . . . . . . . 124
4.3.1 Decision-Making Algorithm for Coop-

eration Vehicles . . . . . . . . . . . . . . . . . . . . 126
4.3.2 Simulation Set-Up . . . . . . . . . . . . . . . . . . 133

4.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . 135
4.4.1 Generic Intersection . . . . . . . . . . . . . . . . . 136

viii



Contents

4.4.2 Real Intersections in Karlsruhe . . . . . . . . . . . 138
4.4.3 Influence of Limited Visibility . . . . . . . . . . . . 142
4.4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . 148

4.5 Summary & Outlook . . . . . . . . . . . . . . . . . . . . . 149

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A Behavior Prediction Results – Complexity Features . . . . . . 159

B Behavior Prediction Results – Complexity Measure . . . . . . 163

C Examples of Decision-Making . . . . . . . . . . . . . . . . . . . 167

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
List of publications . . . . . . . . . . . . . . . . . . . . . . . . . 192
List of supervised theses . . . . . . . . . . . . . . . . . . . . . . 194

ix





Nomenclature

Common Abbreviations

Abbreviation Description

AE autoencoder
AV (general) autonomous vehicle
A-V vehicle running the decision-making algorithm
A-VC vehicle running the simplified algorithm
BT Bradley-Terry model
B-V vehicle that can block the exit lane
B-VC vehicle that can block the exit lane (of the A-VC)
C-V cooperation vehicle
CZ collision zone
DES discrete event system
DL deadlock
GNSS global navigation satellite system
IDM intelligent driver model
IMU inertial measurement unit
lidar light detection and ranging
LR linear regression
LSP last stop point
L-V leading vehicle (driving in front of the A-V)
L-VC leading vehicle (driving in front of the A-VC)
PN Petri net
P-V vehicle with priority
P-VC vehicle with priority (seen from the A-VC)
RBL right before left rule for priority at intersections
RF random forest
RMSE root mean squared error

xi



Contents

Abbreviation Description

ROS robotic operating system
SLAM simultaneous localization and mapping
StVO Straßenverkehrsordnung (German traffic laws)
TB tree-based boosting
TCT traffic conflict technique
V2I vehicle to infrastructure communication
V2V vehicle to vehicle communication
V2x vehicle to anything communication
Y-V vehicle that has to yield
Y-VC vehicle that has to yield (seen from the A-VC)

Symbols

Latin Letters

Symbol Description

𝑎 acceleration
𝑎𝑥

a assumed acceleration of vehicle 𝑥
𝑎a

IDM acceleration calculated using IDM
D data set
DF field study data set (all runs at the T-intersections)
DV video study data set
DF

iv runs from DF with a corresponding intersection/𝑝e combi-
nation in DV

DF
ov runs from DF without a corresponding intersection/𝑝e

combination in DV

𝑑 distance
𝑑𝑥

b distance to stop for vehicle 𝑥
𝑑c commit distance
𝑑𝑥

c,xc,b distance to CZ start (of the A-V and C-V 𝑥c) for vehicle 𝑥
𝑑𝑥

c,xc,e distance to CZ end (of the A-V and C-V 𝑥c) for vehicle 𝑥
𝑑b

f free distance behind the B-V
𝑑b

i distance of the B-V from intersection end

xii



Contents

Symbol Description

𝑑𝑥
l distance to last stopping point for vehicle 𝑥

𝑑𝑥
s distance to scenario of vehicle 𝑥

𝑑v visibility distance
𝑑v,c visibility distance (point clouds; all directions)
𝑑y

v,c visibility distance (point clouds; yield directions)
𝑑v,p visibility distance (polygons; all directions)
𝑑y

v,p visibility distance (polygons; yield directions)
𝑑vs distance of visibility edge to curb (decision-making)
Δ𝑑 distance to the L-V
𝐸𝑖 Elo score of object 𝑖
𝑒𝑥 event 𝑥 of theDES for decision-making of theA-V; all events

are listed in table 4.2
𝑒𝑥,c event 𝑥 of the DES for decision-making of the A-VC; all

events are listed in table 4.5
𝑒b𝑥 base event 𝑥 of the DES for decision-making of the A-V; all

base events are listed in table 4.1
𝑒b𝑥,c base event 𝑥 of the DES for decision-making of the A-VC;

all base events are listed in table 4.4
F set of intersection features
FV set of intersection features for with video study data set
FF set of intersection features for field study data set

̂𝑓 𝑏 resulting regression function
̂𝑓boost regression function of boosting method

𝑁cv number of C-Vs
𝑁d number of elements in the data set
𝑁s number of simulation runs
𝑁sc number of simulation runs per combination
𝑁t number of decision trees
𝑁tr number of elements in the training set
𝑛gw number of vehicles that have to yield
𝑛p number of visible pedestrians
𝑛rw number of vehicles that have the right of way
𝑛t number of trees around the intersection
𝑛v number of visible vehicles
𝑛vi number of interaction vehicles

xiii



Contents

Symbol Description

Pb hand-drawn polygon set of buildings
Pt hand-drawn polygon set of trees
𝑝e entry position
𝑝t turning direction
𝐩ref,𝑖 reference point 𝑖 for visibility calculation
𝐫 residual used for boosting method
𝑠10 DES state: A-V drives freely in zone 1
𝑠21 DES state: A-V drives offensively in zone 2
𝑠22 DES state: A-V drives defensively in zone 2
𝑠31 DES state: A-V drives offensively in zone 3
𝑠32 DES state: A-V drives defensively in zone 3
𝑠41 DES state: A-V drives offensively in zone 4
𝑠42 DES state: A-V drives defensively in zone 4
𝑠51 DES state: A-V drives offensively in zone 5
𝑠52 DES state: A-V drives defensively in zone 5
𝑠53 DES state: A-V drives offensively after stopping in zone 5
𝑠60 DES state: A-V drives freely in zone 6
𝑠10,c DES state: A-VC drives freely in zone 1
𝑠21,c DES state: A-VC drives offensively in zone 2
𝑠22,c DES state: A-VC drives defensively in zone 2
𝑠31,c DES state: A-VC drives offensively in zone 3
𝑠32,c DES state: A-VC drives defensively in zone 3
𝑠41,c DES state: A-VC drives offensively in zone 4
𝑠42,c DES state: A-VC drives defensively in zone 4
𝑠43,c DES state: A-VC drives offensively after stopping in zone 4
𝑠50,c DES state: A-V drives freely in zone 5
T training set
𝑡 time
𝑡𝑥
c,xc,b time to CZ start (of the A-V and the C-V 𝑥c) for vehicle 𝑥

𝑡𝑥
c,xc,e time to CZ end (of the A-V and the C-V 𝑥c) for vehicle 𝑥

𝑡d time to drive through an intersection
̄𝑡d average time to drive through an intersection
̄𝑡0
d average time to drive through an intersection without C-Vs

𝑡a
w time the A-V has waited at the intersection

𝑡p
w time the P-V has waited at the intersection

xiv



Contents

Symbol Description

𝑉f free space at the intersection
𝑉int considered space around intersection
𝑣 velocity
𝑣d velocity drop
𝑣m minimum velocity
Δ𝑣 velocity difference to the L-V
𝐰a available width vector
𝑤a,b available width before intersection
𝑤a,e available width after intersection
𝐰s street width vector
𝑤s,b street width before intersection
𝑤s,e street width after intersection
𝐰v visible width vector
𝑤v,b visible width before intersection
𝑤v,e visible width after intersection
𝐗 matrix of features
𝐱𝐣 vector of feature 𝑗
𝑥𝑖𝑗 element 𝑖 of feature 𝑗
𝐲 label vector
𝑦𝑖 label of element 𝑖

Greek Letters

Symbol Description

𝛼s minimum angle between two streets
𝜷 parameter vector for LR

̂𝜷 estimated parameter vector for LR
𝜆 weight parameter for lasso/ridge variants of LR
𝜆b factor for boosting trees
𝜋𝑖 Bradley-Terry score of object 𝑖
𝜋𝑖𝑗 probability that object 𝑖 is preferred to object 𝑗 (based on

their Bradley-Terry scores)
𝜋̃𝑖 estimated Bradley-Terry score of object 𝑖

xv



Contents

Superscripts

Symbol Description

(•)a features of the A-V
(•)b features of the B-V
(•)l features of the L-V
(•)p features of the P-V
(•)y features of the Y-V

Subscripts

Symbol Description

(•)(•),c features of the cooperation vehicle algorithm
(•)In BT/Elo scores from direct assignment
(•)RF BT/Elo scores from RF model
(•)LR BT/Elo scores from LR model
(•)LR,r BT/Elo scores from model with ridge variant of LR
(•)LR,l BT/Elo scores from model with lasso variant of LR

Parameters

Symbol Description Value Unit

𝑎c comfort deceleration −2.5 m s−2
𝑎e emergency deceleration −7.5 m s−2
𝑎h hard deceleration −4.5 m s−2
𝑎m max. acceleration 2.5 m s−2
𝑑E divisor for Elo score calculation 400
𝑑l,o stop distance before an LSP 1 m
𝑑min min. distance for a following vehicle 1.5 m
𝑑n near the intersection (threshold in 𝑑𝑥

s ) 12 m
𝑑o distance offset to avoid toggling 0.2 m

xvi



Contents

Symbol Description Value Unit

Δ𝑑p min. lead dist. to drive before the P-V 10 m
Δ𝑑p

c lead distance threshold for the A-VC to
drive rel. to the P-VC

−15 m

Δ𝑑p
s,c lead dist. threshold for the A-VC to drive

rel. to the P-VC (special behavior)
7 m

𝐸0 initial Elo score 1600
𝑘E factor for Elo score calculation 10
𝑙v vehicle length 4.4 m
𝑡min min. lead time for a following vehicle 1.2 s
𝑡r reaction time 1 s
𝑡y waiting time threshold for the P-V 2 s
Δ𝑡p minimum lead time to drive rel. to the

P-V
2.5 s

Δ𝑡p
c lead time threshold for theA-VC to drive

rel. to the P-VC

−2.5 s

Δ𝑡y
c lead time threshold for theA-VC to drive

rel. to the Y-VC

3 s

Δ𝑡p
s,c lead time threshold for theA-VC to drive

rel. to the P-VC (special behavior)
3 s

Δ𝑡y
s,c lead time threshold for theA-VC to drive

rel. to the Y-VC (special behavior)
−3 s

𝑣a assumed velocity of the A-V (straight) 6.5 m s−1
𝑣a assumed velocity of the A-V (turning) 4.0 m s−1
𝑣max speed limit 30 kmh−1

𝑣s velocity threshold for a stopped vehicle 0.15 m s−1
𝑣s,c 𝑣s for the A-VC algorithm 0.3 m s−1
𝑣sl velocity threshold for a slow vehicle 2 m s−1
𝑣sl,c 𝑣sl for the A-VC algorithm 1 ms−1
𝑣t target velocity of the A-V (dependent on

state, see table 4.3)
𝑣t,c target velocity of the A-VC (dependent

on state, see table 4.6)
𝑤v vehicle width 1.8 m

xvii





1 Introduction

Automatic driving is a promising technical development for a multitude
of reasons. Shifting the driving task from humans to machines offers
several advantages, the most important of which certainly is the potential
for higher safety on the roads and therefore fewer accidents, especially
including those with fatal outcomes or severe injuries. Automated ve-
hicles (AV) will very likely only be admitted onto the roads if they are
significantly safer than human drivers. From that one can conclude that
traffic will become safer with the introduction of such vehicles. The ur-
gent need for safer streets is highlighted by the accident statistics. In 2022
there were 2788 [3] people killed in traffic in Germany alone. Many more
were severely injured (57 727 people in 2022 [2]). This number has been
decreasing over the last decades from its peak of 19 193 people who died
in traffic in West Germany alone in 1970 [3]. Schulze and Koßmann [142]
attribute this decrease to the introduction of many safety measures like
the introduction of a speed limit on rural roads, the requirement to use
seat belts, the introduction of maximum blood alcohol levels and many
safety features for cars and infrastructure alike. The authors, however,
also note that a clear causation cannot be proven due to the lack of stud-
ies. Given that an autonomous vehicle does not get tired or bored and is
not affected by its current mood, its introduction has the potential to be
another safety feature to further reduce the number of people affected
by traffic accidents.

But there are aspects other than improving safety on the roads that
make AVs attractive. Vehicles that are fully autonomous and do not re-
quire any input by their passengers1 will likely give more people access
to individual mobility than is currently the case. This includes people
who do not know how to drive, elderly people, people with disabili-

1 Other than the input of the desired destination.
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ties, young people who have not reached the minimum age to acquire
a driver’s license or people who choose not to drive themselves. This is
especially relevant for rural regions with poor coverage of public trans-
port. An ecological aspect of the introduction of AVs is their potential to
reduce the energy consumption needed for driving due to more efficient
accelerating and braking. This technology is also very attractive from
an economical viewpoint. Transport services might become cheaper as
fewer personnal is needed for their operation and e.g. trucks could be run
for longer parts of a day as currently drivers need rest periods in which
the vehicle is stationary. This aspect could also benefit public transport
as routes with smaller demand could also be served and routes could be
run more regularly due to the lower costs of operation. However, there
are also some problematic aspects of autonomous vehicles. The cost of
AVs is likely going to be higher than a conventional vehicle due to the
need to include a large number of sensors and computing hardware.
Further, it may also make public transport less attractive because the
time in one’s own vehicle can be spent more productively. Gruel and
Stanford [60] give a systematic overview on potential consequences of
the introduction of autonomous vehicles.

Development of and research into autonomous vehicles has been an
active field for some time now. In 2004 and 2005 the Defense Advanced
Research Projects Agency (DARPA) hosted the DARPA Grand Challenge
where teams were tasked to drive autonomous vehicles through a desert
course [150]. In 2007 a similar competition was held, the DARPA Urban
Challenge [113]. In it autonomous vehicles had to travel through an urban
scenario in a test environment. They had to interact with the given street
layout and other traffic participants. More recently, many universities
and companies have created vehicles that are able to drive in real traf-
fic, although still with a safety driver for emergencies. One prominent
example is the Bertha vehicle [177]. In 2013 it autonomously completed
the 103 km long route that Bertha Benz had completed 125 years before.
Levinson et al. [89] present the autonomous test vehicle of Stanford Uni-
versity. Manufacturers increasingly equip their models with systems
that support the driver but do not allow autonomous driving yet, i.e. the
driver is still responsible. A prominent example is the Autopilot function
of the company Tesla. This system, however, is also faced with some criti-

2



1.1 Problem Statement

cism [110, 149]. A step closer to full autonomy is the Drive Pilot function
of the company Mercedes-Benz, which allows drivers to fully delegate
the driving task to the vehicle in some scenarios on highways where
the velocities are not too large [54, 56]. In San Francisco the company
Waymo is commercially operating a fleet of fully autonomous vehicles as
taxis [111].

1.1 Problem Statement
Among the many challenges that come with the development and in-
troduction of automatic driving, this thesis focuses on non-signalized
inner-city intersections. At intersections many driving paths overlap
each other. Therefore vehicles driving along these intersecting paths are
in conflict with each other and cannot drive simultaneously. Instead, a
driving order has to be established. In the year 2022 there were 342 852
accidents in Germany in which at least one person was injured or even
killed. Of these, 45 857 were caused by non-compliance to the right of
way [1]. This highlights the importance of improving safety in situations
like intersections where the right of way is crucial for safe driving.

Even after automated vehicles are introduced, it is reasonable to as-
sume that traffic for the foreseeable future will be made up of a mixture
of automated vehicles and vehicles driven by humans. For that reason,
throughout this thesis the current state of all traffic regulations is as-
sumed to be in force, i.e. the regulations are not adopted to enable more
efficient driving by automated vehicles. This assumption is in contrast to
many works from literature that assume new and more efficient rules; es-
pecially those which deal with decision-making for autonomous vehicles.
Section 4.1 contains a detailed literature review on that topic.

If the priority at intersections is regulated by traffic lights, the decision-
making for automated vehicles is straight forward, i.e. it can enter the
intersection if it has green light and the traffic allows the vehicle to not
get stuck within the intersection. One can further reasonably expect
human drivers to behave similarly and an automated vehicle will, in
the absence of emergencies, be able to drive through the intersection
with these simple rules. In Germany intersections can further be regu-
lated by traffic signs that give priority to drivers on certain roads while
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drivers on the remaining roads are signalized to yield. In case there are
no traffic lights or signs at an intersection, the German traffic regulations
(Straßenverkehrsordnung, StVO2) give priority to vehicles entering the
intersection on the street to the right of one’s own street3. This is com-
monly referred to as the right before left (RBL) rule. Also, oncoming traffic
has priority over turning left4.

The reasons for not using traffic lights at intersections with low or
medium traffic volumes are obvious: First, the installation and mainte-
nance of traffic lights are certainly costly and second, if there is a traffic
light at an intersection with low traffic volumes, it is likely that vehicles
will be waiting at a red light even though there is no conflicting traffic.
However, regulating traffic at intersections without traffic lights also has
some drawbacks. Drivers are forced to make the decision on when to
drive through the intersection on their own. This can lead to unclear and
potentially dangerous situations especially in the case when a driver (or
an AV) has to decide whether one can drive before another vehicle (that
has priority over oneself) in order to cross a traffic stream or to merge into
it. The traffic regulations do not regulate this explicitly – which would
probably not be feasible for human drivers anyway – and instead only
state that drivers who have to wait have to adapt their driving behavior
in time, especially by braking. It further instructs drivers to not endanger
or significantly obstruct others who have the right of way5.

This may become risky if a driver misjudges a gap or tries to force a
driver who has priority to wait. Such situations can occur if priority signs
are used as well as if priority is regulated by the RBL rule. These critical
gaps, i.e. the minimum size of a gap before a vehicle with priority arrives
so that a driver who enters the intersection from the yielding street can
still drive first, have been the focus of research for some time, see e.g.
Ashton [15] or McGowen and Stanley [107]. Toledo [151] provides an
overview on that topic. A further aspect that complicates driving at sig-
nalized and non-signalized (and thus RBL) intersections are drivers who

2 https://www.gesetze-im-internet.de/stvo_2013/BJNR036710013.html (in German, ac-
cessed 29 Dec. 2023)

3 § 8 Abs. 1 StVO
4 § 9 Abs. 3 StVO
5 § 8 Abs. 2 StVO
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Figure 1.1 Deadlock situation at a T-intersection.

do not follow the traffic regulations. This further increases the demands
on humans and AVs alike who have to interact with such drivers.

Finally, deadlock scenarios can occur at non-signalized intersections;
these are situations in which no driver has priority over all other drivers
and therefore all drivers have to wait according to the RBL rule and the
rule that gives priority to driving straight over turning left. An example
of that scenario at a T-intersection is shown in figure 1.1. There, the
yellow vehicle has to yield to the blue vehicle entering from the right; the
blue vehicle has to give way to the green vehicle on the street from the
left. Finally, the green vehicle has to yield to the yellow vehicle. As this
situation cannot be resolved using only the RBL rule, one of the drivers
has to give up his/her right of way. The German traffic regulations6 state
that one has to give up one’s right of way if the situation requires it. Also,
one may only accept the waiver of the right of way by a cooperation
partner after this decision has been communicated between the drivers.

Non-signalized intersections are common in Germany, especially in
residential areas with low or medium traffic density. They are therefore
an important aspect of daily driving in Germany. Given these aspects,
the understanding of human driving behavior at such intersections is
very important for the eventual introduction of automatic vehicles onto
the roads. Also, automated vehicles must be able to safely interact with
human drivers in these situations, i.e. their decision-making policy has
to be able to interpret human driving behavior and to communicate

6 § 11 Abs. 3 StVO
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their own intentions to their human counterparts. Therefore, an analysis
of human driving behavior at non-signalized inner-city intersections is
conducted in this work. This is followed by the introduction of a decision-
making model at intersections of this type.

1.2 Contributions
The contributions presented in this thesis have in part been published
before [189–192]. The first aspect covered in this work is an analysis of hu-
man driving behavior at inner-city intersections. The main contributions
on that subject are as follows:

The behavior of human drivers is investigated in a field study
that was performed in Karlsruhe, Germany. In that study partici-
pants drove through non-signalized inner-city intersections and
the driven trajectory as well as the surroundings at the intersec-
tions were recorded.

Based on the data from the study features are defined to describe
the surrounding environment at an intersection (visibility con-
ditions, street width, etc.). In this work this is interpreted as the
complexity of an intersection. Additionally, features to describe the
driving behavior are derived from the driven trajectories.

Using the complexity features, regression models are trained to
predict the behavior features. That way the influence of the com-
plexity of an intersection on the driving behavior is investigated.
Several variants to reduce the dimensionality of the complexity
feature set are evaluated.

To improve the ability to interpret the concept of intersection com-
plexity, ideally a one-dimensional complexity measure can be de-
fined. To that end, a second study was conducted, in which partic-
ipants were shown videos of approaches to intersections and were
asked to pick the more complex intersection in pairwise compar-
isons.
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Using established methods for evaluating pairwise comparison
data, complexity measures are defined. These are then also used
to train regression models to predict the driving behavior.

The second aspect that is covered in detail in this thesis proposes a
method for behavior generation for autonomous vehicles. This decision-
making algorithm does not require any communication between the
autonomous vehicle and other vehicles or the infrastructure. Instead,
only the observable state of its cooperation partners, i.e. their positions,
velocities and accelerations, are needed. The most important contribu-
tions of this thesis to that aspect are:

Within the algorithm the other vehicles at an intersection are cate-
gorized (e.g. vehicles that have priority, vehicles that drive in front)
and only the closest vehicle to the ego vehicle is taken into consid-
eration, as the remaining vehicles are currently unable to interact
with the ego vehicle anyway. With that approach the algorithm
scales well with the number of vehicles at an intersection.

A decision-making model for non-signalized T-intersections is
introduced that is based on a discrete event system. The events
that trigger the state of the model to change and the features the
events are based upon are presented in detail. The state machine,
its states and the driving behavior that is associated with these
states are introduced.

A simulation framework is developed to test and evaluate the
proposed model. The framework includes a model to simulate
cooperation partners and it takes realistic visibility conditions
at the intersection into consideration. Also, different maps can
be used for the simulations and cooperation vehicles can show
driving behavior that deviates from the expected behavior or even
the traffic regulations.

An in-depth evaluation of the decision-making algorithm regard-
ing its safety and efficiency is performed. Also, important proper-
ties like the influence of the number of cooperation vehicles and
the visibility conditions and different maps are investigated.
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1.3 Structure
As is evident from the previous section, this thesis deals with two topics
that are somewhat distinct from one another. The first topic is the analysis
of human driving behavior, which is presented in chapters 2 and 3. The
second topic, the decision-making algorithm for an autonomous vehicle
at non-signalized intersections, is described in chapter 4. Given that
the thesis is made up of two distinct parts, the literature review is not
presented at once but rather the relevant literature for each chapter is
given separately at the beginning of that chapter (sections 2.1, 3.1 and
4.1, respectively).

Chapter 2 is on the behavior analysis based on the field study. In it, first
the field study is introduced (section 2.2), then the complexity features
(section 2.3 ) and the behavior features (section 2.4) used in this work are
presented. The results of the behavior predictions using the complexity
features are presented afterwards (section 2.5).

Chapter 3 focuses on the second aspect of the behavior analysis in that
it contains the derivation of the complexity measure for intersections.
For that purpose, first the study based on the videos is introduced (sec-
tion 3.2), followed by the derivation of the complexity scores (section 3.3).
Next, the results of predicting the driving behavior with the complexity
scores are shown (section 3.4).

The second topic of this thesis is the decision-making algorithm for
autonomous vehicles; it is introduced in chapter 4. After describing
the algorithm itself and its features, events and states (section 4.2), the
simulation framework is given (section 4.3). Finally, the results of the
simulation runs are presented (section 4.4).

Each of these chapters concludes with a summary and an outlook for
potential future work (sections 2.6, 3.5 and 4.5, respectively). In chapter 5
the conclusion of the entire thesis is discussed, again with a summary
(section 5.1) and an outlook (section 5.2).

8



2 Using Intersection Complexity for
Behavior Prediction

Understanding why drivers behave the way they do is an important
question. It is relevant in general as a better understanding of the reasons
for human driving behavior could lead to implications for better road
and vehicle design to improve safety. It is also important in the context
of autonomous driving because AVs need to be able to interpret human
driving behavior in order to react accordingly. A better understanding
of typical human driving behavior might further contribute to AVs that
behave similar to a human driver if this knowledge is incorporated into
the decision-making pipeline. It might make both, passengers of the AV
and cooperation partners of an AV, more comfortable if an AV behaves as
a human driver would. It would therefore be especially beneficial during
the early phases of the deployment of AVs while interactions with them
are rare and human traffic participants are not yet used to them. Also, as
mixed traffic between AVs and human-driven vehicles will probably be
prevalent in the foreseeable future, good cooperation between AVs and
conventional vehicles is desirable.

These considerations are true for a wide range of traffic scenarios, but
in this thesis the focus is on the driving behavior at non-signalized inter-
sections. As elaborated in the previous chapter, these are challenging to
human drivers for several reasons: First, it might be difficult to identify a
safe and suitable gap in the traffic stream, especially if the traffic flow on
the priority lane is relatively dense. Second, not fully regulated situations
can occur and drivers might behave in an unexpectedmanner or even dis-
regard the traffic regulations. Therefore, the underlying question in this
chapter is about the factors that influence a driver’s behavioral decisions.
These certainly include a driver’s personality and the current mood, but
these aspects are not considered here. Instead, only the influence of the
surroundings at an intersection is investigated.

9



2 Using Intersection Complexity for Behavior Prediction

To this end the concept of intersection complexity is introduced. In this
work intersection complexity describes all those aspects of the surround-
ings at an intersection that influence the driving behavior. One aspect of
intersection complexity are features that describe stationary properties
of the intersection. This includes the distance at which a driver can see
far enough into an intersection, the width of the road, the available, i.e.
drivable, width of the road and the visible width that describes the lateral
distance to the nearest objects. Also, the free volume at an intersection,
the angle at which the streets intersect each other and the number of trees
are included. The hypothesis is that a narrow, poorly visible intersection
with little free space, many trees and where streets meet at an angle
that deviates considerably from 90° is more complex than the opposite.
Additionally, it is assumed that denser traffic contributes to increased
complexity. Thus the number of vehicles, pedestrians and vehicles that
one has to interact with – including priority relations – are added as fea-
tures. Finally, the desired trajectory through an intersection is considered
to influence intersection complexity. The measure by which the influence
of intersection complexity is judged in this thesis is its influence on the
driving behavior.

This work is based on data gathered during a field study conducted in
Karlsruhe, Germany (see section 2.2). In that study participants drove
through several non-signalized inner-city intersections. Using a roof-
mounted lidar, the surroundings at the intersection were recorded. From
that data features are extracted that describe the above-mentioned prop-
erties. The combination of these features is regarded as the intersection
complexity; they are introduced in detail in section 2.3. The traffic at the
intersection is also extracted from the lidar data. The driving behavior is
obtained from the driven trajectory, see section 2.4. Using the complexity
features, regression models are trained to predict the behavior features.
To identify the most relevant of the complexity features, their influence
on the prediction is investigated and several methods to train models
with a smaller complexity feature set are examined. All of these analyses
are presented in section 2.5. A summary is finally given in section 2.6.

The contents of this chapter have been published before [190, 192]. In
the present work however, more detailed evaluations are presented.
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2.1 Related Work
Many aspects of this chapter have been the focus of previous work. There-
fore, a literature review is given in this section. First, an overview on
environmental aspects previous works have identified as relevant for the
driving behavior is given; also complexity definitions by other authors
are introduced. The second aspect that is discussed concerns themethods
used to predict driving behavior.

2.1.1 Factors Influencing Driving Behavior
The question of what influences driving behavior is an important one,
as elaborated above. External factors are the focus of several previous
works. Generally, these factors can be classified into two groups, sta-
tionary aspects and dynamic aspects. Stationary features include the
infrastructure, vegetation, buildings or parked vehicles, among others;
the dynamic environment is mostly caused by other traffic participants.
The term complexity is not used consistently, authors attribute different
aspects to contribute to complexity.

There are several static features of the driving environment that are
the focus of scientific studies. A relatively generic definition is used by
Imbsweiler et al. [181] who determine T-intersections as more complex
than narrow passages because participants in a study showed more
defensive behavior in the former case. Similarly, Faure et al. [49] classify
highway driving as least complex followed by rural roads and inner-city
driving as most complex, because the more complex scenarios coincide
with increased levels of mental workload. One can alternatively take
parked vehicles at the side of the road into consideration like Edquist et
al. [46] or compare intersections that are signalized with those that are
not [91]. The driving trajectory also influences the driving task. For that
purpose Hancock et al. [61] investigate the difference between driving
straight at an intersection and turning left or right there. Image based
features can also be used for complexity assessment of intersections;
Wijnands et al. [163] automatically identify intersections from satellite
images. In their work complex intersections have at least one street with
multiple lanes, traffic islands, slip lanes or more than four roads leading
into it. Further, visual clutter can be used to assess traffic situations [66].
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As an alternative to these static features, others investigate the influence
of dynamic properties of the driving task. Patten et al. [123] define three
complexity classes; they assign the highest complexity to scenarios with
high demand on both information processing and vehicle control. The
lowest complexity is assigned to scenarios where both aspects require
low demand and a medium class is assigned to scenarios where one of
the aspects has high demand while the other only requires low demand.
Jahn et al. [74] use the same complexity classes but without the medium
complexity case. Teh et al. [148] define complexity by traffic density and
the occurrence of lane changes. The density of both pedestrians and
vehicles at an intersection can also be used to define complexity [103].
Another traffic feature that has shown an effect on driving behavior is the
occurrence of traffic congestion [92]. Werneke and Vollrath [161] define
intersection complexity as a combination of traffic density, the presence
of a zebra crossing and the number of vehicles coming from the left
direction.

Some works consider a combination of static and dynamic features of
the surroundings and investigate their influence on the driving behavior.
Horberry et al. [67] define complexity by the number of advertisement
signs, buildings, oncoming vehicles and further infrastructure while
driving on a highway. Cantin et al. [28] consider a straight road as least
complex followed by an intersection where a stop is required and assume
an overtaking maneuver as most complex within the scope of their study.
Oviedo-Trespalacios et al. [122] define complexity by the grade of urban-
ization, the presence of oncoming traffic, leading traffic and the street
geometry (straight road or driving around corners) and investigate the
influence of these aspects on the driving behavior of distracted drivers.
A similar problem is considered by Zhao et al. [171]; they examine road
complexity of off-road environments. Road complexity in their work is
determined by features describing the road conditions like the slope,
street width or road roughness.

In summary one can conclude that the definition of complexity varies
considerably among authors but in general still follows a similar pattern.
Aspects that can distract drivers from the driving task or increase its
difficulty because the driving task is augmented by additional tasks
like interacting with other drivers are considered to make up or at least
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contribute to complexity. It is noteworthy, however, that most authors
only consider a small number of all potential influences. The usage of the
different aspects is certainly justified by the influence they evidently have
on the driving behavior; the present work intends to contribute to these
findings by considering a large set of features to make up complexity.

Even though the definition of complexity is not consistent among the
different authors, the metrics by which the influence of complexity on the
driving behavior is assessed are often the same. Mental workload is used
in many works [28, 46, 49, 61, 74, 122, 123, 148]; all find that increased
complexity corresponds with higher levels of workload. The combination
of complexity and a driver’s age and their influence on driving behavior
is also investigated [28, 66, 67]. In more complex scenarios older drivers
drive slower [67]. In comparison to younger drivers their workload is
increased in complex environments [28]. Increased age, combined with
larger visual clutter, decreases search efficiency of traffic signs [66]. Fur-
ther, driving is found to be more aggressive after a congestion [92]. The
visual scanning behavior differs between signalized and unsignalized
intersections [91]. The complexity of intersections further influences the
driving behavior and the attention allocation [161]; also drivers feel less
safe while driving through T-intersections compared to narrow passages,
which are assumed to be less complex [181].

Features to describe the driving behavior of individual drivers in the
above works include the lateral positioning on the driving lane [46, 92,
148], the velocity of the drivers [46, 67, 92, 148, 161] or the amount they
deviate from the posted speed limit [67, 122]. Further, variants such as
maximum or minimum values, mean and standard deviation are used.

A related approach to assessing driving behavior is the traffic conflict
technique (TCT) [31, 39, 77]. It is used to assess traffic situations by con-
sidering not only data on accidents that occur but also data on conflict
situations. For that analysis several measures are commonly used: The
time to collision (TTC) [31, 39, 77, 112] is the remaining time until two
vehicles collide under the assumption that both continue driving as they
currently are. The post encroachment time (PET) [77] describes the time
between a first vehicle leaving a conflict zone and a second vehicle enter-
ing it. The deceleration to safety (DTS) [39, 77] describes the minimum
necessary deceleration to avoid a collision. There exist several extensions
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and applications of this concept, e.g. Minderhoud and Bovy [112] extend
the definition of the TTC, while Domeyer et al. [39] use several of these
measures to investigate the interaction between drivers and pedestrians.
As the TCT focuses on conflict scenarios among drivers it is not applica-
ble in this work as the focus is on the influence of external factors on the
driving behavior, which is not limited to interactive scenarios or even
conflicts with other traffic participants.

2.1.2 Methods for Behavior Prediction
In this chapter the focus is on predicting driving behavior based on
features of complexity. Predicting driving behavior is not a new task
in literature, there are several works that focus on certain aspects of it.
Being able to reliably predict the turning direction of other vehicles at an
intersection is important for e.g. decision-making. Zyner et al. [179] do
so at T-intersections by using separate Long Short Term Memory (LSTM)
networks for each approach direction, while Streubel andHoffmann [146]
use hiddenMarkovmodels (HMM) for the prediction. Phillips et al. [126]
predict the turning direction at both T- and X-intersections with LSTMs,
Multi Layer Perceptrons and Conditional Probability Tables based on
a large set of features. Klingelschmitt et al. [80] deal with the similar
problem of selecting situation hypotheses including a risk assessment
for the observing vehicle. Also, being able to predict if a vehicle drives
or yields at an intersection is relevant for many applications. Ward and
Folkesson [158] predict whether drivers who have to yield at intersec-
tions do so or if they drive before the vehicle with priority. They use 𝑘
nearest neighbors, a support vector machine and a random forest based
on trajectory features.

In this thesis the driving behavior is described by features that assume
continuous values (see section 2.4), thus regression needs to be performed.
This prediction is based on features that describe intersection complexity,
they are introduced in section 2.3. The basis for regression is a data set
D consisting of features 𝐗 and labels 𝐲:

(𝐗, 𝐲) = (𝐱1, … 𝐱𝑚, 𝐲) , 𝐱1, … 𝐱𝑚, 𝐲 ∈ ℝ𝑁d. (2.1)

This data set has 𝑚 features for 𝑁d elements in the data set. In this work
the features and labels of a single element are scalar. Typically, only a sub
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set T of a data set D is used to train a model; the remaining data points
are used for validation and testing.

Three methods for regression are used, linear regression, random forests
and boosting. All are introduced briefly in the following sections.

2.1.2.1 Linear Regression

Linear regression (LR) finds, as the name suggests, linear dependen-
cies between the features 𝐗 and the labels 𝐲. The label is the result of a
weighted sum of all 𝑚 features; the general model of LR is as follows [176]:

𝐲 = 𝛽0 + 𝛽1𝐱1 + 𝛽2𝐱2 + ⋯ + 𝛽m𝐱𝑚 = [𝟏 𝐗] 𝜷. (2.2)

In the above equation 𝜷 = [𝛽0 𝛽1 … 𝛽m]T are the parameters of the model
and 𝟏 is a vector containing the value 1. An estimate ̂𝜷 of the coefficients
𝜷 needs to be found based on the training set T ; a least squares approach
can be used for that purpose [75]:

min
𝜷

𝑁tr

∑
𝑖=1

⎛⎜⎜
⎝

𝑦𝑖 − 𝛽0 −
𝑚

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗
⎞⎟⎟
⎠

2

. (2.3)

Here, 𝑥𝑖𝑗 describes the 𝑗th feature of the 𝑖th data point from the training
set T and 𝑁tr is the number of elements in the training set. The regression
model is described by the set of parameters 𝜷 that minimize this equation.

Many extensions of this model exist; e.g. polynomial regression allows
to consider powers of features [75]. Two extensions are used in chapter 3;
the lasso and ridge variants of LR. Both add a term to the minimization
problem above. In case of the ridge variant of LR this results in [75]:

min
𝜷

𝑁tr

∑
𝑖=1

⎛⎜⎜
⎝

𝑦𝑖 − 𝛽0 −
𝑚

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗
⎞⎟⎟
⎠

2

+ 𝜆
𝑚

∑
𝑗=1

𝛽2
𝑗 . (2.4)

This adds the tuning parameter 𝜆 ≥ 0 that controls the impact of the
newly added factor ∑𝑚

𝑗=1 𝛽2
𝑗 . This factor forces the 𝜷 to become small.

Different values of 𝜆 result in different models; therefore this value has
to be optimized as well.
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The lasso version of LR is defined similarly. A term, weighted by 𝜆, is
added as well [75]:

min
𝜷

𝑁tr

∑
𝑖=1

⎛⎜⎜
⎝

𝑦𝑖 − 𝛽0 −
𝑚

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗
⎞⎟⎟
⎠

2

+ 𝜆
𝑚

∑
𝑗=1

∣𝛽𝑗∣ . (2.5)

The lasso variant forces, in contrast to the ridge version of LR, some of the
𝛽𝑗 to be zero (for large enough 𝜆 [75]), thus excluding the corresponding
features from the model. For both, ridge and lasso, cross-validation is
used to determine 𝜆.

To performLR in thiswork theMATLAB functionregress is utilized.
Ridge regression is performed with the function ridge, for the lasso
variant the function lasso is used.

2.1.2.2 Methods Based on Decision Trees

Decision trees recursively split the feature space into smaller subsets.
Depending on their feature values, the elements of the training set T
are assigned one of these subsets Tc. In case of a regression tree, each
subset is assigned a regression value, typically the average value of the
elements of T that fall into it [62]. At each split, the vector of all values of
the feature 𝐱𝐣 and a value 𝑥s

𝑗 , where the current split is to occur, have to
be determined. All elements of the currently considered set Tc for which
𝐱𝐣 ≤ 𝑥s

𝑗 holds are sorted into the first subset; the remaining elements, i.e.
𝐱𝐣 > 𝑥s

𝑗 , are sorted into the second subset of the split [62]. This selection
process can be done by minimizing the squared prediction error [62].
Similarly, a classification tree can be generated as well. As classification
is not needed here, this is not discussed further.

The advantage of decision trees include their simplicity and inter-
pretability [62], but they have a high variance, i.e. small changes in the
data set may result in very different trees [62]. The concept of bagging
(bootstrap aggregation) is used to counteract that property by combining
several of these “weak learners” [75]. Using the bagging approach, 𝑁t
decision trees are trained using equally many subsets of the learning set.
These subsets are generated by taking repeated samples from the training
set 𝑇. The 𝑏th decision tree learns the function ̂𝑓 𝑏 (𝐱) which outputs a
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regression value for given feature values 𝐱. For the bagging process these
𝑁t regression models are then averaged [75]:

̂𝑓bag(𝐱) =
1

𝑁t

𝑁t

∑
𝑏=1

̂𝑓 𝑏(𝐱). (2.6)

To get a random forest (RF) [26] model from that, one additional step
has to be taken. When using RF, the training of the trees in the bagging
procedure is adapted in that only a randomly selected subset of all 𝑝
features is considered at each split in the trees [75]. This helps to decor-
relate the trees by ensuring that the current subset is not always split
along a very strong feature in the first division [75]. In this work the
MATLAB function TreeBagger is used to train RF models. It is set up
to additionally output the importance of the features on the regression
result. This is done by assessing the amount by which a given feature
reduces the residual sum of squares [75], i.e. the squared prediction error.
All behavior predictions with RF use 𝑁t = 300 trees and the minimum
leaf size (the minimum number of training examples that have to remain
in the terminal split of a tree) is set to 𝑁L = 5.

A different approach is used for boosting (abbreviated here as TB, short
for tree-based boosting [75]), the second tree-based regressionmethod used
here. It is also an ensemble of decision trees, but new trees are trained
using the current residuals 𝐫 of the training examples instead of the
labels 𝐲. The training process is described according to James et al. [75]:
The regression model is initialized as zero, i.e. ̂𝑓boost (𝐱) = 0, and the
residuals are initialized with the label values (𝐫 = 𝐲). The 𝑏th tree ̂𝑓 𝑏 (𝐱)
is then added based on the modified training set (𝐱, 𝐫) for 𝑏 = 1 … 𝑁t.
After training a new tree, the regression function ̂𝑓boost (𝐱) is updated
to ̂𝑓boost (𝐱) + 𝜆b ̂𝑓 𝑏 (𝐱) and the residuals 𝐫 are set to the new value of
𝐫 − 𝜆b ̂𝑓 𝑏 (𝐱). 𝜆b is a parameter that determines the influence of newly
added trees on the regression result. After all trees are trained, the final
model results in:

̂𝑓boost (𝐱) =
𝑁t

∑
𝑏=1

𝜆b ̂𝑓 𝑏 (𝐱) . (2.7)

The factor 𝜆b, themaximumnumber of nodes per tree 𝑁n and the number
of trees 𝑁t are the tuning parameters of the model. In this thesis the
MATLAB function fitrensemble is used. The three parameters of

17



2 Using Intersection Complexity for Behavior Prediction

Figure 2.1 Measurement vehicle that was used for the field study. The lidar is mounted
on top of the plate on the roof, the IMU is located inside the box below the plate. The two
GNSS antennas are placed on the outer ends of the roof railing. The image is a cropped
version of the original.

the TB are optimized using the functionality for that implemented in
fitrensemble based on the data set of the T-intersections with the
full feature set and the commit distance as the label; see section 2.5.1 for
more details on the features and the training process. These values are
used for all models: 𝜆b = 0.046 416, 𝑁n = 11 and 𝑁t = 136.

2.2 Field Study and Data Processing
The data for this chapter originates from a field study that was conducted
in the inner city of Karlsruhe, Germany in the summer of 2020. In the
following, first the study itself is introduced, then the steps to process
the measurement data into a data set are presented.

In the study participants drove a measurement vehicle through sev-
eral different non-signalized intersections along a predefined course in
Karlsruhe. The measurement vehicle is a 2011 Volkswagen Passat 2.0 TDI,
which is equipped with an eye-tracking system, that was not used during
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the study, and the option to record internal vehicle data. The latter was
recorded for some participants but is not evaluated here. The data of
the study comes from a 16 channel lidar (Velodyne VLP-16), two global
navigation satellite system (GNSS) receivers (u-blox EVK-M8T) and an
inertial measurement unit (IMU, Xsens MTi-610). The GNSS receivers,
the IMU and the lidar sensor are mounted on a roof rack. The data of
these four sensors is recorded using the robot operating system (ROS,
[136]), which runs on a notebook. In the following evaluation only the
data gathered from these four sensors is used. An image of the vehicle is
shown in figure 2.1.

Before the study the participants were informed about the study and
signed a consent form. After that followed a short test drive to get the
participants acquainted with the vehicle. This was followed by the mea-
surement drive itself; finally, the participants were asked to fill out a
questionnaire. During the measurement drive the participants were
guided along the course by an instructor who was seated in the rear
of the vehicle. All participants followed the same course; in case of a
missed turn or obstacles like temporary construction zones or blockages
due to e.g. loading the instructor led them back to the planned course as
quickly as possible. The course was approximately 22 km long and the
measurement drive had a mean duration of 73.0min (𝜎 = 6.4min).

Along the course therewere 14 T-shaped intersections, i.e. intersections
with three streets leading into it, and 4 X-shaped intersections (four
streets per intersection). Of these intersections five T-intersections were
selected explicitly, the remaining intersections were included as they
lay along the way between the selected intersections. At one of these
five intersections a deadlock situation was created by two instructed
drivers. This intersection was passed three times from all three directions,
resulting in nine passes. After each pass the participants were asked to
rate the perceived complexity of the situation and to state their intention
of driving first or last during the approach. After the deadlock situations
the participants were guided to the four remaining selected intersections,
which they traversed ten times in total from different directions. After
each pass they were again asked to rate the perceived complexity. They
drove through the remaining intersections without being asked any
further questions. All 18 intersections considered here lay within zones
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with a reduced speed limit of 30 kmh−1. The participants were on average
27.9 years (𝜎 = 8.18 years) old and of the 34 participants 25 identified
as male, 8 as female and one participant did not answer. The study
was approved by the ethics commission of the Karlsruhe Institute of
Technology.

For this work the data recorded at the intersection with the deadlock
is not used as it does not provide any conclusive results. Similarly, the
complexity ratings of the remaining four intersections are not used for
the same reason. The runs through these four intersections are used, as
the participants interacted with regular traffic and the questions were
asked after the drivers passed the intersection and thus the questions did
not have an influence on the driving behavior. Also, the runs through
the remaining nine T-intersections and the 4 X-intersections are used for
evaluation. In total there are 1818 runs through 13 T-intersections and
565 runs through 4 X-intersections. To distinguish this study from the
one presented in chapter 3 it is in the following referred to as the field
study.

To extract the individual runs from the raw sensor measurements of
the field study, the data is further processed to first extract the driven
trajectories. For that the GNSS, IMU and lidar data is fed into Google
Cartographer [64], a simultaneous localization and mapping (SLAM)
algorithm. This algorithm provides poses for each lidar frame. These
poses position the individual lidar frames relative to the start point
and, because of the GNSS receivers, also globally. The poses further
describe the driven trajectory. Using the poses, the lidar frames can
also be combined into larger but still consistent point clouds, which are
needed for some of the features. In the next step the individual runs are
extracted from the trajectories of the entire drives. For each run through
one of the selected intersections all lidar frames are extracted for which
the pose, and thus the vehicle, is within approximately 35m from the
intersection center. With that method a sequence of geo-referenced point
clouds and the driven trajectory of the measurement vehicle are available
for each run.

For further evaluation the maps of the intersections are needed as
well. The maps are created using mapping data provided by the City of
Karlsruhe. Each of these maps contain the intersection area itself and a
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sufficiently long segment of each of the roads leading to the intersection.
The maps are stored in a format that is a simplification of the lanelet
concept [22, 127]. Each lanelet describes a lane segment. Lanelets be-
gin where several lanes merge into one and end where a lane diverges
into multiple lanes. An illustration of a lanelet map of an intersection is
given in figure 4.2 of chapter 4. Each lanelet contains its left and right
border and its predecessor and successor lanelets, thus creating a graph-
ical representation of the driving possibilities. The lanelet sequence the
measurement vehicle drove along is extracted next. For that purpose
the driven trajectory is compared to all possible driving paths through
the intersection1 and the most similar path, and that way the lanelet
sequence, is selected.

Some of the features introduced below require the detection of mov-
ing objects from the lidar point clouds, i.e. other vehicles, cyclists and
pedestrians. As the resolution of the lidar sensor used here is low, neural
network based approaches like PointNet [132] or PointPillars [86] are not
used. Instead, an approach based on clustering is employed. First, the
ground plane is removed using the MATLAB function pcfitplane,
the remaining point clouds are further processed to only include reflec-
tions caused by objects on the street, i.e. other traffic participants. This is
achieved by only keeping those points that are above the plane defined by
the lanelets of the intersection. Also, points higher than 3m are removed
as they cannot belong to any vehicle and are probably caused by over-
hanging trees. Then, clustering is performed where points that belong to
different clusters are at least 1.8m apart. The bounding boxes of these
clusters are fitted by using an L-shape fitting method [169]. Bounding
boxes which are too large are removed but there is no minimum size for
a cluster as many objects, due to the low resolution, only contain very
few points.

The trackerGNN function in MATLAB is used, which implements
a multi-object tracker with a global nearest neighbor assignment algo-
rithm. In combination with an interacting motion model (IMM) tracking
filter (initekfimm in MATLAB) tracks are generated from the center

1 There are 6 possible paths through a T-intersection and 12 possible paths through an
X-intersection. All of them are defined by a sequence of lanelets.
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points of the clusters. This tracking filter uses three models of the tracked
objects: one with constant velocity, one with constant acceleration and
one with a constant turn rate. This is necessary because the traffic par-
ticipants show changing behavior, i.e. they turn at the intersection, they
accelerate, etc. Some of the tracked road users are detectable for long
periods of time or may be occluded for some time. The tracker is param-
eterized for these cases. Occluded tracks are interpolated linearly, while
stationary tracks are removed entirely. The velocity and the dimensions
of the bounding boxes are filtered with a median filter; the class of a
tracked object (pedestrian, cyclist, car, truck) is determined by the size
and velocity of the bounding box. However, only two classes are used in
this thesis: cyclists, cars and trucks are combined into one class as they
are all traffic participants that are typically expected to be on the street
while pedestrians are mostly only on the street if they are crossing it.

2.3 Intersection Complexity Features
As stated above, the underlying assumption in this chapter is that the
intersection has an influence on the driving behavior of human drivers.
Therefore, an intersection is described by a set of intersection features.
For that, several properties of an intersection can be considered for their
influence on the driving behavior. The first aspect are the properties of
the trajectory driven by the participant. The second kind of features deals
with the static environment of the intersection, i.e. its visibility, the area
available or the perceived narrowness of the street and the intersection
as a whole. The final aspect of the intersection that is assumed to have
an influence on the driving behavior is the traffic at the intersection.

The property of the intersection that causes the hypothesized influence
on the driving behavior is the complexity of an intersection. This property
cannot be measured directly but is perceived by human drivers who are
faced with a scenario at an intersection. In this chapter the complexity is
thus viewed as the set (or relevant subset) of the intersection features that
are presented in the following as a proxy for the perceived complexity.
The terms complexity, intersection complexity and intersection features are
used interchangeably in this chapter.
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2.3.1 Driving Path Features
It is assumed that the driving path through the intersection is important
for the driving behavior because for example turning through oncoming
traffic is presumably more challenging and thus associated with a higher
complexity than driving straight through an intersection. The driving
path in the context of this work is the combination of the street the driver
enters the intersection from and the direction he/she takes there, both
of which are used as features. Both features can easily be obtained from
the lanelet sequence the measurement vehicle drove along during its run
through the intersection.

The entry position 𝑝e is the direction from which a vehicle enters
the intersection. In the case of T-intersections the intersection is turned
so that it resembles the letter T. Then the three labels left, bottom and
right are assigned to the three streets that make up the intersection. In
case of the X-intersections the additional top label could be assigned to
the northernmost street and the remaining labels could be distributed
accordingly. However, since X-intersections are symmetrical in that from
each entry position every turning direction is possible, this feature is
only used for the T-intersections.

The turning direction 𝑝t describes the direction of travel through
the intersection of a vehicle. Three directions are possible: left, right or
straight. Note that at T-intersections not all turning directions are available
depending on the entry position, e.g. driving straight is not possiblewhen
entering a T-intersection from the bottom street.

It is important to distinguish between these features that merely de-
scribe the path a vehicle takes through an intersection and the actual
driving behavior (e.g. the velocity) along that path, which are dependent
on the driven trajectory. The latter does not describe the intersection but
the driving behavior itself. Some features of that type are used to label
the runs through the intersections, see section 2.4.

2.3.2 Stationary Features
Besides the driving path also the surroundings of an intersection are
likely to have an influence on the driving behavior. This is plausible as
for example a wider street with good visibility into the other streets is
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probably less demanding and thus less complex than the opposite. The
calculation of some of these features is visualized in figure 2.2.

The first feature of that kind is the visibility distance. It describes the
distance of the measurement vehicle’s position from the intersection cen-
ter at which reference points in the remaining streets become visible for
the first time. The positions of the reference points need to be defined in a
consistent manner for all intersections. For that purpose the intersection
center is projected onto the street center line of the streets entering the
intersection; the center lines of these streets are extended by a straight
segment to ensure the projection is possible. The reference points are
placed on the center of the streets at the constant distance of

𝑑ref = 𝑣max𝑡r +
𝑣2

max
2 ∣𝑎b∣ (2.8)

from the projected intersection center. This distance is measured along
the extended center lines of the streets. With the speed limit of 𝑣max =
30 km h−1, the reaction time 𝑡r = 1 s and the assumed braking deceler-
ation of 𝑎b = −6 m s−2 the reference distance results in 𝑑ref = 14.12 m.
This is the distance a human driver traveling at the speed limit needs to
come to a complete stop when braking hard.

Unless otherwise specified, in the following the distance 𝑑 of a vehicle is
measured along the center of the lane the vehicle in question drives along.
To this end the two points between which the distance is to be measured
are projected onto the center line. If the vehicle is before the intersection
center, 𝑑 is positive, otherwise it is negative. The visibility distance 𝑑{⋅}

v,𝑖
for each reference point 𝑖 is the furthest distance 𝑑 of the measurement
vehicle at which the reference point in question is visible for the first
time, i.e. it can be seen from the measurement vehicle’s position.

Two methods of determining the overall visibility distance 𝑑{⋅}
v of an

intersection are used as features in this work. The first version considers
the reference points in all streets but the one straight ahead. This reference
point is always visible at all considered intersections. For example a
vehicle entering a T-intersection from the left would only have a reference
point placed on the bottom street but not on the right street. Alternatively,
only those streets can be considered from where a vehicle which the
measurement vehicle would have to yield to would arrive from. If the
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𝑑a
v

𝐰s 𝐰v 𝐰a

IC

RP

Figure 2.2 Visualization of the calculation of some of the features. The visible width
𝐰v, the street width 𝐰s, the available width 𝐰a and the visibility distance based on the
hand-drawn polygons 𝑑v,p is showcased here. For the latter case the intersection center
(IC) and the reference point (RP) are required. The visualization is not to scale.

measurement vehicle e.g. arrives from the left road, a vehicle entering
on the bottom street would have priority at a T-intersection. At an X-
intersection also the vehicles from the right road would have priority;
the visibility distance of that reference point is thus included as well.
In both variants the visibility distance is the distance at which the last
considered reference point is visible for the first time:

𝑑a
v = min

𝑖
(𝑑a

v,𝑖) , (2.9)

𝑑y
v = min

𝑗
(𝑑y

v,𝑗) . (2.10)

Where 𝑖 includes all intersections that are not straight ahead, 𝑗 contains
the streets from which vehicles with priority could potentially arrive;
𝑑a

v is the visibility distance for the method that considers all streets not
straight ahead and 𝑑y

v is the visibility distance for those streets one has
potentially to yield to.

The visibility distances of the individual reference points 𝑑{⋅}
v,𝑖 are mea-

sured by two different methods. The first is based on hand-drawn poly-
gons of obstacles at the intersection and the second is based on the point
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clouds of the lidar sensor. For the polygon-based approach a set of build-
ing polygons Pb and a set containing polygons of the tree trunks at the
intersection Pt are used. Each of the points that make up the driven
trajectory is checked if reference point 𝑖 is visible from that position. The
furthest point for which this is the case determines the distance 𝑑 that is
regarded as the visibility distance of reference point 𝑖. The point is visible
if the sight line 𝑠𝑖 (𝑑) does not intersect with any of the polygons in the
two sets:

𝑑v,p,𝑖 = arg max
𝑑

((Pb ∪ Pt) ∩ 𝑠𝑖 (𝑑) = ∅) . (2.11)

The second variant of the visibility distance uses the point clouds
of the lidar sensor. For that purpose the point clouds associated with
the current distance 𝑑 and the two before and after are merged into a
combined point cloud 𝑃m (𝑑) = [𝐱, 𝐲, 𝐳] to get a denser representation
of the environment. From the current vehicle position at distance 𝑑 again
a sight line 𝑠𝑖 is drawn to reference point 𝑖. As this evaluation is done in
three-dimensional space, a height for this line is also required. Both the
reference point and the origin of the sight line within the vehicle are set
to a height of 1m. A cylinder2 𝐂s,𝑖 (𝑑) with a radius of 0.6m is drawn
around 𝑠𝑖 (𝑑). Reference point 𝑖 is considered visible if there is no point
of 𝑃m within 𝐂s,𝑖:

𝑑v,c,𝑖 = arg max
𝑑

(𝐂s,𝑖 (𝑑) ∩ 𝑃m (𝑑) = ∅) . (2.12)

For both types of calculating the visibility distance, the approach based
on the polygons and the one based on the point clouds, both variants
of which reference points are considered are used as features for the
behavior prediction. Thus there are in total four features available that
describe the visibility conditions at an intersection.

To account for the narrowness of the streets (both the actual narrowness
and the perceived narrowness are considered) several widths are defined
and used as features. Less space to the sides during the approach might
increase the perceived complexity of an intersection scenario. All widths
are defined along the normal to the driven trajectory, which is parallel

2 The function point_to_line_distance is used here (https://github.com/
thrynae/point_to_line_distance, accessed 1 June 2024).
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to the ground plane; 𝐧s (𝑑) describes this normal vector at distance 𝑑
from the intersection center. Using this normal, the street width 𝐰s is
defined. It describes the width of the entire street, i.e. one’s own lane and
the opposite one, at the position of the measurement vehicle:

𝐰s (𝑑) = ∣𝐩s,l (𝑑) − 𝐩s,r (𝑑)∣2 . (2.13)

In the above equation 𝐩s,l (𝑑) describes the point where the normal at
distance 𝑑 intersects with the street curb to the left, and 𝐩s,r (𝑑) is the
equivalent with the right curb.

The width of the street is only one aspect, the perception of an intersec-
tion might also be influenced by the distance a driver can see to the sides.
This hypothesis is covered with the second width feature, the visible
width 𝐰v. To implement it, the occurrence of the first lidar reflection to
the left and right, i.e. along the normal to the driven trajectory, is calcu-
lated at sensor height 𝐧v for each trajectory point. As a lidar sensor only
has a sparse coverage of its surroundings, points within a larger angular
range to the side are considered: the first point within ±10° in horizon-
tal direction and within ±5° in vertical direction determines the visible
width. The position of the first object on the left side at distance 𝑑 is given
by 𝐩v,l(𝑑); the first object to the right is located at 𝐩v,r(𝑑). Consequently,
the visible width at distance 𝑑 is thus

𝐰v (𝑑) = ∣𝐩v,l (𝑑) − 𝐩v,r (𝑑)∣2 . (2.14)

The final feature describing a width in this thesis is the available
width; it describes the width on the street that is available for driving. It
can thus be seen as a combination of the other two features as it reduces
the street width in case there is an obstacle on the street:

𝐰a (𝑑) = min {𝐰s (𝑑) , 𝐰v,mod (𝑑)} . (2.15)

The visual width 𝐰v,mod is modified here; a reflection is considered as
the closest point if it is within the vertical range of ±15°. This is done to
more reliably include vehicles that are parked on the street.

So far these three width features are calculated for each trajectory
point, identified by their distance 𝑑, but in this work the features are
scalar. For that reason the means of the widths within two segments are
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used as features in the following. The first segment covers the part of
the trajectory just before the intersection, the second one is calculated
with the widths just after the intersection. These segments are specified
depending on the distance 𝑑. All widths of trajectory points within that
segment in question are averaged. For the widths before the intersection,
the trajectory points within the distance range of 𝑑s = 25 m and 𝑑e = 7 m
are included in the final features:

𝑤s,b = mean
𝑑s>𝑑>𝑑e

(𝐰s(𝑑)) , (2.16)

𝑤v,b = mean
𝑑s>𝑑>𝑑e

(𝐰v(𝑑)) , (2.17)

𝑤a,b = mean
𝑑s>𝑑>𝑑e

(𝐰a(𝑑)) . (2.18)

The width features after the intersection include the widths associated
with trajectory points within the range of 𝑑s = −7 m and 𝑑e = −15 m:

𝑤s,e = mean
𝑑s>𝑑>𝑑e

(𝐰s(𝑑)) , (2.19)

𝑤v,e = mean
𝑑s>𝑑>𝑑e

(𝐰v(𝑑)) , (2.20)

𝑤a,e = mean
𝑑s>𝑑>𝑑e

(𝐰a(𝑑)) . (2.21)

Another feature that describes the space at an intersection is the free
volume 𝑉f at an intersection. It is included as a more compact inter-
section (where e.g. objects are closer to the street and trees overhang
the intersection area) might increase complexity and thus increase the
perceived difficulty of driving there. For the calculation of this feature
the lidar frames of a run through an intersection are combined into the
global point cloud 𝑃g. The space that is considered for this feature 𝑉int is
a cylinder with a radius of 25m and a height of 6m; its center coincides
with the intersection center. The cylinder covers a height of 1m below
the ground to 5m above the ground. The volume below ground is added
to account for a possibly tilted or uneven driving surface. The center
is excluded from evaluation by adding another cylinder of a radius of
2m. This is done to avoid unreasonable results caused by reflections
of the ego vehicle that are not properly removed or other vehicles that
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also passed through the intersection. Removing points in the middle of
the intersection is not problematic as this area has to be free anyway as
driving would otherwise not be possible.

To determine the volume of this blocked evaluation space, the entire
volume is filled with cubes with a side length of 0.5m. For evaluation an
entire cuboid with 50m by 50m by 6m filled with these cubes is used,
resulting in 120 000 cubes. The cuboid is placed so that the outer cylinder
is fully contained in it. The 𝑘-th cube of the cuboid surrounding 𝑉int is
described by 𝑉𝑘

int; these are referred to as voxels in the following. The
evaluation is based on a mask variable 𝑚v, initially, 𝑚v = 0, ∀𝑘. In a first
step all voxels are checkedwhether they lie within the evaluation volume,
i.e. within the outer cylinder and outside the inner one. For each voxel 𝑘
for that this is not the case the mask is set to 𝑚𝑘

v = 1. Each voxel inside
the evaluation volume is next checked whether it is occupied, this is the
case if there are at least 10 reflections within it; 𝑚𝑘

v = 2 for all occupied
voxels 𝑘.

It is not sufficient to only deal with these voxels that are directly occu-
pied. All voxels behind occupied ones have to be considered as blocked
(𝑚𝑘

v = 3) because they are not visible from the street and thus do not con-
tribute to the free volume at the intersection. The determination whether
a non-occupied voxel within the evaluation volume is free or blocked
is dependent on whether there is an occupied voxel between the center
of 𝑉int and the currently considered voxel3. After this evaluation is per-
formed for all voxels within 𝑉int the mask 𝑚v now contains the relevant
information:

𝑚𝑘
v =

⎧{{{
⎨{{{⎩

0, if voxel 𝑘 is free,
1, if voxel 𝑘 is outside the evaluation space,
2, if voxel 𝑘 is occupied,
3, if voxel 𝑘 is blocked by an occupied voxel.

(2.22)

Based on these results the free volume at the intersection feature is cal-
culated as follows:

𝑉f =
𝑁f

𝑁f + 𝑁o + 𝑁b
. (2.23)

3 The function wooRaytrace is used here (https://de.mathworks.com/matlabcentral/
fileexchange/56527-fast-raytracing-through-a-3d-grid, accessed: 1 June 2024).
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The number of free voxels is given in 𝑁f, 𝑁o contains the number of
occupied voxels and the number of blocked voxels is given in 𝑁b.

Additionally, the minimum street angle 𝛼s is used to describe an in-
tersection. The minimum street angle is defined as the minimum of all
angles between pairs of the streets leading into the intersection. It is
included in the feature set because it is assumed that a smaller angle
between two streets makes it more demanding to see from one of the
streets into the other and to interact with drivers in the other street, thus
increasing the complexity of an intersection. To calculate the angles, di-
rection vectors are defined for all the streets that make up an intersection.
This is based on the center line of the street: 𝐬i = 𝐬i,2 − 𝐬i,1. Point 𝐬i,1 is
the last point of the center line of street 𝑖, i.e. the point where the street
diverges and thus the intersection begins. 𝐬i,2 is the intersection of the
street center line with a circle with a 5m radius around 𝐬i,1. The angle
between two streets 𝑖 and 𝑗 is then:

𝛼s,𝑖𝑗 = cos−1 ⎛⎜
⎝

𝐬i ⋅ 𝐬j

|𝐬i||𝐬j|
⎞⎟
⎠

, 1 ≤ 𝑖 ≤ 𝑁s, 1 ≤ 𝑗 ≤ 𝑁s. (2.24)

𝑁s is the number of streets at the intersection, thus 𝑁s = 3 for T-inter-
sections and 𝑁s = 4 for X-intersections. The minimum street angle 𝛼s for
an intersection is the minimum of all pairwise angles:

𝛼s = min
𝑖,𝑗; 𝑖≠𝑗

𝛼s,𝑖𝑗. (2.25)

The inclusion of this feature is motivated by previous findings: higher
crash frequencies are observed at non-orthogonal intersections [41]. Also,
accidents at such intersections lead to more severe accidents between
motor vehicles and cyclists [14].

The final stationary feature is the number of trees 𝑛t. For that pur-
pose all those trees are counted whose trunk is positioned around the
intersection area or besides the street the measurement vehicle enters
the intersection from. Trees behind the intersection and those that are
too far in front of it are not considered. For this feature the hand-drawn
tree polygon set Pt is used again.
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2.3 Intersection Complexity Features

2.3.3 Traffic Features
The final class of features describes the traffic during the approach to an
intersection. These are included as well as it is assumed that more traffic
at an intersection increases its perceived complexity. All features of this
type depend on the pedestrians and vehicles that are detected within the
lidar point clouds. This is also one of the two limitations that is inherent
with this type of features. Clusters that are not detected or that are falsely
classified directly affect the feature and thus their predictive power. More
importantly, most runs within the data set were without any cooperation
vehicles. The influence of the traffic features on the prediction of the
driving behavior is therefore probably limited.

The first feature of this type is the number of visible vehicles 𝑛v
during the approach to the intersection. For this feature all vehicles are
counted that are detected in the lidar data while themeasurement vehicle
approaches the intersection, i.e. 𝑑 ≥ 0. The number of pedestrians is
defined accordingly, in that all pedestrians that are visible anywhere dur-
ing the approach are counted. It is important to note, however, that, since
only objects on the street polygon are tracked and are thus considered for
classification, exclusively pedestrians walking on the street are included
in this feature.

The number of vehicles that interact with themeasurement vehicle 𝑛vi
is also used as a feature. Vehicles are interacting with the measurement
vehicle if they are observed to pass the intersection center and if their
distance along their trajectory is within 10m to the intersection center
at the same time as the measurement vehicle, i.e. ∣𝑑∣ < 10 m is true for
both vehicles at the same time. The final two features are the number
of interacting vehicles with the right of way 𝑛rw and the number of
interacting vehicles that have to give way 𝑛gw. For that purpose each
vehicle that is considered to be an interacting vehicle is classified if it has
the right of way over the measurement vehicle or if it has to yield to the
measurement vehicle. There are also interacting vehicles that do not fall
in either category, e.g. a vehicle that drives on the same path through
the intersection as the measurement vehicle. All complexity features,
including those of the previous two subsections, are listed in table 2.2.
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2 Using Intersection Complexity for Behavior Prediction

2.4 Behavior Features
In order to quantify the driving behavior of the participants at the in-
tersections three features are defined. These features need to describe
important aspects of the approach to an intersection and of the decision-
making process there. Additionally, the features have to be defined in
accordance with the prevalent conditions at the intersections. These in-
clude a speed limit of 30 kmh−1and a varying number of interaction
partners, including the case of no additional vehicle. As discussed above,
the latter aspect does not allow the usage of features that are commonly
used for the TCT [31, 39, 77] like the time to encounter or others that rely
on the interaction between a pair of vehicles. Instead, features that only
consider the driving behavior of the participants are used here.

The first behavior feature is the commit distance 𝑑c. It is the distance
at which, given the current velocity and taking the reaction time into con-
sideration, stopping before the intersection center is no longer possible:

𝑑c = max
𝑑

(𝑑 < 𝑡r𝑣(𝑑) +
𝑣(𝑑)2

2|𝑎b| ) . (2.26)

It can be seen as the distance at which the decision to drive has been
made. The decision is presumably made farther from the intersection
because of the relatively high braking acceleration of 𝑎b = −6 m s−2 and
the fact that usually one would stop before the intersection center. At
a distance closer than the commit distance the decision can no longer
be reverted, a driver is thus committed to pass the intersection center
and by that enter the intersection in any case. This feature is included
as a descriptor of the driving behavior as a larger commit distance can
be seen as more offensive driving behavior. This is plausible because
driving at a relatively high velocity close to the intersection results in a
larger commit distance than e.g. cautiously and slowly approaching the
intersection.

A further feature for describing the human driving behavior is the
minimum velocity 𝑣m during the approach to the intersection. It is
the minimum velocity the participant drives at while being within the
approach interval of 𝑑s = 25 m to 𝑑e = 0 m from the intersection center:

𝑣m = min (𝑣 (𝑑)) , 𝑑s > 𝑑 > 𝑑e. (2.27)
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2.5 Behavior Prediction Results

It is included under the assumption that the behavior is more defensive
the lower the minimum velocity. However, slow driving or even stopping
can also be caused by other circumstances, e.g. if a driver has to give way
to another vehicle.

The final behavior feature considered in this work is the velocity drop
𝑣d. It is the quotient of the velocity during the initial approach 𝑣a and
the minimum velocity 𝑣m:

𝑣d =
𝑣m
𝑣a

. (2.28)

Where 𝑣a is the average velocity within the interval from 𝑑s = 25 m
to 𝑑e = 20 m. In contrast to the minimum velocity the velocity drop
also considers the amount by which a driver brakes at an intersection.
It is assumed that the more defensive the driving behavior, the more
pronounced the drop in velocity.

It is important to note that the driving behavior could also be described
by further features; manymore aspects of the approach to the intersection
and the driving within it could be used. These features to describe the
driving behavior could e.g. include the velocity itself or features based
on acceleration. The behavior features used here are listed in the bottom
part of table 2.2.

2.5 Behavior Prediction Results
Based on the features of intersection complexity the driving behavior is
predicted. For that purpose the runs are labeledwith the driving behavior
features of the previous section and regression models are trained. First
the entire set of complexity features is used for prediction, followed by
subsets consisting of the most important features. Finally, an autoencoder
is used to generate a lower dimensional representation of the feature set,
which is then used for prediction. Separate models are trained for the
T-intersections and the X-intersections.

The runs are split into a training set which contains 70% of all runs
and a test set which contains the remaining 30%. The runs are randomly
assigned to these sets. For each variant 10 models with random set as-
signments are trained; the reported regression performance is averaged
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2 Using Intersection Complexity for Behavior Prediction

Table 2.1 Performance of different regression algorithms for behavior prediction using
the full feature set. All three behavior features are used as labels: The commit distance 𝑑c
in m, the minimum velocity 𝑣m in m s−1 and the velocity drop 𝑣d. For each combination
the prediction is run 10 times with different training set assignments and the results are
averaged over these predictions. The prediction error is reported using the RMSE in the
first row of each algorithm; the standard deviation is given in the second rows.

T-intersections X-intersections

algorithm 𝑑c 𝑣m 𝑣d 𝑑c 𝑣m 𝑣d

LR RMSE 1.624 1.089 0.157 1.850 1.179 0.169
𝜎 0.069 0.028 0.005 0.112 0.091 0.010

RF RMSE 1.437 0.990 0.147 1.623 1.103 0.161
𝜎 0.062 0.033 0.006 0.114 0.068 0.012

TB RMSE 1.458 0.981 0.148 1.653 1.091 0.156
𝜎 0.059 0.021 0.006 0.082 0.046 0.009

Reference RMSE 3.131 2.002 0.276 3.230 2.004 0.257
𝜎 0.091 0.039 0.005 0.166 0.082 0.011

over the results of all 10 models. The prediction models are evaluated by
the root mean squared error

RMSE =
√
√√
⎷

1
𝑁te

𝑁te

∑
𝑖=1

( ̂𝑦𝑖 − 𝑦𝑖)
2. (2.29)

The number of runs in the test set is given by 𝑁te, ̂𝑦𝑖 is the estimated label
of the 𝑖-th run of the test set and 𝑦𝑖 is the true label of that run. As a bench-
mark for the model performances a reference label ̄𝑦 = 1

𝑁tr
∑𝑁tr

𝑖=1 𝑦tr,𝑖 is
introduced, where 𝑁tr is the number of runs in the training set and 𝑦tr,𝑖
the label of the 𝑖-th run in the training set. When using this benchmark,
the average label of the training set is assigned to the runs of the test set:
̂𝑦𝑖 = ̄𝑦.

2.5.1 Full Feature Sets
For the first evaluation the entire complexity feature set of table 2.2 is
used for behavior prediction. This includes the driving path features,
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Figure 2.3 Scatter plots of the behavior prediction at the T-intersections with the full
feature set. All three behavior features are used as labels and LR, RF and TB are used for
regression. For comparison, the regression with the naive reference is also given. The true
labels 𝐲n and estimated labels 𝐲̂n are normalized to the maximum value of each individual
regression.

the stationary features and the traffic features; 20 intersection features
in total. In case of the models for the X-intersection there are only 19
features as the entry position 𝑝e is not used due to the symmetry of the
X-intersections. The three behavior features of section 2.4, the commit
distance 𝑑c, the minimum velocity 𝑣m and the velocity drop 𝑣d are used
as the labels for behavior prediction. The performance metrics of these
prediction models are shown in table 2.1. Additionally, the scatter plots
showing the true label values 𝐲n over the estimated label values 𝐲̂n are
presented in figure 2.3 for the T-intersection and the corresponding plots
for the X-intersection are given in figure 2.4. The data for these plots are of
the model that has the best performance on the test set for its prediction
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Figure 2.4 Scatter plots of the behavior prediction at the X-intersections with the full
feature set. All three behavior features are used as labels and LR, RF and TB are used for
regression. For comparison, the regression with the naive reference is also given. The true
labels 𝐲n and estimated labels 𝐲̂n are normalized to the maximum value of each individual
regression.

variant. The scatter plots are normalized to the overall maximum value
𝑦m of the true values 𝐲 and the estimated values 𝐲̂:

𝑦n,𝑖 =
𝑦𝑖
𝑦m

, ̂𝑦n,𝑖 =
̂𝑦𝑖

𝑦m
, 𝑦m = max {𝐲, 𝐲̂} , 𝑖 ∈ 1, … 𝑁tr. (2.30)

The normalization factor 𝑦m is calculated individually for each scatter
plot.

The quantitative results of table 2.1 show the expected behavior in that
all classifiers outperform the reference values substantially. Of the three
algorithms, LR shows the worst performance while RF and TB reach
the best results. The predictions from the two latter methods are very
close to each other with RF being slightly better in all cases but when
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the velocity drop 𝑣d or the minimum velocity 𝑣m is used as the label
at the X-intersections. The standard deviations are relatively low for all
variants, but they are consistently larger in case of the X-intersections.

The qualitative results of the scatter plots show that the test sets are
predicted relatively close to the ideal line; this is especially true for the
commit distance. The performance of the velocity drop and, to a smaller
extent, the minimum velocity are not as good. In these cases there are
more outliers and especially those cases where 𝐲n ≈ 0 the estimated
values 𝐲̂n vary notably for these two behavior features. The better per-
formance of TB and RF observed in table 2.1 is also visible in the scatter
plots: The resulting point clouds are more compact and closer to the ideal
line for RF and TB than in case of LR. The labels of the reference method
𝐲̂ are the same for each run of the test set. This manifests itself in the
vertical alignments of the individual marks within these scatter plots.

Some conclusions can be drawn from these results: It is possible to pre-
dict the driving behavior at an intersection using only information about
the intersection itself. From that it follows that the driving behavior at an
intersection, to a large part, does in fact depend on the intersection itself.
It also means that there is a typical behavior, which is independent from
a driver’s personality, intentions or mood. These aspects certainly play
an important role as well and probably explain some of the prediction
errors. The superior performance of RF and TB over LRmay be explained
by the fact that the latter can only represent linear dependencies while
RF and TB are able to find non-linear dependencies as well.

2.5.2 Importance of Features
So far, the regression models include all intersection features, regardless
of their influence on the prediction performance. In this section the
possibility to reduce the number of features for regression is investigated.
As stated before, an important motivation for this thesis is the desire
to be able to explain the reasons for human driving behavior. As is
evident from the previous section, the intersection features are helpful
for that purpose. However, there are 20 features (19 for X-intersections)
to describe the intersections themselves, the traffic there and the selected
trajectory. It is certainly not possible to describe the behavior with so
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2 Using Intersection Complexity for Behavior Prediction

Table 2.2 List of all features. The intersection features are listed first, followed by the be-
havior features. The list of intersection features is ordered by the importance of the features
when both intersection types are viewed in combination. Additionally, the importance is
given for both the T- and X-intersections separately. As the entry position 𝑝e is only part of
the feature set for the T-intersections, it is not part of the combined rank. There are several
visibility features; they are either calculated by using obstacle polygons (OP) or the lidar
point clouds (PC) and either all streets or the streets the test vehicle has to yield to (YS) are
considered. Some feature pairs score the same number of points which results in a shared
rank.

features rank rank T-int. rank X-int.

𝑝e entry position - 3 -
𝑉f free space 1 2 1
𝑝t turning direction 2 1 8
𝑤s,b street width before int. 3 5 5
𝑑y

v,p vis. distance (OP) at the YS 4 6 2
𝑤a,b available width before int. 5 8 4
𝑤s,e street width after int. 6 4 9
𝑑v,p vis. distance (OP) 7 10 3
𝑤a,e available width after int. 8 9 7
𝑑y

v,c vis. distance (PC) at the YS 9 7 12
𝑛t # trees at int. 10 18 6
𝑑v,c vis. distance (PC) 10 16 10
𝑤v,e visible width after int. 12 15 11
𝑤v,b visible width before int. 13 13 13
𝛼s minimum angle 14 11 14
𝑛v # visible vehicles 15 12 16
𝑛vi # interaction vehicles 16 14 15
𝑛rw # vehicles with right of way 17 17 17
𝑛gw # vehicles that have to yield 18 19 19
𝑛p # visible pedestrians 19 20 18

𝑑c commit distance - - -
𝑣m minimal velocity - - -
𝑣d velocity drop - - -
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many features easily. It would thus be helpful if behavior prediction was
possible with fewer features.

To that end the intersection features are first ordered by importance.
As introduced in section 2.1.2.2, importance scores for each feature are
available from training RF models. These scores are used to rank the
complexity features by their importance for behavior prediction. For
better comparability and to simplify the training process, a consistent
ranking of all behavior features and both intersection types is tabulated.
For that purpose the importance scores of all 60 RF models from sec-
tion 2.5.1 (2 intersection types, 3 behavior features and 10 models per
variant) are used. For each model the most important feature is assigned
one point, the second most important two points and so on. The final
order is then obtained by summing the points of all models. The feature
with the lowest number is considered to be the overall most important
feature. The list of complexity features in table 2.2 is ordered by this
combined feature importance. Additionally, the orders that would re-
sult when only considering the T- or X-intersections, respectively, are
shown as well. These are not used in the following and are only given
for comparison. As the entry position 𝑝e is only part of the feature set
of the T-intersections, it is omitted from the calculation of the combined
feature importance ranking.

Themost important feature of the combined evaluation is the free space
at the intersection 𝑉f followed by the turning direction 𝑝t. The latter is
a noteworthy case because it is the most important feature when only
considering the T-intersections, but it is only in the eighth place if the X-
intersections are evaluated separately. The different importance of some
features within the T-intersections data set and the X-intersections data
set is not limited to the turning direction. The visibility distance using
the object polygons 𝑑v,p is ranked on position 10 for the T-intersections
and on position 3 for the X-intersections.

For the following evaluations, models are trained the same way as
those in the previous section but with varying numbers of features. First,
a model is trained that has access to only the most important feature,
the next model uses the two most important features. This pattern is
continued until all features are used. For this analysis again both the T-
and the X-intersection data sets are used. Also, all three behavior fea-
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Figure 2.5 Averaged behavior prediction error (RMSE) over the number of intersection
features used for prediction. The features are added by importance; the models with only
one feature use the most important one. The first row of plots shows the prediction results
using the commit distance 𝑑c as the label, the second row those using theminimum velocity
𝑣m and the last row shows the performance of the models for the velocity drop 𝑣d. The
left column shows the results using the T-intersections data set, the right column contains
the results of the X-intersections. LR, RF and TB are used for regression.

tures are used as labels and models are trained with all three regression
algorithms as before. In case of the T-intersections the unranked feature
entry position 𝑝e is placed at the top of the list. The results are plotted
in figure 2.5. For each of the six combinations of intersection type and
algorithm the RMSE is plotted over the number of features. For each
variant again 10 models are trained, the data in the plots is the average
of the models’ performances.

The results show an improved performance, i.e. a lower RMSE, with an
increasing number of features. This is true for all training combinations
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and all regression algorithms. In all six combinations LR performs worst
while RF and TB are again very similar in their performance with a small
advantage of RF over TB. Adding an additional feature improves the per-
formance to a greater extent when there are only few features compared
to the case when already many features are used. The performance gain
in the latter case is minimal, the performance over number of feature
curve is almost constant for more than 5 features for the T-intersections
and more than 6 features in case of the X-intersections. This is true for
RF and TB, the performance when using LR improves slower over the
number of features and does not converge to the superior performance
of RF and TB even for a larger number of features.

A plausible explanation for the similar performance of the feature sets
that include more than 5 or 6 features, respectively, lies in the fact that
there are several features, especially those concerning the visibility and
the widths, that are defined similarly and thus probably correlated to a
certain degree. For that reason one might expect that removing some of
these does not have a large effect on the prediction results. Further, most
runs do not have any interaction vehicles present at the intersections.
A vehicle is detected in only 22.95% of all runs (T-intersection: 23.71%,
X-intersection: 20.53%). Even more seldom, in only 2.10% of all runs a
pedestrian is detected on the street. This presumably leads to the low
importance of the traffic features in table 2.2 and therefore predictions
without most of these features do not decrease the performance by much.

The varying importance of the turning direction 𝑝t at the different inter-
section types is probably caused by the distribution of 𝑝t in the data sets.
Of the 565 runs through an X-intersection 222 (39.29%) entail a right turn,
67 (11.86%) a left turn and in 276 of those runs (48.85%) the vehicle is
driven straight. In comparison, the distribution at the T-intersections
is more balanced: Of the 1818 runs through the T-intersections, 542
(29.81%) consist of a right turn, 774 (42.57%) of a left turn and in 502
(27.61%) cases the vehicle is driven straight through the intersection. This
presumably enables this feature to be more important for the predictions
in case of the T-intersections.

Besides the different distributions of feature values, the varying impor-
tance of features between the T- and X-intersections might also be caused
by the distribution of intersections within the two data sets. There are
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Table 2.3 Averaged RMSE of the behavior prediction using different feature sets and
algorithms at the T-intersections. The full feature set (FFS) is shown again for comparison,
the reduced feature set (RFS) contains the 8 most important features. The remaining feature
sets are listed explicitly. The behavior features are used as labels: the commit distance 𝑑c
in m (reference method: 3.131m), the minimum velocity 𝑣m in m s−1 (reference method:
2.002m s−1) and the velocity drop 𝑣d (reference method: 0.276).

FFS RFS {𝑝t} {𝑉f, 𝑝e} {𝑉f, 𝑝t} {𝑝e, 𝑝t} {𝑉f, 𝑝e, 𝑝t}

𝑑c

LR 1.624 1.763 2.193 2.498 2.037 2.194 2.034
RF 1.437 1.450 2.135 2.128 1.915 1.815 1.635
TB 1.458 1.492 2.135 2.125 1.928 1.750 1.550

𝑣m

LR 1.089 1.200 1.503 1.508 1.348 1.490 1.325
RF 0.990 1.015 1.501 1.345 1.295 1.303 1.153
TB 0.981 1.022 1.501 1.340 1.293 1.274 1.107

𝑣d

LR 0.157 0.167 0.208 0.202 0.188 0.204 0.181
RF 0.147 0.147 0.209 0.187 0.182 0.185 0.167
TB 0.148 0.151 0.209 0.186 0.182 0.182 0.165

some substantial differences between those: The X-intersections data set
consists of only 7 intersection/entry position combinations and of the 565
runs through all intersections 404 were recorded at a single intersection
(but from three different entry positions). In contrast, the T-intersection
data set consists of 34 combinations of intersection/entry positions. Of
these, one combination has only a single run and another has two runs;
this is probably caused by a participant turning wrong or being rerouted
due to a blocked street. The remaining combinations all have more runs
which are distributedmore evenly among them than in the X-intersection
case.

2.5.3 Reduced Feature Sets
The previous section shows that predictions with a smaller feature set are
also feasible. In this section some important or interesting variants with
fewer intersection features are viewed in detail. First, a reduced feature set is
introduced. It only contains the 7most important complexity features and
can be seen as a compromise between the variants of figure 2.5. This set
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Table 2.4 Averaged RMSE of the behavior prediction using different feature sets and
algorithms at the X-intersections. The full feature set (FFS) is shown again for comparison,
the reduced feature set (RFS) contains the 7 most important features. The remaining feature
sets are listed explicitly. The behavior features are used as labels: the commit distance 𝑑c
in m (reference method: 3.230m), the minimum velocity 𝑣m in m s−1 (reference method:
2.004m s−1) and the velocity drop 𝑣d (reference method: 0 257).

FFS RFS {𝑉f} {𝑝t} {𝑉f, 𝑝t}

𝑑c

LR 1.850 2.265 2.796 2.650 2.361
RF 1.623 1.686 2.780 2.634 2.129
TB 1.653 1.767 2.774 2.634 2.176

𝑣m

LR 1.179 1.407 1.650 1.705 1.443
RF 1.103 1.132 1.657 1.707 1.358
TB 1.091 1.166 1.644 1.707 1.369

𝑣d

LR 0.169 0.186 0.221 0.213 0.188
RF 0.161 0.162 0.222 0.213 0.179
TB 0.156 0.165 0.219 0.213 0.183

thus includes the free volume at the intersection 𝑉f, the turning direction
𝑝t, the visibility distance using the obstacle polygons 𝑑v,p, the variant
of that distance using only the yield streets 𝑑y

v,p, the mean street width
before and after the intersection (𝑤s,b and 𝑤s,e, respectively) and the
available width before the intersection 𝑤a,b. In case of the T-intersections
also the entry position 𝑝e is included within the reduced feature set.

Additional models are trained with feature sets containing combina-
tions of the two most important features, the free volume at the inter-
section 𝑉f and the turning direction 𝑝t. For the T-intersection models
also combinations including the entry position 𝑝e are trained and evalu-
ated. Table 2.3 contains the performances of these models using the runs
through the T-intersections. Table 2.4 shows the corresponding results
for the X-intersections. These tables also contain the performance of the
full feature sets as a benchmark. In case of the T-intersections the table
shows the results of the best performing feature set with only one feature
(the turning direction 𝑝t), all three combinations with two features and
the feature set which consists of all three most important features. The
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table for the X-intersections is set up similarly, but as only the two best
features are being considered, the performance of both feature sets with
only a single feature and the results of the set with both features are
reported in the table. The scatter plots for some of these feature sets are
presented in figures A.1, A.2 and A.3 in the appendix.

From the results in table 2.3 one can see that the predictions using the
reduced feature sets are almost as good as those with the full feature sets.
Of the feature sets made up of the three best performing features, those
with only one feature performworst, followed by those with two features.
Using all three features yields in the lowest errors, but the results are
still worse than those of the reduced feature sets. When using only a
single feature for prediction, the turning direction 𝑝t is best in all cases.
The free space at the intersection cannot be used as the single feature, as
this results in predictions which are comparable to those of the reference
method (not reported in the table). The entry position 𝑝e is worse than 𝑝t
for all regressionmethods but for some of them the results are similar. The
performances when using a combination of two features as the feature set
are closer to each other. The combination {𝑉f, 𝑝e} has the largest errors of
these variants, the other two combinations are, overall, relatively similar
and each is best for some combinations of label and algorithm. Finally,
the feature set which uses all three features is better than all these sets,
but still has substantially larger errors than the reduced or even the full
feature sets. RF and TB show similar performances and the predictions
by either are better than those of LR.

The results of the X-intersection data set are similar, the feature sets
using only a single feature are again those with the largest prediction
errors. This is followed by the feature set using the two best features and
the reduced and finally the full feature sets. In case of the feature sets
containing only a single feature both variants show relatively large pre-
diction errors. Also, LR was again the least reliable prediction algorithm;
it is outperformed by both RF and TB whose performances are again on
par with each other.

Overall, these results are in line with those of the previous sections.
Using only a subset of all intersection features reduces the prediction per-
formance. This reduction is small for the reduced feature set, especially
if RF or TB is used for regression. In general, the fewer features the worse
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the predictions, as can be seen from the feature sets that are made up of
only the three most important features. This is presumably caused by
the fact that using only one to three features takes less information into
consideration during the training process of the models. Additionally,
both 𝑝t and 𝑝e are categorical features with only three different cate-
gories each. In case of the {𝑝e, 𝑝t} feature set at the T-intersections only
six combinations are possible (e.g. when entering from the bottom it is
impossible to drive straight) and if these features are even used exclu-
sively, only the three categories are available. In either case this has the
consequence that there are only as many prediction values possible as
there are combinations of feature values. This phenomenon is clearly
visible in the scatter plots in the appendix (c.f. figures A.1, A.2 and A.3).
This limited set of possible prediction values further contributes to the
increased prediction error.

The performance of turning direction 𝑝t and the free space at the
intersection 𝑉f show some interesting patterns: 𝑉f is ranked as the overall
most important feature and is on the second place when only considering
the T-intersections and again on the first place when considering only
the X-intersections. Despite this, using this feature individually yields
very poor predictive potential. It appears that this feature only becomes
relevant when it is combined with further ones. As discussed in the
previous section, 𝑝t is ranked differently for the T- and X-intersections
(positions 1 and 8, respectively). Nonetheless, using this feature as the
only one for prediction results in the best performance (compared to
the other features used exclusively in this section) for both intersection
variants.

The observations regarding the performance of the regression algo-
rithms are confirmed: LR performs worst in all cases while TB and RF are
substantially better in all other cases and have a performance similar to
each other on all feature sets. These observed patterns are again common
across all three labels.

2.5.4 Autoencoder for Feature Set Reduction
In the previous sections the desired reduction of the complexity feature
set is achieved by simply omitting some of the features from the full
feature set. This, however, might not be the most efficient approach to
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Table 2.5 Averaged RMSE of the behavior prediction using feature sets that are reduced
by autoencoders. The training of the autoencoders themselves is based on the full feature
sets. The behavior features that are used as labels are the commit distance 𝑑c in m, the
minimum velocity 𝑣m in m s−1 and the velocity drop 𝑣d. The reference values are as before.

T-intersection X-intersection

FF 1D 2D 3D FF 1D 2D 3D

𝑑c

LR 1.624 2.802 2.072 1.986 1.85 2.921 2.804 2.658
RF 1.437 1.911 1.672 1.602 1.623 2.681 2.276 2.075
TB 1.458 1.824 1.679 1.637 1.653 2.655 2.374 2.146

𝑣m

LR 1.089 1.821 1.409 1.365 1.179 1.885 1.809 1.729
RF 0.990 1.355 1.215 1.174 1.103 1.735 1.503 1.359
TB 0.981 1.298 1.216 1.191 1.091 1.712 1.556 1.404

𝑣d

LR 0.157 0.251 0.196 0.191 0.169 0.241 0.230 0.219
RF 0.147 0.193 0.175 0.173 0.161 0.225 0.202 0.186
TB 0.148 0.185 0.175 0.175 0.156 0.222 0.211 0.191

reduce the number of features. As stated above, many of the features
are probably correlated with each other to a certain degree and thus
combining these features into fewer, more diverse ones, seems promising.
To that end an autoencoder (AE), a type of neural network that can be
used for dimensionality reduction [65], is used. Making use of an AE
has the advantage that it is able to find nonlinear dependencies, and it is
reported to outperform principal component analysis (PCA) [65].

A neural network is typically made up of several layers of so-called
neurons [57]. The number of neurons per layer is a design parameter. An
AE consists of two parts, the encoder and the decoder [57]; the dimension
at the output of the encoder is smaller than its input for an undercomplete
AE [57], as is used here. At the output a compressed representation of the
input data is available. During training a decoder is also employed: It is
trained to reconstruct the input data of the encoder using the compressed
representation at the output of the encoder as its input. If an AE is used
for dimension reduction, the number of neurons at the bottleneck, i.e. the
interface between the encoder and decoder, determines the dimension of
the reduced representation. During training a cost function is made use
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of that compares the original training data at the input of the encoder to
its reconstructed version at the output of the decoder.

In this work an AE is used to generate a lower-dimensional represen-
tation of the intersection complexity feature space. For that purpose an
encoder-decoder structure is trained where the dimension of the bottle-
neck is the same as the desired dimension of the feature set and is set to
one of these values: 𝑁AE = {1, 2, 3}. Both the encoder and the decoder
have three layers each. The input of the first layer of the encoder has
as many neurons as there are features in the full feature set, i.e. 24 in
case of the T-intersections and 21 in case of the X-intersections. There are
more features for the training of the AE and the later inference than there
are on the list of features in table 2.2 because the categorical features
entry position 𝑝e and turning direction 𝑝t are one-hot-encoded [75]. Both
have three possible values and are thus represented by three features
each. The dimensions are reduced to 15, 6 and 𝑁AE neurons, respectively,
in the following layers. All layers are fully connected layers with batch
normalization [57] and a rectified linear unit (ReLU) [75] as the activation
function. The decoder is set up in reverse. In the cost function categori-
cal and continuous features are viewed separately. For the categorical
features cross entropy [75] is used, the reconstruction error of the con-
tinuous features is measured using the mean absolute error. The cost
function is then the weighted sum of both elements.

The AE is trained with the training set (55% of all runs in the data
set) and validated with the validation set (15% of the runs). After an AE
model is trained, it is used to calculate the low-dimensional representa-
tion of the training, validation and test sets. The training and validation
sets are combined and used to train the regression models from above.
The final prediction errors are obtained by applying the regressionmodel
to the reduced features of the test set.

The results of these behavior predictions are shown in table 2.5. This
table contains the results of the 𝑁AE = 1, 𝑁AE = 2 and 𝑁AE = 3 version
of the AE models, as well as the results of the full feature set for compar-
ison. Predictions are run with all three regression algorithms and the
reference values again serve as a benchmark. Also, all three behavior
features are used as labels. The scatter plots of the 1D case are shown in
figures A.1, A.2 and A.3 in the appendix.
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The performance shows similar patterns as the evaluations from be-
fore: LR is the worst of all regression methods while RF and TB are again
similar in performance. In the 1D case TB outperforms RF in all cases
slightly, in all 2D and 3D cases the roles are reversed and the predictions
with RF are a little better than those with TB. All predictions are better
than the reference method, the predictions, however, in the 1D case at
the X-intersections show only moderately better results than the refer-
ence; this is especially the case for LR. The prediction improves with
an increasing dimension of the latent complexity feature representation.
The scatter plots in the appendix show relatively large deviations from
the ideal line; this corresponds to the quantitative results from above.

Overall, these results meet expectations. The lower the dimensionality
at the bottleneck, the more information is lost during compression and
is thus not available during behavior prediction. The lower performance
of the LR method compared to RF and TB can probably be attributed
to the fact that LR is a linear method, i.e. it is only capable of finding
linear dependencies between the input features4 and the labels. If the
relationship between the compressed complexity features and the behav-
ior features is non-linear, LR as a linear method will not be able to find
these relationships. The fact that the tree based methods are able to find
non-linear dependencies is a reasonable explanation for their improved
performances. Especially the 2D and 3D models give prediction perfor-
mances that are better than those when using only two or three features
directly, respectively. This further highlights the benefit of compressing
all available features and thus keeping the information contained therein
as compared to directly selecting a few promising intersection features.

2.5.5 Comparison of the Feature Sets
The experiments described in the previous sections show that the driving
behavior can be predicted reliably. The models are trained with various
intersection feature sets and achieve different results with them. To be
able to better compare the results of all variants, figures 2.6 and 2.7
provide an overview on all results of the previous sections. They show the

4 Here, the term input features refers to the compressed complexity features by the AE, in
all other cases this describes the entire feature set that is currently used.
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Figure 2.6 Behavior prediction at the T-intersections using different complexity feature
sets, regression algorithms and behavior features as labels. For each label the result of the
naive regression model is given as the reference for comparison.
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Figure 2.7 Behavior prediction at the X-intersections using different complexity feature
sets (FS), regression algorithms and behavior features as labels. For each label the result of
the naive regression model is given as the reference for comparison.
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results using the T-intersection and X-intersection data sets, respectively.
For the T-intersections figure 2.6(a) shows all results where the commit
distance 𝑑c is used as the label, figure 2.6(b) displays the performance of
the models with the minimum velocity 𝑣m and figure 2.6(c) contains the
results when the 𝑣d is chosen as the label. Analogously, figures 2.7(a),
2.7(b) and 2.7(c) show the results when using 𝑑c, 𝑣m and 𝑣d at the X-
intersections, respectively. The performance of the reference method
for prediction is displayed as a red line. As all variants for prediction
are run 10 times with different training and test set assignments, the
1 𝜎 standard deviation is given by the error bars as well. In case of the
reference method the 1 𝜎 standard deviation is shown by the light red
area.

The standard deviation is small in most cases, which indicates a con-
sistent prediction performance over the 10 set assignments. In case of
the AE variants the standard deviation is notably larger compared to the
remaining methods. LR is the worst prediction method for this appli-
cation; it is outperformed by RF and TB. These two algorithms achieve
very similar results for all investigated variants. It is further apparent
that the prediction results at the T-intersections are better than those at
the X-intersections. This can be seen by the fact that the RMSE values
for the X-intersections data set are closer to the reference value than in
case of the T-intersections. Also, the standard deviation is larger for the
X-intersections. A likely cause is the smaller size of the X-intersections
data set, which also contains data from fewer intersections.

Comparing the feature sets with each other, the full feature set has
the lowest RMSE value in all cases and with all regression algorithms.
This is followed by the reduced feature set which is second best in all
cases. The order of the remaining sets is not consistent across all variants,
however, the AE variants with 𝑁AE = 3 are always better than the ones
with 𝑁AE = 2, which themselves outperforms those with 𝑁AE = 1 in all
cases. Both these results are as expected; it is plausible that a regression
model that is based onmore features performs better than one with fewer
features. Also, having a latent representation with more dimensions
enables an AE to keep more information from the original feature sets,
thus enabling better predictions.
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Using the T-intersections data set and RF or TB as the regression
method, the performance of the 1D AE feature set is better than that of
the best investigated feature sets that contains only a single feature, the
one using only 𝑝t. Similarly, the 2D AE feature set outperforms the best
feature set from section 2.5.3 with two features (𝑝t and 𝑝e) and the 3D AE
variant achieves results very similar to the feature set using all three most
important features (𝑝t, 𝑝e and 𝑉f). This is plausible as well, because the
AE has access to the full feature set during its training and is therefore
not limited to the information contained within a single feature but can
combine information from all features into the single feature it generates.
Similar arguments can be made for the 2D and 3D cases. This, however,
is not the case when LR is used for prediction with the T-intersection
data set. In that case the AE variants are not better than the feature sets
with the same dimension and especially the 1D AE variant is notably
worse than the models that only use the turning direction 𝑝t for behavior
prediction.

In case of the X-intersections data set only the two best performing
features are investigated, c.f. section 2.5.3. The best model that uses only
one of these two features (𝑝t) outperforms the 1D AE variants in all cases,
i.e. all combinations of behavior feature and prediction algorithm. The
same is true for the model that uses both most important features (𝑝t and
𝑉f); it also outperforms the 2D AE in all cases. Even the 3D AE variants
perform worse in most cases and are only able to be approximately
equal to the models using the two most important features. One possible
explanation for the different results between the T- and X-intersections
data sets might be the smaller data set size of the X-intersections.

2.6 Conclusions
In this chapter an investigation is introduced that focuses on the influ-
ence of an intersection and its surroundings on the driving behavior of a
human driver. Only inner-city intersections without traffic lights or signs
are considered here. The investigation is based on data gathered from
a field study in real-world traffic, during which the driving behavior
of participants was recorded. Based on that data features are defined
which describe the intersection itself, its surroundings, the traffic the
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participant had to interact with and the path driven through the inter-
section. These features are assumed to define intersection complexity.
The driving behavior of the participant is described by further behavior
features.

The complexity features are used for training regression models to
predict the behavior features. The analysis of the performances of these
models shows that the driving behavior at intersections can indeed be
predicted by only considering observable properties of and at an inter-
section, i.e. its complexity. This is especially noteworthy as no aspects of
a driver’s personality, mood or intentions are being considered. It there-
fore follows that there is a typical driving behavior for each intersection,
within a certain range, which is shown by different drivers and which
only depends on the complexity of an intersection. Further analyses with
reduced feature sets show that the entire complexity feature set is not
needed for reliable predictions; instead subsets of the full set or feature
sets by a dimension reduction with an AE provide reliable predictions as
well. However, the best performance is achieved with the full feature set.

As mentioned before, one of the important aspects is that it is desirable
to be able to explain predictions to a human observer. This is especially
relevant if such a prediction model is used as part of a decision-making
system for automatic driving or if knowledge of typical driving behavior –
described by behavior features – is incorporated into such systems. Doing
so could entail using the observed complexity of an intersection and
utilizing the knowledge about typical driving behavior that is associated
with that complexity for decision-making. One could e.g. program an
automatic vehicle to drive more offensively if it encounters a situation at
an intersection in which human drivers are predicted to typically drive
relatively slowly and cautiously. Alternatively, one could also design the
algorithm in a way that it behaves similar to a human driver and have it
drive defensively as well. The complexity features in their current form
are, however, not ideal for either variant.

Ideally, a one-dimensional complexity feature that strongly correlates
with the driving behavior could be defined for intersections. This would
facilitate an easily and quickly understandable explanation and could
thus be used in an AV for improved acceptance. All feature sets used in
this chapter deviate from this ideal in some form: The cardinality of many
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of the feature sets is too large, more than two features probably make it
very difficult to quickly –without toomuchmental capacity – understand
a decision or prediction. With that constraint and further excluding
variants with relatively large RMSE values, only the 2D AE variant of
the T-intersection and the feature set with the entry position 𝑝e and the
turning direction 𝑝t at the T-intersections remain. The performance of
the X-intersection feature sets with low cardinality is relatively poor.
This can probably be attributed to the overall poorer performance of the
X-intersection models.

The two remaining feature sets are problematic when looking at the
understandability of predictions, too. The AE features are trained using
the full feature set, it is however not possible for a human user to un-
derstand how these are calculated or how the feature values have to be
interpreted as the AE does not necessarily learn a linear dependence of
the input features and the latent representation [65]. The feature set with
only 𝑝e and 𝑝t merely has six distinct prediction values (c.f. section 2.5.3),
which might limit its applicability. In the next chapter a further study
is introduced with which a complexity feature that is based on human
perception can be defined.
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In the previous chapter the complexity of an intersection is described
by a set of intersection features, which themselves describe certain prop-
erties of the intersections. Several variations of this feature set are used
successfully for behavior prediction. However, as elaborated at the end of
the previous chapter, these feature sets are not ideally suited to explain
the reasons for a prediction to a human user. The two main factors that
limit the usefulness of these sets are either their cardinality or, in case an
AE version is used, the non-linear structure of the feature.

In this chapter a method is proposed by which a one-dimensional
complexity score for intersections on an interval scale can be derived. The
score is further based on how complex a given intersection is perceived
by humans. This is done under the assumption that if a complexity score
relates to the human perception of the complexity of an intersection, it
might be more acceptable as an explanation for a decision compared to
e.g. some features whose influence on the complexity is, at first glance,
not obvious to an uniformed passenger. In other words, the explanation
“the vehicle drives more cautiously because the intersection ahead is
typically considered as highly complex by human drivers” is probably
more acceptable than “the vehicle drives more cautiously because the
intersection ahead is narrow, has poor visibility, the free volume at the
intersection is small and the streets meet at a sharp angle”.

This is achieved by first having human raters rank intersections by their
perceived complexity. These rankings are then based on the complexity
features from the previous chapter. With that approach a meta-feature,
the complexity score, is introduced that is, like the AE variants, based on
all features describing the intersection. Unlike the AE features, one can
assume that this complexity score can be easily understood by humans
because it is based on human perception of complexity. As the score
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is on an interval scale, it is also ordered, i.e. a higher complexity score
describes a more complex intersection. The score difference between two
intersections is further a measure of their difference in complexity.

The complexity scores are derived from a second study in which par-
ticipants were shown short videos of approaches towards intersections.
They were then asked to compare two videos at a time and identify
the more complex approach. To distinguish this study of the one from
chapter 2, it is referred to as the video study in the following.

In this chapter, first the theory behind pairwise comparisons and es-
pecially their evaluation is introduced, see section 3.1 for that. As this
chapter builds on the findings of the previous one and uses many of the
concepts employed there, the regression methods and the considerations
regarding complexity in traffic are not discussed again in this chapter.
The introduction to these aspects is already given in sections 2.1.1 and
2.1.2, respectively. The video study itself is presented in section 3.2. The
process of deriving the complexity scores from the data of the study is
shown in section 3.3, alongside some early evaluations. These complex-
ity scores are then used for behavior prediction in several variants, see
section 3.4. Finally, some conclusions are drawn in section 3.5.

3.1 Pairwise Comparisons
The task of assigning a score to an object can be difficult for human raters.
Oftentimes this is done by asking the rater to assign a score directly to
the object in question, i.e. a Likert scale is used [32, 121, 125]. Using this
approach, the scale is fixed on both ends by a descriptive label1 [32] and
the resulting scores lie between the two. A Likert scale, however, can be
problematic in some cases: If different raters do not agree sufficiently in
the scores they assign, the average scores of all raters might not be useful.
E.g. Oishi et al. [121] found that Americans and Japanese people show
similar scores on a questionnaire on individualism that uses a Likert
scale. However, using pairwise comparisons showed that Americans do
indeed show signs of being more individualistic.

1 e.g. “Please rate the helpfulness of this example on a scale from 1 to 7 where 1 stands
for not helpful and 7 for very helpful.”
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The alternative, which is used in thiswork, is to have the raters compare
only two objects at a time. They are asked to select the object they associate
a higher (or lower, depending on the investigated property) score with,
and repeat this process several times with different pairs. This procedure
is known as pairwise comparisons [25, 35]. Pairwise comparisons do
not generate absolute scores, i.e. the position of the scores along the
scale is not fixed [35, 38]. Therefore, it is only possible to judge an object
relative to the remaining ones that are also part of the set of objects to be
rated. If it is necessary, objects with a known or pre-defined score can
be included into the set of objects to rate, thus anchoring the scores to a
known value [145]. Finally, some previous works report that pairwise
comparisons are often perceived as easier than using a Likert scale by
the participants [32, 125].

The objects that are compared with each other can be many different
things and also the attribute by which these objects are to be ranked can
be a wide variety of aspects. For example, different foods (objects) could
be ranked by their taste (property). In previous works pairwise com-
parisons were applied to many different problems, including education
and teaching [33, 124, 145], rankings in sports [21, 29, 72, 87, 108, 164]
or dominance in animal populations [5, 51, 118, 128, 162] among many
more fields. The properties by which the objects were ranked cover a
wide spectrum, including students’ or competitors’ abilities and fight-
ing ability in the cases listed above. For consistency, in the following
introduction there will only be objects that are ranked by their attribute
strength.

Oftentimes the raters do not rate every possible pair of objects, as the
number of comparison pairs 𝑁c grows fast with an increasing number
of objects 𝑁 [35]:

𝑁c = (
𝑁
2) =

𝑁(𝑁 − 1)
2 . (3.1)

To limit boredom given the repetitiveness of the task and to avoid unreli-
able results or participants not finishing the study which could follow
from that, participants can probably only rate a limited number of com-
parisons; a limit of 20 comparisons per participant is used in this work.
As 𝑁c (𝑁 = 7) = 21, this threshold is exceeded with only 7 objects. If
there are many more objects than that in a study, a single rater can there-
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fore realistically only judge on a subset of all possible comparisons. To
be able to still obtain results for a large number of comparisons – and
thus include more objects in a study – the answers of different raters are
combined. The results are thus an average over the pool of participants.

The raters are only asked to identify the object which they associate
a larger strength with. It is therefore sufficient to count the number of
times an object is considered to be stronger than another object when
accumulating the answers given by all raters. The results of all compar-
isons between the 𝑁𝑝 objects are given by 𝐑 ∈ ℕ𝑁𝑝×𝑁𝑝. The individual
elements of that matrix 𝑟𝑖,𝑗 are the number of times object 𝑖 is preferred
over object 𝑗. If a comparison between two objects 𝑖 and 𝑗 does not occur,
𝑟𝑖,𝑗 = 𝑟𝑗,𝑖 = 0. Finally, 𝑟𝑖 = ∑𝑗 𝑟𝑖,𝑗 is the total number of comparisons in
which object 𝑖 is preferred over any other object.

In this thesis two methods to evaluate pairwise comparison data are
used: The one after Bradley and Terry [25, 35] and the method first
described by Elo [47]. Both are introduced in the following.

3.1.1 Bradley-Terry Model
An often used method to evaluate pairwise comparison experiments
was introduced by Bradley and Terry [25] and will be referred to as the
Bradley-Terry (BT) model. It has been utilized in many applications since
its introduction. Also there exist several extensions to it. A selection of
both is presented in the following: Whiting et al. [162] use the results of
contests betweenmale lizards to determine their fighting ability by apply-
ing a BT model. Zucco et al. [178] rank the Brazilian cabinet positions by
their salience; this is based on two pairwise comparison surveys in which
participants were asked to state which of two ministries they would pre-
fer their party to hold. Clark et al. [32] investigate how physical strength
is perceived from images of male bodies. For that they compare ratings
on a Likert-scale to pairwise comparisons. The latter are examined by
BT, Elo and a modified Elo version. Steedle and Ferrara [145] investigate
the application of pairwise comparisons on essay scoring compared to
rubric scoring. The pairwise comparisons are evaluated using a modified
version of the BT model. Mattthews and Morris [106] use an extended
version of the BT model to measure the experienced pain of haemodialy-
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sis patients when they are administered different variants of treatments.
The extension of the BT model by Cattelan et al. [29] is able to track
performance over time; the model is applied to professional football and
basketball results. They further implement a measure to take home field
advantage into consideration. Baker and McHale modify a generalized
version of the Bradley-Terry model so that it is able to track the strength
of tennis players over time and apply the method to the match results of
professional male tennis players [21]. McHale andMorton [108] present a
BT model for predicting professional tennis matches, which outperforms
predictions based on the official world rankings. Strobl et al. [147] extend
the BT model so that the data set on which the model is based on is
partitioned recursively using covariates. Models are then fitted for each
subset. Crompvoets et al. [33] extend the BT model with an adaptive
algorithm to select the next comparison using the uncertainty of the
parameters of the model. Menke and Martinez [109] propose a variant of
the BT model that is based on a single-layer neural network. They extend
their model to enable it to rate individual players who compete in teams.
The model is further able to take a home field advantage or the game
duration, among further aspects, into consideration.

For the current application no extension to the BT model is needed
and therefore only the basic form of it is presented. The main assumption
of the BT model is that the probability that an object 𝑖 is preferred over
another object 𝑗 can be expressed as [35]

𝜋𝑖𝑗 =
𝜋𝑖

𝜋𝑖 + 𝜋𝑗
. (3.2)

Here, 𝜋𝑖 is a score that describes the strength of object 𝑖 and 𝜋𝑖𝑗 describes
the probability that object 𝑖 is preferred over object 𝑗. Besides using it to
calculate the probability of the outcome of a comparison between two
objects, it can also be employed to rank the objects. I.e. 𝜋𝑖 > 𝜋𝑗 > 𝜋𝑘
implies that object 𝑖 has the highest strength, followed by objects 𝑗 and
𝑘, respectively. It should be noted here that the 𝜋𝑖 do not represent the
true strength of the objects; this property is typically not known and
can therefore only be estimated from observations [38]; in this case from
pairwise comparisons between the objects. The model assumes that the
scores are on a linear scale [35], i.e. greater differences in the scores
imply a greater strength difference. It follows from that definition that
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the numeric scores are not fixed, instead they can be placed arbitrarily
by using a constraint; e.g. ∑𝑖 𝜋𝑖 = 1 with 𝜋𝑖 ≥ 0 is used [35].

The scores 𝜋𝑖 are estimated in an iterative process [35]:

𝜋̃(𝑘+1)
𝑖 = 𝑟𝑖 ∑

𝑖≠𝑗

⎛⎜⎜⎜
⎝

𝑁c,𝑖,𝑗

𝜋(𝑘)
𝑖 + 𝜋(𝑘)

𝑗

⎞⎟⎟⎟
⎠

−1

. (3.3)

The number of times objects 𝑖 and 𝑗 have been compared to each other
is given by 𝑁c,𝑖,𝑗 = 𝑟𝑖,𝑗 + 𝑟𝑗,𝑖 and the non-normalized score after the 𝑘-th
iteration by 𝜋̃(𝑘)

𝑖 . To enforce the constraint of ∑𝑖 𝜋𝑖 = 1 a normalization
step is included after each iteration in this work, though David [35]
remarks that it is only necessary after the final iteration:

𝜋𝑖 =
𝜋̃𝑖

∑𝑗 𝜋̃𝑖
. (3.4)

The estimation is terminated after 50 iterations; this value proved to be
sufficient for this application.

3.1.2 Elo Model
In this work also a second method to evaluate pairwise comparison data
is used, the Elo model. It was introduced by Arpad Elo to rate chess
players [47]. Given its origin, this method is intended to track a player’s
strength over time, i.e. ratings are updated regularly after e.g. a single
match, a set period of time or a tournament [47]. This, of course, does
not apply in a study of pairwise comparisons that have no temporal
order, as is the case here. For comparison, the method is used anyway,
though in a slightly adapted version. There exist further methods to
track a player’s (or, more general, an object’s) strength over time such
as the TrueSkill model [63] or the system introduced by Glickman [55].
These methods also take further aspects, such as the standard deviation
of players’ ratings or more than two players per match who compete in
teams, into consideration. Here, however, only the Elo model is used due
to its ease of use.

The Elo model has found many applications over the years. It is cur-
rently used in several different sports to rank individual players or teams.
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Examples include chess and football, the Fédération Internationale des
Échecs’ (International Chess Federation, FIDE) world rankings2 and the
Fédération Internationale de Football Association’s (International Feder-
ation of Association Football, FIFA) world rankings3 are based on this
system. Besides organized sports, where this system originates from, it
is also applied to sports related questions in scientific settings. Hvattum
and Arntzen use it to predict the outcome of football matches [72]. They
compare different approaches and conclude that predictions based on
Elo ratings are only outperformed by the odds offered by bookkeepers
but also note that the difference in Elo ratings of two competing teams
“is a highly significant predictor of match outcomes”. Lasek et al. [87]
apply the Elo model to men’s football matches of the national teams and
show that it outperforms the former version of the FIFA world rankings.
Gásquez and Royuela [53] investigate how Elo rankings of national teams
depend on aspects describing e.g. the economy and the demographics of
the countries. They show that Elo rankings are better suited for that task
than the previous FIFA rankings. Williams et al. [164] predict results of
professional tennis matches using Elo scores.

Further works from literature include the application of the Elo model
in adaptive educational systems [124] or to evaluate an online study in
which street scenes had to be rated by their beauty [58]. Another field
of research for which the Elo system is used is the dominance order
within animal populations, Albers and de Vries [5] emphasize that it
also uses the temporal information that is contained within the order
in which encounters occur. Pörschmann et al. [128] use it to determine
the male dominance in their investigation into the reproductive behavior
of Galápagos sea lions; Neumann et al. [118] investigate the dominance
hierarchies of macaques monkeys. Franz et al. [51] use a modified ver-
sion of the Elo rating model to investigate the dominance hierarchies of
baboons. Their modifications enable individual score updates for each
animal. Further updates on the Elo method have been proposed: As the

2 https://handbook.fide.com/chapter/B022017 (visited on 1 June 2023)
3 men’s rankings: https://digitalhub.fifa.com/m/f99da4f73212220/original/

edbm045h0udbwkqew35a-pdf.pdf;
women’s rankings: https://digitalhub.fifa.com/m/3d9cb1decbbb2ac7/original/
Womens-World-Ranking-Procedures.pdf (both visited on 26 May 2023)
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order of the comparisons influences the final scores, one can average
multiple runs with different orders of the comparisons, if the order of the
comparisons is irrelevant [32]. Doebler et al. [38] propose a multivariate
extension of the Elo method.

In the following, the procedure to obtain Elo scores for this work is
presented. As before, there are 𝑁𝑝 objects that are compared against
each other. The results of these comparisons are given in 𝐑, where 𝑟𝑖,𝑗
is the number of times object 𝑖 is preferred over object 𝑗. For each object
𝑖 the current Elo score 𝐸𝑖 is saved. Initially, all objects are assigned the
same score 𝐸0. As the Elo model uses an interval scale [47], 𝐸0 can be set
arbitrarily. Its value only influences the score values that can realistically
be assumed but does not influence the model any further.

For each pair of objects 𝑖 and 𝑗, the Elo scores 𝐸𝑖 and 𝐸𝑗 are used to
calculate the expected outcomes ̃𝑟𝑖,𝑗 and ̃𝑟𝑗,𝑖 of their comparisons (c.f. [32]):

̃𝑟𝑖,𝑗 = 𝑁c,𝑖,𝑗
1

1 + 10
𝐸𝑗−𝐸𝑖

𝑑E

, ̃𝑟𝑗,𝑖 = 𝑁c,𝑖,𝑗
1

1 + 10
𝐸𝑖−𝐸𝑗

𝑑E

. (3.5)

̃𝑟𝑖,𝑗 is the expected number of times object 𝑖 is preferred over object 𝑗,
𝑁c,𝑖,𝑗 = 𝑟𝑖,𝑗 + 𝑟𝑗,𝑖 is the number of times objects 𝑖 and 𝑗 have been com-
pared to each other. Parameter 𝑑E as well as the selection of base 10
for the logistic function are further aspects that influence the range Elo
score values 𝐸𝑖 can assume but do not alter the general workings of the
model [47, 124]. It can further be easily shown that ̃𝑟𝑖,𝑗 + ̃𝑟𝑗,𝑖 = 𝑁c,𝑖,𝑗. The
logistic function in (3.5) is commonly used (e.g. [32, 38, 58, 124]) to model
the influence of the difference in ratings (𝐸𝑗 − 𝐸𝑖). Elo [47] originally
uses the normal distribution but already identifies the logistic function
as a possible alternative.

The Elo model uses the comparisons to update its current estimates of
the objects’ ratings. For that the expected number of won comparisons
̃𝑟𝑖,𝑗 is set in relation to the actual number of comparisons 𝑟𝑖,𝑗 object 𝑖 won

over object 𝑗. If one of the objects exceeded its expectations, i.e. it won
more comparisons than expected, it is assumed to be underrated and
thus its Elo score has to be increased; if it won fewer comparisons than
expected, the Elo score is reduced [47]:

Δ𝐸𝑖 = 𝑘E (𝑟𝑖,𝑗 − ̃𝑟𝑖,𝑗) , Δ𝐸𝑗 = 𝑘E (𝑟𝑗,𝑖 − ̃𝑟𝑗,𝑖) . (3.6)
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Δ𝐸𝑖 is the update to the Elo score of object 𝑖 and 𝑘E is a parameter that
determines the influence a single comparison has on the overall score.
The larger this parameter is, the more a single comparison influences
the Elo score. A large value of 𝑘E can also lead to instability in the scores
while a small value can lead to slow convergence [124]. There are several
strategies to set 𝑘E depending on the current Elo score [124] or have
it depend on further predictor variables [51]. In this work, however, a
constant value is used.

Depending on the updating strategy, the scores 𝐸𝑖 are updated regu-
larly or the score updates Δ𝐸𝑖 are accumulated for some time. In both
cases the new score is obtained by [47]:

𝐸𝑖,𝑘 = 𝐸𝑖,𝑘−1 + Δ𝐸𝑖, ∀𝑖. (3.7)

In the typical application, where the strength of some objects is tracked
over time, this procedure is run once for each comparison or set of com-
parisons. Here, the Elo scores are only updated after all comparisons
have been evaluated. Further, the full set of available comparisons is
applied multiple times until the Elo scores converge to constant values.
A similar approach to initialize a rating among a pool of unrated objects
has already been suggested by Elo [47]. Alternatively, one can update
the scores after each comparison and average multiple scores that result
from different, randomly generated orders of the comparisons [32]. Such
strategies are only necessary if the order does not contain any informa-
tion, i.e. the comparisons are assumed to have happened simultaneously.
If the order is relevant to e.g. track the performance of chess players, the
updates should happen more regularly to keep this temporal compo-
nent. Also, the comparisons can only be applied once as the sequential
information is otherwise lost.

In this thesis the parameters for the Elo model are set to these values:
The initial Elo score equates to 𝐸0 = 1600, 𝑑E = 400 and 𝑘E = 10. Finally,
in many applications objects enter or leave the rating pool over time.
Several strategies can be employed to deal with those scenarios. As this
is irrelevant for this work, it is not discussed here.
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3.2 Video Study
The first goal of this chapter is to establish a complexity score for inter-
sections. During the field study described in chapter 2, the participants
were already asked to directly rate the perceived complexity of some
of the intersections on an absolute scale. Yet, no consistent score could
be generated from these ratings. For that reason, a pairwise compari-
son approach was selected for a subsequent study, as intersections do
not have to be compared to a (possibly hard to define or communicate)
common baseline that is ideally constant among all participants. Instead
intersections are only compared to themselves.

The data for the complexity scores was recorded through an online
study of pairwise comparisons and was conducted between December
2021 and February 2022. During that study the participants were shown
short videos of approaches to intersections from a driving vehicle’s per-
spective. In the following this study will be referred to as the video study.
The videos for the study were taken at the same intersections that were
also part of the field study of chapter 2. Online studies are a common tool;
e.g. Goodspeed [58] used it to assess the beauty of Google Street View
images through pairwise comparisons. Clark et al. [32] also conducted
a pairwise comparison study and compared an online version of their
study to a laboratory version. They report comparable results of both
methods.

The videos were recorded while driving with the measurement vehi-
cle in order to additionally record the same data as for the field study.
That way the intersection features of the field study could be calculated
for these runs as well. To generate consistent and comparable videos,
the vehicle was stopped at the intersections. Most intersections were
approached from all directions and all videos have in common that there
is no additional traffic. The latter aspect improves the comparability of
the videos as it is difficult to classify real world traffic consistently. It also
helps to limit the number of videos that are used in the study and thus
reduces the amount of comparisons. Also, not all combinations of entry
position 𝑝e and intersection of the field study were included in the video
study and none of the X-intersections were included either. The study
finally consisted of 29 videos resulting in 406 possible comparisons. The
videos for the study did not contain sound and were cut in such a way
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that they were each 8 s long and showed the approach to the intersection
until the vehicle was nearly stationary. Additionally, each video started
and ended with 1 s of blacked out screen, making the videos 10 s long in
total.

These videos were then used for the video study, which had been
approved by the ethics commission of the KIT. On the start page of the
online study the potential participants were informed about the study.
They could only proceed with the study if they consented to participate.
Then they were asked for some demographic information. After that, the
first of 20 pairwise comparisons was shown to the participants. After
answering this, the next comparison was provided, and so on until all
20 comparisons were completed. The page for the comparisons showed
the two videos in question next to each other with a headline identifying
them as Video A and Video B, respectively, and a single task was shown
above the videos: “Please watch the displayed situations in both videos
one after the other. Then select the video that shows the more complex
situation to you.”4 Below the videos it was asked: “Which video did you
perceive as more complex?”5 The participants could then either check a
box labeled Video A or one labeled Video B. For each comparison page one
of the possible 406 comparisons was randomly selected. Each participant
was not shown a comparison more than once. After finishing the study,
the participants had the chance to win ten prices of 20 Euros each. The
participation was again voluntary and was not part of the actual study.

Not all participants answered all 20 comparisons, some ended their
participation early. In the following only the data of those who answered
all comparisons is reported. This includes 66 participants (52 identified
themselves as male, 14 as female and none as diverse). They were on
average 29.1 yr (𝜎 = 10.0 yr) old.

The 1320 comparisons are combined into the answers matrix 𝑟𝑖,𝑗. As
there are 29 videos in the study, 𝐑 is a square matrix of dimension 29.
Because there were no comparisons of videos with themselves, the main
diagonal is zero. Besides the complexity ratings, also the sensor measure-

4 The study was conducted in German, the original version of the question was: “Bitte
sehen Sie sich die dargestellten Situationen in den beiden Videos nacheinander an.
Wählen Sie dann das Video aus, das für Sie die komplexere Situation darstellt.”

5 “Welches Video empfanden Sie als komplexer?”
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ments of the 29 runs for the videos are again available. From these the
features described in section 2.3 are calculated. To distinguish them from
those of the runs of the field study, they are identified by the superscript
(⋅)v when this distinction is important. Likewise, those of the field study
are identified by (⋅)f.

As it is now important to reference individual intersections, they are
named according to the following scheme: The T-intersections are num-
bered from “T01” to “T13”, the intersection where the deadlock situation
was generated during the field study is also included in the video study
and is identified as “TD”. 12 of the 14 (numbers 9 and 13 are missing)
T-intersections are part of the video study with at least one video from
one of the three entry positions. The entry position (“L”: left, “B”: bottom
or “R”: right) is added to the intersection names for clear identification
of the videos. Some entry position/turning direction combinations are
excluded from the video study to limit the overall number of comparison
in the study.

Of the possible 406 comparisons all but 16 appeared in the study at
least once, 5 comparisons were shown 8 times and one comparison was
even shown to 10 participants. Of the 350 comparisons that were shown
at least twice 75.71% had a clear winner, i.e. the ratio of won comparisons
for the more complex video was larger than 0.6. Even when setting this
threshold to 0.8, the percentage of comparisons that have a clear winner
is still at 39.71%. The fact that many comparisons were rated mostly
the same among the different raters implies that the complexity of the
videos differed substantially in many cases and that a winner was not
only chosen by the participants because a tie was not available as an
answer. These results further indicate that the responses were rather
consistent among participants.

Video TDB appeared least often with 72 times, while video T02L ap-
peared 113 times, which makes it the one that was shown most often.
As the selection of the comparisons occurred using an equal distribu-
tion, also the probability with which a video appeared is drawn from an
equal distribution. The differences between the expected and the sam-
pled distributions can be explained with the relatively low number of
participants for the number of possible comparisons.
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Table 3.1 Data sets used in chapter 3. For each data set the number of combinations of
intersections and entry positions 𝑝e as well as the number of runs is given.

name description # int./𝑝e # runs

DF field study runs (T-intersections) 34 1818
DV video study runs 29 29
DF

iv runs from DF with a corresponding
intersection/𝑝e combination in DV

25 1206

DF
ov runs from DF without a corresponding

intersection/𝑝e combination in DV
9 612

3.3 Complexity Score
Using the data from the video study, the complexity scores based on
the BT and Elo methods can now be calculated. In this section first the
results found are presented and discussed, then models are trained to
base these scores on the intersection features. This is necessary for using
the complexity scores outside the context of the video study. In this
section, several data sets are used, all are listed in table 3.1. The data set
that comprises of the 29 runs from the video study is referred to as DV,
the T-intersection data set from chapter 2 as DF.

3.3.1 Intersections Ranked by Complexity
The BT and Elo scores are calculated as introduced in section 3.1 from the
video study’s response matrix 𝐑 which is based on the data set DV. The
scores of all videos are shown in table 3.2, the entries are ordered by their
complexity rank. Both methods, BT and Elo, result in the same ranking.
This is in line with findings from literature that report the similarity
between the two scores [32, 55, 124]. Clark et al. [32] further find that
their modified Elo score and the logarithm of the BT score are almost
perfectly correlated. The modified Elo score in their work is the mean
of the scores from several evaluation runs where the sequence of the
comparisons is shuffled. This is done to avoid the dependence of the final
Elo score on the order of the comparisons. In this work a similar strategy,
see section 3.1.2, is utilized, thus the correlation is reproduced here.
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Table 3.2 Resulting BTL and Elo scores for all intersections. The intersections are ranked
from most complex to least complex. The rank of all intersections is identical for both BTL
and Elo.

rank video 𝜋𝑣
In 𝐸𝑣

In rank video 𝜋𝑣
In 𝐸𝑣

In

1 T07B 0.1030 1834.0 16 T12L 0.0249 1587.3
2 T10B 0.0713 1770.1 17 T05B 0.0244 1584.1
3 T07L 0.0592 1737.8 18 T04B 0.0234 1576.8
4 T10L 0.0590 1737.2 19 T10R 0.0224 1569.4
5 TDL 0.0584 1735.4 20 T12R 0.0222 1567.6
6 TDB 0.0573 1732.2 21 TDR 0.0220 1566.3
7 T08B 0.0537 1720.8 22 T06B 0.0204 1553.0
8 T03B 0.0517 1714.2 23 T04L 0.0194 1544.3
9 T04R 0.0432 1683.0 24 T05R 0.0182 1533.0

10 T12B 0.0389 1664.8 25 T06R 0.0175 1526.4
11 T11B 0.0375 1658.4 26 T01B 0.0086 1402.6
12 T05L 0.0364 1653.4 27 T11R 0.0064 1352.0
13 T02L 0.0364 1653.3 28 T01L 0.0051 1312.4
14 T02B 0.0286 1611.6 29 T01R 0.0029 1213.1
15 T08R 0.0276 1605.6

Pearson’s correlation coefficient [27] between two vectors 𝐱 and 𝐲 is
defined as follows:

𝑐 (𝐱, 𝐲) =
∑𝑖 (𝑥𝑖 − ̄𝑥) (𝑦𝑖 − ̄𝑦)

√∑𝑖 (𝑥𝑖 − ̄𝑥)2 ∑𝑖 (𝑦𝑖 − ̄𝑦)2
, (3.8)

where 𝑥𝑖 and 𝑦𝑖 are the 𝑖-th component of the vectors and ̄𝑥 and ̄𝑦 are
the mean of all vector components. With that the correlation coefficient
between the vector of all Elo scores 𝐄𝐯

In of the 29 runs of the video study,
i.e. those of the data set DV, and the corresponding vector of the loga-
rithmic BT scores ln (𝝅𝐯

In) is 𝑐 (𝐄𝐯
In, ln (𝝅𝐯

In)) = 1.0000. For comparison,
the correlation coefficient between the Elo scores and the BT scores is
𝑐 (𝐄𝐯

In, 𝝅𝐯
In) = 0.8878. Both values confirm the findings by Clark et al. [32]

and also that the initial impression from table 3.2, i.e. that the scores are
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very similar, is true. Despite their apparent similarity, both scores are
used for the analysis in the following.

Looking at the scores in more detail, one finds that the scores for the
videos rated most and least complex, respectively, differ substantially,
indicating that there are indeed notable differences in the perceived
complexity and that the scores are not predominately determined by
random noise. When looking more closely on the order derived from the
complexity scores, the order appears to be plausible: intersections 7 and
10 and the onewith the deadlock occupy the first six places in the ranking,
i.e. they are rated to be the most complex. These intersections all have in
common that they are in areas with buildings directly at the sidewalks
and that there are many parked vehicles by or on the streets. Both factors
limit the visibility, the free volume at the intersection and the width
features. Also, entering from the bottom or left appears to be perceived
as more complex than entering from the right. The most complex video
that shows an entry from the right is only on the ninth rank. This is in line
with the findings from the previous publication on the field study [190].
There it is shown that entering from the right resulted in more offensive
driving behavior than entering from the bottom or left. These findings
are not discussed in detail in this thesis. The videos that received the
lowest complexity scores are in line with these aspects as well, especially
intersection 1 is outside the city center, there are several meters of lawn
between the curbs and the fences or hedges and the buildings are mostly
even further away from the street. There are also fewer vehicles parked
on or at the street. This contributes to good visibility and much space at
the intersection which in turn likely decreases the perceived complexity.

To further investigate which intersection features F influence the per-
ceived complexity to what extend, correlation coefficients between the
complexity scores and the continuous intersection features are calculated
for the 29 runs of the video study. For both the BT and the Elo scores
correlation coefficients are calculated, 𝑐BT (FV) = 𝑐 (𝝅v

In,FV) describes
the correlation coefficients of the BT scores 𝝅v

In with one of the inter-
section features FV, the corresponding Elo variant is calculated with
𝑐Elo (FV) = 𝑐 (𝐄v

In,FV). Both 𝑐BT and 𝑐Elo are given in table 3.3.
Additionally, this table also contains the correlation coefficients for all

field study runs through the T-intersections that are part of the analysis
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Table 3.3 Correlation coefficients (𝑐BT and 𝑐Elo) between the BT and Elo complexity scores
(𝝅v

In and 𝐄v
In, respectively) and some intersection features FV using the data from the 29

runs of the video study. The last three columns contain the correlation coefficients (𝑐CD,
𝑐MV, 𝑐VD) between the behavior features (𝐝F

c , 𝐯F
m and 𝐯F

d) and some of the intersection
features FF of the 1818 runs through the T-intersections of the field study data set DF. The
correlation coefficients are calculated for the vectors that combine the data from all runs of
the study in question.

features 𝑐BT 𝑐Elo 𝑐CD 𝑐MV 𝑐VD

𝑉f free space −0.61 −0.64 0.34 0.40 0.40
𝛼s minimum angle 0.43 0.49 −0.16 −0.16 −0.23
𝑑y

v,c vis. distance (PC) at the YS −0.40 −0.38 0.36 0.33 0.27
𝑤v,b visible width before int. −0.38 −0.49 0.42 0.37 0.33
𝑑v,c vis. distance (PC) −0.38 −0.36 0.30 0.29 0.28
𝑑y

v,p vis. distance (OP) at the YS −0.30 −0.42 0.21 0.17 0.13
𝑛vi # interaction vehicles −0.24 −0.37 −0.36
𝑛rw # veh. with right of way −0.20 −0.33 −0.36
𝑛v # visible vehicles −0.20 −0.33 −0.31

in chapter 2, i.e. the runs of data setDF. As there are no complexity scores
available for these runs, instead the correlation coefficients between the
vectors of intersection features FF and the behavior features, i.e. the
vectors of the commit distance 𝐝F

c , the minimum velocity 𝐯F
m and the

velocity drop 𝐯F
d, are calculated:

𝑐CD (FF) = 𝑐 (𝐝F
c ,FF) , (3.9)

𝑐MV (FF) = 𝑐 (𝐯F
m,FF) , (3.10)

𝑐VD (FF) = 𝑐 (𝐯F
d,FF) . (3.11)

Not all intersection features are included in the table, but only those
continuous featureswith at least one of the correlation coefficients 𝑐 > 0.3.
Additionally, some intersection features also have to be excluded from
the evaluation of the complexity scores because they are irrelevant for
the video study: All features describing the traffic at the intersection
cannot be used as the videos only show situations without any traffic.
As the videos are cut shortly before the vehicle reaches the intersection,
only the widths before the intersection can be used. Those describing
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the width after the intersection cannot be used for this analysis, as the
participants of the video study have no way of knowing which way the
vehicle eventually turned during the run through the intersection.

Most of the correlations between the complexity scores and the inter-
section features are in line with the expected patterns, i.e. the free volume
at the intersection 𝑉f, all three visibility distances (𝑑y

v,c, 𝑑v,c and 𝑑y
v,p) and

the visible width before the intersections (𝑤v,b) are negatively correlated
with both complexity scores, indicating larger complexity scores when
the intersection is denser, narrower and has poorer visibility.

However, these results have to be interpreted with some caution. Most
importantly, a correlation does not necessarily imply causation. This can
be seen in the case of the minimum angle 𝛼s, which correlates notably
with both complexity scores, however the correlation coefficients indicate
a lower complexity score when the minimum angle at the intersections
is smaller. This contradicts expectations, as a smaller angle between two
streets likely limits visibility. On closer inspection of the intersections
and the distribution of that feature this phenomenon can be explained:
There are only four intersections, of the twelve in total, where the an-
gle is notably smaller than 90°, of which the two most extreme cases,
with minimum angles in the range of 65°, are intersections 11 and 12.
The remaining two intersections have a minimum angle of approx. 74°
(intersection 1) and 83° (intersection 4). None of these intersections are
ranked as overly complex, cf. table 3.2; instead, the four videos ranked
least complex are all at two of these intersections. Their relatively low
complexity ratings likely contribute to the positive correlation coefficient.
From these results alone it is therefore not possible to determine if the
low complexity ratings are caused by the sharp angle between the streets
or if the observed low correlation is rather caused by the remaining fea-
tures (where the correlation is more in line with general expectations).
An argument for the latter is that the remaining intersections, which
vary considerably in their complexity rating, all have a minimum angle
that is close to 90° which limits the discriminative ability of this feature.
Also, the distributions of the remaining features are far less extreme in
the sense that they are spread out more and are in general not as con-
centrated around a single value. However, some outliers are still present.
From table 3.2 it is apparent that especially the free volume and the
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visibility distances have the strongest correlations, indicating their likely
importance for the complexity ratings.

The second aspect of this analysis concerns the influence the inter-
section features have not only on the complexity ratings but also on
the actual driving behavior. The intersection features viewed above all
show the same general trends on the correlation coefficients with the
behavior features: The denser, narrower and the poorer the visibility
conditions, the more defensive the driving behavior, i.e. the correlation
coefficients are positive. For most intersection features the magnitude of
the correlation features are similar between the two complexity scores
and the three behavior features. Comparing the correlation coefficients
of the complexity scores with those of the behavior features however,
one observes considerable deviations for some of the intersection fea-
tures. There are several likely reasons for the latter observation: First, the
underlying distributions of the intersections differ. In the video study
each intersection/entry position combination is considered once, while
in the field study some combinations were driven much more often than
others which results in a larger influence of these combinations on the
correlations. Also, each of the two data sets contain combinations that
are not included in the other data set. Second, different aspects are con-
sidered here. In case of the video study data set DV the influence of the
intersection features on the complexity scores is studied, but for the field
study data set DF the correlations are calculated between the intersec-
tion features and the driving behavior. Even though an influence of the
perceived complexity scores on the driving behavior is likely, they are
probably not equivalent as the driving behavior might also be influenced
by further factors like a driver’s mood. Differences in the correlation
coefficients might therefore be in part explained by such aspects as well.

In conclusion it can be said that the existence of a complexity score for
intersections that describes the perceived complexity there is very likely.
This is supported by the reasonable order of the videos and because
the correlations between the intersection features and the complexity
scores are mostly as one would expect them to be. Also, the correlation
coefficients between the intersection and the behavior features follow the
same pattern as those for the complexity scores. This further supports the
existence of a complexity score under the assumption that the perceived
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Figure 3.1 True complexity scores (𝜋v
In, 𝐸v

In) of the 29 runs of the video study data setDV.
The runs are ordered by their true complexity, the most complex run is ranked first. Also,
the reconstructed scores using the intersection features of these runs are shown. These
include those estimated by the RF models (𝜋v

RF, 𝐸v
RF), by the LR models (𝜋v

LR, 𝐸v
LR), by

the lasso variant LR models (𝜋v
LR,l, 𝐸v

LR,l) and the ridge variant LR models (𝜋v
LR,r, 𝐸v

LR,r).

intersection complexity actually influences the driving behavior. This
assumption is investigated further in the following sections.

3.3.2 Complexity Reconstruction Using Intersection
Features

So far, the complexity scores are only available for the 29 runs that make
up the video study data setDV. To obtain a complexity score for any other
intersection, to e.g. use it for behavior prediction, a method is needed
to calculate the scores for any run through, ideally, any intersection
without the need to assess its complexity through additional studies. One
way to achieve that is to base the complexity scores on the intersection
features. If this methodology were to be implemented in an automatic
vehicle, the data required to calculate these features would very likely
be available anyways from the onboard sensors. In this work LR and
RF (𝑁t = 300 and 𝑁L = 5) regression models are trained for that. The
score prediction using these models is based on the intersection features
selected for the correlation coefficients between the complexity scores
and the intersection features. The reasons for excluding some features are
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the same here. Additionally, the entry position is used as a feature now
as well. The turning direction cannot be utilized as the videos were cut
before the participants of the video study could infer where the vehicle
was going. This results in the following selection of intersection features:
The enter position 𝑝e, the free volume at the intersection 𝑉f, theminimum
angle between the street at the intersections 𝛼s, the average street width
𝑤s,b, the average visible width 𝑤v,b and the average available width
𝑤a,b; the latter three only use the variant considering the area before
the intersection. In addition, the number of trees 𝑛t and the visibility
distances using the point clouds and the polygons, both in the normal
and in the yield variants (𝑑v,c,𝑖, 𝑑

y
v,c, 𝑑v,p,𝑖 and 𝑑y

v,p, respectively) are used.
To train the models, the original scores obtained by the BT and Elo

methods (𝜋𝑣
In and 𝐸𝑣

In, respectively) for all video study runs are used
as the labels and the intersection features FV serve as predictors for
the regression models. As DV is small, all 29 runs are used to train the
models. This runs the risk of overfitting the models to the training set
but it is done regardless because the reconstruction of the complexity
scores described in this section is not the main goal. Essential is rather
that the behavior prediction that is based on these reconstructed scores
should be seen as the main metric by which to judge the validity of this
approach.

Figure 3.1 shows 𝜋𝑣
In and 𝐸𝑣

In as well as their reconstructions using
the RF (𝜋𝑣

RF and 𝐸𝑣
RF) and LR (𝜋𝑣

LR, 𝐸𝑣
LR, 𝜋𝑣

LR,l, 𝐸𝑣
LR,l, 𝜋𝑣

LR,r and 𝐸𝑣
LR,r)

models, respectively. These results show that the complexity scores of
most runs are reconstructed with relatively small deviations. The more
extreme scores, however, are reconstructed less reliably and especially the
RF models show the tendency to overestimate small complexity scores
and underestimate large scores.

3.4 Behavior Prediction Based on Complexity
Scores

Now the complexity scores can be used to predict the driving behavior.
To this end the runs of the field study need to be assigned a complexity
score. There are two possible ways to do that: First, the scores of the video
study can be assigned directly to the runs from the field study (𝜋In and
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𝐸In). For that the complexity score of the run of the video study data set
DF is selected for which the intersection/𝑝e combination matches. The
second option is to use the models of the previous section to calculate the
complexity scores based on the intersection features. For that purpose
the models that use the LR algorithm (𝜋LR and 𝐸LR), the LR ridge variant
(𝜋LR,r and 𝐸LR,r), the LR lasso variant (𝜋LR,l and 𝐸LR,l) and RF (𝜋LR and
𝐸RF) are available to generate the complexity scores.

The first method of assigning complexity scores to the field study
runs is only applicable to those runs for which a run of the video study
with the corresponding intersection/𝑝e combination is available. As each
combination is present in the video study only once, the assignment is
unambiguous if it is possible at all. Therefore, only runs can be consid-
ered where the combination in question is present in both studies. This
constitutes the data set DF

iv. The analysis with this data set is presented
in section 3.4.1. This also avoids evaluating intersections that were not
used for training the complexity score models. However, it is certainly an
important questionwhether thesemodels are able to generalize to further
intersections, i.e. if the complexity scores calculated for intersection/𝑝e
combinations that were not part of the video study are still useful for
behavior prediction. Therefore, the complexity score models are applied
to those runs of the field study that were not part of the initial evaluation,
i.e. runs where the combination was only part of the field study and not
of the video study, which form the data set DF

ov. The performance of
models trained with these runs are presented in section 3.4.2. This is pos-
sible as the complexity score models are applicable to all runs for which
the intersection features are available, regardless if their intersection/𝑝e
combination was part of the video study or not.

3.4.1 Intersections of Video and Field Study
This section only considers those runs of the field study for which a
corresponding run in the video study is available, i.e. the data set DF

iv. It
is thus smaller than the data set DF and contains only 1206 runs through
T-intersections. In the following, the prediction error (RMSE) when using
the commit distance 𝑑c as the label is reported in table 3.4. The results
when using the minimum velocity 𝑣m and the velocity drop 𝑣d do not
differ in a substantial way and are shown in appendix B. The predictions
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are performed as before: The data set DF
iv is split into a training, test

and, if required, a validation set using the ratios from chapter 2 and
the model in question is trained and evaluated with them. This process
is repeated 10 times with different set assignments here as well. The
standard deviations are not reported here as they are relatively small
and are in the same order of magnitude as in chapter 2. The behavior
regression is again performed using LR, RF and TB. The lasso and ridge
variants of LR are not used for behavior prediction as their predictions
are very similar to those of the base LR method. In addition, the scatter
plots of the best performing RF models trained with selected feature sets
are reported in the first row of figure 3.2.

As the current data set DF
iv contains fewer runs than the T-intersection

data set DF, the results of the models trained using the feature sets
considered previously in chapter 2 are not directly comparable. Thus
the training with these feature sets is run again, but with the smaller
data set DF

iv of this section. The results of that are shown in the first
rows of table 3.4. This table further shows the prediction performance
if the complexity score variants, either those assigned directly (𝜋In and
𝐸In) or those reconstructed with the LR (𝜋LR and 𝐸LR), the LR variants
(𝜋LR,r, 𝐸LR,r, 𝜋LR,l and 𝐸LR,l) or the RF (𝜋RF and 𝐸RF) models, are used
as the only input features. These ten cases are shown in the second set of
rows. The bottom rows finally contain the performance of models that are
trained using these complexity scores in combination with the turning
direction 𝑝t; these models therefore have two input features available.
Using 𝑝t is possible as this feature describes an aspect of driving that the
participants of the video study were not able to take into consideration as
the videos ended before the vehicle went through the intersection. Thus
it cannot be used to calculate the complexity scores. As 𝑝t is therefore
independent from the complexity scores, it can be used alongside them
for behavior prediction.

The results show that the behavior prediction errors using the feature
sets of the previous chapter are very similar for both data sets, i.e. DF

and DF
iv. It is further evident that LR has again the worst performance of

all regression methods. It has the largest RMSE for all feature sets where
the error is notably smaller than that of the reference method. Only for
those feature sets with which the predictions are relatively unreliable, i.e.
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Table 3.4 Behavior prediction performance RMSE of different regression algorithms
using the data set DF

iv. The commit distance 𝑑c is used as the behavior feature here, thus
all results are in m. Using the reference method results in RMSE = 3.048 m. The top rows
show prediction results with some of the feature sets from chapter 2 for comparison. The
middle rows show the prediction performance when using the BT/Elo complexity score
variants as a single feature, the results using these score variants in combination with the
turning direction 𝑝t are given in the bottom rows.

feature set LR RF TB feature set LR RF TB

full FS 1.661 1.478 1.475 {𝑝t, 𝑝e} 2.178 1.811 1.770
red. FS 1.772 1.479 1.503 {𝑉f, 𝑝t, 𝑝e} 2.059 1.618 1.568
{𝑝t} 2.215 2.145 2.145 AE 1D 2.649 1.972 1.936
{𝑉f, 𝑝e} 2.466 2.136 2.170 AE 2D 2.240 1.631 1.645
{𝑉f, 𝑝t} 2.099 1.887 1.909 AE 3D 2.015 1.606 1.656

{𝜋In} 2.885 1.870 1.870 {𝐸In} 2.961 1.870 1.870
{𝜋LR} 2.797 2.922 2.823 {𝐸LR} 2.838 2.885 2.782
{𝜋LR,r} 2.792 2.870 2.771 {𝐸LR,r} 2.830 2.938 2.806
{𝜋LR,l} 2.871 2.879 2.782 {𝐸LR,l} 2.832 2.873 2.778
{𝜋RF} 2.729 2.819 2.749 {𝐸RF} 2.784 2.846 2.748

{𝜋In, 𝑝t} 2.046 1.727 1.649 {𝐸In, 𝑝t} 1.961 1.727 1.649
{𝜋LR, 𝑝t} 2.027 1.877 1.942 {𝐸LR, 𝑝t} 1.975 1.862 1.896
{𝜋LR,r, 𝑝t} 1.969 1.848 1.840 {𝐸LR,r, 𝑝t} 1.907 1.810 1.812
{𝜋LR,l, 𝑝t} 2.038 1.820 1.817 {𝐸LR,l, 𝑝t} 1.969 1.862 1.899
{𝜋RF, 𝑝t} 1.917 1.793 1.797 {𝐸RF, 𝑝t} 1.852 1.796 1.820

the RMSE is close to that of the reference method, LR is able to slightly
outperform the other two methods in some cases. Also, RF and TB are
again very similar in their performances and no clear pattern is visible
as to which of the two algorithms is to be preferred.

When looking at the errors of those models using only one of the
complexity score variants as their single input feature, it is evident that
directly assigning the complexity scores of the video study runs to those
of the field study is by far the best method. For both, 𝜋In and 𝐸In, the
performance when only using the complexity score is superior to the 1D
AE and {𝑝t} feature sets and it is almost on a par with using the {𝑝e, 𝑝t}
feature set which is the best investigated variant that uses two intersection
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Figure 3.2 Scatter plots using RF for prediction and different feature sets with the commit
distance 𝑑c as the label. In the top row the results when using the data set DF

iv are shown,
the bottom row shows the results when using the runs of data set DF

ov. The abscissa shows
the predicted normalized labels 𝐲̂n, the ordinate shows the normalized true labels 𝐲n.

features. The remaining methods for assigning the complexity scores
to the field study runs are not suitable to be used as the single feature
for a behavior prediction model. Models with these variants result in
prediction errors that are almost on the level of the reference method.

In case of themodels that use the complexity score variants in combina-
tion with the turning direction 𝑝t, the predictions improve for all variants
and are in all cases clearly better than the predictions with the reference
method. The direct assignment method, in combination with 𝑝t, still is
the superior method, i.e. the models that use {𝜋In, 𝑝t} and {𝐸In, 𝑝t} have
the lowest RMSE values. However, the differences between these two vari-
ants and those using the complexity score models ({𝜋LR, 𝑝t}, {𝐸LR, 𝑝t},
{𝜋LR,l, 𝑝t}, {𝐸LR,l, 𝑝t},{𝜋LR,r, 𝑝t}, {𝐸LR,r, 𝑝t}, {𝜋RF, 𝑝t} and {𝐸RF, 𝑝t}) are
a lot smaller than before. Especially the performance of TB is on a par
with the 2D and even the 3D AE models in case of the best variants; the
performance with RF is lower but still far better than the performance
using only the directly assigned complexity scores as features. The ridge
and lasso variants of LR are slightly better for complexity score regener-
ation in many cases. This is true for both the models that use only one
of the complexity scores as the feature set and those that additionally
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also use 𝑝t. The complexity scores generated with the RF model allow
for better prediction than the models based on LR or one of its variants.

The scatter plots in figure 3.2 support these findings. It is clearly visible
that the point cloud associated with the full feature set has the smallest
variance and follows the ideal line relatively closely. Using only the 𝜋RF
as the feature set results in a point cloud that is spread out much further
and especially larger values of 𝐲n are only predicted with relatively large
errors. This improves visibly when 𝑝t is added to the feature set, i.e. the
variance of the point cloud is smaller and also larger values are predicted
closer to the real values. Using only 𝑝t results in the characteristic 3
vertical lines, c.f. section 2.5.3.

A similar effect is noticeable in case of using the directly assigned com-
plexity scores 𝜋In as the only feature: There appear to be only vertical
lines in the scatter plot. This is probably caused by the fact that there
is only a limited number of possible complexity score values that the
field study runs of data set DF

iv are being assigned to.6 Because of the
limited number of possible input feature values only a limited number
of different output values (behavior predictions) are possible. This is
further supported by the fact that the RF and TB models that use com-
plexity scores which are assigned by intersection (𝜋In and 𝐸In) have
almost exactly the same prediction performance. This implies that both
algorithms learn the same output assignments for each of the relatively
small number of possible input values.

The feature set consisting of one of the complexity score variants and
the turning direction 𝑝t shows a better prediction performance than those
that use 𝑝t as the only feature in their feature set. This indicates that
there is indeed information the prediction algorithms can use within the
complexity sores as including them improves the predictions. From the
results it further follows that there is no linear dependence between the
complexity scores and the driving behavior. As the LR method assumes
a linear dependence between the predictor (the complexity score) and
the output (the driving behavior), its poor predictive performance is
indicative of the missing linear dependence between the two properties.

6 The runs of DF
iv can only be assigned one of the scores associated with one of the 25

runs of the video study data set DV whose intersection/𝑝e combination is also present
in the field study data set DF.
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Table 3.5 Behavior prediction performance RMSE of different regression algorithms
using the data set DF

ov. The commit distance 𝑑c is used as the behavior feature here, thus
all results are in m. Using the reference method results in RMSE = 3.164 m. The top rows
show prediction results with some of the feature sets of chapter 2 for comparison. The
middle rows show the prediction performance when using the BT/Elo complexity score
variants as a single feature, the results using these score variants in combination with the
turning direction 𝑝t are given in the bottom rows.

feature set LR RF TB feature set LR RF TB

full FS 1.550 1.453 1.489 {𝑝t, 𝑝e} 2.004 1.790 1.751
red. FS 1.635 1.467 1.525 {𝑉f, 𝑝t, 𝑝e} 1.828 1.612 1.557
{𝑝t} 2.047 2.020 2.020 AE 1D 2.654 2.023 2.012
{𝑉f, 𝑝e} 2.261 1.878 1.929 AE 2D 2.191 1.660 1.675
{𝑉f, 𝑝t} 1.848 1.827 1.931 AE 3D 1.922 1.609 1.697

{𝜋LR} 2.398 2.519 2.483 {𝐸LR} 2.233 2.331 2.315
{𝜋LR,r} 2.255 2.179 2.146 {𝐸LR,r} 2.172 2.125 2.113
{𝜋LR,l} 2.323 2.304 2.300 {𝐸LR,l} 2.220 2.301 2.293
{𝜋RF} 2.454 2.272 2.244 {𝐸RF} 2.400 2.436 2.450

{𝜋LR, 𝑝t} 1.892 1.775 1.871 {𝐸LR, 𝑝t} 1.882 1.823 1.958
{𝜋LR,r, 𝑝t} 1.860 1.710 1.809 {𝐸LR,r, 𝑝t} 1.842 1.708 1.773
{𝜋LR,l, 𝑝t} 1.876 1.792 1.874 {𝐸LR,l, 𝑝t} 1.866 1.827 1.910
{𝜋RF, 𝑝t} 1.827 1.736 1.823 {𝐸RF, 𝑝t} 1.859 1.792 1.912

In summary one can conclude that behavior prediction using the com-
plexity scores is possible, but with some limitations: Of all the models
that use one of the complexity scores as their only feature, only those
that use the directly assigned scores enable useful predictions. The vari-
ants that assign the complexity scores with LR or RF models, which
themselves use intersection features as their inputs, are not sufficient for
reliable predictions. If the complexity score is combined with the turning
position 𝑝t, models trained with any variant improve in performance
compared to the previous case. Especially the models that rely on the
scores calculated from the intersection features improve considerably.
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3.4.2 Generalization to Unknown Intersections
The selection of intersection/entry position 𝑝e combinations that were
part of the field and video studies overlaps for a large part of the two sets,
but there are combinations that were only part of one of the two studies.7
This circumstance can be used for some interesting evaluations. Those
runs of the field study data set DF that were recorded at one of the 9
combinations which were part of the field but not of the video study are
used in this section to investigate how well the models for reconstructing
the intersection complexity scores from the intersection features gener-
alize to unknown intersection/𝑝e combinations. The runs from these
9 combinations form the data set of runs from the field study that are
not in the video study (DF

ov). These combinations can be considered to
be unknown to the models for complexity score reconstruction as they
were not used for training these models due to them not being part of
the video study data set DV. In this evaluation only T-intersections are
considered as the video study only contained those. The resulting data
set of 612 runs thus contains all those runs from DF that were excluded
in the last section. If it is possible to compute useful complexity scores for
these runs based on the intersection features alone, it would simplify the
application of complexity based behavior prediction substantially. If it is
not possible, new intersections will have to be evaluated by additional
studies, making this approach unfeasible.

For the experiments with the data set DF
ov the complexity scores that

performed best in the previous section, i.e. the BT and Elo scores that are
assigned directly (𝜋In and 𝐸In, respectively), cannot be used as there is
no run with a fitting intersection/𝑝t combination within the video study
data set DV whose complexity score could be assigned. The LR and RF
models to reconstruct the complexity scores are however only based
on the intersection features and can thus be computed for any run. As
the data set considered here is different compared to the data sets from

7 In the field study data setDF there are 34 combinations of intersection and entry position
𝑝e at T-intersections (1818 runs in total). Of these, 25 combinations were also part of the
video study (1206 field study runs with these combinations, data setDF

iv), the remaining
9 combinations (612 runs, data set DF

ov) are only present in the field study data set. Of
the 29 combinations of the video study 4 are only included in that study. See table 3.1
for an overview over all data sets.
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chapter 2 (DF) and section 3.4.1 (DF
iv), models are trained again with the

feature sets of chapter 2 using the current data set DF
ov. The results are

presented in table 3.5. This table is set up the same as table 3.4, only the
models using feature sets containing the directly assigned complexity
scores are missing. The results of the models that predict the minimum
velocity 𝑣m and the velocity drop 𝑣d are given in the bottom part of
tables B.1 and B.2 in the appendix, respectively.

The results are similar to those of the previous section 3.4.1 in many
aspects. The prediction errors of the models using the feature sets of
chapter 2 are again similar to those presented in that chapter, despite
the smaller data set with only approximately a third of the runs. Com-
paring the prediction errors to those achieved with the data set DF

iv of
section 3.4.1, the errors are a little smaller for the current data set DF

ov.
This difference, however, is relatively small. Also, using the BT and Elo
scores as the only feature mostly results in poor prediction performances
again, i.e. the models trained with the feature sets {𝜋LR}, {𝜋RF}, {𝐸LR}
and {𝐸RF}, respectively, have large errors and are therefore not useful
for behavior prediction, even though the errors are notably smaller than
those achieved with the data set DF

iv. In contrast to the results of sec-
tion 3.4.1, using the ridge and, to a lesser extent, the lasso variants of
LR to train the complexity score models results in behavior prediction
performances that are substantially better than those of the model that
uses the unmodified LR algorithm. The feature set {𝜋LR,r} with TB as
the prediction algorithm outperforms all other models that use any of
the BT complexity score variants as the only feature. In case of the Elo
scores the model using the feature set with only the ridge variant score
({𝐸LR,r}) produces the best results.

Adding the turning direction 𝑝t to these feature sets again improves the
predictions considerably in all cases. Similar patterns to those observed
above are present again when adding 𝑝t to the feature sets, i.e. the models
that use the feature set containing the BT score reconstructed by the ridge
model, {𝜋LR,r, 𝑝t} outperform all other models that use feature sets with
BT score variants. Similarly, both the RF and TB behavior prediction
models that use the feature set {𝐸LR,r, 𝑝t} perform best of all feature sets
that contain an Elo score variant. However, when adding the turning
direction 𝑝t all complexity scores show similar prediction performances.
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Comparing these results to those of the previous section, two aspects
stand out: First, the ridge and lasso variants clearly outperform the origi-
nal LRmethod only for the current data setDF

ov. Second, it is obvious that
LR is able to perform much better when predicting the driving behavior
using the current data set. It is still the worst prediction algorithm over
all, but its performance is much closer to that of RF and TB, it is often on
a par with these two algorithms and is even able to outperform them in
some cases.

Some scatter plots of selected RF prediction models are shown in
the second row of figure 3.2. The general results are the same as in
section 3.4.1, i.e. the model using the full feature set has the scatter plot
where the predictions follow the ideal line most closely, while the model
using the {𝑝t} feature set again has the three characteristic vertical lines.
The points in the scatter plot of the model based on the {𝜋RF} feature set
are spread out, while adding 𝑝t to this feature set causes the points to be
much closer to the ideal. A model using the directly assigned complexity
score 𝜋In is not possible, as discussed above.

The results of using only these runs that were not part of the video
study (data set DF

ov) perform on a par or even slightly better than those
that were part of both studies (DF

iv). This shows that the models of the
complexity scores are able to generalize to further intersections that were
not part of the training process (by their intersection/entry position 𝑝e
combination) of these models. Thus, basing the complexity scores on the
intersection features is a valid approach and this concept can probably be
extended to further intersections without the need for additional studies
if there is sufficient variability in the original video study the complexity
score models are based on.

However, these results have to be interpreted carefully, most impor-
tantly because both the complexity score models and the behavior pre-
diction models are based on a relatively small number of runs. Especially
the behavior prediction in the current section is only based on the data
set DF

ov with only nine different intersection/𝑝e combinations, recorded
at only six different intersections. This is a likely and at least partial ex-
planation why the results in the latter evaluation with the smaller data
set performed better, because fewer intersections probably also reduce
the variability of the data set, which in turn makes predictions easier.
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Therefore, the exact performance measures of these prediction models
are not likely to be so relevant and the results should rather be taken for
their general message: A meaningful complexity score is not limited to
the intersections/entry positions 𝑝e that were part of the video study but
the models can also be applied to further intersections.

The improved predictive performance of LR compared to RF and TB
as well as the improvements achieved by the lasso and ridge variants
of LR when reconstructing the complexity scores stand out. The better
performance of the linear LR method implies that the behavior predic-
tion task itself is more linear than with the previous data sets, i.e. the
complexity scores of the various methods are more strongly correlated
with the driving behavior features. A possible explanation for this phe-
nomenon is again the structure of the current data set: The less diverse
data set may lead to fewer intersections that have a similar driving be-
havior on average but are assigned differing complexity scores. Data sets
with intersections for which this is the case would thus make the driving
behavior prediction problem less linear and so causing worse prediction
performances when applying LR.

3.5 Conclusions & Outlook
In this chapter a method of assigning a complexity score to intersections
is introduced. This score measures how complex an intersection is per-
ceived by a human driver; it is therefore a subjective feature to describe an
intersection. The complexity scores are obtained from an online study, in
which participants were asked to state which of two videos of approaches
to an intersection showed the more complex scenario to them. In total,
29 videos of approaches to intersections were part of the study.

From these pairwise comparisons complexity scores for all these runs
are derived using the BT and Elo methods. The two scores for each video
are in the same order for either method. The scores themselves appear
to be realistic; in general intersections that are narrower and have poorer
visibility are rated asmore complex. Further, especially the entry position
is an important factor, runs that entered from the right are among the
least complex.
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Then the correlation of these complexity scores with the intersection
features of chapter 2 are calculated. The descriptive dependencies from
above are mostly confirmed. Following this analysis, the intersection
features are then used to base the complexity scores on them. For that LR
and RF models are trained which accept the intersection features as their
input and output estimated complexity scores. All this is done using only
the 29 runs of the video study data set DV. By that method, the objec-
tive intersection features are used to predict the subjective complexity
scores. The results show that this reconstruction is generally possible,
yet considerable deviations are also present.

Finally, the different variants to assign complexity scores to the runs
through an intersection are employed to assign these scores to the runs
of the field study of chapter 2. With the complexity scores as predictors
another set of behavior prediction models is trained. These experiments
show that using the complexity scores as the only input feature for the re-
gression algorithms is mostly not sufficient for reliable predictions, only
the variant where the scores are directly assigned shows good results.
When combining a complexity score variant with the entry position as a
second feature, the models with either complexity score variant improve
substantially and are all suitable for behavior prediction. A final evalu-
ation of the data set consisting of those runs that were not part of the
video study (data set DF

ov) suggests that the concept of assigning com-
plexity scores based on the intersection features is able to be generalized
to further intersections.

In summary, the concept of a complexity score for intersections that
is based on human perception has shown to be viable: The scores them-
selves are realistic and behavior predictions with them are possible. How-
ever, as shown by the poor performance of the LR algorithm, there is no
linear dependence between the complexity scores and the driving behav-
ior, making possible decision-making on these scores hard to explain.
As the complexity scores are still based on human perception and are
a one-dimensional property, using it should still be superior to the full
feature set with regard to explaining the reasons for a decision.

Given the relatively small numbers of intersections and participants in
both studies, the results can certainly be seen as a proof of concept, how-
ever the exact numeric results of this and the previous chapter should
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be interpreted cautiously. Thus further studies of this type with further
intersections and more participants would certainly help to improve
the reliability of the current results. Given that the reconstruction of
the complexity scores using the intersection features is currently only
possible with considerable deviations, a more thorough investigation
into the typical properties of inner-city intersections appears to be rea-
sonable. These properties should be considered when selecting further
intersections for a possible new study and also as part of an extended
intersection feature set. Furthermore, the correlation coefficients between
the intersection features and the driving behavior within the data of the
field study suggest that also the traffic at an intersection might have an
influence on the perceived complexity. This aspect has been omitted from
the current video study as consistent traffic is difficult to record.

The fact that it is possible to derive a complexity score that is consistent
among the participants of the video study suggests that utilizing this
concept has potential. The promising behavior prediction results when
using only the directly assigned complexity scores suggests that the
poor performance of the remaining score variants is not caused by the
concept of a complexity score itself but rather by the current state of
reconstructing them from the intersection features. The training of these
models is likely also made more difficult by the low number of runs
through the intersections that are available for that.
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Driving through an intersection is a challenging endeavor. This is true
for human drivers, as illustrated in the previous two chapters, as well as
for autonomous vehicles. In this chapter an algorithm is presented with
which an AV is able to safely interact at an intersection. The focus will
again be on intersections that are not regulated by traffic lights or signs
and thus the RBL rule has to be used. Also, mixed traffic is assumed
for the entire chapter, i.e. there are AVs as well as vehicles driven by
humans on the road. As human-driven vehicles cannot be assumed to
communicate their state or turning intention to other vehicles (vehicle
to vehicle, V2V) or central control units at an intersection (vehicle to
infrastructure, V2I)1, the worst case scenario is used. This means that no
explicit communication is assumed, i.e. no V2V or V2I communication,
but also no explicit communication signals by human drivers like hand
gestures. The latter is assumed as this would likely be difficult to detect
reliably and also the results by Imbsweiler et al. [73] indicate that ex-
plicit communication between drivers is of little importance. Therefore,
only the basic state of visible vehicles is assumed to be known by the
automation. This includes the position, velocity and acceleration of the
vehicles.

Two of the challenges that come with driving at non-signalized inter-
sections are already introduced in chapter 1: The problem of determining
if a gap before a vehicle with priority arrives is large enough and the
possibility for deadlocks to occur. Additionally, one has to take vehicles
that do not follow the traffic regulations into consideration. This includes
vehicles that stop and wait at an intersection despite having the right of
way and vehicles that drive although they have to yield. Both can lead
to dangerous situations and a decision-making algorithm has to be able

1 The general case, i.e. communication of the vehicle with any entity, is commonly referred
to as V2x.
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to deal with all four challenging scenarios. Determining if a gap is ap-
propriate is relatively simple for an AV as the perception of the position
and velocity of vehicles in its surroundings is assumed to be relatively
accurate and thus predicting the resulting gap is straight forward. The
remaining three scenarios pose more problems and the strategies to deal
with them are introduced in this chapter.

In contrast to many of the solutions to similar problems found in
literature (c.f. section 4.1) the decision-making algorithm is modeled as
a discrete event system (DES, [130]). The advantage of this approach
is that the entire process of decision-making is modeled explicitly, i.e.
each action taken by the vehicle is triggered by an event, e.g. passing a
distance threshold. Especially in contrast to statistical or learning-based
methods this increases the ability to explain the reasons for a given
behavior as the model is constructed of relatively simple and easy to
understand sub-components. This, however, implies that one would have
to consider a wide variety of scenarios that could occur at an intersection
like scenarios with different numbers of vehicles at different entry roads,
leading vehicles and many more. As this variability cannot realistically
be covered, a strategy is needed for an algorithm that is as simple as
possible while still being generic. In this thesis this is accomplished by
only taking those vehicles into consideration that are currently important
and ignoring all remaining ones. In the current implementation this
results in a maximum of four vehicles that have to be considered at any
time. Also, only the pairwise interactions with these vehicles are dealt
with, interactions between two cooperation vehicles, i.e. the vehicles the
AV interacts with at an intersection, are not modeled. This is true with
the exception of the deadlock scenario, in which all vehicles that are
involved in it are taken into consideration. These concepts are introduced
in detail in the following sections.

This chapter is structured as follows: First, a detailed literature review
on decision-making in several driving contexts is presented, followed
by a brief introduction into DES and its application in traffic scenarios,
see section 4.1. Then, the algorithm is presented in detail in section 4.2.
This entails the overall structure of the model, the maps that are used
for simulation and the properties of these that are required for decision-
making. Then, the algorithm itself is introduced, including the features
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and events of the DES model and how the actual behavior is generated.
In section 4.3 the simulation environment is presented, including the al-
gorithm for the remaining vehicles at the intersections. Finally, the results
of the evaluation in the simulation framework are shown in section 4.4.

The contents of this chapter have been published before. The initial
version [189] supported only one vehicle on each road, while the im-
proved version [191, 192] enabled multiple vehicles on the roads, was
tested on multiple maps and included further improvements. The lat-
ter publications are mostly equivalent to the version presented here. In
this thesis, however, the algorithm is presented in more detail and the
analysis covers a wider range of aspects.

4.1 Related Work
The problem of decision-making for automatic vehicles has been dis-
cussed in literature before. In this section first an overview on different
scenarios where decision-making for automatic driving is necessary is
given, including examples from literature for each aspect. This is fol-
lowed by decision-making at intersections, which is the most relevant
aspect of decision-making for this work, and thus this is a special focus
in this review. Finally, discrete event systems are introduced. These are
used here for decision-making and have also been used in traffic-related
contexts as well.

4.1.1 Decision-Making for Autonomous Driving
In order to drive with a high degree of automation or ideally fully au-
tonomously, all the different scenarios one might encounter in traffic
have to be controlled by the automation. This includes driving on high-
ways or rural roads where velocities are typically relatively high as well
as driving within settlements where the velocity is usually lower but
intersections and other infrastructure are more abundant, which limit
the traffic flow. Further scenarios do exist in the real world and an AV
has to be able to drive through all before fully autonomous vehicles are
possible.
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Almost all of these situations have in common that drivers2 have to
make decisions on their driving behavior. To provide an overview on
the diversity of the field of decision-making for autonomous driving,
some exemplary works from literature on decision-making models for
different aspects of autonomous driving are presented here. This section
further gives a first overview on some of the methods commonly used
for decision-making. It is noteworthy that many of these methods find
application in several of the different scenarios.

A typical challenge for highway driving is entering it. This involves
traffic on the throughgoing lanes that typically travels at high velocities
and a ramp on which vehicles have to find a suitable gap, while simulta-
neously accelerating to be able to enter that gap at a velocity that ideally
is as close to that of the surrounding traffic as possible. This problem
can be solved without the need for V2x by modifying the intelligent
driver model (IDM) [84, 174]. The IDM is a car following model and is
also used in this thesis; an introduction is given in section 4.2.7. Wang
and Chan [157] use reinforcement learning to merge onto highways. It is
alternatively also possible to base the behavior decision on predictions
of the intention of surrounding vehicles [40, 160]. Marinescu et al. [105]
propose a method with which vehicles are required to follow a spacial
and temporal slot that determines their trajectory. For that the vehicles
are coordinated via V2x while merging onto a highway.

Further aspects of highway driving are also the focus of previous work.
The slot-based approach can also be used in the case that the number
of lanes on a highway is reduced [104], another aspect of driving where
decisions have to bemade. Nilsson et al. [119] present a controller for lane
changemaneuvers, which they demonstrate using a simulation and a real
vehicle on a test track. Liu et al. [98] present a model for decision-making
to overtake on highways using reinforcement learning.

Another important aspect of driving are intersections. Especially those
intersections with large traffic volumes are typically equippedwith traffic
lights to control the intersection. While implementing the driving rules
for traffic lights in an AV is certainly easier than those of non-signalized
intersections, reliably recognizing the current state of a traffic light is none

2 or the automation in case of an AV

90



4.1 Related Work

the less challenging and can be solved in different ways; e.g. Levinson
et al. [90] probabilistically detect the state of traffic lights from video
data. More recent approaches also use video sequences [19, 93] but apply
neural networks to this problem. An alternative to directly recognizing
traffic lights is to have the infrastructure broadcast its current status
to the vehicles in its vicinity directly via V2I communication. Bae et
al. [20] use the information of the current state of the traffic lights to
design a fuel-efficient adaptive cruise control algorithm, while Zhou et
al. [175] train a car followingmodel using reinforcement learning for that.
Reinforcement learning can alternatively be used to optimize the traffic
light controller itself [167]. Pourmehrab et al. [129] propose a traffic light
controller that optimizes both the trajectory of AVs passing through an
intersection (which they have to follow) and the traffic light phase and
timing for conventionally driven vehicles.

The latter approach, i.e. AVs that do not have to follow the traffic lights,
is chosen by many works in literature on controlling intersections in
the presence of AVs. A review on these approaches is provided in the
following section.

4.1.2 Decision-Making at Intersections with V2x
Communication

An advantage of AVs is that they will likely be equipped with commu-
nication hardware that enables them to share information. This is not
limited to AVs, but certain aspects can only be transmitted by vehicles
that are driven by a computer; this especially includes the desired turn-
ing direction at an intersection. The indicator lights are probably not
reliable enough as a human driver might not use them. In this section sev-
eral approaches from literature are presented that are based on vehicles
communicating with each other to share information and to negotiate
a solution at an intersection. This typically includes the driving order
in which vehicles traverse the intersection and often also the point in
time when a given vehicle is supposed to enter the intersection. Most of
these solutions for decision-making at intersections that are based on V2x
communication require that all vehicles driving there are autonomous.
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In the following only those approaches for which it is explicitly stated
can also accommodate vehicles driven by human drivers.

There are several proposed decision-making algorithms for intersec-
tions where vehicles are assigned a trajectory through an intersection
for a certain time. For that the intersection is typically partitioned into
smaller segments and vehicles may only use the segments along their
trajectory for a specified time if they are scheduled. One of the early
approaches of that type is by Dresner and Stone [44, 45], who propose
an intersection management system in which a reservation request by
a vehicle is granted if the desired segments are not already blocked by
the trajectory of another vehicle. This system also allows human-driven
vehicles at the intersections by switching to traffic lights as soon as such
a vehicle is present at the intersection. The initial version [42, 43] of their
algorithm only allowed autonomous vehicles to cross the intersection.

Bento et al. [23] propose a similar approach, theirs supports round-
abouts in addition to intersections. Vehicles that are not equipped with
V2I capabilities can also be covered by their algorithm; for these vehi-
cles all trajectories with a range of possible speeds is reserved. Azimi
et al. [18] propose two algorithms that run on the vehicles only. The
vehicles coordinate with surrounding vehicles via V2V communication;
all vehicles have to run this algorithm. If two vehicles require the same
intersection segment, an external priority decides on the driving order.
An extension to their work [16] allows driving through roundabouts and
dealing with positioning inaccuracies.

The efficiency of an intersection, in terms of throughput, can be maxi-
mized by the ballroom intersection protocol (BRIP) by Azimi et al. [17].
It requires vehicles to follow a predefined arrival pattern with a given
constant velocity while driving through the intersection. The pattern
is designed to be optimal and thus vehicles are scheduled to occupy
the same segments with as little time as possible between them. Aoki
and Rajkumar [11, 12] present the configurable synchronous intersection
protocol (CSIP) which extends the BRIP by allowing for larger safety
gaps between the vehicles so that the extreme timing and positioning
requirements of the original algorithm can be loosened. Both BRIP and
CSIP do not necessarily require V2x communication, the arrival patterns
for a given intersection can be loaded onto the vehicle earlier. A further
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extension [9] improves upon the CSIP in that it also allows vehicles driven
by humans to pass the intersection. In case such a vehicle is detected,
AVs follow the traffic lights at the intersection; otherwise they follow the
synchronized pattern.

A similar concept is utilized by two groups: They do not section the
entire intersection but only consider the areas where conflicts between
two vehicles actually occur, i.e. the area where the trajectories overlap,
the so-called conflict zones or conflict sections. One solution [95] requires
the vehicles transmit their desired trajectory to a central controller, which
gives them instructions on how to traverse the intersection. AVs are re-
quired to comply and may not enter the intersection without permission.
Vehicles driven by humans are detected by the central controller and
follow traffic lights. Lin et al. [96] propose a method to schedule AVs at an
intersection using a central controller based on a graph that describes the
trajectories of the vehicles along the conflict zones of the intersection. The
driving order is adjusted to guarantee the absence of deadlocks which
they check by either a graph-based method or with a Petri net (PN).

Using optimization strategies is a further alternative that is commonly
used for decision-making at intersections. In the following, approaches
are given where the optimization runs on a central unit with which the
AVs communicate via V2I communication. Yan et al. [166] propose an
algorithm for deciding on the passing order of AVs that minimizes the
time it takes for all vehicles at an intersection to pass it. The algorithm
is based on dynamic programming. Lee and Park [88] suggest a cen-
tral intersection control algorithm that optimizes the trajectories of all
vehicles so that collisions are avoided. Fayazi and Vahidi [50] assign
each approaching AV an arrival time via centralized coordination by
solving a mixed-integer linear problem. They also suggest a version for
mixed traffic and traffic lights. Qian et al. [134] present an algorithm for
autonomous vehicles at unsignalized intersections. Like in solutions pre-
sented above, the intersection area is segmented into collision sections.
The vehicles are assigned arrival times and the problem is formulated as
an absolute value problem.

Running the optimization locally on the vehicles is also possible but
the vehicles still have to communicate via V2V communication. The
algorithm for coordination of autonomous vehicles at an intersection
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by Makarem and Gillet [102] uses model predictive control (MPC) and
requires that all vehicles to use the same algorithm and to share their
current state. The algorithm introduced by Rodrigues de Campos et
al. [139] makes the vehicles sequentially solve an optimal control prob-
lem to optimize their trajectory at an intersection while respecting those
trajectories that have been planned before. The order in which the op-
timization is performed is determined heuristically. Kloock et al. [81]
prioritize vehicles based on their time to react. The vehicles then plan
their velocity along a path using a non-cooperative distributed model
predictive control approach in the order determined before.

Many more approaches are conceivable when V2x communication
is assumed, some of these are presented in the following. Ahmane et
al. [4] use a model implemented as a centralized PN with multipliers for
decision-making to derive a controller that runs locally on the vehicles
at the intersection and that is based only on a small set of rules. The
vehicles at the intersection have to communicate for that. Gregoire et
al. [59] propose an intersection management scheme that uses the coordi-
nation space approach. The driving order of the vehicles has to be known
before. Qian et al. [135] present an algorithm that respects priorities to
coordinate vehicles at an intersection. It supports both, AVs which have
to be equipped with V2V communication, and human-driven vehicles.
Khayatian et al. [79] propose a protocol for centralized intersection man-
agement by a central controller that assigns vehicles a time and velocity
of arrival. They validate their algorithm in simulation and with model
scale vehicles. Zheng et al. [172] present an algorithm that centrally co-
ordinates the driving order at an intersection with single lane streets.
The algorithm is based on a state machine for the intersection controller
and one for each vehicle. Communication delay is taken into consider-
ation in the system design. An extension [173] is further applicable to
intersections that consist of streets with multiple lanes. The protocol
running on the vehicles is controlled by a state machine. Chen et al. [30]
consider intersections with multiple lanes. Their approach first changes
the vehicles into the correct lanes, then the driving order is optimized.
The algorithm is run on a central controller. Yan et al. [168] propose a
centralized decision-making algorithm that is based on reinforcement
learning for mixed traffic at non-signalized intersections. Human-driven
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vehicles follow the usual traffic rules while automatic vehicles are con-
trolled by the proposed algorithm. It is designed to optimize the overall
traffic flow andmay thus force automatic vehicles controlled by it to yield
their right of way.

Especially those approaches that require each participant to commu-
nicate or to follow a specific algorithm are probably challenging to im-
plement. Even if one of these approaches would be standardized, all
older vehicles would be excluded from passing an intersection equipped
with that technology. The same would be true if the V2x functionality is
unavailable in a vehicle.

4.1.3 Decision-Making at Intersections without V2x
Communication

As an alternative to sharing information among the vehicles at an inter-
section, AVs can detect the relevant data by themselves. AVs have to be
equipped with sophisticated sensors anyways, as they need to be able
to e.g. localize themselves or detect objects that cannot communicate
with them directly or at all like pedestrians, cyclists, parked vehicles,
obstacles on the road or construction sites to name just a few. Given the
unavailability of communication with these entities anyways, one can
view this pessimistic approach about the future state of traffic as more
realistic. A further argument is that the communication technology can
fail or be attacked, for both cases alternatives are needed. There are many
works in literature that use this approach, i.e. they assume the current
status of traffic regulations to be in force and no communication via V2x.

A popular method for decision-making are partially observable Mar-
kov decision processes (POMDP). This approach models the behavior of
other vehicles probabilistically, therefore no communication via V2x or
the assumption of traffic consisting of only AVs is necessary. Liu et al. [99]
use a POMDP for decision-making at intersections and roundabouts.
At unsignalized intersections a combination of a dynamic Bayesian net-
work (DBN) to predict the intentions of other vehicles and a POMDP
for decision-making can be used [85]. Hubmann et al. [70] also use a
POMDP for decision-making to adapt the driving behavior to the most
likely behavior of the other drivers. Bouton et al. [24] use POMDPs for
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decision-making at intersections and pedestrian crossings with limited
visibility. To make decisions at unsignalized intersections with a POMDP
where vehicles are occluded by obstacles, virtual vehicles can be placed
at the edge of the obscured space [97]. Shu et al. [144] use a POMDP
for decision-making at an intersection while turning left. They define
several critical turning points from which a turn can be executed and
select the most efficient one. Xia et al. [165] utilize a POMDP approach
for prediction and decision-making at non-signalized intersections.

There are further possibilities to solve the decision-making problem
without requiring V2x for coordination. One can determine the driving
order by analyzing a situation according to the traffic regulations and
have an AV drive accordingly [6]. Sezer et al. [143] use a mixed observ-
ability Markov decision process (MOMDP) to predict the intention of
cooperation partners and base their behavior decision on that. Galceran
et al. [52] predict the driving behavior of surrounding vehicles using
behavior policies. All possible policies for the ego vehicle are simulated
forward and the optimal one is selected. Their work is based on a pre-
vious publication by the same group [34]. Further proposed methods
for decision-making at intersections include the assignment of a speed
profile from a reference list obtained from human drivers [36] or using
game theory where a game between the left turning ego vehicle and an
oncoming vehicle is considered [137]. Noh [120] presents a framework
for decision-making at intersections that consists of prediction, threat de-
tection and decision-making without any explicit communication. Using
a Bayesian network the threat level of other vehicles is classified and the
driving decision is based on that. Yet another alternative is to extend the
intelligent driver model (IDM) for decision-making at intersections [84].

Decisions on the driving behavior can further be based on an abstract
description of a situation. A version of that is presented by Vacek et
al. [155] who use case-based reasoning. For that purpose they use a
database of cases that describe traffic scenarios and different behaviors
there. The optimal behavior is selected from that. One can describe traffic
scenarios by an ontology, i.e. categorizing the currently relevant segment
of the street network and the traffic participants present there including
the relations between the members of the two groups. Based on this
description one can draw conclusions about the scenario and e.g. de-
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duce behavioral decisions. Regele [138] abstracts traffic scenarios to only
the lanes and the relations between them. With that abstraction he de-
scribes the relevant data of the other vehicles of the scenario and is able
to make behavioral decisions with only a small set of rules. Hülsen et
al. [71] introduce an ontology to describe traffic situations, which enables
them to reason about priority between vehicles at intersections. Armand
et al. [13] use an ontology to describe traffic situations that allows to
draw conclusions about the traffic ahead. Zhao et al. [170] propose an
ontology-based approach for decision-making at intersections without
traffic lights or signs and where some of the roads are narrow. The idea
behind these works is similar to the algorithm introduced in this chapter.
The similarity lies in that behavior decisions are made on an abstract
level. The difference to these works is that the description of the scenario
is far less detailed here and only those vehicles that are relevant for the
decision-making process are considered, see section 4.2.1.

4.1.4 Discrete Event Systems and their Application in
Traffic

As outlined above, the underlying assumptions of this work include
mixed traffic where V2x communication is not available and no change
in regulation compared to the current rules at intersections. This prohibits
the use of many of the solutions presented in the previous section as
most require at least one of these conditions to not be fulfilled. Of the
solutions that do meet the requirements, many use probabilistic models
such as a POMDP like e.g. Hubmann et al. [70]. These are able to solve
the decision-making problem but their decisions cannot necessarily be
easily understood or explained. To overcome this, a solution based on
a discrete event system (DES) is presented in this thesis. This type of
system requires explicit modeling of every aspect that is considered
during the interaction at an intersection, but because of that the inner
workings of the algorithm are easily accessible and can be understood
and interpreted.

The characteristic feature of a DES is that its current state only changes
in discrete points in time when an event occurs [130]. These events can
either be already (approximately) discrete, or a simplifying model can be
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used to generate discrete events [130]. Events that are already discrete e.g.
occur in a traffic light, when the change between states happens (almost)
without any transition time [130]. An example of the latter case is the
handling of an aircraft at an airport: It e.g. transitions from state at the gate
to state on the taxiway after it has crossed a threshold. In this work only
systems with discrete states are considered. Using the airport example
this means that the real (continuous) world is split into several discrete
states like at the gate, on the taxiway, on the runway. There are several ways
to describe and model DES [130]. One can for example utilize Petri nets
(PN) [115] or automates.

DES have found application in traffic-related topics. Some examples of
using PNs for that are listed in the following: PNs can be used to control
traffic lights at intersections [37, 68, 69, 101, 133, 156]. Different aspects are
considered, PNs can e.g. be used to model a city environment consisting
of intersections with traffic lights and connecting roads [37]. Wang et
al. [156] control the traffic lights at intersections with PNs and also model
the traffic flow using PNs. Further models consider the interconnection
between neighboring intersections [68] or give priority to emergency
vehicles [69]. Qi et al. [133] adapt their traffic light controller in case of
incidents that would otherwise block neighboring streets. The model
used by Luo et al. [101] prevents vehicles from entering blocked streets,
by which they reduce traffic jams.

DES are not only useful to control a traffic flow but they can be used to
control individual vehicles as well. Mugarza and Mugarza [114] combine
a colored PN with the D* Lite algorithm to control automated guided ve-
hicles in an industrial environment. From the works on decision-making
at intersections introduced above, some make use of DES: Lin et al. [96]
use a PN to check the absence of deadlocks in the driving order their
algorithm outputs, while the algorithm of Ahmane et al. [4] is based
on the modeling of the processes at the intersection with a PN with
multipliers. Aoki and Rajkumar [8, 10] propose a decentralized method
of controlling conflict areas outside of intersections, which the authors
call dynamic intersections. Their method implements a cyber traffic light,
a virtual traffic light which ensures that both vehicles from the lane that
has priority and those from the lane that has to yield are able to pass the
conflict area. For that the front vehicle on the yielding lane requests to

98



4.2 Decision-Making at Intersections Using DES

be permitted to pass, which is granted after some time. Then the front
vehicle on the priority lane lets some vehicles pass before it requests its
right to drive. This is implemented by a state machine all vehicles have
to use and follow.

Cellular automates have shown to be a powerful tool for modeling
traffic-related aspects as well, especially for simulating traffic in road net-
works. For that purpose the available infrastructure is divided into cells
that can only be occupied by one vehicle at a time. Nagel and Schreck-
enberg [116] present a cellular automaton model to simulate highway
traffic; it can also be applied to simulate the road network of an urban
area [141]. Enayatollahi et al. [48] present a cellular automaton model
of the terminal air traffic control at an airport. Wei et al. [159] propose a
model for traffic light control of a street network where each intersection
is a cell in a cellular automaton and the green phases depend on the
traffic from neighboring intersections.

4.2 Decision-Making at Intersections Using DES
The problem of decision-making for autonomous driving is a multi-
faceted challenge. Intersections, even within a single city, vary widely
in their geometry, visibility conditions, the available space and many
more aspects, as can be seen from the investigations in chapters 2 and
3. Besides the wide range of possible street geometries, the number
of cooperation vehicles (C-Vs) and their behavior are among the most
challenging aspects. As the number of C-Vs varies for each situation at
an intersection, a strategy has to be found to deal with that. Directly
considering all vehicles in the proximity of the intersection would lead
to several problems: The model would likely have to be rather large to
be able to deal with the varying number of cooperation partners. Also, if
one, for example, took all pairwise interactions into consideration, this
number would become large even for only a few vehicles (c.f. eq. (3.1)).
This, however, is not necessary, as there is only a limited number of
vehicles that are currently relevant at any given point in time and which
therefore have to be taken into consideration. If there are e.g. multiple
vehicles driving one behind the other while approaching an intersection,
only the behavior of the first vehicle has to be considered for the decision-
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making of an AV. This is evident as all the vehicles following behind
another vehicle cannot directly interact with the vehicles on the other
streets of an intersection as their behavior options are limited by the
vehicle in front of them.

The process of decision-making is described from the perspective of an
autonomous vehicle. To differentiate the general case of an autonomous
vehicle (AV) from the vehicle that is controlled by the present algorithm,
the abbreviation A-V is used for the latter case. The behavior of the A-V
depends on several aspects, the most important of which is the behavior
of the C-Vs. To safely interact with these vehicles, the model not only
needs a strategy for interacting with C-Vs that are driven according to
traffic regulations, but also if this is not the case (e.g. a driver yields
despite having the right of way). A strategy for not clearly regulated
scenarios, e.g. deadlocks, is required as well.

Some constraints have to be imposed here as it is not possible to con-
sider every aspect of the decision-making process: All vehicles follow the
center of their respective lane, which means that only the longitudinal
acceleration has to be controlled. This approach is a variation of the path-
velocity decomposition introduced by Kant and Zucker [78]. However,
by omitting the path planning it is not possible to consider objects on
the streets like parked vehicles that e.g. block a street at the intersection
and thus hinder a vehicle from driving despite being allowed to. Also,
only T-intersections are considered here, but the overall concept should
be applicable to further scenarios like X-intersections or roundabouts as
well.

In the remainder of this section the concept of identifying the relevant
vehicles is presented first, followed by themaps and important properties
of them, which are needed for decision-making. Also, the method by
which visibility is implemented within the simulation is explained. Next,
the actual model is introduced, first the features, then the events and
the discrete event system that is based on both. Finally, the behavior
generation is presented.

4.2.1 Relevant Vehicles for Decision-Making
The decision-making model only considers the relevant vehicles for its
decisions and evaluates them separately. The interactions with each of
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these vehicles are viewed as atomic scenarios as the vehicles are consid-
ered independently from each other and the A-V only drives if it can do
so relative to all relevant C-Vs. To model that concept, a traffic light is
assigned to each of them and the A-V only drives if all lights are green.
This analogy is used for the remainder of this chapter. In total there are
four relevant vehicles:

The vehicle that has priority (P-V): In order for a vehicle to have
priority over the A-V, it has to approach the intersection on the
street to the right relative to the A-V’s entry position. If multiple
vehicles are approaching the intersection from that direction, the
vehicle closest to the intersection is classified as the P-V. If the
A-V turns right, no vehicle is marked as P-V as the driving paths
cannot intersect and thus interaction is not necessary. An example
is showcased in figure 4.1(a).

The vehicle that has to yield (Y-V): Any vehicle approaching the
intersection on the street to the left of the A-V’s entry position has
to yield to the A-V. If this vehicle turns right, it is not assigned the
Y-V label as the paths do not overlap. If there is another vehicle
behind that vehicle, the second one can be the Y-V even if the first
vehicle has not yet passed the intersection. Note that, in contrast to
the case of the P-V, not the turning direction of the A-V is relevant
for determining the existence of the Y-V but the Y-V’s turning
direction. Refer to figure 4.1(b) for an example.

The vehicle that potentially blocks the intersection (B-V): The
German traffic regulations3 state that one may not enter an inter-
section if one would have to wait within it. To comply with these
regulations the model also considers the vehicle closest to the in-
tersection that currently leaves the intersection on the same street
as the A-V will.

The vehicle that leads (L-V): The vehicle that drives directly in
front of the A-V is also relevant as the speed and acceleration of
the A-V have to be chosen so that it keeps a safe distance to its L-V.

3 § 11 Abs. 1 StVO
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It is also relevant for the decision-making. If the L-V is inside or
behind the intersection, it is simultaneously also the B-V if it and
the A-V leave the intersection on the same street. An example of
this combined case is shown in figure 4.1(c).

If for any of the four relevant C-V types no vehicle exists, this role is
considered to be non-existent. This is the case if additionally a reference
point on the street it would drive on is visible, otherwise it is assumed
that it might exist. If no L-V is detected, it is always assumed to be non-
existent. The reference points are placed on the center lines of the streets.
In the case of the P-V and the Y-V the reference points are placed 25m
from the intersection center; the reference point for the B-V is placed at a
distance of 15m. The reference point to determine if a vehicle exists in the
latter case is located closer to the intersection as a vehicle further from it
would not block the exit of the intersection anyways because there would
be enough space behind it. To place the reference points the distances to
them is measured by extending the center line of the street on which the
point is to be placed as a straight line towards the intersection itself. The
distance is then measured along the extended center line of the street
from the projection of the intersection center point onto that line.

As noV2x communication is assumed, there is no directway to commu-
nicate a vehicle’s intended turning direction to the surrounding vehicles
and only observations can be used to deduce it. For that reason, the
A-V is presumed to not know the turning direction of a C-V while it is
further than 10m away from the start of the intersection. Instead, the
worst case from the A-V’s perspective is assumed. Only after the C-Vs
are closer to the start of the intersection than this threshold the A-V is as-
sumed to know the real direction. This is implemented in the simulation
framework, see section 4.3. The assumption that the turning direction is
known at some distance before the intersection is presumably realistic
considering previous works from literature [146, 179] that investigate the
prediction of the intended turning direction of vehicles at intersections.

In many situations at a T-intersection there are several relevant C-Vs;
commonly a scene is thus a combination of the atomic scenarios from
figures 4.1(a) - 4.1(c). An example of a situation with multiple vehicles
is showcased in figure 4.1(e). The only situation that is not covered by
the atomic scenarios is the deadlock. This situation occurs if there are
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A

(a) Interaction with a P-V.

A

(b) Interaction with a Y-V.

A

(c) Interaction with a B-V that is also the L-V.

A

(d) Deadlock situation.

A

1 2

3

4 5

(e) Exemplary scenario: Vehicle 3 is in front of the A-V, which makes it the L-V. Vehicle 2
is the Y-V as it enters from the left and drives straight. As vehicle 1 does not interfere
with the A-V’s path, it will not be classified as the Y-V even after vehicle 2 passes the
intersection. Vehicles 4 enters from the right and is classified as the P-V.

Figure 4.1 Examples of the atomic interaction patterns (figures 4.1(a) - 4.1(c)). The A-V
is the red vehicle and the intended turning directions are shown by the indicator lights.
The atomic patterns are possible from all three entry positions. Any given situation at
a T-intersection is a combination of these patterns except for the deadlock scenario (fig-
ure 4.1(d)). An example of such a situation is shown in figure 4.1(e).
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Figure 4.2 Generic map of a T-intersection that is used for simulation. The map is made
up of lanelets, the inner borders of those are marked in blue and green. All dimensions are
in meters. For simulation purposes the parts of the streets leading into the intersection are
extended further out as a straight street, which is only shown in part here.

three vehicles at a T-intersection; one vehicle enters from the left and
drives straight, one enters from the bottom direction and drives left and
one vehicle enters from the right and also turns left. In this case nobody
has the right of way as each vehicle has priority over one vehicle while
having to yield to the other, as is shown in figure 4.1(d). A special strategy
is required to solve this situation.

4.2.2 Maps
The decision-making algorithm is closely connected to important points
on the maps. As in the previous chapters, the maps again consist of
a simplified version of the lanelets concept [22, 127]. In this chapter
the beginnings and the ends of the lanelets that make up the actual
intersection area are especially important; these are marked in green
in figure 4.2. The beginning of the intersection is defined as the point
where the lanelets within the intersection start, i.e. the point where the
lanes for the two directions start to diverge. Similarly, the intersection
ends at the point where the lanelets within the intersection end, i.e. the
point where the two lanes exiting at a certain street are fully merged.
These definitions are applied to all three entry and exit positions at a
T-intersection.

The decision-making algorithm is targeted towards the same type of
intersections as were viewed in the previous two chapters. Characteristic
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Figure 4.3 Real-world maps from inner city intersections in Karlsruhe that were used for
simulation. First row: maps 1 to 4; second row: maps 5 to 8; third row: maps 9 to 12. All
dimensions are in meters. The interior borders making up the lanes are marked in blue.

properties of these intersections include that they are usually found in
residential inner-city areas; each street leading into the intersection has
only one lane in either direction, they have a speed limit of 30 kmh−1

and there are no traffic signs or lights, thus the RBL rule applies. For
the initial evaluation (see section 4.4.1) the generic map in figure 4.2 is
used. It has the aforementioned properties and does not show a real-
world intersection. To validate that the algorithm is also applicable to
real intersections, 12 of the intersections that are part of the study of
chapter 2 are used. These include 11 of the 14 T-intersections as well
as the intersection where the deadlock occurred. The intersections are
renumbered from 1 to 12 and are shown in figure 4.3.

The model for decision-making depends on some important points on
the maps. These are introduced using the generic map (figure 4.2). The
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0

last stop point virtual vehicle

(a) LSP when entering from the right and
turning left. The vehicle stops just before
it would block another lane.

-10 0 10

-10

0

(b) LSP when entering from the right and
driving straight. The vehicle stops just
before it would leave either of the two
paths from the right entry position.

Figure 4.4 Two examples of the calculation of LSPs at a T-intersection. These are the last
points a vehicle can stop at without blocking further lanes. If a vehicle is to stop there, a
virtual L-V is added to enforce a stop. If a safety margin is desired, the virtual vehicle can
be moved closer to the start of the intersection along the drive path. Only the coordinates
of the centers are relevant, the rectangular bounding boxes of the vehicles are added for
illustration purposes only. All dimensions are in meters. The calculation is done for all six
entry position/driving direction combinations.

definition of these points, however, is not limited to this map; they are
applicable to the map of any T-intersection.

The first type of relevant points are the last stop points (LSP). These
describe the position on the map at which a vehicle with a given driving
path4 has to stop if it is supposed to not block any other lane but its own.
On any map there exist only six LSPs, one for each of the six possible
driving paths at a T-intersection. For three of the driving paths the cal-
culation is adapted, so that there is not more than one vehicle with the
same relevant C-V label (e.g. P-V). These three paths are: entering from
the left and turning right, entering from below and turning right and
entering from the right and driving straight. The last of these three cases
is showcased in figure 4.4(b). Additionally, the case when again entering
from the right but turning left is presented (figure 4.4(a)). The LSPs in
these two cases are shown in red. The green vehicles are virtual vehicles
that are placed on the map if the A-V is supposed to stop at the LSP,

4 As the vehicles follow the road center, a driving path is fully defined by specifying an
entry position and a turning direction.
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A-V start A-V end CZ
C-V start C-V end

(a) The A-V enters the intersection from the
bottom and turns left. A C-V enters from
the right and also turns left.

-10 0 10

-10

0

A-V start common end
C-V start CZ

(b) The A-V enters the intersection from the
bottom and turns left. A C-V enters from
the right and drives straight.

Figure 4.5 Collision zones (CZ) at a T-intersection. If the two intersecting lanes leave
the intersection on the same street, the CZ ends where the intersection itself ends. The
distances to the start and end points of the CZ are zero where the vehicle in question is
directly at the beginning the zone. These positions are marked for both vehicles. In this
work only the coordinates of the centers are relevant because the vehicles follow their lane
center. The rectangular bounding boxes of the vehicles are added for illustration purposes
only. All dimensions are in meters.

see section 4.2.7 for more details. To force the A-V to stop further from
the LSP, the position of the virtual vehicle could be moved further back
and thus closer to the beginning of the intersection. The necessity for
adapting the calculation of the LSPs as described above can be seen in
figure 4.4(b). If there are two vehicles waiting that both entered from the
right but one drives straight and one turns left, these vehicles could be
standing besides each other at a wider intersection and thus be allowed
to enter the intersection simultaneously. In that case there might be two
C-Vs of the same type, which is not supported by the decision-making
algorithm. This is prevented by placing both LSPs from the same direc-
tion at that place where the first of the two paths would intersect with
another one. In figure 4.4(b) this is visible as the the LSP is placed further
back than it needs to be following the original definition. In that case it
would be positioned a little behind where the virtual vehicle is placed.

The second class of important points on the maps are the beginnings
and ends of the collision zones. These zones are caused by the fact that
many pairs of driving paths overlap. For that reason the entire width of
the lanelets in question is considered and the collision zone is the area
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C1 C2

IC

𝑑vs 𝑑vs

Figure 4.6 Schematic example of the visibility calculations. Obstacles are defined by the
corner (C1 and C2) that is closest to the intersection center (IC). The corners are placed
along the bisecting line between their two neighboring streets at a distance of 𝑑vs from the
curb. Originating from the A-V, one or two sight lines are used to determine the visible
area (light gray) on the road. Only the vehicles on that area are considered as visible. In
this example, the A-V approaches from the bottom direction. Vehicles 1 and 3 are visible,
vehicle 2 is obstructed by the left object.

where the two lanelets actually overlap, see figure 4.5. As the collision
zones are the reason for the need for cooperation, it is important for the
decision-making to know where the vehicles are relative to this zone. As
the vehicles follow the center of their lanes, the positions where vehicles
on both paths enter and exit the collision zone are always the same for
a given pair of driving paths. The distances to the beginning and the
end of the collision zone (see section 4.2.4) can thus be calculated as the
distance to these points. In figure 4.5 the calculation for two vehicles
is showcased including the positions where the two vehicles enter and
leave the collision zone.

4.2.3 Visibility
The focus of this work is on intersections in inner city traffic, thus occlu-
sions are a common occurrence. These are caused by buildings, vegeta-
tion, parked vehicles, signs and many more objects in the real world. In
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contrast to the calculation of the visibility features in chapter 2, here the
limited visibility is considered by defining a point that represents the
most exposed corner of all the obstacles. All calculations regarding the
visibility of other vehicles and road segments are only based on these
points. They are placed between the street to the left and the one in the
bottom direction, as well as between the bottom street and the one to the
right. The points are placed on the bisecting line between the direction
vectors of the two streets they lie between. Both points are at a distance
of 𝑑vs from the curb of the intersection. For the remainder of this chapter
𝑑vs is referred to as the visibility distance, again in contrast to the previous
two chapters. The visibility calculation is showcased in figure 4.6 using
a schematic representation of an intersection map. The two obstacles at
the left and right bottom are not needed for the calculation and are only
shown for better visualization. The advantages of this approach are that
the visibility only depends on a single parameter; it adapts easily to any
intersection and it can be calculated with little effort. However, one loses
aspects of the surroundings of a real intersection, which can make the
visibility less clear. For example visibility might be lost only temporarily
due to a single obstacle like a tree trunk. As only T-intersections are con-
sidered in thiswork, there is no need to place a third corner point between
the left and right streets, as these streets are all at an angle of approx.
180° to each other, c.f. figure 4.3. If one also considered X-intersections,
two additional corners would have to be added, their placement could
be done analogously.

4.2.4 Features
The DES for decision-making is based on several features. These describe
aspects of the driving behavior of the A-V itself and its C-V that are
relevant for the decision-making process. In the remainder of this chapter
the vehicle a feature refers to is indicated by the superscript associated
with each feature: (⋅)𝑥 , 𝑥 ∈ {a, p, y, b, l}. These are the A-V, P-V, Y-V, B-V
and L-V, respectively. Additionally, all distances are measured not as
Euclidean distances but along the drive path of the respective vehicles.
As the vehicles always follow the center of their lane, the distances are
also measured along the lane center the vehicle in question drives along.
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All vehicles are modeled as rectangles with a constant vehicle length of
𝑙v = 4.4 m and width 𝑤v = 1.8 m.

The first feature is the distance to scenario 𝑑𝑥
s(𝑡). It describes the dis-

tance to and from the intersection and is positive during the approach,
zero inside and negative after the intersection. The beginning of the inter-
section is defined by the end of the lanelet of the street leading into the
intersection, and the end of the intersection coincides with the start of
the lanelet leading away from the intersection. All features are calculated
for the current time 𝑡, this dependence is omitted for better readability
in the following.

At intersections many driving paths overlap and the corresponding
lanes cause collision zones (c.f. section 4.2.2 and figure 4.5). As only a
single vehicle can be inside a collision zone at any time, these zones are the
most relevant place for decision-making and thus features describing the
actions there are important. The first of these is the distance to collision
zone. This feature is relative to two vehicles, the A-V and either its P-V
or its Y-V. The distances 𝑑𝑥

c,xc,b and 𝑑𝑥
c,xc,e describe the distance of vehicle

𝑥, 𝑥 ∈ {a, p, y} to the beginning and end of the collision zone of the A-V
to its collision zone with its C-V 𝑥c, 𝑥c ∈ {p, y}. With that definition e.g.
𝑑p

c,p,b is the distance of the P-V to the beginning of the collision zone
between it and the A-V.

The second feature related to the collision zones is the time to collision
zone. It describes the time it takes a vehicle to reach or leave a collision
zone assuming the current velocity is kept constant:

𝑡𝑥
c,xc,⋅ =

𝑑𝑥
c,xc,⋅

𝑣𝑥 . (4.1)

A further feature is the distance to stop 𝑑𝑥
b. This is the required distance

to bring a vehicle to a complete stop assuming an arbitrary velocity 𝑣𝑥
a

and acceleration 𝑎𝑥
a:

𝑑𝑥
b (𝑣𝑥

a, 𝑎𝑥
a) =

⎧{{
⎨{{⎩

− (𝑣𝑥
a)2

2𝑎𝑥
a

, 𝑎𝑥
a < 0 m s−2

0 m , 𝑎𝑥
a = 0 m s−2 ∧ 𝑣𝑥

a = 0 m s−1

∞ , otherwise

. (4.2)

This feature, together with the distance to last stop point 𝑑𝑥
l is required

to judge if a stop before the intersection is still possible.
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The final feature that is needed for the decision-making model is the
free distance behind the B-V :

𝑑b
f = 𝑑b

i −
1
2𝑙v + 𝑑b

b (𝑣b, 𝑎e) . (4.3)

𝑑b
i is the distance from the end of the intersection to the B-V. As all

distances are relative to the center of the vehicles, half of the vehicle
length 𝑙v has to be subtracted. Finally, the distance the B-V would travel
in case of braking with the emergency deceleration 𝑎e = −7.5 m s−2 is
added. With this feature one can assess if the B-V is far enough from the
intersection so that the A-V can drive through it without risking to be
stuck behind the B-V within the intersection.

4.2.5 Events
As the name suggests, a DES is based on events to determine the current
state of the system. Not all events are relevant for the entire approach to
and drive through the intersection. For that reason, the way through the
intersection is split into six zones. This is helpful to adapt the driving
behavior of the A-V depending on the distance to the intersection. The
zone the A-V is currently in is determined by the distance to scenario
𝑑a

s . Each zone has states associated with it, zones 2, 3, 4 and 5 each have
at least an offensive and a defensive state assigned to them. The model
with its states is introduced in detail in section 4.2.6. In the following,
first the general behavior within each zone is presented, then the events
to facilitate that behavior are introduced.

The model is in the first zone if 𝑑a
s > 40 m holds. In it the A-V is still

far from the intersection and it can drive freely 5, and is not controlled by
the decision-making algorithm. The second zone includes the distance
40 m ≥ 𝑑a

s > 25 m and zone 3 is within the range of 25 m ≥ 𝑑a
s > 10 m.

In these zones the A-V adapts its velocity for the first time. However,
to avoid changing the behavior too often the prediction for the P-V is
only run at the beginning of these zones. The strategy for both zones is
the same: The A-V drives defensively if there is a P-V that is not clearly
arriving after the A-V or if it is not yet certain if a P-V exists in case the

5 Driving freelymeans that theA-V only takes the speed limit and its L-V into consideration.
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street in question is not yet fully visible. Otherwise the A-V chooses a
more offensive behavior. The other relevant vehicles are not considered
at that time other than avoiding a collision with the L-V. This, however,
is not done by events but by controlling the acceleration, see section 4.2.7.
The reason for only considering the P-V at that stage is to signalize to all
C-Vs, in case they are already visible, that the algorithm is aware of the
priority rules. That is, it can drive before the Y-V but has to yield to the
P-V. This strategy, of course, works best if there is only one of the two
types of C-Vs present.

While the A-V is within 10 m ≥ 𝑑a
s > 1 m from the intersection, it is

in zone 4. In this zone it is close to the intersection and the decision to
drive or stop has to be made. For that reason all four relevant vehicles are
now taken into consideration and the A-V drives offensively only if all
relevant C-Vs allow it. This is necessary, as the A-V e.g. also has to stop
for the Y-V if it does not wait. In this zone the remaining distances are
short and yielding in this case, even if the A-V has priority, is necessary to
avoid a collision. Changing between offensive and defensive behavior is
now possible in every time step as the A-V has to be able to react quickly
to a changing environment.

In zone 5 (1 m ≥ 𝑑a
s ≥ 0 m) the A-V is within the intersection. It

either drives through the intersection or waits for other vehicles to pass
before it. The resolution of deadlocks also happens in that zone. The
final sixth zone is the street beyond the intersection: 0 m > 𝑑a

s . In it
the A-V has passed the intersection and is no longer controlled by the
decision-making algorithm.

These behavior patterns are enabled by the events of the DES. All
events are listed in table 4.2; for better readability most events are a
combination of so-called base events, see table 4.1 for an overview and
their formal definition. The decision-making uses a traffic light analogy
for the relevant C-Vs, as introduced in section 4.2.1. There is an event
assigned to each of the four relevant C-Vs; the P-V is the only one of these
to have two events, one for zones 2 and 3 and the other for zones 4 and 5.
Further events are used for resolving deadlocks and to check important
aspects of the interaction at a T-intersection. All are introduced in detail
in the following.
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Table 4.1 Base events (BE) for the DES for decision-making. A base event is true if its
condition is fulfilled.

BE condition description

𝑒b1 the P-V cannot exist or the reference
point is visible and no P-V is detected

P-V: non-existence

𝑒b2 𝑡a
c,p,e + Δ𝑡p < 𝑡p

c,p,b ∧ 𝑑a
c,p,e + Δ𝑑p < 𝑑p

c,p,b P-V not obstructed
𝑒b3 𝑣p < 𝑣s ∧ 𝑎p ≤ 0 m

s2 ∧ 𝑑p
s < 𝑑n ∧ 𝑑p

c,p,b > 0 m P-V stopped
𝑒b4 𝑡p

w > 𝑡y ∧ 𝑡a
w > 𝑡y P-V yields

𝑒b5 𝑑y
c,y,b < 0 m ∧ 𝑑y

c,y,e > 0 m Y-V in CZ
𝑒b6 𝑡a

c,y,e < 𝑡y
c,y,b Y-V: no collision

𝑒b7 𝑑a
l > 𝑑a

b (𝑣a, 𝑎c) comf. stop possib.
𝑒b8 𝑑a

l > 𝑑a
b (𝑣a, 𝑎h) + 𝑑o ∧ 𝑣y < 𝑣sl

∧ 𝑎y < 0 m
s2 ∧ 𝑑y

c,y,b > 𝑑y
b (𝑣p, 𝑎p)

Y-V brakes

𝑒b9 𝑣y < 𝑣s ∧ 𝑎y ≤ 0 m
s2 ∧ 𝑑y

s < 𝑑n ∧ 𝑑y
c,y,b > 0 m Y-V stopped

𝑒b10 ref. point is visible and no B-V detected B-V: non-existence
𝑒b11 𝑑b

f > 𝑙v + 𝑑min B-V: enough space
𝑒b12 no L-V detected L-V: non-existence
𝑒b13 𝑑l

s < 0 m L-V passed int.
𝑒b14 𝑑a

l > 𝑑a
b (𝑣a, 𝑎e) em. stop possible

𝑒b15 A-V, P-V, Y-V: turning directions intersect DL possible
𝑒b16 𝑣a < 𝑣s ∧ 𝑎a ≤ 0 m

s2 ∧ 𝑑a
s < 𝑑n A-V stopped

4.2.5.1 Events of the Relevant C-Vs

The P-V has the right of way over the A-V at an intersection, thus the A-V
has to let it drive first if it exists and the A-V cannot pass the intersection
safely and without obstructing the P-V. Event 𝑒1,p,I is true if the P-V gives
green light in zones 2 and 3. This is the case if one of the two following
base events occur: Base event 𝑒b1 is true if the non-existence of the P-V
is certain. This is the case if the vehicle either cannot exist due to the
turning direction of the A-V (c.f. section 4.2.1) or if the reference point
of the P-V’s street is visible and no vehicle can be detected. If the A-V is
currently predicted to leave the common collision zone in both distance
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Table 4.2 Events of the DES for decision-making. Most events are a combination of base
events.

definition description

𝑒1,p,I = 𝑒b1 ∨ 𝑒b2 P-V: green light in zones 2/3
𝑒1,p,II = 𝑒b1 ∨ 𝑒b2 ∨ (𝑒b3 ∧ 𝑒b4) P-V: green light in zones 4/5
𝑒1,y = ¬𝑒b5 ∧ (𝑒b6 ∨ 𝑒b7 ∨ 𝑒b8 ∨ 𝑒b9) Y-V: green light
𝑒1,b = 𝑒b10 ∨ 𝑒b11 B-V: green light
𝑒1,l = 𝑒b12 ∨ 𝑒b13 L-V: green light
𝑒2 next zone entered
𝑒3 = 𝑒b14 emergency stop possible
𝑒4 = 𝑒b15 deadlock possible
𝑒5 = 𝑒b3 ∧ 𝑒b9 ∧ 𝑒b16 deadlock detected
𝑒6 = 𝑒b3 ∧ 𝑒b9 deadlock of C-Vs detected

𝑒g = 𝑒1,p,II ∧ 𝑒1,y ∧ 𝑒1,b ∧ 𝑒1,l green light by relevant C-Vs
𝑒dl = 𝑒4 ∧ 𝑒5 ∧ 𝑒1,l ∧ 𝑒1,b deadlock can be resolved

and time before the P-V enters it, including a lead distance of Δ𝑑p = 10 m
and a lead time of Δ𝑡p = 2.5 s, the condition for 𝑒b2 is met:

𝑡a
c,p,e + Δ𝑡p < 𝑡p

c,p,b ∧ 𝑑a
c,p,e + Δ𝑑p < 𝑑p

c,p,b. (4.4)

The P-V gives green light in zones 4 and 5 (𝑒1,p,II) if again either base
event 𝑒b1 or 𝑒b2 occurs. It is alternatively also green if both vehicles have
been standing close before the intersection long enough, i.e. the P-V
yields despite not having to do so. This is the case if the P-V is stationary
close before the intersection (𝑒b3) and both vehicles have been waiting
for at least 𝑡y = 2 s (𝑒b4). The A-V is stationary shortly to the intersection
if its velocity is below the threshold for stopping 𝑣s = 0.15 m s−1, its
acceleration is not positive, it is closer than 𝑑n = 12 m from the start to
the intersection but it has not yet entered the collision zone with the A-V,
i.e. 𝑑p

c,p,b is still positive:

𝑣p < 𝑣s ∧ 𝑎p ≤ 0 m s−2 ∧ 𝑑p
s < 𝑑n ∧ 𝑑p

c,p,b > 0 m. (4.5)

Base event 𝑒b4 occurs if the timer 𝑡p
w that measures the duration of both

the A-V and its P-V standing at the intersection exceeds the waiting
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threshold: 𝑡p
w > 𝑡y. The timer is only incremented if the algorithm is

in the defensive states of zones 4 or 5 (see section 4.2.6), the P-V (𝑒b3)
and the A-V (𝑒b16) are standing at the intersection and a deadlock is not
possible (¬𝑒4). Base event 𝑒b16 and event 𝑒4 are introduced below. The
timer is not incremented in case of a deadlock as the P-V is probably
stopped because it has to yield itself and not because it does not want to
drive first.

As the A-V has priority over its Y-V, the traffic light should always
be green unless the Y-V does not stop and a collision is thus predicted.
Therefore, the A-V can drive before the Y-V (𝑒1,y) – if no other vehicles
would be considered – in case the Y-V is not inside its collision zone with
the A-V (¬𝑒b5). If the Y-V is inside the collision zone, the distance to the
start of the collision zone is negative while the distance to the end is still
positive:

𝑑y
c,y,b < 0 m ∧ 𝑑y

c,y,e > 0 m. (4.6)

Event 𝑒b5 on its own is not sufficient to ensure safety, additionally to ¬𝑒b5
at least one of these base events also has to be true for a green light by
the Y-V (𝑒1,y) to occur:

𝑒b6: The A-V is predicted to leave the common collision zone before
the Y-V enters it, i.e. for the times to their common collision zone

𝑡a
c,y,e < 𝑡y

c,y,b (4.7)

must hold.

𝑒b7: Stopping regularly before the intersection is still possible. For
that the distance to the last stop point of the A-V 𝑑a

l has to be larger
than the distance required to stop when driving at the velocity 𝑣a
and braking with the comfort deceleration 𝑎c = −2.5 m s−2, that is

𝑑a
l > 𝑑a

b (𝑣a, 𝑎c) . (4.8)

𝑣a is the assumed velocity the A-V will drive at within the inter-
section; 𝑣a = 6.5 m s−1 if it drives straight and 𝑣a = 4.0 m s−1 in
case the A-V turns at the intersection.

𝑒b8: The Y-V brakes and the A-V could still stop. This event is
true if stopping with a hard deceleration of 𝑎h = −4.5 m s−2 is still
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possible, including a distance offset of 𝑑o = 0.2 m. Additionally,
the Y-V has to be slower than 𝑣sl = 2 m s−1 and it has to be braking
so that it can stop before the beginning of the common collision
zone:

𝑑a
l > 𝑑a

b (𝑣a, 𝑎h) + 𝑑o ∧ 𝑣y < 𝑣sl ∧ 𝑎y < 0
m
s2 ∧ 𝑑y

c,y,b > 𝑑y
b (𝑣p, 𝑎p) .

(4.9)

𝑒b9: The Y-V is stopped close before the start of the intersection.
The conditions for this base event are the same for the Y-V as they
are in 𝑒b3 for the P-V.

The selection of features and base events and their parameterization are
especially challenging for the event 𝑒1,y as there is a conflict of interests
that is difficult to resolve: The A-V should drive offensively relative to
the Y-V as it has priority over it. Driving (too) defensively might signal
to the Y-V that the algorithm is uncertain or even that it waives its right
of way. But the A-V should not be driving so offensively either that it
risks a collision. A collision is predicted (base event 𝑒b6) relatively easily
as the A-V has to pass the intersection before the Y-V even enters it; the
required headway is thus relatively large. If 𝑒b6 were the only base event
that is considered the algorithm would behave rather defensively as it
would often yield to the Y-V. Base events 𝑒b7 and 𝑒b8 counteract that
tendency by being less conservative and allowing offensive driving while
stopping is still possible in the worst case.

The role of both the L-V and the B-V is different than that of the other
two relevant C-Vs. They do not have priority over the A-V but they can
hinder the A-V from driving through the intersection. The A-V can only
drive if the L-V has already passed the intersection. If it has the same
turning direction as the A-V it then becomes the B-V after it passed the
intersection. If the turning directions differ, the C-V in question will no
longer be labeled as the L-V as soon as it has left the lane of the A-V. The
event 𝑒1,l that is associated with the L-V occurs if there is no L-V(𝑒b12)
or if the L-V has passed the intersection (𝑒b13). The L-V has passed the
intersection if its distance to the scenario is negative:

𝑑l
s < 0 m. (4.10)
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The B-V leaves the intersection on the same road as the A-V, it can thus
obstruct it from exiting the intersection. As the A-V is not supposed to
stand within the intersection, it only enters it if it is not blocked by the
B-V(event 𝑒1,b). This is the case if either the B-V does not exist (𝑒b10) or
if the distance behind the B-V is large enough (𝑒b11). The B-V does not
exist if the reference point on its street is visible while no vehicle on its
lane is detected. The distance behind the B-V is large enough if

𝑑b
f > 𝑙v + 𝑑min (4.11)

holds, i.e. there is enough distance between the B-V and the end of the
intersection for the length of the A-V (𝑙v) and the minimum headway
𝑑min = 1.5 m between following vehicles.

4.2.5.2 Events During the Approach

As the behavior depends on the zone theA-V is currently in, zone changes
are an important event. In each time step in which the current zone is
not the same as in the previous time step, event 𝑒2 is true. In zones 4 and
5 the A-V is very close to the intersection and it is therefore possible that
the A-V is no longer able to stop before the last stop point. If it braked
regardlessly, it would stop within the intersection, thus blocking it and
in the worst case causing an accident. The algorithm is only supposed to
switch to defensive behavior if stopping before the last stop point with
an emergency deceleration of 𝑎e = −7.5 m s−2 is still possible. Base event
𝑒b14 and event 𝑒3 check for that and are only true if the distance to the last
stop point 𝑑a

l is larger than the distance required to stop when driving
with the current velocity 𝑣a and braking with 𝑎e:

𝑑a
l > 𝑑a

b (𝑣a, 𝑎e) . (4.12)

This behavior is considered safe for two reasons: First, the parame-
terization is rather conservative, i.e. the A-V is probably only driving
offensively if there is some additional safety margin. If one of the lights
then turn red, it does not mean a collision is immediate but rather that
the safety margin has become too small. Secondly, one can argue that it
is safer to quickly pass the intersection in that situation and clear it for
the C-V instead of blocking it by slowing down or even stopping, forcing
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the conflicting vehicle to evasive maneuvers as well. Additionally, if one
wants to drive at an intersection without waiting for everyone else to
clear the intersection before, one has to decide to drive even if a collision
is a (remote) possibility. Doing so only in case stopping is no longer an
option anyways is arguably the most conservative approach possible.

4.2.5.3 Events for Deadlock Resolution

The final set of events deals with the detection and resolution of deadlock
situations. At a T-intersection a deadlock can only occur if there is a
vehicle approaching from each of the three directions. Additionally, the
vehicles entering from below and from the right have to turn left and
the vehicle from the left has to drive straight. In this case each vehicle
has priority over one vehicle while simultaneously having to yield to the
other remaining vehicle. Thus none of the vehicles has priority over all
others and the intersection is blocked. As the A-V can be any of the three
vehicles, base event 𝑒b15 checks the turning directions of both the P-V
and the Y-V depending on the entry position of the A-V. Base event 𝑒b15,
alongside the event 𝑒4 is true if a deadlock is possible.

The last two events cover the actual occurrence of a deadlock. 𝑒5 is
true if a deadlock is detected. This is the case if the P-V (𝑒b3), the Y-V
(𝑒b9) and the A-V are stopped close before the intersection. The A-V is
considered as stopped (𝑒b16) if its current velocity is below the threshold
for being stopped 𝑣s, it is not accelerating and it is closer to the start of
the intersection than 𝑑n:

𝑣a < 𝑣s ∧ 𝑎a ≤ 0 m s−2 ∧ 𝑑a
s < 𝑑n. (4.13)

To correctly run the decision-makingmodel, as described in the following
section, event 𝑒6 is also needed. It is true if both the P-V (𝑒b3) and the Y-V
(𝑒b9) are stopped before the intersection.

4.2.6 Decision-Making Model
The decision-making model itself consists of 11 states and at any time
the algorithm is in one of them. Each state is assigned to one of the six
zones, and the model can only assume a state that is associated with
the current zone. The behavior of the A-V depends on the current state,
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𝑠10

𝑠21

𝑠22

𝑠31

𝑠32

𝑠41

𝑠42

𝑠51

𝑠52

𝑠53

𝑠60

zone 1:
𝑑a

s > 40 m
zone 2:

40 m ≥ 𝑑a
s

> 25 m

zone 3:
25 m ≥ 𝑑a

s
> 10 m

zone 4:
10 m ≥ 𝑑a

s
> 1 m

zone 5:
1 m ≥ 𝑑a

s ≥ 0 m
zone 6:

𝑑a
s < 0 m

𝑒1,p,I
∧𝑒2

𝑒2∧
¬𝑒1,p,I

𝑒1,p,I
∧𝑒2

𝑒2∧
¬𝑒1,p,I

𝑒1,p,I
∧𝑒2

𝑒2∧
¬𝑒1,p,I

𝑒2

𝑒2

𝑒2

¬𝑒g
∧𝑒3

𝑒g∧
¬𝑒4

𝑒2

¬𝑒g ∧ 𝑒3

𝑒2

𝑒dl∨
(¬𝑒4 ∧ 𝑒g)

𝑒2

𝑒3 ∧ ((𝑒4 ∧ ¬𝑒6)
∨(¬𝑒4 ∧ ¬𝑒g))

Figure 4.7 Decision-making algorithm for the A-V. If none of the events associated with
the current state occurs, the system remains in its current state. For better readability these
transitions are not shown here.

unless the L-V’s position and velocity prevent it. For that reason there are
at least two states in all zones in which the behavior is controlled by the
decision-making algorithm, i.e. zones 2 to 5. Zones 1 and 6 only have one
state each as the model does not control the driving behavior. In zones 2
to 5 the states are either associated with offensive or defensive behavior.
States 𝑠21, 𝑠31, 𝑠41 and 𝑠51 are the states in which the A-V shows offensive
behavior, i.e. it attempts to drive through the intersectionwithoutwaiting.
States 𝑠22, 𝑠32, 𝑠42 and 𝑠52 are the defensive states in which the model
prepares to wait or actually waits. In state 𝑠53 offensive behavior is shown
after being defensive in zone 5. The decision-making model is shown in
figure 4.7 and is presented in detail below.

While the A-V is still far from the intersection, the algorithm always
starts in state 𝑠10. In it the vehicle is not controlled by the decision-making
model. As soon as the threshold to zone 2 is crossed, the prediction for
the P-V is evaluated and the system progresses to state 𝑠21 if the P-V gives
green light (event 𝑒1,p,I). To ensure that the prediction is only run after
the A-V entered zone 2, event 𝑒2 has to be triggered as well. That way, the
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Table 4.3 Target velocities 𝑣t in m s−1 for the states of the DES. The values in states 𝑠42 and
𝑠52 are set in conjuncture with a virtual vehicle to enforce stopping before the intersection.
The large values are set to ensure that the A-V progresses to its designated stop points but
are typically nor reached in these states.

state 𝑠21 𝑠22 𝑠31 𝑠32 𝑠41, 𝑠42, 𝑠51, 𝑠52 & 𝑠53

𝑣t straight 8.3 6.0 7.5 6.0 6.5
𝑣t turning 8.3 6.0 6.0 6.0 4.0

prediction is only evaluated once at the beginning of this zone to avoid
changing the driving behavior too often and thus potentially confusing
the C-Vs. Also, regularly checking the prediction is not yet necessary
as the distance to the intersection is still relatively large and there is
enough distance and time remaining to react to a changing situation.
If the P-V does not give green light, the model progresses to state 𝑠22.
The behavior, i.e. the current acceleration, depends on a target velocity
𝑣t the A-V is supposed to drive at, see table 4.3 for a complete list. The
calculation of the acceleration is introduced in the next section. The
target velocity can only be reached if the L-V does not prevent it. For
offensive driving 𝑣t is set to 8.3 m s−1, which is almost the speed limit of
30 kmh−1. In case of defensive behavior the velocity is reduced slightly to
𝑣t = 6.0 m s−1 to communicate the intention of defensive driving. After
crossing the threshold to zone 3, the same evaluation is run again, if the
P-V’s traffic light is green, the system progresses to state 𝑠31, otherwise
it assumes state 𝑠32. The target velocity for the defensive state is the
same as in zone 2, but in case of offensive behavior the target velocity
is set to 𝑣t = 7.5 m s−1 in case of driving straight and 𝑣t = 6.0 m s−1

in case the A-V turns at the intersection. These velocities are slower
than before because even if one can drive first, being below the speed
limit increases safety and gives more time to react. In case of turning a
lower velocity within the intersection is important anyways to reduce
the lateral acceleration especially considering the relatively tight curves
at the compact intersections that are considered here.

The transition to zone 4 is done without a prediction, instead the
system progresses from state 𝑠31 to 𝑠41 or from 𝑠32 to 𝑠42, respectively. As
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the prediction is run in every time step in zone 4, skipping the prediction
is not a problem. For a more compact representation

𝑒g = 𝑒1,p,II ∧ 𝑒1,y ∧ 𝑒1,b ∧ 𝑒1,l (4.14)

is defined. This event occurs, if all four traffic light events of the relevant
C-V are true. The model changes from offensive to defensive behavior,
that is from state 𝑠41 to 𝑠42 if at least one relevant C-V requires it (¬𝑒g) and
if an emergency stop is still possible (𝑒3). To switch from defensive (𝑠42)
to offensive (𝑠41) behavior all lights have to be green (𝑒g) and a deadlock
must not be possible (¬𝑒4). The latter condition prevents the A-V to
drive before the P-V, which probably only drives defensively due to the
deadlock. In the offensive state the target velocity is set to 𝑣t = 6.5 m s−1

if driving straight and 𝑣t = 4.0 m s−1 in case of turning. If the model is in
the defensive state 𝑠42, it is set up to stop 𝑑l,o = 1 m before its LSP. This is
accomplished by placing a stationary virtual vehicle at the intersection,
c.f. figure 4.4. To allow the A-V to drive to the desired stop point and to
restart if it has to stop earlier within a queue, the target velocity is set to
the same values as in the offensive state 𝑠41.

Zone 5 is again entered without prediction, the system transitions
from state 𝑠41 to 𝑠51 or from 𝑠42 to 𝑠52, respectively. The transition from
offensive to defensive driving behavior is the same as in zone 4, that
is if at least one of the four traffic lights is no longer green (¬𝑒g) while
an emergency stop is still possible (𝑒3), this transition occurs. However,
the transition from defensive to offensive behavior is no longer possible
in zone 5. Instead, state 𝑠53 describes offensive behavior after being in
the defensive state 𝑠52. The target velocities in the states of zone 5 are
the same as the ones in zone 4. State 𝑠53 is reached from 𝑠52 either if
no deadlock is possible and all four lights are green (¬𝑒4 ∧ 𝑒g) or if a
deadlock occurred and can be solved by the A-V (𝑒dl). This is the case if a
deadlock is possible (𝑒4), it has occurred (𝑒5) and the A-V is not blocked
by either the L-V or the B-V:

𝑒dl = 𝑒4 ∧ 𝑒5 ∧ 𝑒1,l ∧ 𝑒1,b. (4.15)

The latter two events are necessary to ensure that the A-V can clear
the intersection after passing it. The strategy for resolving a deadlock
lies within these transitions: As soon as the A-V detects a deadlock, it
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attempts to solve it by starting to drive. This strategy is motivated by
the finding of Imbsweiler et al. [181], who found that human drivers
prefer to not drive first in case of a deadlock situation at a T-intersection.
The model can also go from offensive behavior in state 𝑠53 to defensive
behavior in state 𝑠52 in case an emergency stop can still be executed (𝑒3)
and either a deadlock is possible but one of the other vehicles is also
moving (𝑒4 ∧ ¬𝑒6) or a deadlock is not possible and one of the relevant
C-V no longer gives green light(¬𝑒4 ∧¬𝑒g). From the two offensive states
𝑠51 and 𝑠53 the model transitions to state 𝑠60 of zone 6 as soon as the A-V
leaves the intersection and with that also zone 5 (event 𝑒2).

In zone 6 the behavior is no longer controlled by the decision-making
algorithm. In this work only the drive through a single intersection is
considered but in a more complex street network there could, of course,
be further intersections following. To facilitate that, the system could
just revert back to state 𝑠10 after it passes an intersection and it would be
ready to approach another intersection.

4.2.7 Behavior Generation
As the A-V follows a fixed path, i.e. the center of its lane, its behavior
is only determined by the longitudinal acceleration of the vehicle. The
decision on the current acceleration 𝑎a (𝑡), i.e. offensive or defensive driv-
ing, itself depends on the current state of the DES model, as described
above. Based on the state and the desired turning direction a target ve-
locity 𝑣t is selected, see table 4.3. Additionally, the differences in velocity
Δ𝑣 = 𝑣a − 𝑣l and distance Δ𝑑 to the leading vehicle have to be considered.
Δ𝑑 is measured along the center of the lane and describes the distance
from the front of the A-V to the rear of the L-V. Finally, the A-V is sup-
posed to stop 𝑑l,o = 1 m in front of the LSP if it is in the defensive states
𝑠42 or 𝑠52.

To comply with those constraints, the intelligent driver model (IDM)
by Treiber et al. [152] is introduced. It was originally used for traffic sim-
ulations on highways considering a single lane. It assumes that vehicles
follow a given path and therefore only the longitudinal acceleration is
calculated. Previous algorithms for that purpose exist; the original work
on the IDM [152] as well as Toledo [151] provide an overview. The IDM
is used in several applications, e.g. to predict the turning direction of
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drivers at an intersection [94]. Also, there exist several modifications to it.
Treiber et al. [153, 154] propose the human driver model (HDM), which
additionally incorporates human aspects of driving, it e.g. implements a
reaction time and takes further vehicles in front of it into consideration.
Zhou et al. [174] introduce a modification to the IDM, the cooperative
intelligent driver model (CIDM), to also be able to control merging onto
highways. There also exist extensions that enable the IDM to solve as-
pects of driving through intersections: With the intersection intelligent
driver model (IIDM) [131] it is possible to merge into a traffic stream at a
T-intersection. Kreutz and Eggert [84] present the generalized intelligent
drivermodel (GIDM)withwhich they successfully control the interaction
at an uncontrolled intersection with another vehicle. They also present a
version of the GIDM to drive through lane merge scenarios [83].

Extensions like these are not necessary for the algorithm presented in
the current work because the decision-making is done by the DES model
and is thus separate from setting an appropriate acceleration. Therefore,
the original version of the IDM is used with only minimal modifications.
The acceleration based on the IDM is calculated as follows [152]:

𝑎a
IDM = 𝑎m(1 − (

𝑣a

𝑣t
)

4

⏟
free

− (
𝑑∗

Δ𝑑)
2

⏟
follow

) (4.16)

with 𝑑∗ = 𝑑min + 𝑡min𝑣a +
𝑣aΔ𝑣

2√𝑎m𝑎b
. (4.17)

Its output, the longitudinal acceleration 𝑎a
IDM, depends on the maximum

positive acceleration 𝑎m = 2.5 m s−2 and the ratio between the A-V’s
velocity 𝑣a and the target velocity 𝑣t as well as the ratio between the
desired distance to the L-V 𝑑∗ and the actual distance to the L-V Δ𝑑. The
desired distance 𝑑∗ itself further depends on several parameters and
variables: The braking acceleration 𝑎b is set to the comfort deceleration
𝑎c = −2.5 m s−2, 𝑑min = 1.5 m and 𝑡min = 1.2 s are the minimum gaps to
the L-V in distance and time, respectively. If there is no L-V, Δ𝑑 is set to
infinity and Δ𝑣 = 0 m s−1.

The concept behind the IDM is as follows [83, 84, 152]: There are two
terms, the free and the follow term. The former describes the model’s
desire to reach the target velocity 𝑣t: the smaller the current velocity of
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the A-V, the larger the resulting acceleration. The follow term regulates
the behavior in case the A-V follows another vehicle by braking if the
distance to it becomes too small. As both terms are non-negative, the
acceleration can at most be 𝑎m. However, the acceleration is not limited
in the negative direction, e.g. the free term becomes large if 𝑣a ≫ 𝑣t. This
can occur if the target velocity is set to a new and much lower value after
the current state has changed. As this could result in unrealistic braking
maneuvers, the deceleration is limited to the desired braking acceleration
𝑎b:

𝑎a = max (𝑎a
IDM, 𝑎b) . (4.18)

A similar approach to ensure plausible accelerations is also used by
Kreutz and Eggert [83, 84].

To enforce stopping before the LSP, a virtual L-V is used. This is possible
because the IDM ensures that the A-V stops 𝑑min behind a stationary
vehicle. If the A-V is in state 𝑠42 or 𝑠52, it is required to stop and a virtual
stationary vehicle is placed so that it causes the A-V to stop 𝑑l,o = 1 m
before the LSP. Figure 4.4 shows the placement of the virtual vehicle and
the stopping position behind it. If there is a real L-V between the A-V
and the position of the virtual vehicle, the virtual vehicle is not used.

If in these two defensive states 𝑠42 and 𝑠52 the usual value of the brak-
ing acceleration 𝑎b = −2.5 m s−2 is not sufficient for a stop at the desired
point, i.e. Δ𝑑 + 0.2 m < 𝑑a

b (𝑣a, 𝑎b), the braking acceleration 𝑎b is set
to a hard deceleration 𝑎h = −4.5 m s−2 while the placement of the vir-
tual vehicle remains unchanged. If this is still not sufficient to stop, an
emergency stop is initiated. For that the braking acceleration is set to
the emergency deceleration 𝑎e = −7.5 m s−2 and the virtual vehicle is
placed in such a way that the A-V stops directly at the last stop point
(𝑑l,o = 0 m s−1). This is always possible as the model only enters these
two states if an emergency stop is still possible (event 𝑒3).

4.3 Simulation Framework
In general, there are several methods to test and validate such a decision-
making system. Each of them has certain advantages and disadvantages.
The first option is a validation by simulation. With that a large number
of cases can be tested safely and relatively quickly. It is also cost-effective
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as it can be set up comparatively easily. The downside of this approach
is that the behavior of the cooperation partners has to be simulated as
well, thus evaluating the reaction of the algorithm to real human driv-
ing behavior is difficult if not impossible. Several works from literature
employ this approach, e.g. the simulation frameworks CoInCar-Sim [117]
or SUMO [100]. Another option is to use a test vehicle for automatic
driving, as it was done with the Bertha vehicle [177] or the Junior vehicle
by Stanford University [89]. This approach probably provides the most
realistic results in terms of the interaction between the algorithm and
human cooperation partners. The disadvantages are the need for such
a vehicle, the effort of integrating the algorithm into the infrastructure
of the vehicle, or setting the infrastructure up if it does not already ex-
ist and the demand for safety drivers and regulatory challenges. All of
these aspects increase the cost and effort while limiting the number of
drives that can be performed. The final option are test beds that use
model-scale vehicles that execute the decisions by the algorithms, e.g.
the Cyber-Physical Mobility Lab [82, 140], the Berkley Autonomous Race
Car [76] or the work by Khayatian et al. [79], who test their intersection
management protocol with model vehicles. Especially when using an
established system, the effort is presumably comparable to a simulation,
but with the added benefit that the model is tested using real vehicles,
even at a smaller scale. The number of drives through a scenario that can
be done is probably smaller than that of simulations, though. When the
focus is on motion planning a benchmark such as the CommonRoad [7]
is helpful to compare different solutions to each other. This benchmark
contains different scenarios that are made up of a map and trajectories of
other vehicles and a start and end position for the automation to reach.
Using this concept for decision-making is difficult as ideally many di-
verse situations are required to properly test an algorithm. Also, the
pre-recorded trajectories of the other vehicles make it difficult to assess
the interaction of an algorithm with its cooperation vehicles, which is an
important aspect.

Of these approaches, i.e. simulations, real test vehicles andmodel-scale
test beds, this work uses simulations for testing the proposed decision-
making algorithm. In the remainder of this section first the decision-
making algorithm for the C-Vs is introduced, including its events, transi-
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tions and the behavior generation. The focus is especially on those aspects
that differ from the main algorithm. This is followed by an introduction
to the simulation setup, i.e. the simulation framework, its properties and
its possibilities for parameterization.

4.3.1 Decision-Making Algorithm for Cooperation Vehicles
In order to realistically test the decision-making algorithm of the A-V
within a simulation, additional vehicles have to be added to act as the
C-Vs at the intersection. To ensure that these vehicles drive realistically,
they themselves have to be able to react to current traffic and make
decisions at the intersection. The only focus of the simulations is on
validating the A-V’s algorithm. Therefore the C-V’s algorithm has access
to the position, velocity and drive path of all vehicles regardless of the
vehicles’ visibility status or their distance to the intersection. To further
challenge theA-V’s algorithm, the C-Vs do not always behave as expected.
Instead, they can show so-called special behavior, which is possible in three
different ways: The C-V yields while having the right of way, it drives
despite having to yield or it drives slower by a factor 𝑐sl,c than it normally
would within and after the intersection. The first two variants are only
executed if the vehicle that would be affected by this behavior is the A-V.
The algorithm for the C-Vs is a simplified version of the main algorithm.

The vehicle that is running the C-V’s algorithm is referred to as A-VC
in the following and its relevant vehicles are marked with the subscript C,
e.g. the Y-VC is the vehicle that has to yield from the A-VC’s perspective.
The superscripts of the features remain unchanged, e.g. 𝑡a

c,p,e refers to
the time to collision zone of the A-VC to the end of the collision zone
with its P-VC in this section. Note that the P-VC in this example could be
the A-V, i.e. the vehicle running the algorithm under test, or any of the
remaining C-Vs.

The decision-making algorithm for the C-V does not require any new
features; all features that are used have been introduced in section 4.2.4.

4.3.1.1 Events

Like the main algorithm for the global A-V, the C-Vs’ algorithm is also
based on distance-dependent zones, but is has only five zones. Themodel
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Table 4.4 Base events (BE) for the C-Vs, which can show special behavior (SB).

BE condition description

𝑒b1,c P-VC exists P-VC exists
𝑒b2,c 𝑑p

l < 0 m ∧ 𝑑p
c,p,e > 0 m P-VC within intersection

𝑒b3,c P-VC: global A-V & SB flag is set show SB towards P-VC
𝑒b4,c (𝑡a

c,p,e − 𝑡p
c,p,b) > Δ𝑡p

c ∧
(𝑑a

c,p,e − 𝑑p
c,p,b) > Δ𝑑p

c

yield to P-VC

𝑒b5,c (𝑡a
c,p,e − 𝑡p

c,p,b) > Δ𝑡p
s,c∧

(𝑑a
c,p,e − 𝑑p

c,p,b) > Δ𝑑p
s,c

yield to P-VC under SB

𝑒b6,c Y-VC exists Y-VC exists
𝑒b7,c Y-VC: global A-V, 𝑡w > 0 s is set

& not waited for at least 𝑡w

show SB towards Y-VC

𝑒b8,c 𝑑y
l < 0 m ∧ 𝑑y

c,y,e > 0 m Y-VC within intersection
𝑒b9,c (𝑡a

c,y,e − 𝑡y
c,y,b) > Δ𝑡y

c yield to Y-VC
𝑒b10,c (𝑡a

c,y,e − 𝑡y
c,y,b) > Δ𝑡y

s,c yield to Y-VC under SB
𝑒b11,c 𝑣y < 𝑣sl,c ∧ 𝑎y ≤ 0 m s−2 Y-VC waits
𝑒b12,c B-VC exists B-VC exists
𝑒b13,c 𝑑b

f > 𝑙v + 𝑑min enough space behind B-VC
𝑒b14,c L-VC exists L-VC exists
𝑒b15,c 𝑑l

s < 0 m L-VC left intersection
𝑒b16,c 𝑣a < 𝑣s,c ∧ 𝑑a

s < 𝑑n A-VC stopped
𝑒b17,c 𝑣p < 𝑣s,c ∧ 𝑑p

s < 𝑑n ∧ 𝑎p ≤ 0 m
s2 P-VC stopped

𝑒b18,c 𝑣y < 𝑣s,c ∧ 𝑑y
s < 𝑑n ∧ 𝑎y ≤ 0 m

s2 Y-VC stopped

is shown in figure 4.8 and is introduced in detail in section 4.3.1.2. The
A-VC is in zone 1 as long as it is farther than 30m from the intersection.
In this zone the algorithm does not distinguish between offensive and
defensive behavior, instead the behavior is only dependent on the L-VC
and the initial velocity. As soon as the A-VC enters zone 2, the first
prediction is run and the vehicle shows either offensive or defensive
behavior. A second prediction is run when entering zone 3 at a distance
of 20m and a final prediction occurs at the beginning of zone 4 at a
distance of 10m. If the third prediction results in the decision to show
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Table 4.5 Events of the DES for decision-making for the C-Vs. Some events are a combi-
nation of base events.

definition description

𝑒1,p,c = ¬𝑒b1,c ∨ (¬𝑒b2,c ∧ ¬𝑒b3,c ∧ ¬𝑒b4,c)
∨ (¬𝑒b2,c ∧ 𝑒b3,c ∧ ¬𝑒b5,c)

green light by P-VC

𝑒1,y,c = ¬𝑒b6,c ∨ (¬𝑒b7,c ∧ ¬𝑒b8,c ∧ ¬𝑒b9,c)
∨ (¬𝑒b7,c ∧ ¬𝑒b8,c ∧ 𝑒b11,c)
∨ (𝑒b7,c ∧ ¬𝑒b8,c ∧ ¬𝑒b10,c)

green light by Y-VC

𝑒1,b,c = ¬𝑒b12,c ∨ 𝑒b13,c green light by B-VC
𝑒1,l,c = ¬𝑒b14,c ∨ 𝑒b15,c green light by L-VC
𝑒2,c entered next zone
𝑒3,c deadlock is possible
𝑒4,c = 𝑒b16,c ∧ 𝑒b17,c ∧ 𝑒b18,c deadlock occurred
𝑒5,c resolve deadlock timer

𝑒g,c = 𝑒1,p,c ∧ 𝑒1,y,c ∧ 𝑒1,b,c ∧ 𝑒1,l,c green light by rel. C-Vs
𝑒dl,c = 𝑒3,c ∧ 𝑒4,c ∧ 𝑒5,c ∧ 𝑒1,b,c ∧ 𝑒1,l,c resolve deadlock

offensive behavior, the A-VC drives through the intersection. In case of
defensive behavior, the vehicle stops before the intersection and waits.
The final zone is entered after the A-VC leaves the intersection, i.e. at a
distance smaller than 0m.

The events are similar to those of the A-V’s algorithm as well, but due
to the simplified algorithm and the special behavior there are some differ-
ences. Again, only the four relevant C-Vs (from the A-VC’s perspective)
are considered and also the traffic light analogy is used. All events are
listed in table 4.5 and are again a combination of base events, which are
listed in table 4.4.

The A-VC drives before its P-VC if it can safely do so or if its P-VC is
the global A-V and it is supposed to show special behavior. If the A-VC
does so, it drives before its P-VC even when the safety margins are a lot
smaller. The condition 𝑒1,p,c is true, i.e. the A-VC can drive relative to its
P-VC, if one of the following conditions is fulfilled:

The P-VC does not exist (¬𝑒b1,c).
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The P-VC is not inside the intersection (¬𝑒b2,c), no special behavior
is to be shown (¬𝑒b3,c) and the A-VC can leave the collision zone
with its P-VC with enough lead distance and time in case of no
special behavior, i.e. it does not have to yield (¬𝑒b4,c).

The P-VC is not within the intersection (¬𝑒b2,c), special behavior is
desired (𝑒b3,c) and the lead is large enough for the case of special
behavior (¬𝑒b5,c).

These base events for green light by the P-VC (𝑒1,p,c) are introduced in
the following: The P-VC is considered to be inside the intersection (𝑒b2,c)
if its distance to the last stop point is negative while the distance to the
end of the collision zone is still positive:

𝑑p
l < 0 m ∧ 𝑑p

c,p,e > 0 m. (4.19)

Special behavior is shown (𝑒b3,c) if the P-VC of the A-VC is the global
A-V and a corresponding flag has been set for the A-VC during the
initialization of the simulation run. If the lead of A-VC over its P-VC in
case of no special behavior (𝑒b4,c) is not large enough in time and distance
(Δ𝑡p

c = −2.5 s and Δ𝑑p
c = −15 m) it yields to the P-VC:

(𝑡a
c,p,e − 𝑡p

c,p,b) > Δ𝑡p
c ∧ (𝑑a

c,p,e − 𝑑p
c,p,b) > Δ𝑑p

c . (4.20)

The condition in case of special behavior (𝑒b5,c) is similar, but the thresh-
olds are chosen in such a way that the A-VC drives more aggressively,
i.e. it even drives if it is predicted to leave after the P-VC has entered the
common collision zone (Δ𝑡p

s,c = 3 s and Δ𝑑p
s,c = 7 m) and only yields if

(𝑡a
c,p,e − 𝑡p

c,p,b) > Δ𝑡p
s,c ∧ (𝑑a

c,p,e − 𝑑p
c,p,b) > Δ𝑑p

s,c (4.21)

is met. With these conditions the event for green light by the P-VC is thus
defined as

𝑒1,p,c = ¬𝑒b1,c ∨ (¬𝑒b2,c ∧ ¬𝑒b3,c ∧ ¬𝑒b4,c) ∨ (¬𝑒b2,c ∧ 𝑒b3,c ∧ ¬𝑒b5,c).
(4.22)

The A-VC can drive before its Y-VC if this vehicle does not obstruct the
A-VC, i.e. if the A-VC is able to leave the common collision zone before its
Y-VC enters it. In case it is supposed to show special behavior, it will not
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do so but instead stand at the intersection for a predetermined period of
time. This time is set during the initialization of a simulation run. The
special behavior is only executed if the C-V in question is supposed to
do so, the Y-VC is the global A-V and the A-VC does not arrive too much
earlier.

To determine if the A-VC can drive relative to its Y-VC, some base
events are needed: Condition 𝑒b6,c is true if the Y-VC exists. The A-VC
shows special behavior (𝑒b7,c) if the Y-VC is the global A-V, a wait time
of 𝑡w > 0 has been set during initialization and the A-VC has not yet
been stationary for at least 𝑡w. The waiting time is incremented if the
A-VC is currently in state 𝑠42,c, a wait time has been set (𝑡w > 0) and if its
velocity is below 𝑣m = 0.15 m s−1. It follows from this implementation
that the A-VC switches to its regular behavior towards its Y-VC after
its waiting time is over. Base event 𝑒b8,c is true if the Y-VC is beyond
its LSP but has not yet passed the end of the collision zone with the
A-VC: 𝑑y

l < 0 m ∧ 𝑑y
c,y,e > 0 m. The A-VC yields to its Y-VC (𝑒b9,c) if it is

predicted to leave the collision zone at least Δ𝑡y
c = 3 s later than when

the Y-VC is predicted to enters it: (𝑡a
c,y,e − 𝑡y

c,y,b) > Δ𝑡y
c . If the A-VC has

to show special behavior, i.e. it yields to its Y-VC, it does so even if it is
predicted to leave the collision zone up to Δ𝑡y

s,c = −3 s earlier than its
Y-VC leaves it: (𝑡a

c,y,e − 𝑡y
c,y,b) > Δ𝑡y

s,c. If this condition is met, base event
𝑒b10,c is true. The Y-VC is considered to be waiting (𝑒b11,c), if it is slower
than 𝑣sl,c = 1 m s−1 and if it is not accelerating: 𝑣y < 𝑣sl,c ∧ 𝑎y ≤ 0 m s−2.
The event 𝑒1,y,c for the Y-VC occurs, i.e. the A-VC drives relative to that
vehicle, if one of the following conditions is met:

The Y-VC does not exist (¬𝑒b6,c).

The Y-VC is outside the intersection (¬𝑒b8,c), special behavior is
not shown (¬𝑒b7,c) and the A-VC does not need to yield to its Y-VC
(¬𝑒b9,c).

The Y-VC is outside the intersection (¬𝑒b8,c), special behavior is
not shown (¬𝑒b7,c) and the Y-VC waits (𝑒b11,c).

The Y-VC is outside the intersection (¬𝑒b8,c), special behavior is
shown (𝑒b7,c) and the A-VC does not need to yield to its Y-VC even
under special behavior conditions (¬𝑒b10,c).
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The events for the remaining two relevant C-Vs are defined the same
as in the case of the algorithm for the A-V. The event for the B-VC occurs
if the vehicle either does not exist (¬𝑒b12,c) or if there is enough space
between it and the end of the intersection (𝑒b13,c, 𝑑b

f > 𝑙v + 𝑑min):

𝑒1,b,c = ¬𝑒b12,c ∨ 𝑒b13,c. (4.23)

The A-VC can drive relative to its L-VC if the L-VC does not exist (¬𝑒b14,c)
or if it has already left the intersection (𝑒b15,c, 𝑑l

s < 0 m):

𝑒1,l,c = ¬𝑒b14,c ∨ 𝑒b15,c. (4.24)

The remaining events of the algorithm for the A-VC are also very
similar or equivalent to those of the A-V. Event 𝑒2,c is triggered if the
zone has changed in the current time step. The event 𝑒3,c is true if a
deadlock is possible due to the turning directions of the A-VC, the P-VC
and the Y-VC. If 𝑒4,c is true, a deadlock has been detected, i.e. all three
vehicles in question are stationary close to the intersection:

𝑒4,c = 𝑒b16,c ∧ 𝑒b17,c ∧ 𝑒b18,c. (4.25)

The conditions for a standing vehicle differ from the original algorithm
in that a vehicle is already considered as stationary at a velocity below
𝑣s,c = 0.3 m s−1 instead of the slower velocity threshold used for the
main algorithm (𝑣s = 0.15 m s−1). This is true for the A-VC (𝑒b16,c), the
P-VC (𝑒b17,c) and the Y-VC (𝑒b18,c). The final event 𝑒5,c occurs if the A-VC
decides to resolve a deadlock. This is the case if it has been stationary
for a certain duration. The duration is again set during the initialization
of a simulation run. The corresponding timer is started if a deadlock
is possible, has occurred and the A-VC would not get stuck within the
intersection, i.e. the B-VC and the L-VC give green light:

𝑒dl,c = 𝑒3,c ∧ 𝑒4,c ∧ 𝑒1,b,c ∧ 𝑒1,l,c. (4.26)

Even though the A-V’s algorithm immediately triggers the vehicle to
drive after detecting a deadlock the A-VC can still go first because its
model’s threshold for considering a vehicle as stationary is at a higher
velocity with 𝑣s,c = 0.3 m s−1 than the A-V’s model (𝑣s = 0.15 m s−1). If
the waiting time is short enough, it is thus able to still drive first. This
is implemented to test the A-V’s reaction to someone else resolving a
deadlock.
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𝑠10,c

𝑠21,c

𝑠22,c

𝑠31,c

𝑠32,c
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𝑠43,c 𝑠50,c

𝑒1,p,c
𝑒2,c
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¬𝑒1,p,c
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∧𝑒2,c
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∧𝑒2,c

¬𝑒1,p,c
∧𝑒2,c

𝑒g,c
∧𝑒2,c

¬𝑒g,c
∧𝑒2,c
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¬𝑒g,c
∧𝑒2,c
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zone 1:
𝑑a

s > 30 m
zone 2:

30 m ≥ 𝑑a
s > 20 m

zone 3:
20 m ≥ 𝑑a

s > 10 m
zone 4:

10 m ≥ 𝑑a
s > 0 m

zone 5:
0 m ≥ 𝑑a

s

Figure 4.8 Simplified decision-making algorithm for the C-Vs. If none of the events
associated with the current state occurs, the system remains in its current state. For better
readability these transitions are not shown here.

4.3.1.2 Decision-Making Model

The model for decision-making for the C-V is based on these events and
is shown in figure 4.8. While in zone 1 the A-VC is always in 𝑠10,c. Directly
after entering zone 2 (𝑒2,c) a first prediction is run. For that prediction
only the P-VC is considered (𝑒1,p,c). If the P-VC gives green light, the
system transitions to the offensive state 𝑠21,c, otherwise it switches to
the defensive state 𝑠22,c. The same prediction is run when driving into
zone 3. The model is in the offensive state 𝑠31,c if P-VC gives green light
or progresses to the defensive state 𝑠32,c otherwise. In zones 2 and 3 the
A-VC is assigned a target velocity that depends on the current state. The
target velocities for all states are listed in table 4.6.

After entering zone 4 the prediction is run again, this time all relevant
C-Vs are considered, however. If all vehicles give green light (𝑒g,c, see
table 4.5 for the definition), the system shifts to state 𝑠41,c, otherwise state
𝑠42,c is assumed. If the A-VC is in the defensive state 𝑠42,c, it brakes and
stops before the intersection.While in that state, as soon as all traffic lights
turn green (𝑒g,c) or a deadlock is to be resolved (𝑒dl,c, see table 4.1) the
vehicle switches to state 𝑠43,c. This state describes offensive driving after
stopping in zone 4. Both offensives states of that zone have in common
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Table 4.6 Target velocities 𝑣t,c in m s−1 for the states of the DES for the C-V. The values in
state 𝑠42,c are set to these high values while a virtual vehicle is present to enforce stopping
before the intersection.

state 𝑠21,c 𝑠22,c 𝑠31,c 𝑠32,c 𝑠41,c, 𝑠42,c & 𝑠43,c

𝑣t,c (straight) 8.3 6.0 7.5 4.0 7.0
𝑣t,c (turning) 8.3 6.0 5.5 4.0 4.0

that the decision to drive through the intersection is not reconsidered but
the A-VC drives through the intersection in any case. After the vehicle
enters zone 5 from either state the model transitions to state 𝑠50,c.

4.3.1.3 Behavior Generation

The behavior, i.e. the longitudinal acceleration, is again calculated using
the IDM from (4.16). In state 𝑠10,c the initial velocity is used as the target
velocity 𝑣t,c, in the remaining states 𝑣t,c is set according to table 4.6. In
state 𝑠42,c the A-VC is supposed to stop before the intersection. This is
again done by placing a virtual vehicle at the intersection. The vehicle
brakes with either 𝑎c, 𝑎h or 𝑎e. In zone 5 the target velocity 𝑣t,c is set to
the speed limit of 𝑣max = 30 km h−1.

The final special behavior, i.e. driving slower than usual after the
intersection, is implemented by manipulating 𝑣t,c. For that reason the
target velocity in zone 5 is adapted: ̃𝑣t,c = 𝑐sl,c𝑣max. If the target velocity
𝑣t,c in state 4 is larger than the adapted target velocity ̃𝑣t,c in zone 5, it is
set to the same value to avoid accelerating followed by decelerating after
leaving the intersection: ̃𝑣t,c = min (𝑣t,c, 𝑐sl,c𝑣max).

4.3.2 Simulation Set-Up
The simulation framework that is used for testing the decision-making
model provides all important functionalities for validating the algorithm.
First, the current simulation run is initialized. For that purpose the de-
sired number of vehicles is randomly assigned to one of the three entry
streets. Further, each vehicle is assigned an initial distance to the inter-
section and an initial velocity as well as a turning direction. These two
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values are set in such a way that the vehicles are placed far enough from
each other to avoid collisions before the IDM can adapt their behavior ac-
cordingly. If there is not enough space on one of the roads for all vehicles,
the vehicles furthest back are removed until there is enough space for all
remaining vehicles. The streets in the maps are extended so that this only
seldom happens, i.e. if there are too many vehicles placed on the same
entry road. Next, one of the vehicles is randomly selected to be the one
using the main algorithm from section 4.2. The remaining vehicles use
the simplified algorithm described in section 4.3.1. The special behavior
towards the A-V described there can be shown by these vehicles. These
behaviors are assigned randomly. During a simulation run, at most one
vehicle can be assigned the special behavior to drive before the A-V. The
remaining C-V can alternatively be set to stop despite having the right of
way when their Y-VC is the A-V. This special behavior can be assigned
to multiple C-Vs; each vehicle with that behavior is assigned its random
waiting time 𝑡w after which it tries to drive again. The final special be-
havior makes the C-V drive slowly within and after the intersection. All
C-Vs, regardless if they have already been assigned a special behavior,
can be assigned to perform that way. If a vehicle is selected for that, the
slowing factor 𝑐sl,c is randomly drawn. It is important to note that these
special behaviors are only seldom assigned; in most simulated runs all
C-Vs drive as expected. C-Vs try to resolve a deadlock by driving after
a certain waiting period, as introduced in section 4.3.1.2. This waiting
period is also randomly assigned during the set-up of a simulation run.

In each time step of the actual simulation, the current state of all vehi-
cles is extracted and given to the decision-making models. For the A-V
the vehicles are filtered so that only the data of itself and of those vehicles
that are visible in the current time step is provided to the algorithm. Also,
the assumption that the turning direction is unknown to the A-V while
a C-V is farther than 𝑑𝑥

s > 10 m from the intersection is implemented
here. The decision-making models are then run for all vehicles and the
resulting longitudinal acceleration is integrated twice to obtain the new
distance along the drive path. This process is repeated until either the
maximum simulation time of 1min is exceeded or all vehicles have left
the intersection. This is the case if the A-V is at least 50m from the end of
the intersection (𝑑a

s < −50 m) and all C-Vs are at least 5m from the end
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of the intersection. Finally, a log file containing the states of all vehicles
at all time steps is saved.

In a further step the log files are then used to evaluate the runs. This
includes the check for collisions and the calculation of the time it took
the A-V to pass the intersection 𝑡d, i.e. the time while the A-V was within
a distance of 30 m ≥ 𝑑a

s ≥ 0 m. As 𝑑a
s = 0 m holds within the intersection,

this time includes both the time during the approach to and within the
intersection. Also, the number of C-Vs that interacted with the A-V is
counted. A C-V is considered as an interaction partner if it is close to
the intersection’s beginning (10 m > 𝑑𝑥

s ) and before the projection of the
intersection center onto its path at the same time as this condition was
true for the A-V. These C-Vs are then further classified into the categories,
P-V, Y-V and others. Finally, some of the log files are used to generate
videos of the interaction at the intersection. These are especially helpful
for development and additional manual validation.

4.4 Simulation Results
The decision-makingmodel is evaluated using the simulation framework
described above. For that purpose several simulations are run.With these
the general performance of the algorithm is evaluated using the generic
intersection. This is followed by simulations on the maps of the real
intersections and finally, the influence of the visibility conditions at the
intersections is evaluated.

The main metric by which the simulations are evaluated is the time 𝑡d
it takes the A-V to pass the intersection. If the number of simulation runs
𝑁s that are included in a given evaluation exceeds 1, the average time of
all these runs is used for the evaluation:

̄𝑡d =
1

𝑁s

𝑁s

∑
𝑖=1

𝑡d,𝑖, (4.27)

where 𝑡d,𝑖 is the time to pass the intersection in simulation run 𝑖.
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Table 4.7 Average time to clear the generic intersection ̄𝑡d in s by the number of interacting
C-Vs that are classified as either P-Vs or Y-Vs. The values are averaged over all visibility
distances.

0 P-Vs 1 P-V 2 P-Vs 3 P-Vs 4 P-Vs

0 Y-Vs 9.49 14.02 19.43 22.49 24.26
1 Y-V 9.62 16.79 21.95 25.45 29.87
2 Y-Vs 13.53 19.83 25.28 27.31 36.87
3 Y-Vs 15.87 20.58 24.73 - -
4 Y-Vs 26.87 15.22 - - -

4.4.1 Generic Intersection
The first simulation is run on the map of the generic intersection of
figure 4.2. For this simulation the number of C-Vs was set to 𝑁cv =
{1, 2, 3, 4, 5, 6}, the visibility distance to 𝑑vs = {7 m, 14 m, 21 m} and the
simulation is run 𝑁sc = 200 times with different, randomly selected start
conditions. This results in 3600 simulation runs. There was no collision
between any of the vehicles in all runs. Also, all vehicles were able to
clear the intersection during the simulated time span. Averaged over all
simulation runs, it took the A-V ̄𝑡d = 12.13 s to clear the intersection with
a standard deviation of 𝜎 = 6.14 s.

A further important aspect is the number of interaction partners and
their influence on the average time to clear the intersection ̄𝑡d. In table 4.7
̄𝑡d is calculated separately for each combination of the numbers of inter-

action C-Vs that are classified as P-Vs and Y-Vs, respectively. The results
show that the time to drive through the intersection increases with the
number of C-Vs. This increase is more pronounced in the case of the
P-Vs.

These findings are plausible because the A-V is required to yield to
its P-Vs. The presence of these vehicles thus causes an increase in the
waiting time. The more P-Vs are present, the longer the required waiting
time. The fact that ̄𝑡d is also larger in the case of more Y-Vs is probably
caused by two factors: Some of the Y-Vs will have driven first due to their
special behavior assignment. The second possible aspect is the rather
conservative parameterization of the decision-making model. If a Y-V
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𝑡1 = 6 s 𝑡2 = 9 s 𝑡3 = 12 s

𝑡4 = 16 s 𝑡5 = 20 s 𝑡6 = 24 s

vis. area vis. edge A-V C-V 1 C-V 2 C-V 3

Figure 4.9 Example of a run through the generic intersection. C-V 1 and the A-V arrive
first but the situation cannot be resolved before the arrival of C-V 3. The turning directions
of the three vehicles (A-V: left, C-V 1: left and C-V 3: straight) result in a deadlock which
is resolved by the A-V driving first. After it has passed the intersection, the situation is
resolved and the C-Vs have a clear driving order. The grid spacing is 10m and the visibility
distance 𝑑vs = 7 m.

approaches the intersection too offensively, the A-V’s algorithmwill often
wait until it is certain that the Y-V actually yields, thus increasing the
time to pass the intersection.

When interpreting the results from table 4.7 it is important to note that
runswithmore than three C-Vs theA-V has to interact with seldom occur,
̄𝑡d is thus calculated based on fewer simulation runs than compared to

e.g. the value for runs with no C-V and the values are less reliable. The
entry for 4 Y-V and no P-V is for example based on only a single run.
Also, there are more runs with no P-V (2638 runs) than runs with no Y-V
(1626). This is probably caused by the method with which the interaction
C-Vs are classified: They are counted as a P-V or Y-V, respectively, if
that flag is assigned to them at least once during the simulation run. If
the A-V turns into the next street to the right, no vehicle is classified as
a P-V, as the A-V does not have to yield to anyone. This is in contrast
to the C-V approaching from the next street to the left: In this case it
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Table 4.8 Average time ̄𝑡d to drive through the intersection for all real world intersections,
including the standard deviation 𝜎. There are 900 runs through each intersection. For
comparison, the average over all runs in which the A-V did not interact with any P-V and
Y-V is given by ̄𝑡0

d.

intersection # 1 2 3 4 5 6
̄𝑡d in s 13.30 12.00 14.37 14.90 13.35 13.02

𝜎 in s 6.52 6.03 6.81 7.09 6.71 6.53
̄𝑡0
d in s 10.65 9.44 11.84 12.47 10.69 10.20

intersection # 7 8 9 10 11 12
̄𝑡d in s 12.19 11.08 15.52 15.43 13.69 13.76

𝜎 in s 6.07 5.67 7.39 7.69 6.97 6.83
̄𝑡0
d in s 9.33 8.30 13.01 12.77 10.66 10.84

depends on the C-V’s turning direction if it is actually a Y-V. As the
turning direction is assumed to be unknown at larger distances, many
more C-Vs are assigned that flag at some time during the approach as
compared to the P-V flag.

In figure 4.9 the positions of the vehicles during one of the simulation
runs are shown at selected points in time. Besides the positions of the
vehicles at time 𝑡𝑖 also the street area that is currently visible to the A-V is
shown in light red. Additionally, the corners that determine the visibility
are displayed. In this scenario, a deadlock involving the A-V and two of
its C-Vs occurs which is solved by the A-V driving first.

4.4.2 Real Intersections in Karlsruhe
For the second simulation the 12 maps of inner-city intersections of
the City of Karlsruhe (c.f. figure 4.3) are used. The numbers of coop-
eration vehicles 𝑁cv = {1, 2, 3, 4, 5, 6} and the visibility distances 𝑑vs =
{7 m, 14 m, 21 m} are the same as for the first simulation, but there are
only 𝑁s = 50 simulation runs per combination, resulting in a total of
10 800 simulation runs.

All vehicleswere able to resolve the situation at the intersectionswithin
the simulated time span, thus both algorithms, the one for the A-V and
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Table 4.9 Average time to clear the intersection ̄𝑡d in s at intersection 8 by the number of
P-Vs and Y-Vs. The values are averaged over all visibility distances. This intersection is an
example of an intersection with a small intersection area, cf. Figure 4.3.

0 P-Vs 1 P-V 2 P-Vs 3 P-Vs 4 P-Vs

0 Y-Vs 8.30 12.47 18.40 21.51 22.93
1 Y-V 8.69 15.29 19.86 24.77 29.77
2 Y-Vs 11.39 21.27 24.35 23.12 24.48
3 Y-Vs 20.02 19.67 - - -
4 Y-Vs - - - - -

Table 4.10 Average time to clear the intersection ̄𝑡d in s at intersection 9 by the number of
P-Vs and Y-Vs. The values are averaged over all visibility distances. This intersection is an
example of an intersection with a large intersection area, cf. Figure 4.3.

0 P-Vs 1 P-V 2 P-Vs 3 P-Vs 4 P-Vs

0 Y-Vs 13.01 17.16 22.99 31.68 31.06
1 Y-V 12.08 20.38 27.18 30.76 29.32
2 Y-Vs 16.95 22.57 22.13 28.87 42.52
3 Y-Vs 18.01 22.32 - - -
4 Y-Vs - 22.13 - - -

the one for the C-Vs, were also able to control the vehicles through this
more diverse set of intersection maps. In one simulation run, however,
the A-V was not able to fully leave the intersection area within the simu-
lation time. This was caused by the relatively large intersection area of
intersection 9 and the fact that it had to wait for all C-Vs to pass before.
When the simulation time was up the A-V was currently in the process
of driving through the intersection area. One similar case occurred at
this intersection where a C-V also was unable to cross the intersection in
time. The algorithm for the A-V managed to find a collision-free solution
in all runs. In case of the algorithm for the C-Vs there are two collisions.
Both occur when two C-Vs tried to resolve a deadlock simultaneously.
As the decision to drive is not reconsidered by this algorithm, a collision
is inevitable in this case. They are ignored as they are caused by the
simplifications within the model for the C-Vs and are not an indication
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𝑡1 = 7 s 𝑡2 = 11 s 𝑡3 = 16 s

𝑡4 = 20 s 𝑡5 = 28 s 𝑡6 = 31 s

vis. area A-V C-V 1 C-V 2 C-V 3
vis. edge C-V 4 C-V 5 C-V 6

Figure 4.10 Example of a simulation run through intersection 9. C-V 2 passes the inter-
section before the other vehicles arrive. Then a deadlock occurs between the A-V and C-V
1 (the P-V) and C-V 3 (Y-V). It is resolved by C-V 1 driving first. After that the situation is
clearly regulated and the A-V, followed by C-V 6, drives next in accordance with the traffic
regulations. The grid spacing is 10m and the visibility distance is set to 𝑑vs = 7 m.

of an error within the decision-making model of the A-V. The influence
on the average times ̄𝑡d to clear the intersections is also very limited due
to their rare occurrence. In one case two C-Vs are set up on top of each
other, but due to their different initial velocity they manage to separate
from each other far enough from the start of the intersection so that the
interaction there is not affected.

In table 4.8 the average time to drive through the intersections is given
for this simulation. In that table the average is calculated separately for
each intersection, the first rows of the table contain the average time to
drive through the intersection for all runs ̄𝑡d, the second rows contain
the standard deviations for that value. The third rows contain the av-
erage time to drive through the intersection where only those runs are
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𝑡1 = 6 s 𝑡2 = 9 s 𝑡3 = 11 s

𝑡4 = 13 s 𝑡5 = 20 s 𝑡6 = 23 s

vis. area vis. edge A-V C-V 1 C-V 2 C-V 3

Figure 4.11 Example of a run through intersection 2: Both a P-V and a Y-V exist, but no
deadlock occurs due to their turning directions. C-V 2 (the P-V) passes first, followed by
the A-V. However, the A-V only passes after it is certain that C-V 3 (the Y-V) actually stops.
C-V 1 also passes the intersection in the meantime but as it turns right is not involved in
the interaction. The grid spacing is 10m and the visibility distance is set to 𝑑vs = 14 m.

considered in which no interacting C-V is present ( ̄𝑡0
d). For comparison,

in case of the generic intersection ̄𝑡0
d = 9.49 s (c.f. table 4.7).

These results show that both ̄𝑡d and ̄𝑡0
d differ substantially for the vari-

ous intersections. The difference between intersection 8, which has the
lowest times and intersection 9, where the times are largest, is greater
than 4 s for both ̄𝑡d and ̄𝑡0

d. When comparing the times with the plots
of the maps of figure 4.3 a clear pattern is visible: the larger the inter-
section area, the larger the time to clear it. This is especially apparent
for intersections 9 and 10, which have the largest times to clear them.
The area where the lanes overlap are relatively large, which results in
longer distances and thus longer times through the intersections. This is
also true for the opposite direction; intersections 8 and 2 are relatively
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compact, consequently ̄𝑡d and ̄𝑡0
d at these intersections are the lowest and

second lowest, respectively, of all intersections.
In table 4.9 ̄𝑡d depending on the number of P-Vs and Y-Vs the A-V

has to interact with is shown for intersection 8, the intersection with the
lowest overall ̄𝑡d. The same table for the intersection with the largest
overall ̄𝑡d, intersection 9, is presented in table 4.10. In both cases the same
phenomenon as in the case of the generic intersection can be observed:
The average time ̄𝑡d increases with more C-Vs the A-V interacts with
and this increase is more pronounced in case of the P-Vs than compared
to the Y-Vs. As in table 4.7 the entries of the cases with more C-Vs are
less reliable as there are fewer cases. This effect is increased by the lower
number of simulated runs per combination (𝑁s = 50).

The performance of the decision-making algorithm on the maps of
real intersections is showcased in figure 4.10 and in figure 4.11. The first
scenario shows one of the simulation runs at intersection 9. In it the A-V
and six C-Vs approach the intersection where a deadlock between the
A-V and two of the C-Vs occurs, which is resolved by one of the C-Vs.
The latter example is taken from a simulation run at intersection 2. It
shows the interaction of the A-V with two C-Vs. The A-V first lets its
P-V pass and as soon as it is certain that the Y-V stops, the A-V drives
through the intersection. Additional examples of simulation runs can be
found in appendix C.

4.4.3 Influence of Limited Visibility
So far the visibility distance has not been taken into consideration, instead
the average time ̄𝑡d to pass the intersection has been calculated of all
available visibility distances in the evaluations for the previous two
sections. One could, however, argue that poor visibility conditions lead
to other traffic participants being visible later and thus force the model
to approach the intersection more cautiously and slower. A reduction in
the speed would lead to increased time to clear the intersection 𝑡d. This
argument is further supported by the event 𝑒b1 that ensures that the A-V
may only drive if there cannot be a P-V due to its own turning direction
or if the street the P-V would approach on is sufficiently visible.

To investigate that, ̄𝑡d is calculated separately for each of the visibility
distances 𝑑vs = {7 m, 14 m, 21 m} of the 3600 simulation runs on the
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generic map: ̄𝑡d (𝑑vs = 7 m) = 12.10 s with a standard deviation of 𝜎 =
6.03 s; ̄𝑡d (𝑑vs = 14 m) = 12.14 s,𝜎 = 6.18 s and ̄𝑡d (𝑑vs = 21 m) = 12.16 s,
𝜎 = 6.23 s.

These results indicate that there is no dependence on the visibility
distance. However, these values are calculated by averaging all runs with
the same visibility distance and thus the effects of it could be masked by
other, stronger influences. Also, the visibility distances 𝑑vs of the previ-
ous simulations may be too large to have any substantial influence on the
time as large areas of the intersections are visible even when the A-V is
still farther from the intersection (c.f. figures 4.9, 4.10 and 4.11). For fur-
ther investigation an additional simulation is conducted on the generic
map and on intersections 8, 5 and 9 where the visibility distance is set to
values in 1m or 2m increments: 𝑑vs = {1 m, 2 m, … , 10 m, 12 m, … , 22 m}.
These intersections are included because they have the lowest (intersec-
tion 8), an intermediate (intersection 5) and the highest (intersection 9)
̄𝑡d in the simulation of section 4.4.2. The number of C-Vs remains un-

changed with 𝑁cv = {1, 2, 3, 4, 5, 6} and the number of simulation runs
per combination is set to 𝑁s = 50, which results in 19 200 additional
simulation runs. Again, no collisions involving the A-V occurred, but in
three runs collisions between C-Vs could be observed, all were caused
by attempting to resolve a deadlock simultaneously.

The average time to pass ̄𝑡d for the different visibility distances 𝑑vs of
these simulations is given in figure 4.12 (full sim. variant in the plots).
At those distance where the A-V is able to pass the intersection, the
standard deviations are in a similar range as they are when considering
the three original visibility distances combined, as is reported in table 4.8.
The results show a pattern similar to the analysis that uses only the
three visibility distances: There is little difference between ̄𝑡d at different
distances while the standard deviation is relatively high, which prohibits
a clear conclusion regarding a possible influence of 𝑑vs. There are no
results shown for very small values of 𝑑vs because the model for the A-V
gets stuck at the intersection in some runs when the visibility distance is
that small. This effect is discussed in detail below.

To investigate the influence of the visibility distance on the time to
clear the intersection without any disturbing factors, a final simulation
is performed. For that purpose only the A-V is placed at the intersection.
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Figure 4.12 Time to pass the intersection 𝑡d over the visibility distance 𝑑vs at four different
intersections for all three possible entry positions and the two driving directions. The times
are recorded by initializing the A-V at a constant distance and with a constant initial
velocity before the intersection while there are no additional C-Vs. As this procedure is
deterministic, each variant is run only once. Times for a given 𝑑vs are only reported if the
A-V is able to clear the intersection and does not get stuck due to insufficient visibility over
the intersection. The time 𝑡d is measured for all three entry directions. First row: generic
intersection (left) and intersection 8. Second row: intersection 5 (left) and intersection 9.
Additionally, ̄𝑡d of the full simulation with multiple vehicles and random initial conditions
is given.

All runs are initialized at the same distance and with the same velocity.
Two variants are simulated for each entry position, one where the A-V
turns so that a P-V can exist (drives straight when entering from the left,
turns left when entering from the bottom or right) and one where a P-V
cannot exist as the driving paths do not intersect (driving straight when
entering from the right or driving right when entering from the left or
bottom). The visibility distance 𝑑vs is set to values between 0.5m and
21m in 0.5m increments. Additionally, 𝑑vs = 0.01 m is simulated. This
value is used as placing the visibility corner directly onto the curb cannot
be simulated by the framework in its current form. As these simulations
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have deterministic results, only one simulation run is performed per
variant.

The results of the simulations are also shown in figure 4.12. The time to
pass the intersection 𝑡d for the generic map is presented alongside those
for intersections 8, 5 and 9. There is no reported 𝑡d if the A-V gets stuck
at the intersection due to insufficient visibility. In this simulation a de-
pendence of the driving behavior on the visibility distance is observable.
The general shape of the curves is the same for the four intersections and
also holds for the remaining intersections, which are not shown here.

First the results for the variants are presented where the A-V turns
so that a P-V can exist: In most cases the A-V is unable to clear the
intersection for very small visibility distances 𝑑vs. When it is able to
clear it, the time to clear the intersection 𝑡d decreases continuously with
increasing 𝑑vs. For larger distances the time to pass is constant, but if the
A-V enters the intersection from the left street, 𝑡d drops abruptly twice
at certain values of 𝑑vs to a new constant value. The same phenomenon
is visible when entering from the bottom, but there is only one drop of
𝑡d in this case. The continuous decrease in 𝑡d exists for all three entry
positions; the extent and the distances, however, at which this effect is
visible differ. It is further common among all intersections that entering
from the right converges to a constant value at the smallest values of 𝑑vs.
Of all three entry positions, 𝑡d reaches the smallest values when entering
from the left.

No P-V can exist if the A-V turns into the next street to the right.
If the A-V enters from the right, in this case its 𝑡d is constant over all
visibility distances. In case it enters from one of the other two directions,
𝑡d decreases to a constant value for increasing visibility distance 𝑑vs. This
pattern is again common for all intersections, but the values of 𝑡d and
𝑑vs depend on the intersection.

All of these phenomena can be explained: The initial continuous de-
crease in 𝑡d is caused by the distance to the intersection of the A-V at
which it is able to see the reference point (see section 4.2.3) on the streets
of the P-V and of the B-V, respectively. If the visibility is poor, which is
the case for low values of 𝑑vs, the reference points are not visible when
the A-V enters zone 4. The A-V thus remains in the defensive state 𝑠42
until the reference points become visible, which is when it switches to
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offensive behavior as there are no further C-Vs present. The continuous
curve results from the fact that in zone 4 the model is re-evaluated at ev-
ery time step. The reference point on the street of the B-V is only relevant
in zone 4; if it is not visible before, it does therefore not have an influence
on the driving behavior in the earlier zones. The P-V, in contrast, is also
evaluated in the earlier zones and if the reference point associated to
it is not visible before, it causes a more defensive driving behavior. As
the transitions of the model are only evaluated when entering zones
2 and 3, 𝑡d changes abruptly if the A-V is able to drive offensively in
these zones at a certain value of 𝑑vs. The different number of steps for
the different entry positions can also be explained: When entering from
the right, a P-V would enter from the left and is therefore visible from
the start. In this case only the B-V is not directly visible, which only has
an influence in zone 4. Because of that there are no steps in 𝑡d. When
entering from the left or bottom, the street of the P-V is at an angle and
thus the visibility is important. When entering from the left, two steps
in 𝑡d can be observed caused by the A-V being able to drive offensively
in zones 2 and 3, respectively. Entering from the bottom results in only
one step; this is caused by the fact that offensive and defensive behavior
in zone 3 have the same target velocity (𝑣t = 6.0 m s−1) when the A-V
turns.

If there cannot be a P-V, only the reference point on the street of the
B-V influences the time to clear the intersection. If the A-V enters from
the right, it has to drive straight in order to ensure that there cannot be a
P-V. If this is the case, the reference point of the B-V is visible from the
start, 𝑡d is therefore constant over all visibility distances 𝑑vs. In case the
A-V enters from the other two positions, turning right ensures the non-
existence of the P-V. Because of that the reference point is not necessarily
visible at large distances of the A-V from the intersection and thus the
time to pass the intersection is larger for small visibility distances as the
A-V has to get closer to the intersection before the point becomes visible.

The effects of the visibility distance 𝑑vs on the visible area at an inter-
section are visualized in figure 4.13. There the visible area is plotted at
two intersections, the generic one and intersection 9. For both intersec-
tions a visibility distance of 𝑑vs = 1.5 m and 𝑑vs = 6 m is shown. As the
current visibility conditions also depend on the distance of the A-V to
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𝑑a
s = 10 m 𝑑a

s = 3 m at 𝑑l,o = 1 m before LSP

vis. area vis. corner A-V

Figure 4.13 Visualization of the visible area at two intersections. In rows 1 and 3 the
visibility distance is 𝑑vs = 1.5 m, in rows 2 and 4 it is 𝑑vs = 6 m. The first two rows show
the results from the generic intersection, the third and last row show intersection 9.

the intersection, the situations when the A-V is 𝑑a
s = 10 m (first column),

when it is 𝑑a
s = 3 m (second column) and when it is 𝑑l,o = 1 m from its

last stop point when turning left (last column) are shown for all four
variants6. 𝑑a

s = 10 m is important because the A-V transitions to zone 4
at that distance where defensive behavior does not only mean a slightly

6 As the simulation is run only for discrete time steps, these exact positions of the A-V
cannot be generated. Instead, the simulation frame in which the A-V is closest to the
desired distance is shown. These deviations are relatively small, the maximum value is
approx. 5 cm.
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4 Decision-Making at Intersections

slower target velocity 𝑣t but in that zone the A-V is actually slowed down
all the way to stop. If a potential P-V is not visible at this distance, the
A-V is slowed down substantially from this point on and thus the travel
time will increase rapidly. The position 𝑑l,o before the last stop point is
important because the A-V is usually stopped there if it shows defensive
behavior. 𝑑a

s = 3 m is chosen as an intermediate value.
The real-world visibility distances 𝑑vs of the intersections used here for

simulation vary considerably and range from approximately 4m, usually
in denser parts of the city closer to the center, to more than 10m in the
more spacious areas, typically more towards the outskirts of the city.
These values are measured using publicly available online satellite image
sites. However, at real intersections there are oftentimes parked vehicles
or other items that may block the visibility further than only stationary
objects like buildings or vegetation. This makes relatively small values
like 𝑑vs = 1.5 m relevant as well.

As stated above, the A-V is unable to pass the intersection for very
small values of 𝑑vs. The values at which this is the case depend on the
intersection and the entry position, but all these cases are caused by the
fact that the reference point on the street of either the P-V or the B-V is not
visible during the entire approach, which keeps the A-V in the defensive
states of zones 4 and 5 (states 𝑠42 and 𝑠52). This, in turn, forces the A-V to
stop 𝑑l,o before the last stop point. As the model only continues driving
if it is certain that there either is no P-V and B-V respectively, or that it
can drive safely despite their existence, it does not recover and it is stuck
at the intersection with the current version of the algorithm.

4.4.4 Conclusions
The results of these simulations show that the decision-making algorithm
which is introduced in this chapter is able to safely drive through maps
of inner-city intersections without causing collisions. Sufficient visibility
provided, it is also able to clear the intersection without getting stuck
there. The model further shows reasonable behavior; this is supported by
the fact that the time to drive through the intersection increaseswithmore
C-Vs and especially with more P-Vs. Finally, the algorithm generalizes
well to different intersection geometries, which is illustrated by its ability
to safely drive through maps of several real-world intersections. The
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time to pass these intersections also correlates well with the area of the
intersection; larger intersection areas cause longer average travel times.
This further indicates a reasonable performance.

From the visibility areas depicted in figure 4.13 one can conclude
several aspects: A certain minimum visibility distance is required for the
A-V to see far enough into a potential P-V’s street; this is especially true
for intersections with small angles between their streets like intersection
9. If 𝑑vs is large enough for the A-V to eventually pass, the relevant parts
of an intersection are visible even if the A-V is still relatively far from the
intersection. Thus the A-V decelerates for a comparatively short period
only, which further contributes to the limited influence of the visibility
conditions on the driving time.

In conclusion one can say that there is an effect of the visibility dis-
tance 𝑑vs at an intersection on the time to pass it 𝑡d. It is, however, also
apparent that this effect is rather weak and vanishes for larger values
of 𝑑vs. Comparing the results of the different simulations indicates that
other aspects like the number and type of C-Vs have a far larger influence
on the time to pass the intersection. If there actually is a P-V present, the
A-V has to wait regardless of the visibility conditions, which increases
𝑡d to a greater extent.

4.5 Summary & Outlook
In this chapter an algorithm for decision-making for automatic vehicles
at inner-city T-intersections is proposed. The algorithm utilizes a discrete
event model, which allows the model to be easily explainable while also
having only moderate requirements regarding calculation times. This
is evident if one considers the type of calculations that are required for
this approach. The decision-making is based on features that can be
efficiently calculated from the observations of the C-Vs. These features
then trigger events which themselves are responsible for transitioning
through the DES for decision-making. All these calculations require very
little computational effort.

The model is evaluated and validated using a simulation framework.
This framework additionally models vehicles that serve as cooperation
partners for the vehicle controlled by the model. These additional vehi-
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4 Decision-Making at Intersections

cles utilize a decision-making algorithm that is a simplified version of the
proposed one. It also shows unexpected special behavior to further chal-
lenge the main model. The framework can simulate on arbitrary maps of
intersections; in this work a generic map and 12maps of real intersections
are used for that purpose. To generate a wide variety of situations, the
framework randomly initializes all vehicles for each simulation run.

The simulation results show that themodel is able to solve the decision-
making task reliably at several different intersections. There is no collision
of the A-V with any of its C-Vs; also, the algorithm is always able to
pass the intersection during the simulation time, if the intersection is
sufficiently visible. It is further able to deal with unexpected behavior,
which includes driving despite not having the right of way. The model
itself always respects priority regulations and only breaks these in order
to solve a deadlock or a situation in which another vehicle yields for
some time despite not having to.

The simulation results indicate that the decision-making model works
as intended: The more C-Vs are present on the map, the larger are the av-
erage travel times through an intersection. As expected, vehicles the A-V
has to yield to cause the largest increase in the time to pass the intersec-
tion. Also, the visibility conditions influence the driving time as expected;
worse visibility causes larger travel times through an intersection. This
effect is small, though.

The proposed model is already able to cope with many situations and
aspects of inner-city driving. There are, however, some scenarios that can
benefit from future improvements: The most important aspect in that
regard is certainly the behavior of the A-V in case of insufficient visibility
in an intersection. Even though the model is able to drive through all
the maps that are part of the simulations at realistic visibility distances,
these distances can be reduced in reality.

To solve this, the model should initially approach the intersection all
the way to the last stop point, this would probably reduce the risk of
getting stuck. But it would also be important to include a mode in which
a vehicle that cannot be certain if there is another vehicle approaching
would still, very cautiously, slowly enter the intersection to improve the
visibility. This is similar to how human drivers behave in this situation.
In order for the algorithm to be able to avoid obstacles along the center
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line path, it would be beneficial to implement path planning and enable
the algorithm to follow paths other than the center line.

Currently, the model only supports T-intersections; adapting the al-
gorithm to work at X-intersections should be possible using the same
approach. Similar algorithms for roundabouts and narrow passages
could also be developed. This, however, would presumably require more
changes to the decision-making model. Finally, the parameterization
of the algorithm could be improved by making it adaptable to specific
situations or by making some parameters adjustable by the passengers,
enabling them to have the vehicle drive according to their preferences,
e.g. more defensively.
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5 Conclusion

This thesis contributes to the field of autonomous driving in two ar-
eas: The driving behavior of human drivers is evaluated and predicted
in chapters 2 and 3; this is based on the concept of intersection com-
plexity. Also, a decision-making algorithm for autonomous vehicles at
non-signalized intersections is proposed in chapter 4. This chapter first
gives a summary of this work, then an outlook on potential future work
is given.

5.1 Summary
In chapter 2 the influence of the surroundings at an intersection on the
driving behavior is investigated. Based on data of a field study, several
features of an intersection are defined and successfully used to predict
the driving behavior. The latter is defined by behavior features. The set
of intersection features is assumed to constitute the complexity of an
intersection. To identify the most important complexity features, several
investigations are performed and the free space at an intersection is found
to be most relevant for predicting the behavior. Also, the feature set is
reduced by using only the most relevant features for prediction and by
combining all features into fewer ones with the help of an autoencoder.
Both approaches show reduced predictive power compared to the full
feature set.

The fact that several complexity features are needed for behavior pre-
diction implies that the concept of complexity is limited in its inter-
pretability. To overcome that challenge, a one-dimensional, or at least
low-dimensional, complexity is desirable. This would make statements
such as “increased complexity leads to more defensive driving” feasible.
This is the goal of chapter 3. In that chapter, based on a second study of
pairwise comparisons, complexity scores for intersections are derived.
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These are then used for behavior prediction as well. Using these scores
on their own is not sufficient for reliable predictions, but combining them
with the entry position does allow good predictions, while simultane-
ously improving one’s ability to understand and explain the reasons for
the expected driving behavior of human drivers.

The final contribution of this thesis is a decision-making algorithm
for autonomous vehicles at non-signalized T-intersections in inner-city
traffic. The algorithm does not require any communication between
the vehicles but is instead able to make safe decisions only based on
the observable states of its cooperation vehicles at the intersection. The
algorithm is based on a discrete event system; its decisions are therefore
easy to understand, which might contribute to better acceptance. The
algorithm is extensively tested in simulations; this includes simulations
using maps of real-world intersections.

5.2 Outlook
There are some aspects of this work that could be improved upon in
future work. The set of complexity features used in chapters 2 and 3 has
the potential to cover even more aspects. For that purpose additional
features would have to be considered as well. One aspect that is currently
not directly considered are parked vehicles; a feature like the number
or the density of parked vehicles at or by the road could be added. A
further aspect that future work could be focusing on is the traffic at the
intersection. In the current data set most runs were without any addi-
tional vehicles; this is the most likely reason why these features have little
relevance for prediction. To investigate the influence traffic actually has
on the driving behavior, a larger data set would be necessary containing
more runs that include interaction with traffic at the intersections.

The fact that using only the complexity scores of chapter 3 for behavior
prediction does not yield good results indicates that calculating the
intersection’s complexity score based on its complexity features should
be improved in future work. The better prediction results when using the
direct assignment method further supports that assumption. To remedy
this, additional complexity features could be added, as noted above, and
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a larger video study with additional intersections could help to improve
the predictive power of the complexity score.

The decision-making algorithm introduced in chapter 4 is able to make
vehicles drive through T-intersections reliably. Extending this algorithm
to X-intersections is the next obvious step and should be possible with
only minor adaptations. Similarly, this type of algorithm could also be
used for roundabouts and narrow passages. Some aspects of the cur-
rent algorithm could also be improved: As is evident from the visibility
investigations, the vehicle controlled by the current algorithm can get
stuck if visibility is too poor. To circumvent this, the vehicles using the
algorithm should be able to carefully and slowly enter the intersection,
as is allowed by the German road regulations1. The parameterization
of the algorithm could be improved or potentially adapted for different
circumstances. Finally, if the vehicle did not always follow the center of its
lane but instead follow a planned path, obstacles on the road that block
the path along the lane center like parked vehicles would not prevent it
from using the algorithm.

1 § 8 Abs. 2 StVO
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A Behavior Prediction Results –
Complexity Features

In chapter 2 the driving behavior is predicted using features describing
intersections. The behavior itself is described by behavior features and
regression models are trained to predict them based on the intersec-
tion features. Models using several different sets of intersection features
are trained and a selection of scatter plots of these models are shown
here. The plots of each behavior feature are given in a separate figure;
figure A.1 shows those for the commit distance 𝑑c, figure A.2 contains
scatter plots when using the minimum velocity 𝑣m and figure A.3 those
of the velocity drop 𝑣d. The first three rows of these figures contain plots
for the T-intersection data; the bottom three rows result from using the
X-intersection data set. The first rows show the scatter plots when using
the full feature set (FS); these are already shown in figure 2.3 and fig-
ure 2.4, respectively, and are included here for easier comparison. The
composition of the full feature set is introduced in section 2.5.1. In sec-
tion 2.5.3 only a reduced feature set is introduced; the scatter plots that
result from that are shown in the second columns of the figures. The
third rows contain the plots for those models that use only the direction
features ({𝑝e, 𝑝t} for the T-intersections and {𝑝t} for the X-intersections).
Finally, the last rows show the scatter plots of the 1D autoencoder models,
c.f. section 2.5.4.

The scatter plots support the results described in chapter 2 itself. The
models trained with the full feature set have scatter plots where most
points are close to the ideal line. A similar effect is visible for the re-
duced feature set. The direction only feature sets show the characteristic
vertical lines; these are caused by the fact that only six (three for the
X-intersections) regression values are possible. The autoencoder models
result inworse predictions; this causes the point clouds to bemore spread
out.
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Figure A.1 Scatter plots using different feature sets and algorithms with the commit
distance 𝑑c as the label at both the T- and X-intersections.
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Figure A.2 Scatter plots using different feature sets and algorithms with the minimum
velocity 𝑣m as the label at both the T- and X-intersections.
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Figure A.3 Scatter plots using different feature sets and algorithms with the velocity drop
𝑣d as the label at both the T- and X-intersections.

162



B Behavior Prediction Results –
Complexity Measure

In section 3.4 the driving behavior is predicted by using complexity scores
derived from an online study. In that section only the performances of
the models using the commit distance 𝑑c as the behavior feature are
reported. Here, the results of the remaining behavior features are given.
The selection of scatter plots is the same as is shown in figure 3.2; the
corresponding scatter plots for the minimum velocity 𝑣m are given in
figure B.1, those for the velocity drop 𝑣d in figure B.2. Additionally, the
tableswith the prediction errors in RMSE are given in table B.1 for 𝑣m and
in table B.2 for 𝑣d. These tables contain both the results of the evaluations
on the data set of those runs that are represented in both studies (top
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Figure B.1 Scatter plots using RF for prediction and selected feature sets with the mini-
mum velocity 𝑣m as the label using the data sets at the T-intersection/𝑝e combinations that
were in both studies (top row, data set DF

iv), and that were in the field study only (bottom
row, data set DF

ov), respectively. The abscissa shows the predicted normalized labels 𝐲̂n,
the ordinate shows the normalized true labels 𝐲n.
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Figure B.2 Scatter plots using RF for prediction and selected feature sets with the velocity
drop 𝑣d as the label using the data sets at the T-intersection/𝑝e combinations that were in
both studies (top row, data setDF

iv), and that were in the field study only (bottom row, data
set DF

ov), respectively. The abscissa shows the predicted normalized labels 𝐲̂n, the ordinate
shows the normalized true labels 𝐲n.

halves of the tables, data set DF
iv) and the data set containing the runs

exclusive to the field study (bottom halves, data set DF
ov).

The scatter plots for both behavior features, 𝑣m and 𝑣d, in general show
the same pattern as those for the commit distance, i.e. the full data set is
the one that performs best, using only the turning direction 𝑝t results in
characteristic vertical lines. Using 𝜋RF as the only feature results in large
deviations, adding 𝑝t to it improves the results considerably and using
𝜋In on its own results in much better predictions. However, it is apparent
that especially the velocity drop 𝑣d feature results in worse predictions
(more spread out scatter plots) than the commit distance 𝑑c.

Also, the detailed results of the tables show very similar patterns to
those of 𝑑c: The predictions when using the data set of runs exclusive to
the field study are generally better than those of the other data set, but
some exceptions exist. The complexity scores by direct assignment (𝜋In
and 𝐸In) are again useful on their own. For these two behavior features
the ridge and lasso extensions to the LR algorithm are only superior to
the original LR method of complexity score reconstruction in case of the
BT score, not the Elo score.
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Table B.1 RMSE of behavior prediction models for the minimum velocity 𝑣m using
different feature sets and regression methods. The data sets DF

iv (ref. method: RMSE =
2.015 m s−1) and DF

ov (ref. method: RMSE = 1.924 m s−1), respectively, are used.

feature set LR RF TB feature set LR RF TB
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𝑝 e
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y
(D

F iv
) full FS 1.113 1.033 1.008 {𝑝t, 𝑝e} 1.510 1.342 1.321

red. FS 1.191 1.044 1.052 {𝑉f, 𝑝t, 𝑝e} 1.341 1.160 1.132
{𝑝t} 1.553 1.547 1.547 AE 1D 1.781 1.405 1.376
{𝑉f, 𝑝e} 1.541 1.385 1.390 AE 2D 1.540 1.217 1.231
{𝑉f, 𝑝t} 1.391 1.306 1.304 AE 3D 1.410 1.182 1.206

{𝜋In} 1.861 1.305 1.306 {𝐸In} 1.927 1.305 1.306
{𝜋LR} 1.736 1.808 1.747 {𝐸LR} 1.786 1.783 1.715
{𝜋LR,r} 1.758 1.818 1.750 {𝐸LR,r} 1.809 1.887 1.798
{𝜋LR,l} 1.815 1.826 1.761 {𝐸LR,l} 1.783 1.787 1.721
{𝜋RF} 1.766 1.827 1.779 {𝐸RF} 1.808 1.850 1.780

{𝜋In, 𝑝t} 1.391 1.266 1.213 {𝐸In, 𝑝t} 1.343 1.266 1.213
{𝜋LR, 𝑝t} 1.311 1.282 1.321 {𝐸LR, 𝑝t} 1.288 1.269 1.283
{𝜋LR,r, 𝑝t} 1.292 1.288 1.289 {𝐸LR,r, 𝑝t} 1.275 1.282 1.292
{𝜋LR,l, 𝑝t} 1.342 1.272 1.267 {𝐸LR,l, 𝑝t} 1.286 1.269 1.282
{𝜋RF, 𝑝t} 1.318 1.295 1.291 {𝐸RF, 𝑝t} 1.283 1.289 1.307
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y
(D

F ov
) full FS 1.027 1.010 0.994 {𝑝t, 𝑝e} 1.404 1.270 1.257

red. FS 1.195 1.013 1.017 {𝑉f, 𝑝t, 𝑝e} 1.278 1.126 1.102
{𝑝t} 1.402 1.402 1.402 AE 1D 1.656 1.399 1.389
{𝑉f, 𝑝e} 1.372 1.185 1.202 AE 2D 1.449 1.178 1.198
{𝑉f, 𝑝t} 1.280 1.231 1.264 AE 3D 1.329 1.155 1.216

{𝜋LR} 1.484 1.534 1.517 {𝐸LR} 1.434 1.480 1.464
{𝜋LR,r} 1.468 1.447 1.424 {𝐸LR,r} 1.451 1.397 1.379
{𝜋LR,l} 1.499 1.464 1.450 {𝐸LR,l} 1.438 1.465 1.452
{𝜋RF} 1.579 1.509 1.491 {𝐸RF} 1.574 1.600 1.599

{𝜋LR, 𝑝t} 1.291 1.205 1.252 {𝐸LR, 𝑝t} 1.303 1.224 1.285
{𝜋LR,r, 𝑝t} 1.307 1.196 1.260 {𝐸LR,r, 𝑝t} 1.312 1.180 1.176
{𝜋LR,l, 𝑝t} 1.314 1.207 1.236 {𝐸LR,l, 𝑝t} 1.302 1.215 1.255
{𝜋RF, 𝑝t} 1.305 1.242 1.279 {𝐸RF, 𝑝t} 1.331 1.275 1.346
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Table B.2 RMSE of behavior prediction models for the velocity drop 𝑣d using different
feature sets and regression methods. The data set DF

iv (ref. method: RMSE = 0.280) and
DF

ov (ref. method: RMSE = 0.261), respectively, are used.

feature set LR RF TB feature set LR RF TB
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) full FS 0.166 0.155 0.155 {𝑝t, 𝑝e} 0.213 0.195 0.193

red. FS 0.175 0.157 0.160 {𝑉f, 𝑝t, 𝑝e} 0.193 0.175 0.174
{𝑝t} 0.222 0.222 0.222 AE 1D 0.249 0.203 0.197
{𝑉f, 𝑝e} 0.215 0.197 0.199 AE 2D 0.219 0.182 0.184
{𝑉f, 𝑝t} 0.202 0.193 0.193 AE 3D 0.202 0.176 0.180

{𝜋In} 0.258 0.189 0.189 {𝐸In} 0.268 0.189 0.189
{𝜋LR} 0.241 0.251 0.242 {𝐸LR} 0.248 0.247 0.239
{𝜋LR,r} 0.245 0.250 0.240 {𝐸LR,r} 0.253 0.260 0.248
{𝜋LR,l} 0.252 0.255 0.245 {𝐸LR,l} 0.248 0.248 0.239
{𝜋RF} 0.249 0.256 0.248 {𝐸RF} 0.254 0.256 0.246

{𝜋LR, 𝑝t} 0.199 0.186 0.178 {𝐸LR, 𝑝t} 0.194 0.186 0.178
{𝜋LR, 𝑝t} 0.187 0.188 0.191 {𝐸LR, 𝑝t} 0.185 0.185 0.184
{𝜋LR,r, 𝑝t} 0.186 0.188 0.190 {𝐸LR,r, 𝑝t} 0.186 0.188 0.190
{𝜋LR,l, 𝑝t} 0.193 0.187 0.187 {𝐸LR,l, 𝑝t} 0.185 0.185 0.186
{𝜋RF, 𝑝t} 0.193 0.191 0.191 {𝐸RF, 𝑝t} 0.188 0.188 0.191
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) full FS 0.139 0.141 0.138 {𝑝t, 𝑝e} 0.183 0.172 0.171

red. FS 0.153 0.137 0.137 {𝑉f, 𝑝t, 𝑝e} 0.162 0.152 0.156
{𝑝t} 0.184 0.184 0.184 AE 1D 0.222 0.189 0.188
{𝑉f, 𝑝e} 0.170 0.157 0.164 AE 2D 0.188 0.164 0.167
{𝑉f, 𝑝t} 0.165 0.157 0.162 AE 3D 0.173 0.159 0.167

{𝜋LR} 0.192 0.205 0.201 {𝐸LR} 0.183 0.187 0.184
{𝜋LR,r} 0.189 0.196 0.193 {𝐸LR,r} 0.188 0.189 0.187
{𝜋LR,l} 0.193 0.196 0.194 {𝐸LR,l} 0.185 0.189 0.187
{𝜋RF} 0.210 0.199 0.196 {𝐸RF} 0.208 0.202 0.201

{𝜋LR, 𝑝t} 0.165 0.163 0.174 {𝐸LR, 𝑝t} 0.166 0.157 0.164
{𝜋LR,r, 𝑝t} 0.167 0.160 0.169 {𝐸LR,r, 𝑝t} 0.169 0.159 0.163
{𝜋LR,l, 𝑝t} 0.168 0.159 0.164 {𝐸LR,l, 𝑝t} 0.166 0.157 0.167
{𝜋RF, 𝑝t} 0.170 0.165 0.169 {𝐸RF, 𝑝t} 0.173 0.166 0.171
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C Examples of Decision-Making

In chapter 4 simulations using the decision-making algorithm introduced
there are performed. In addition to the simulation runs presented there,
additional ones are shown here. These reveal characteristic properties of
the simulation framework and the algorithm’s responses to it, namely:

the Y-V ignores the A-V’s right of way (figure C.1);

interaction between three vehicles without a deadlock (figure C.2);

the A-V (correctly) drives before its Y-V (figure C.3);

a complex interaction with two deadlocks (figure C.4);

the A-V follows its L-V (figure C.5);

the P-V yields despite having the right of way (figure C.6);

the A-V passes the intersection without interaction (figure C.7).

𝑡1 = 13 s 𝑡2 = 19 s 𝑡3 = 25 s

vis. area vis. edge A-V C-V 1 C-V 2 C-V 3 C-V 4

Figure C.1 Simulation run at intersection 5: The A-V has priority over C-V 4 and arrives
before it, but C-V 4 does not slow down sufficiently for the A-V’s algorithm to drive first. It
stops to ensure safety and C-V 4 indeed ignores the A-V’s priority. After C-V 4 has passed,
it is safe for the A-V to pass itself. C-Vs 1 and 3 are irrelevant here as they passed the
intersection before; the grid spacing is 10m and the visibility distance is set to 21m.
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𝑡1 = 7 s 𝑡2 = 11 s 𝑡3 = 15 s

𝑡4 = 18 s 𝑡5 = 21 s 𝑡6 = 23 s

vis. area vis. edge A-V C-V 1 C-V 2 C-V 3

Figure C.2 Simulation run at intersection 3: The A-V, C-Vs 1 and 3 arrive nearly simulta-
neously, but there is no deadlock as C-V 1 turns right and does not have to yield to any
vehicle. It therefore drives first, then C-V 3 followed by the A-V. The grid spacing is 10m
and the visibility distance is set to 7m.

𝑡1 = 7 s 𝑡2 = 10 s 𝑡3 = 12 s

vis. area vis. edge A-V C-V 1 C-V 2 C-V 3

Figure C.3 Simulation run at intersection 4: The A-V only has a Y-V (C-V 1). As it decel-
erates in time, the A-V passes the intersection before it and remains in its offensive states
throughout. The grid spacing is 10m and the visibility distance is set to 7m.
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𝑡1 = 12 s 𝑡2 = 16 s 𝑡3 = 19 s

𝑡4 = 21 s 𝑡5 = 27 s 𝑡6 = 34 s

vis. area vis. edge A-V C-V 1 C-V 2 C-V 3

Figure C.4 Simulation run at intersection 9: First a deadlock occurs between C-Vs 1, 2
and 3. It is resolved by C-V 1 driving first. After that, a second deadlock develops with the
A-V taking the place of C-V 1. This deadlock is immediately resolved by C-V 2 because this
vehicle is set to drive first, which also applies in case of a deadlock. After the resolution of
this deadlock, C-V 3, the A-V’s P-V, drives, followed by the A-V itself. The grid spacing is
10m and the visibility distance is set to 14m.

𝑡1 = 18 s 𝑡2 = 22 s 𝑡3 = 24 s

vis. area vis. edge A-V C-V 1 C-V 2 C-V 3

Figure C.5 Simulation run at intersection 7: The A-V follows C-V 2 through the inter-
section. Before the A-V enters the intersection area it waits until it is able to clear the
intersection, i.e. C-V 2 (now both the L-V and the B-V of the A-V) has to have enough
space between it and the intersection. C-Vs 1 and 3 passed the intersection before; the grid
spacing is 10m and the visibility distance is set to 14m.
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𝑡1 = 6 s 𝑡2 = 8 s 𝑡3 = 10 s

𝑡4 = 12 s 𝑡5 = 15 s 𝑡6 = 19 s

vis. area vis. edge A-V C-V

Figure C.6 Simulation run at intersection 5: The C-V has priority over the A-V and arrives
before it at the intersection. As the C-V is set to wait nonetheless, it stops at the intersection.
The A-V stops as well, as it has to yield. After the waiting period of the C-V is over, it
continues and passes the intersection first. The grid spacing is 10m and the visibility
distance is set to 21m.

𝑡1 = 7 s 𝑡2 = 10 s 𝑡3 = 13 s

vis. area vis. edge A-V C-V 1 C-V 2 C-V 3 C-V 4

Figure C.7 Simulation run at intersection 6: 10m before C-V 1 reaches the intersection, the
A-V knows that it will turn right and therefore there are no relevant C-Vs at the intersection.
The A-V passes it directly. The grid spacing is 10m and the visibility distance is set to 14m.
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