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ABSTRACT

Oscillators exhibiting an Andronov–Hopf bifurcation are candidates to mimic the functionality of the cochlea, since the transfer response of
these oscillators is compressive and frequency selective. The former implies that small stimuli are amplified and strong stimuli are attenuated,
while the latter means that the oscillator only reacts in a (small) frequency band. However, this implies that many oscillators are needed
to cover a relevant frequency band. By introducing the notion of tunable characteristic frequencies, i.e., the characteristic frequency can be
adjusted by a controllable input, the number of oscillators can be eventually reduced. Subsequently, the tunability enhancement of coupled
oscillators is investigated by analyzing the local dynamics of a network of oscillators. For this, necessary conditions for the emergence of
Andronov–Hopf bifurcations are determined for networks consisting of two groups, i.e., a group is a network of identical oscillators. By
choosing the eigenvalues of the product of the cross-coupling matrix as bifurcation parameters and exploiting the structure of the transfer
matrix of this network, the critical points and, thus, the characteristic frequency at this point can be derived. Tunability of the characteristic
frequency is then enabled by controlling the asymmetry between the groups of oscillators.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0217847

In rapidly changing environments, technological speech proces-
sion is outperformed by mammalian hearing perception. This
comes from the fact that hearing perception is superior in terms
of energy and time consumption, which is induced by a nonlinear
feedback loop in the cochlea. In particular, the dynamics of the
feedback loop is similar to an Andronov–Hopf bifurcation. Thus,
oscillators exhibiting this bifurcation can mimic the functional-
ity of the cochlea so that the performance gap might be closed
by implementing them into technology. However, many oscil-
lators are needed since a system exhibiting an Andronov–Hopf
bifurcation can only react to a (small) frequency range. Hence,
methods to reduce this number are needed. This can be done,
e.g., by enabling tunability of the characteristic frequency so that
one oscillator can measure a frequency band. In this work, the
influence of coupling oscillators on the dynamics is analyzed.
In particular, it is shown that by coupling, the Andronov–Hopf

bifurcation is preserved and the characteristic frequency becomes
tunable.

I. INTRODUCTION

Compared to technical solutions, the auditory perception of
mammalians is superior. This performance difference comes from
the different architectures of both systems: the technical solu-
tion has a feedforward structure consisting of three steps—a typ-
ical micro-electromechanical microphone with a passive, linear
characteristics,1 nonlinear pre-processing,2 and an artificial neural
network3,4—while auditory perception has a feedback structure that
induces an active process with a compressive nonlinearity.5,6 The
latter implies that the dynamical range of the biological system
is significantly extended compared to a feedforward architecture.
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Furthermore, auditory perception is frequency selective. With this,
the biological system can detect both faint sound with low back-
ground noise and sound, which is heavily jammed, i.e., the latter
effect is called the cocktail party effect.7,8 This high adaptability is
also induced by the feedback loop, which is summarized subse-
quently.

The nonlinear dynamics of the auditory perception are located
in the cochlea, where the pressure of an acoustic signal is trans-
formed into an electrical signal. This is done by the interplay of the
basilar membrane, the tectorial membrane, and the inner and outer
hair cells. The inner hair cells are only connected to the basilar mem-
brane, so these are hyperpolarized by bending them to one direction
and are depolarized by bending them to the opposite direction. In
contrast, the outer hair cells are connected both to the basilar mem-
brane and the tectorial membrane and the stiffness of these hair cells
can be changed. Thus, they can either block the inner hair cells from
oscillating or amplify a signal by stimulating the inner hair cells by
using the tectorial membrane. Moreover, the basilar membrane is
frequency selective, so higher frequencies stimulate the front of the
basilar membrane and lower frequencies stimulate its end.11,12 Note
that the feedback mechanism of the inner and the outer hair cells
couples to their neighbors since they are connected by the tectorial
membrane. Hence, the cochlea can be viewed as oscillators coupled
in a line topology.

Modeling of the cochlea commonly involves the ability to
generate an Andronov–Hopf bifurcation as moving from the sub-
critical to the super-critical regime (and vice versa) induces useful
dynamical properties to mimic biological behavior. In the sub-
critical regime, a system exhibiting an Andronov–Hopf bifurcation
is asymptotically stable. After exceeding the critical point, the sys-
tem can exhibit a stable limit cycle. Thus, by proving that this type
of bifurcation exists, the existence of a limit cycle can be concluded.13

In addition, the synchronization problem can be addressed for
coupled oscillators.14 Hence, the emergence of Andronov–Hopf
bifurcations was analyzed for various systems arising, e.g., in
engineering,15 biology,16–19 and physics.14,20,21 Moreover, systems
exhibiting Andronov–Hopf bifurcations have remarkable properties
in the sub-critical regime. Here, the response to an excitation can be
either linear if the system is far away from the critical point or both
frequency selective and compressive, if the system is close to the crit-
ical point. Thus, a system exhibiting an Andronov–Hopf bifurcation
has similar dynamical properties as the cochlea.22–24 This implies
in view of the realization of a bio-inspired sensor mimicking the
functionality of the cochlea that Andronov–Hopf bifurcations must
be enabled by design and/or suitable feedback control so that both
the linear and the nonlinear properties in the sub-critical regime
can be used to enhance sensor performance. Additionally, coupling
these sensors may enhance frequency tunability20,25 or may enable
broader bandwidth26 of the response in terms of external input.
Thus, improving the performance of the system.

It was shown in Lenk et al.9 that this behavior can be realized
in principle utilizing a thermally actuated, micro-electromechanical
cantilevered (MEMS) sensor. Mathematically, this system can be
modeled as a linear Euler–Bernoulli beam with a nonlinear actuation
induced by the embedded heater. The deflection can be measured
with an embedded piezoelectric sensor27 so that the velocity can
be computed using a high pass filter. By considering a dominant

mode approximation and by feeding back the velocity with a suitable
gain, two different Andronov–Hopf bifurcations can be achieved
as was shown experimentally in Refs. 9, 26, 28, and 29 and the-
oretically in Refs. 9 and 10. The principle bifurcation behavior is
sketched in Fig. 1. Particularly, the system is locally asymptotically
stable in the interval [kH,2, kH,2]. After surpassing the critical value
kH,1 or by falling below the critical value kH,2, an unstable limit
cycle will emerge in the dominant mode model.10 In view of the
conceptually similar dynamics, this device can also be called an
artificial hair cell. However, different issues remain as for a single
sensor the characteristic frequency of the model cannot be adjusted
simultaneously in this way. Ideally, this can be changed by exploit-
ing a controllable asymmetry of coupled MEMS sensors, such that
the characteristic frequencies of the network can be changed by
assigning the damping accordingly. For instance, a change in the
characteristic frequency can be observed with two injectively cou-
pled Andronov–Hopf oscillators in Gomez et al.20 and Rolf and
Meurer.25

In contrast, symmetry and symmetry-breaking is commonly
investigated. Herein, the oscillators are assumed to be symmetric
for some group, e.g., identical oscillator coupled in an undirected
graph, such that the symmetry-breaking of equivariant ordinary
differential equations (ODEs) can be shown by applying the equiv-
ariant branching lemma for the analysis of steady state bifurcations,
e.g., saddle-node bifurcations, and the equivariant Hopf theorem for
the analysis of the Andronov–Hopf bifurcation in these networks.30

In particular, multi-clustering and pattern formation appear after
the symmetry breaks. Thus, symmetry and symmetry-breaking can
be used to describe, for instance, animal gaits and central pattern
generators31–33 and specification.34–37

A different approach to simplify the analysis of coupled oscilla-
tors is the assumption that the coupling is weak. Then, each oscilla-
tor in the network can be described as an uncoupled oscillator with a
small perturbation resembling the coupling between the oscillators.
With this assumption, the models of the oscillators can be simplified
to a phase model by applying perturbation methods.38 Note that dif-
ferent methods are needed to compute the phase models since the
dynamics of the oscillators can be, for example, stiff or non-stiff.39–41

For instance, this simplification can be used to investigate chemical
reactions42,43 and neuronal networks.44

This paper aims to analyze the tunability enhancements of
asymmetric coupled oscillators. This is done by analyzing the bifur-
cation behavior of two coupled groups of MEMS sensors with a
focus on the emergence of Andronov–Hopf bifurcations and the
qualitative behavior of the corresponding characteristic frequencies.
Herein, the bifurcation parameters are assumed to be the eigen-
values of the product between the cross-coupling matrix and the
internal feedback of the MEMS sensors is used to induce a con-
trollable asymmetry in the network. It should be noted that the
bifurcation analysis extends the results in Stan and Sepulchre,15

where the coupling of identical oscillators in symmetric networks
is addressed. In particular, the necessary condition is shown by
transforming the transfer function of the uncoupled system with
the adjacency matrix into a weighted identity matrix. A rank drop
satisfying the necessary condition of the Andronov–Hopf bifurca-
tion can be easily shown for the network consisting of two groups
of oscillators. The characteristic frequencies then follow from the
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FIG. 1. The properties of a MEMS sensor resembling an artificial hair cell are predicted by mathematical analysis. (Left) Sketch of MEMS sensor resembling an artificial
hair cell. The experimental setup consisting of the MEMS sensor and an FPGA has been designed by Kalpan Ved, Vishal Gubbi, Tzvetan Ivanov, Claudia Lenk, and Martin
Ziegler (all from TU Ilmenau). (Right) Sketch of the bifurcation diagram of an artificial hair cell. Herein, z and k are the state of the center manifold of the Andronov–Hopf
bifurcation and the bifurcation parameter of the system. Moreover, the two bifurcation points are denoted by kH,1 and kH,2. Herein, the locally asymptotically stable regime is
depicted by a solid line and the unstable regime is depicted by a dashed line, respectively.9,10

bifurcation analysis and conditions for the tunability of the charac-
teristic frequency as a function of the internal feedback are derived.
In addition, the location of the critical points is analyzed by deter-
mining the critical point of a so-called Hopf–Hopf bifurcation.30,45,46

With this, the characteristic frequency in the sub-critical regime is
characterized.

The paper is structured as follows: In Sec. II, the dominant
mode model of a coupled MEMS sensor is introduced and the pre-
liminaries for the local analysis and the challenges in analyzing the
bifurcations are discussed. Afterward, the notion of tunability is
defined in Sec. III. In addition, it is shown that a single MEMS
sensor is not tunable to motivate the bifurcation analysis for a
network of MEMS sensors. Then, two groups of identical and non-
identical MEMS sensors are analyzed in Sec. IV with respect to
the emergence of Andronov–Hopf bifurcations. Herein, the con-
trollable asymmetry between two groups of non-identical is used to
achieve tunability of the system. The results are then numerically
verified in Sec. V. The focus of the simulation studies is to provide
insight if the Andronov–Hopf bifurcation of the coupled, MEMS
sensors is tunable and to compare the reaction of the bio-inspired
system with the cochlea. Finally, some remarks conclude this
paper.

II. NETWORKS OF MEMS SENSORS

Subsequently, the dominant mode model of the MEMS sen-
sor is introduced. For instance, a picture of a MEMS sensor is
illustrated on the left side of Fig. 1 and in Fig. 2. The model is
derived from a distributed parameter model of a thermally actuated
micro-mechanical Euler–Bernoulli beam with embedded thermal
actuation.27,47 In this sense, the mathematical model of the ith MEMS
sensor in a network of N ∈ N MEMS sensors is described by

ẋi = fi(xi), t > 0, xi(0) = x0,i, (1a)

yi = h(xi) = xi,4, t ≥ 0, (1b)

with the vector-valued nonlinearity,

fi(xi) =







xi,2

−ω2
i xi,1 −

ωi
Qi

xi,2 + αixi,3 +
p

ρh

−βixi,3 + ζiu
2
act,i

− 1
τi

xi,4 + κixi,2







. (1c)

The state vector, the output, the controllable voltage, the sound
pressure, and the initial condition are denoted by xi(t) ∈ R

4,
yi(t) ∈ R, uact,i(t) ∈ R, p(t) ∈ R, and x0,i ∈ R

4 for the oscillators
i = 1, 2, . . . , N. Herein, the state vector xi consists out of the deflec-
tion xi,1(t) ∈ R, the velocity xi,2(t) ∈ R, the temperature relative
to the room temperature xi,3(t) ∈ R, and the voltage of a high
pass filter xi,4(t) ∈ R. Additional parameters are the heater constant
ζi = γi/R2

i , the natural frequency ωi > 0, the Q-factor Qi > 0, the
transfer factors αi, γi > 0, the time constants βi, τi > 0, the calibra-
tion factor κi ∈ R, the heater resistance Ri > 0, the height h > 0,
and the density ρ > 0. In particular, the high pass filter in terms
of the state xi,4 is used to remove a constant signal offset so that the
amplification is independent to the pre-deflection of the cantilever.
A sketch of the network is shown in Fig. 2.

The main goal of this paper is to investigate the dynamics of a
network of MEMS sensors. Herein, a network structure is imposed
by using output feedback,

uact,i = gi(χ 4) + vi =

N
∑

j=1

kijxj,4 + vi, ∀i = 1, 2, . . . , N, (2)

with the outputs of each oscillator summarized in the vector χ 4

= [x1,4, . . . , xN,4]
T ∈ R

N, additional inputs vi(t) ∈ R, and kij refer-
ring to the entries of the adjacency matrix of the network K ∈ R

N×N.
To identify the dynamics of this network, the local bifurcations are
analyzed. For this, the feedback and the coupling have to influence
the linearization of the coupled, MEMS sensors in a dedicated way,
such that an Andronov–Hopf bifurcation can emerge.13,45 In partic-
ular, the eigenvalues of the adjacency matrix K are of interest for the
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FIG. 2. Sketch of a network of coupled, MEMS sensors. The coupling of the
MEMS sensors is processed inside the FPGA. Herein, the different sizes of the
MEMS sensors depict different natural frequencies. For practical interpretation, a
larger MEMS sensor usually has a smaller natural frequency. The experimental
setup consisting of the MEMS sensor and an FPGA has been designed by Kalpan
Ved, Vishal Gubbi, Tzvetan Ivanov, Claudia Lenk, and Martin Ziegler (all from TU
Ilmenau).

bifurcation analysis and to compute the characteristic frequency as
is elaborated in Secs. IV and V.

To determine the necessary condition for the emergence of
an Andronov–Hopf bifurcation, i.e., a pair of complex conjugated
eigenvalues on the imaginary axis, the equilibria of (1) have to be
determined. This is done by solving fi(χ eq) = 0 for constant input
uDC,i = veq,i ∈ R. As expected, the high pass removes the DC com-
ponents from the feedback (2) so that the equilibrium of the network
is given by the composition of the equilibrium of each individual
MEMS sensor, i.e.,

xi,eq =
[

αiζi

βiω
2
i
u2

DC,i 0 ζi
βi

u2
DC,i 0

]T

. (3)

In particular, (3) implies that the DC-component of the actuation
voltage directly influences the equilibrium values of the deflection
xi,eq,1 and the relative temperature xi,eq,3. In addition, the cou-
pling and the feedback appear in the linearization, if uDC,i 6= 0.
The DC-component uDC,i is, hence, necessary to control the local
dynamics of (1). For simplicity, let the state and input vector of

the network be χ(t) = [xT
1 (t), xT

2 (t), . . . , xT
N(t)]

T
∈ R

4N and 1v(t)

= [1v1(t), 1v2(t), . . . , 1vN(t)]T ∈ R
N. Then, the linearization is

given by

1χ̇ = A1χ + B

[

p1N

1v

]

,

y = C1χ ,

with 1χ = χ − χ eq, 1v = v − uDC, the vector of ones 1N ∈ R
N,

and the matrices

A =
∂f

∂χ

∣
∣
∣
∣
χ=χeq ,v=uDC

=
[

Aij

]

i,j=1,...,N
∈ R

4N×4N,

B =
∂f

∂v

∣
∣
∣
∣
χ=χeq ,v=uDC

=
[

Bij

]

i,j=1,...,N
∈ R

4N×2N,

C =
∂h

∂χ

∣
∣
∣
∣
χ=χeq ,v=uDC

=
[

Cij

]

i,j=1,...,N
∈ R

N×4N,

where the sub-matrices Aij, Bij, and Cij are given by

Aii =







0 0 1 0
−ω2

i −
ωi
Qi

αi 0

0 0 −βi εikii

0 κi 0 − 1
τ







, Aij =






0 0 0 0
0 0 0 0
0 0 0 εikij

0 0 0 0




 ,

Bii =

[

0 1
hρ

0 0

0 0 εi 0

]T

, Bij = 0,

Cii =
[

0 0 0 1
]

, Cij = 0,

with the coefficient εi = 2ζiuDC,i. Particularly, the diagonal blocks
of the system matrix A consist of the (linearized) system dynam-
ics of the individual MEMS sensors and the off-diagonal blocks of
the system matrix A describe the coupling between the MEMS sen-
sors. In addition, the characteristic polynomial of the system matrix
is of degree 4N. Thus, this polynomial is, in general, not analytically
solvable48,49 so that the necessary conditions of an Andronov–Hopf
bifurcation cannot be investigated directly. To circumvent this issue,
the structure of the system matrix A is exploited subsequently by
considering the transfer function of an uncoupled MEMS sensor,

gi(s) = Cii

(

sI − Aii

)−1
Bii

=
bi1s

s4 + ai3s3 + ai2s2 + ai1s + ai0

, (4)

where the coefficients are given by

ai0 =
βiω

2
i

τi

, (5a)

ai1 = βiω
2
i +

βiωi

Qiτi

+
ω2

i

τi

, (5b)

ai2 =
βi

τi

+
βiωi

Qi

+
ωi

Qiτi

+ ω2
i , (5c)

ai3 = βi +
ωi

Qi

+
1

τi

, (5d)

bi1 = 2αiκiζiuDC,i (5e)

for the oscillator i = 1, 2, . . . , N. Obviously, the degree of the
denominator polynomial of gi(s) is in general identical to the system
order. Hence, no cancellation between zeros and poles occurs.

III. PROBLEM STATEMENT

In addition to determining the dynamics of the coupled MEMS
sensors, the number of oscillators in an acoustic sensor has to be
reduced and the design has to be robust. This can be done, e.g., by
asserting that the characteristic frequency is adjustable by external
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feedback. This property of an oscillator or a network of oscillators is
subsequently called (frequency) tunability.

Definition 1 (Frequency tunability). An oscillator or a net-
work of oscillators is called tunable, if its characteristic frequency (or
synchronization frequency, respectively) can be changed by a control-
lable input. In addition, the parameter controlling the (frequency)
tunability of the oscillator or network of oscillators is called tunability
parameter.

It should be noted that Definition 1 is not satisfied in general
for an oscillator and that this property can be induced in a MEMS
sensor by changing the geometry of the MEMS sensor,47,50–56 so that
geometric nonlinearities arise for small pre-deflections of the MEMS
sensor. For instance, these nonlinearities can then be modeled by a
Duffing oscillator.47 In contrast to this, subsequently frequency tun-
ability is investigated by exploiting asymmetries between coupled
oscillators so that the frequency can be tuned without adapting the
geometry of the MEMS sensor.

A. Example 1: Tunability of two coupled Kuramoto

oscillators

To visualize that coupling can induce frequency tunability, the
characteristic frequency of two coupled Kuramoto oscillators as a
function of the coupling strength is discussed. Kuramoto oscillators
are coupled phase models of an oscillator with constant frequency.
Two coupled Kuramoto oscillators are, e.g., governed by57

ϕ̇1 = ω1 + γ12 sin(ϕ2 − ϕ1), t > 0,ϕ1(0) = ϕ1,0, (6a)

ϕ̇2 = ω2 + γ21 sin(ϕ1 − ϕ2), t > 0,ϕ2(0) = ϕ2,0, (6b)

with the phases ϕ1(t), ϕ2(t) ∈ R and the initial conditions ϕ1,0,
ϕ2,0 ∈ R. The parameters are given by the frequencies ω1, ω2 > 0
and the coupling γ12, γ21 ∈ R. In addition, assume that the fre-
quencies ω1 and ω2 are fixed, while the coupling γ12 and γ21 are
assumed to be controllable and, hence, serve as the tunability param-
eters. Subsequently, the frequency tunability of system (6) is ana-
lyzed by comparing the dynamics of the synchronized system, i.e.,
ϕ̇C = ωC(γ12, γ21) with the characteristic frequency ωC(γ12, γ21) > 0.
This can be done by computing the steady state of the phase error
1ϕ12 = ϕ1 − ϕ2. The dynamics of the phase error is given by

1ϕ̇12 = ω1 − ω2 − (γ12 + γ21) sin(1ϕ12).

Asserting the steady state condition, i.e., 1ϕ̇12,eq = 0, implies that
the oscillators are synchronized and yields

sin(1ϕ12,eq) =
ω1 − ω2

γ12 + γ21

. (7)

In particular, (7) implies that two coupled Kuramoto oscillators
can synchronize, if |ω1 − ω2|/|γ12 + γ21| ≤ 1. Inserting (7) into the
dynamics (6) and comparing the result with the synchronized sys-
tem results in the dynamics of the synchronized oscillators, whose
characteristic frequency is given by

ωC(γ12, γ21) =
γ21ω1 + γ12ω2

γ12 + γ21

.

Note that asymmetry of the coupling is necessary to enable tun-
ability, since ωC(γ , γ ) = (ω1 + ω2)/2 with the symmetric coupling

FIG. 3. Characteristic frequency ωC of two coupled Kuramoto oscillators as
a function of the relative η = γ12/γ21. The natural frequencies are given by
ω1 = 40 and ω2 = 50.

γ ∈ R. In addition, the characteristic frequency ωC is closer to the
frequency ωi of the ith oscillator, if γji > γij for all i, j = 1, 2 and
i 6= j, and the characteristic frequency can be tuned in [ω1, ω2], since
γ12 = 0 implies ωC = ω1 and γ21 = 0 implies ωC = ω2. The char-
acteristic frequency ωC is visualized in Fig. 3. For this, the param-
eters are given by ω1 = 40 and ω2 = 50 and the relative coupling
η = γ12/γ21 is introduced. The latter simplifies the characteristic
frequency to

ωC(η) =
ω1 + ηω2

η + 1
.

B. Example 2: Tunability of two injectively coupled

Andronov–Hopf oscillators

As a second example, the characteristic frequency of two injec-
tively coupled Andronov–Hopf oscillators is investigated. These
oscillators are described by the super-critical normal form of the
Andronov–Hopf bifurcation and the system is governed by

ż1 = (µ1 + iω1)z1 − |z1|
2z1 + γ12z2, z1(0) = z1,0, (8a)

ż2 = (µ2 + iω2)z2 − |z2|
2z2 + γ21z1, z2(0) = z2,0, (8b)

with the states z1(t), z2(t) ∈ C, the damping parameters µ1,
µ2 ∈ R, the natural frequencies ω1, ω2 > 0, and the coupling
strengths γ12, γ21 ∈ R. Assume that the product of the coupling
strengths is the bifurcation parameter. The critical point and the
characteristic frequency of (8) are determined by25

γ12,Hγ21,H =
µ1µ2

(µ1 + µ2)
2

[

(µ1 + µ2)
2 + (ω1 − ω2)

2
]

, (9a)

ωC =
ω1 + ω2

2
−

µ1 − µ2

µ1 + µ2

ω1 − ω2

2
. (9b)

Similar to the previous example, the characteristic frequency at the
critical point can be tuned by controlling the asymmetry between
the damping µ1 and µ2 and the tunable interval is also restricted by
the natural frequency of the oscillators. This is depicted in Fig. 4.
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FIG. 4. Characteristic frequency ωC of two injectively coupled Andronov–Hopf
oscillators as a function of the relative ν = µ1/µ2 with the natural frequencies
ω1 = 50 and ω2 = 60.

For this, ω1 = 50 and ω2 = 60 are assigned and the relative damp-
ing ν = µ1/µ2 is introduced to simplify the evaluation. Inserting
ν = µ1/µ2 into (9b), the characteristic frequency reads

ωC =
ω1 + ω2

2
−

ν − 1

ν + 1

ω1 − ω2

2
.

C. Example 3: Tunability of a single MEMS sensor

Finally, consider a single MEMS sensor with the control law
(2). This system is governed by

ẋ =







xi,2

−ω2
0x1 −

ω0
Q0

x2 + αx3

−βx3 + ζ (kx4 + uDC)
2

− 1
τ
x4 + κx2







,

t > 0, x(0) = x0. (10)

Note that system (10) has two different Andronov–Hopf bifur-
cations, which are controlled by the feedback strength k. This is
summarized in detail subsequently.

Theorem 1 (Rolf and Meurer10). System (10) undergoes two
Andronov–Hopf bifurcations depending on the feedback gain k. The
critical points k±

H and the characteristic frequencies ω±
C at the critical

point are given by

k±
H =

2a1 − a2a3 ± a3

√

a2
2 − 4a0

2b1

,

ω±
C =

√

a2 ±
√

a2
2 − 4a0

2
,

with the coefficients given by (5).
In particular, the characteristic frequencies are determined

by the geometry and the material constants of the sensor so that
the characteristic frequency cannot be controlled by the feedback
strength k and the DC-voltage uDC. This comes from the fact that
the considered system represents a cantilever, e.g., see Example 6.7
in Reedy.58 Hence, the characteristic frequency of system (10) is not
tunable.

D. Focus of the work

Based on the results from the examples, the aim of this work is
to investigate, if frequency tunability can be achieved in a network
of MEMS sensors by controlling the network’s asymmetry. Herein,
the asymmetry is adjusted by the effective Q-factor of each MEMS
sensor. Particularly, these Q-factors are controlled by the feedback
strengths kii for the oscillators i = 1, . . . , N. This conclusion follows
from analyzing the necessary conditions of the Andronov–Hopf
bifurcations of the coupled MEMS sensors given by (1), i.e., the
eigenvalues of the system matrix A have two complex conjugated
eigenvalues on the imaginary axis. It should be noted that the
remaining conditions, i.e., the eigenvalue crossing condition and the
stability of the limit cycle, are not analyzed in detail. In particular, it
is trivial to show that the limit cycle is unstable. This comes from the
fact that the nonlinearity in (1) is quadratic so that by employing the
center manifold theorem13,45 and inserting the critical point a center
manifold with a quadratic nonlinearity in the neighborhood of the
equilibrium arises.

IV. BIFURCATION ANALYSIS OF TWO GROUPS OF

MEMS SENSORS

Theoretical results are presented to determine the critical point
of an interconnection of two different groups of oscillators. It is
assumed that the uncoupled oscillators exhibit at least a single
Andronov–Hopf bifurcation in terms of a bifurcation parameter.
For instance, (10) satisfies this assumption in terms of the feedback
strength k. Based on this, the bifurcations of MEMS sensors in the
coupled case are analyzed. It turns out that the necessary conditions
for the emergence of an Andronov–Hopf bifurcation of two cou-
pled groups of MEMS sensors are satisfied in three cases. Finally,
the three critical points are examined in view of the emergence of
a Hopf–Hopf bifurcation. The latter arises if two critical points are
identical for a given parameter configuration.30,45,46

A. Theoretical results

Before discussing the main results of this paper, the definition
of a group of oscillators is given.

Definition 2. A group is a network of identical oscillators. The
coupling inside a group is called self-coupling, the coupling between
groups is called cross coupling, and the feedback of each oscillator onto
itself is called self-feedback.

In particular, the adjacency matrix of two coupled groups can
be written as a block matrix

K =

[

K11 K12

K21 K22

]

,

with the self-coupling matrices K11, K22 and the cross-coupling
matrices K12, K21. This decomposition of a network into groups is
motivated by the fact that each group can be interpreted as an oscil-
lator with multiple critical points. Thus, with this interpretation,
the analysis of identical oscillators might be generalized to divide
the oscillators into identical oscillators and then to analyze their
dynamical behavior. This is subsequently elaborated for two groups.
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To determine the critical points of two coupled groups, the
structure of the linearization of (1) is exploited. Note that this
structure can be induced in the following way:

Assumption 1. For a network composed of oscillators, the
following assumptions are imposed:

(A1) The equilibria of the decoupled oscillators are invariant to
coupling, i.e., they remain the sole equilibria of the coupled
nonlinear system, and the system matrix is influenced by the
adjacency matrix.

(A2) For each uncoupled oscillator, there exists a critical value kH,ii

of the self-feedback strength so that it undergoes at least one
Andronov–Hopf bifurcation.

As a consequence of (A1), the transfer matrix of the coupled
system is obtained by coupling the transfer functions of the uncou-
pled oscillators. Assumption (A2) implies that the Jacobian Aii has a
pair of complex conjugated eigenvalues on the imaginary axis for
kii = kH,ii. For instance, the critical feedback strength of a single
MEMS sensor is given in Theorem 1. The conditions for the criti-
cal point of the two coupled groups of oscillators are elaborated as
follows.

Theorem 2. Consider two groups composed of N1 ∈ N and
N2 ∈ N oscillators, respectively, so that the dimension of the coupled
network is N = N1 + N2. Let the transfer function of an individ-
ual (linearized) oscillator, the self-coupling matrices, and the cross-
coupling matrices be given by gi(s) ∈ C, Kii = kiiI ∈ R

Ni×Ni with the
self-feedback in terms of kii ∈ R, and Kij ∈ R

Ni×Nj for the groups i,
j = 1, 2 and i 6= j. Assume that the eigenvalues λk ∈ R, k = 1, . . . , N2

of the matrix K21K12 ∈ R
N2×N2 are real-valued and the bifurcation

parameters. Then, the bifurcation points λH of the Andronov–Hopf
bifurcations of the two groups of oscillators are determined by

λH = q2
11 + q2

12 − q2
21 − q2

22, (11)

with the constants q11, q12, q21, q22 ∈ R computed from

0 = g1(iωC) − g2(iωC)

+ [k11 − k22 + 2(q21 − iq12)]g1(iωC)g2(iωC), (12a)

0 = 1 −
[

k11 + q11 + q21 − i
(

q12 + q22

)]

g1(iωC), (12b)

0 = q11q22 − q21q12, (12c)

and ωC ∈ R the characteristic frequency at the critical point.
Remark 1. Equation (11) must be interpreted in the sense that

at least one eigenvalue λk of the matrix K21K12 must take the value
λH. Note that this also enables us to deduce information about the
topology.

Proof. To prove the claim, it has to be shown that the transfer
matrix of the network has a complex conjugated pair of eigenvalues
on the imaginary axis. This is done in three steps: First, the transfer
function from output to input of the network is derived depend-
ing on the coupling in terms of the adjacency matrix K. Second,
the adjacency matrix K is shifted by a diagonal matrix Q ∈ C

N×N

so that K̃ = K + Q becomes singular. Third, this shift introduces
a linear pseudo-feedback into each transfer function. This is then
used to show that the transfer function of the network has a com-
plex conjugated pair of eigenvalues on the imaginary axis in terms

of the eigenvalues λH of the matrix K12K21. According to (A2), the
linearization of the oscillators at their equilibrium yields the transfer
functions g1(s) and g2(s) given by (4).

Moreover, denote the self-coupling matrix and the cross-
coupling matrix of the two groups by K11 = k11I, K22 = k22I, K12 and
K21 with the self-feedback in terms of k11 and k22. Then, the trans-
fer matrix of the coupled groups from output y = [y1y2 · · · yN]T to
input 1v = [1v11v2 · · ·1vN]T reads

H(s) =

[
1−k11g1(s)

g1(s)
IN1 0

0
1−k22g2(s)

g2(s)
IN2

]

−

[

0 K12

K21 0

]

︸ ︷︷ ︸

=KND

.

Notably, by choosing this rather uncommon transfer matrix, the
effects of the cross coupling KND can be investigated directly, since
the zeros of H(s) are the poles and, thus, at least a subset of the
eigenvalues of the network. Hence, the aim is to show that H(s) has
two complex conjugated zeros on the imaginary axis. To express this
behavior, assume that there exists an asymmetric shift given by

K̃ = KND −

[

(q∗
1 + q∗

2)IN1 0
0 (q1 − q2)IN2

]

︸ ︷︷ ︸

=Q

, (13)

with the constants q1 = q11 + iq12 ∈ C and q2 = q21 + iq22 ∈ C.
Herein, z∗ denotes the complex conjugate of a complex number
z ∈ C. To satisfy the necessary condition of an Andronov–Hopf
bifurcation, it has to be imposed that K̃ is singular, such that a
rank drop argument can be used for the transfer matrix H(s). Fol-
lowing Lemma 2 from Appendix A the determinant of K̃ can be
simplified to

det K̃ =
N1

N2

det
[(

q∗
1 + q∗

2

) (

q1 − q2

)

IN2 − K21K12

]

.

Assuming that at least one eigenvalue of H(s) is not influenced by the
cross-coupling matrices implies det K̃ = 0. This is achieved by set-
ting

(

q∗
1 + q∗

2

) (

q1 − q2

)

to the eigenvalues λk ∈ σ(K21K12) of K21K12

for all oscillator indices k = 1, . . . , N2 of group 2. This yields

λk = q2
11 + q2

12 − q2
21 − q2

22 + i2(q12q21 − q11q22),

where the imaginary part must vanish since the eigenvalues are
assumed to be real-valued. Hence, q11q22 = q12q21 must be satisfied,
which implies (11).

Now, it has to be shown that the transfer matrix H(s) is
locally singular for s ∈ {±iωC}59 with the characteristic frequency
ωC > 0. For this, the Jordan decomposition of K̃ = W∗JW is used
with the Jordan matrix J ∈ R

N×N and a transformation matrix
W ∈ R

N×N.60 For the output-to-input transfer function of the net-
work, this implies

H(s) =

[
1−k11g1(s)

g1(s)
IN1 0

0
1−k22g2(s)

g2(s)
IN2

]

− Q − K̃

=

[
1−k11g1(s)

g1(s)
IN1 0

0
1−k22g2(s)

g2(s)
IN2

]

− Q − W∗JW.
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By imposing

[
1−k11g1(s)

g1(s)
IN1 0

0
1−k22g2(s)

g2(s)
IN2

]

− Q

=

[
1−(k11+q∗

1+q∗
2 )g1(s)

g1(s)
IN1 0

0
1−(k22+q1−q2)g2(s)

g2(s)
IN2

]

= h(s)IN, ∀s ∈ {±iωC},

the transfer matrix is simplified to

H(s) = W∗
(

h(s)I − J
)

W,

respectively. If h(s) vanishes for s ∈ {±iωC}, this implies that H(s) is
singular, because J is singular for all s ∈ C. This analysis implies the
following conditions:

0 =
1 −

[

k11 + q∗
1 + q∗

2

]

g1(iωC)

g1(iωC)

−
1 −

[

k22 + q1 − q2

]

g2(iωC)

g2(iωC)
,

0 = 1 − [k22 + q11 − q21 + i(q12 − q22)]g2(iωC),

which can be rearranged into (12a) and (12b), thus concluding the
proof. �

Remark 2. Theorem 2 is also satisfied for two coupled groups
of general oscillators if Assumptions (A1) and (A2) are fulfilled and
if in addition, no pole-zero cancellation occurs in the elements of the
transfer matrix.

The condition imposed on the real-valued eigenvalues of the
product of the cross-coupling matrices K12K21 and the self-coupling
matrices K12 and K22 might seem difficult to satisfy. However, this
condition is immediately fulfilled, e.g., if

• the network is undirected so that the adjacency matrix becomes
symmetric, i.e., K = KT, and

• the size of one group is 1.

Moreover, with a similar argument as in Theorem 2, the bifurcation
point of identical oscillators in symmetric networks can be general-
ized, e.g., see Proposition 1 in Stan and Sepulchre.15 In particular, the
critical point is also shifted by the eigenvalues of the self-coupling
matrix in asymmetric networks. This is summarized subsequently.

Proposition 1. Consider a single group consisting of N ∈ N

oscillators and denote the self-coupling matrix by K ∈ R
N×N. In

addition, assume that Assumptions (A1) and (A2) are satisfied and
that the eigenvalues of the self-coupling matrix λi ∈ σ(K) are real-
valued for the oscillators i = 1, . . . , N. Then the critical point kH

of an Andronov–Hopf bifurcation of each oscillator are given by
kH = k + λi.

Proof. The proof follows the line of the proof of Theorem 2.
However, in the case of one group the auxiliary matrix Q ∈ C

N×N

simplifies to a weighted identity matrix, i.e., Q = qIN with the weight
q ∈ R. Then, by following the arguments of the proof of Theorem 2,

the conditions

K̃ = det
[

qIN − K
]

, (14)

G(s) = W∗
(

g(s)I − J
)

W (15)

arise. Herein, the parameters are given by the Jordan decomposi-
tion K̃ = W∗JW and the transfer function g(λ) ∈ C of the oscillator.
Thus, (14) and (15) have a rank drop, if q = λi and kH,i = k + λi

for the oscillator i = 1, . . . , N. The critical point and the feedback
strength of the oscillators are then given by kH ∈ R and k ∈ R, which
concludes the proof. �

Remark 3. By assuming that the oscillators are passive, i.e.,
the unforced oscillator possesses a stable limit cycle and the feedback
system satisfies the dissipation inequality Ṡ ≤ (k − kH)y2 − yh(y)
+ y1v with a nonlinearity h(y) ∈ R, the critical point of the network
becomes unique, i.e., only the minimal eigenvalue changes the critical
point. For more details, see Stan and Sepulchre.15

Remark 4. It has to be stressed that Theorem 2 and Propo-
sition 1 cannot be combined easily. This comes from the fact that
the self-coupling matrices are also influencing the complete coupling
matrix and its rank. Following the outline of the proof of Theorem
2, rank loss can be induced with an asymmetric shift. This can be
analyzed with the determinant

0 = det

([

K11 K12

K21 K22

]

−

[

(q∗
1 + q∗

2)IN1 0
0 (q1 − q2)IN2

])

.

After applying Lemma 1, the determinant can be simplified to

0 = det
(

K11 − (q∗
1 + q∗

2)IN1

)

× det
(

K22 − (q1 − q2)IN2

−K21(K11 − (q∗
1 + q∗

2)IN1)
−1K12

)

. (16)

Computing the relationship between the critical point and coupling
matrix K is, thus, challenging without any further
assumptions on (16).

The previous theorem shows that the eigenvalues of the
product of the cross-coupling matrices influence the bifurcation
behavior. This is simplified by assuming N1 = N2. Then, the bifur-
cation parameters λH, which is equal to the critical point, can

be decomposed as λH = λ
(12)
i,H λ

(21)
j,H . The eigenvalues are given by

λ
(12)
i,H ∈ σ(KH,12) and λ

(21)
j,H ∈ σ(KH,21) with the cross-coupling matri-

ces inducing the Andronov–Hopf bifurcation KH,12 ∈ R
N1×N1 and

KH,21 ∈ R
N1×N1 for all oscillator indices i = 1, . . . , N1 of group 1 and

oscillator indices j = 1, . . . , N1 of group 2. This follows directly by
considering the eigenvalue problem,

KH,21 KH,12x
︸ ︷︷ ︸

=λH,12x

= λH,12 KH,21x
︸ ︷︷ ︸

=λH,21x

= λH,12λH,21x,

with the eigenvector x ∈ R
N1 . Hence, the eigenvalues of the adja-

cency matrices KH,12 and KH,21 can induce an Andronov–Hopf
bifurcation. Interestingly, it also follows that the cross-coupling
matrices KH,12 and KH,21 commute. This observation is generalized
to arbitrary networks in the following lemma.
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Lemma 1. The adjacency matrices between the different
groups KH,12 and KH,21 are cumulative for computing the critical point
λH, i.e.,

σ(KH,21KH,12)\{0} = σ(KH,12KH,21)\{0}. (17)

Proof. The claim is shown by computing the determinant of a
block matrix following Lemma 2 from Appendix A. With this, the
determinant of K̃ defined in (13) is given by

det K̃H =
N1
N2

det
[(

q∗
1+q∗

2

) (

q1 − q2

)

IN2 − KH,21KH,12

]

(18a)

=
N2
N1

det
[(

q∗
1+q∗

2

) (

q1 − q2

)

IN1 − KH,12KH,21

]

, (18b)

since q∗
1 + q∗

2 6= 0 and q1 − q2 6= 0. This implies (17), which con-
cludes the proof. �

In summary, the bifurcation analysis for a network of two
groups of oscillators is simplified by employing Theorem 2 and
Lemma 1 in two different ways: First, the conditions of Theorem
2 reduce the degree of the characteristic polynomial. Second, the
bifurcation parameter is identified easier, since it is possible to
reduce the degree of the characteristic polynomial with Lemma 1
to min{N1, N2}. Thus, it even might become possible to compute the
bifurcation parameter analytically. This is addressed subsequently
for two groups motivated by the MEMS-based oscillators (1). In par-
ticular, by analyzing the bifurcations of two coupled groups of these
oscillators, the characteristic frequency directly follows. Hence, the
frequency tunability of two coupled groups can be investigated in
this way.

B. Andronov–Hopf bifurcation

After substituting (4) into (12), taking the numerator and split-
ting it into real and imaginary parts, the resulting equations read

0 = [b11b21(k11 − k22 + 2q21) − a21b11 + a11b21]ω
2
C

+ (a23b11 − a13b21)ω
4
C, (19a)

0 = (b11 − b21)ω
5
C + (a12b21 − a22b11)ω

3
C

+ 2b11b21q12ω
2
C + (a20b11 − a10b21)ωC, (19b)

0 = a13ω
3
C + [b11(k11 + q11 + q21) − a11]ωC, (19c)

0 = ω4
C − a12ω

2
C − b11(q12 + q22)ωC + a10, (19d)

0 = q11q22 − q21q12, (19e)

with characteristic frequency ωC > 0 and the constants qij ∈ R for
the groups i, j = 1, 2. The remaining coefficients are given by (5).
In the following, (19) is solved for two different cases: First, the
Andronov–Hopf bifurcations of two identical groups with differ-
ent self-feedback are analyzed. Second, the general case of two
non-identical groups consisting of MEMS sensors is discussed.

1. Identical MEMS sensors

In the case of identical groups, (19) is simplified significantly.
Furthermore, it is assumed that the feedback strengths k11 and k22

are different, which yields two groups of oscillators so that Theorem
2 can be applied to obtain

0 = b2
2(k11 − k22 + 2q21)ω

2
C, (20a)

0 = 2b2
2q12ω

2
C, (20b)

0 = a3ω
3
C + (b2k11 + b2q11 + b2q21 − a1)ωC, (20c)

0 = ω4
C − a2ω

2
C − b2(q12 + q22)ωC + a0, (20d)

0 = q11q22 − q21q12. (20e)

Solving (20a)–(20d) for q11, q12, q21, and q22 results in

q11 =
a3ω

2
C − a1

b1

+
k̃11 + k̃22

2
, q12 = 0,

q21 = −
k̃11 − k̃22

2
, q22 =

ω4
C − a2ω

2
C + a0

b1ωC

,

with the shifted self-feedback strengths k̃ii = kii + λii and
λii ∈ σ(Kii) for the groups i = 1, 2. Substituting this into (20e) and
taking the numerator provides

0 =
[

2a3ω
2
C − a1 + b1(k̃11 + k̃22)

][

ω4
C − a1ω

2
C + a0

]

.

It, hence, follows that there are three different parameter config-
urations satisfying the necessary condition of the Andronov–Hopf
bifurcation, i.e.,

λ
(1)
H =

(

ω4
C,1 − a2ω

2
C,1 + a0

)2

b2
1ω

2
C,1

−

(

k̃11 − k̃22

)2

4
,

ω2
C,1 =

2a1 − b1(k̃11 + k̃22)

2a3

,

(21a)

λ
(2)
H =

a3ω
2
C,2 − a1 + b1k̃11

b1

a3ω
2
C,2 − a1 + b1k̃22

b1

,

ω2
C,2 =

a2 +
√

a2
2 − 4a0

2
,

(21b)

λ
(3)
H =

a3ω
2
C,3 − a1 + b1k̃11

b1

a3ω
2
C,3 − a1 + b1k̃22

b1

,

ω2
C,3 =

a2 −
√

a2
2 − 4a0

2
.

(21c)

The critical points given by (21b) and (21c) are closely related
to the critical points of a single MEMS sensor. This can be seen
by imposing k11 = k22 = k. Then, the critical point has to satisfy
λH = (kH − k)2, where kH is given in Theorem 1. Particularly, this
is already predicted by Proposition 1, i.e., the critical point of cou-
pled identical oscillators has to satisfy kH = k + λi with the feedback
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strength k ∈ R and the eigenvalue λi ∈ σ(K) of the self-coupling
matrix K for the oscillators i = 1, . . . , N. However, the additional
bifurcation given by (21a) is not predicted as Proposition 1 addresses
Andronov–Hopf bifurcations of the uncoupled case. Contrarily, the
critical point is given by (21a) is created by coupling the MEMS
sensors.

2. Non-identical MEMS sensors

In the case of two non-identical groups of MEMS sensors,
(19) has to be solved generally. This is done in the follow-
ing way: (19a)–(19c) are solved for the constants q11, q12, q22,
and the characteristic frequency ωC. After substituting the results
into (19d), a polynomial of third degree arises. Particularly, the
emergence of three different critical points can be explained in
two different ways. First is by considering the simpler bifurca-
tion behavior of N injectively coupled Andronov–Hopf oscillators.
Herein, the eigenvalues of the adjacency matrix are assumed to be
the bifurcation parameters. Then, this network has at maximum
N − 1 different Andronov–Hopf bifurcations.61 For the sim-
plest case, two coupled Andronov–Hopf oscillators have one
Andronov–Hopf bifurcation.25 Second is by considering the results
on two coupled groups of identical oscillators, which also have three
real-valued critical points.

With these analogies, it follows that a network consisting of
two different coupled groups of MEMS sensors has three real-valued
bifurcation points, since Theorem 1 implies that one MEMS sensor
can described by two Andronov–Hopf oscillators. Thus, it is reason-
able to assume that the cubic polynomial has only real solutions.62

The resulting values for the constants q11, q12, q21, q22 and the
characteristic frequency ωC are given in Appendix C.

3. Frequency tunability

In addition to the emergence of the three Andronov–Hopf
bifurcations, the three respective characteristic frequencies become
tunable by changing the damping of the bifurcation.25 This is
achieved by means of the self-feedback strengths k11 and k22 as
these values in the physical setup change the sensitivity by heat-
ing the MEMS sensor, such that the asymmetry in the network
can be changed. The limits of the characteristic frequencies can be,
e.g., derived by employing first Proposition 1 and then Theorem 2.
Proposition 1 implies that the critical points and characteristic fre-
quencies of one group will be given by the individual oscillators if
the two groups are not coupled. Thus, if one group is in bifurcation,
Theorem 2 implies that there is one critical point equal to zero in the
case of two coupled groups. In this case, the characteristic frequency
of the two groups is then given by the characteristic frequency of
the individual oscillators. In particular, these characteristic frequen-
cies will be the limits for the individual Andronov–Hopf bifurcation,
since the characteristic frequency of the system will move toward the
characteristic frequency of the other group by increasing the bifur-
cation parameter of the system. In view of a practical realization, it is
desirable that the tunability of the resulting Andronov–Hopf bifur-
cations is constrained by the neighboring characteristic frequencies
so that the closure of the three intervals is empty. This ideal situation
is sketched in Fig. 5.

FIG. 5. Sketch of the ideal constraints of the characteristic frequency with

the frequency axis ω divided into the optimal intervals R
j

i = [ωC,i ,ωC,j ]
to tune the characteristic frequency for all tuples of group indices (i, j)
∈ {(12, 22), (22, 11), (11, 21)}. Herein, ωC,i denotes a characteristic frequency
of one MEMS sensor.

C. Hopf–Hopf bifurcation

Due to the fact that there are three parameter configurations
satisfying the necessary condition of an Andronov–Hopf bifurca-
tion the existence of a Hopf–Hopf bifurcation has to be investigated.
In general, a Hopf–Hopf bifurcation is a two parameter bifurcation,
where the necessary condition for the emergence of a Hopf–Hopf
bifurcation is the existence of two purely imaginary, complex con-
jugated pairs of eigenvalues of the system matrix obtained from
the linearization at the equilibrium.30,45,46 Subsequently, the cou-
pled groups of MEMS sensors are investigated for the emergence of
the Hopf–Hopf bifurcation with respect to the frequency difference
between the natural frequencies ω1 and ω2 and the feedback strength
k11 and k22 for two different scenarios: First, two coupled groups of
identical MEMS sensors are investigated. This is done by imposing
the additional constraint,

λ
(i)
H = λ

(j)
H , (22)

with the critical points λ
(i)
H , λ

(j)
H of the two coupled groups of MEMS

sensors for the solutions i, j = 1, 2, 3 and i 6= j. In this case, only the
feedback strengths k11 and k22 are discussed. Second, it is argued that
it is not possible to derive an analytic equation with (22) for the
two coupled non-identical MEMS sensors. Thus, a simple numer-
ical algorithm is shortly proposed to calculate the critical point of a
Hopf–Hopf bifurcation for the design parameters.

1. Identical MEMS sensors

Inserting (21a) and (21b) or (21a) and (21c) into (22), results in
the quartic equation

0 = d(i)
0 + d(i)

1 (kHH,11 + kHH,22)

+ d(i)
2 (kHH,11 + kHH,22)

2
− d(i)

3 (kHH,11 + kHH,22)
3

− b4
11(kHH,11 + kHH,22)

4, (23)

with the critical feedback strengths kHH,11 and kHH,22 of the
Hopf–Hopf bifurcation. The coefficients are given by

d(i)
0 = −16

(

a11 − a13ω
2
C,i

) {

2a10a11a
2
13ω

2
C,i − a2

10a
3
13

+
[

a13a11

(

a2
13 − 2a12 + ω2

C,i

)

+a2
13

(

ω4
C,i − (a2

13 + 2a12)ω
2
C,i + a2

12

)

+ a2
11

]

a11ω
2
C,i

}

,
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d(i)
1 = −8b11

{

a3
13ω

8
C,i − a3

13

[

a2
13 + 2a12

]

ω6
C,i

+a3
13

[

a2
12 + 2a10 + 4a11a13

]

ω4
C,i − a11

[

4a2
11

+3a13

(

a2
13 − 2a12

)

a11 + 2
(

a2
12 + 2a10

)

a2
13

]

ω2
C,i + a2

10a
3
13

}

,

d(i)
2 = −4b2

11ω
2
C,i

[

a2
13

(

−2a2
13ω

2
C,i + a2

12 + 2a10

)

+ 6a2
11 +

(

3a3
13 − 6a12a13

)

a11

]

,

d(i)
3 = 2

(

a3
13 − 2a12a13 + 4a11

)

b3
11ω

2
C,i

for all the solution indices i = 2, 3. This equation can be solved
for kHH,11 + kHH,22 analytically. Note that a similar result can be
obtained for the critical points (21a) and (21c). However, a detailed
discussion is omitted, since this case follows by replacing ωC,2 with
ωC,3.

Consider now the critical points given by (21b) and (21c).
These reduce to the same point, if the critical feedback strengths of
the Hopf–Hopf bifurcation satisfy

kHH,11 + kHH,22 =
2a1 − a2a3

b1

. (24)

Moreover, from (23) and (24), it follows that a triple Andronov–Hopf
bifurcation, i.e., three purely imaginary pairs of complex conju-
gated eigenvalues, cannot be obtained by assigning the critical feed-
back strengths kHH,11 and kHH,22 since (23) and (24) are linearly
dependent.

2. Non-identical MEMS sensors

To derive an analytic equation for the Hopf–Hopf bifurcation,
(22) has to be solved for the design parameters, i.e., the feedback
strengths ki or the natural frequency ωi for the groups i = 1, 2.
However, this is not possible directly as the resulting equation is
transcendental. This comes from the fact that the argument and
coefficient of the cosine is given in terms of the second bifurcation
parameter. Therefore, the parameters are computed numerically
using

kii,n+1 = kii,n + ηk

(

λ
(j)
H − λ

(k)
H

)

, (25a)

ωi,n+1 = ωi,n − ηω

(

λ
(j)
H − λ

(k)
H

)

, (25b)

with the step size ηk, ηω > 0 and the iteration n ∈ N for the groups
i = 1, 2 and solutions j, k = 1, 2, 3 and j 6= k. These iterations are
computed individually and are aborted, if the absolute values of the

error e = λ
(1)
H − λ

(3)
H are smaller than the threshold with respect to

the self-feedback ek > 0 and the threshold with respect to the natural
frequency eω > 0.

V. SIMULATION RESULTS AND NUMERICAL

EVALUATION

Subsequently, the analytical results are verified numerically.
First, Theorem 2 is verified for two groups consisting of 6 differ-
ent MEMS sensors. Herein, it is assumed that N1 = 4 and N2 = 2.
Second, the Andronov–Hopf bifurcations are analyzed for an arbi-
trary topology of the coupled groups. This is done in the following

TABLE I. Parameters of the MEMS sensors.

Parameter Values

Natural frequency ω1 2π × 3500 1
s

ω2 2π × 3750 1
s

Q-factor Q 30,
Offset voltage uDC −0.2 V
Transfer factor α 19.2 m

Ks

Time constant β 1006.6 1
s

Transfer factor ζ 4.2588 × 105

Time constant τ 10−3 1
s

Calibration factor κ 106 V
m

Height h 1.45 × 10−6 m

Density ρ 2, 329
kg

m3

way: First, two coupled, identical groups of MEMS sensors are
simulated. Here, the setup is focused on the occurrence of the
Hopf–Hopf bifurcation. Afterward, the characteristic frequencies
of two coupled non-identical groups of MEMS sensors are inves-
tigated. Thereby, it is compared, which pair of eigenvalues passes
the imaginary axis first. From now on, this bifurcation will be
called dominant since this bifurcation is observed first in the net-
work. Finally, the Hopf–Hopf bifurcation is investigated in terms of
the differences between the natural frequencies ω1 and ω2 and the
feedback strengths k11 and k22, respectively.

Parameters for the MEMS sensors are given in Table I and the
parameters for the numerical methods are given in Table II, respec-
tively. It should be noted that the parameters are related to actual
MEMS sensors; see, e.g., Lenk et al.9 and Rolf and Meurer.10 For
the assumed parameter set, the two uncoupled MEMS sensors have
the possible critical points of the Andronov–Hopf bifurcations kH,11

= 0.109, kH,12 = −0.296, kH,21 = 0.163, and kH,22 = −0.387. Fur-
thermore, the characteristic frequencies at the critical point are
given by ωC,11 = 2π × 3.505 1

s
, ωC,12 = 2π × 159.44 1

s
, ωC,21

= 2π × 4.0053 1
s
, and ωC,22 = 2π × 159.47 1

s
. Note that the equa-

tions for the critical point and the characteristic frequency are given
in Theorem 1, respectively.

TABLE II. Parameters used in the simulation.

Parameter Frequency range (Hz) Values

Step size ηk . . . 10−1

ηω [0, 1 000] 106

[1 000, 7 500] 103

[7 500, 10 000] 10−1

Threshold ek . . . 10−12

eω [0, 1 000] 10−12

[1 000, 7 500] 10−9

[7 500, 10 000] 10−7

[10 000, 20 000] 10−5
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FIG. 6. Sketch of the network topology. Oscillators are colored in terms of their
groups.

A. Critical points

In the following, the effects of the network topology on the
bifurcations are verified and the location of critical points in terms
of the feedback strength is investigated numerically.

1. Critical points of two groups of MEMS sensors

In view of Theorem 2 a network of two groups of MEMS sen-
sors is considered. The topology is shown in Fig. 6. Particularly,
the different groups are depicted by the color of the vertex. Thus,
the first group consists of N1 = 4 and the second group consists of
N2 = 2, respectively. Furthermore, the self-coupling and cross-
coupling matrices are given by

K11 = 0, K12 =

[

k k k k
0 0 0 |k|

]T

,

K21 =

[

k k k k
0 0 0 k

]

, K22 = 0,

with the coupling strengths k ∈ [−1, 0.5]. Hence, this network is not
symmetric and the product between the cross-coupling matrices is
given by

K21K12 =

[

4k2 k|k|
k2 k|k|

]

,

with the spectrum

σ(K21K12) =







k
(

|k| + 4k ±
√

16k2 − 4k|k| + k2

)

2






. (26)

Starting from K21K12, the characteristic polynomial is reduced to a
quadratic polynomial so that the critical point can be calculated ana-
lytically. Additionally, there are three positive eigenvalues and one
negative eigenvalue. In comparison, there are two positive and one
negative critical points, resulting in seven different critical points.
This observation is illustrated in Fig. 7. Herein, the resulting real
part of the minimal eigenvalue of the system matrix in terms of
the coupling strength is depicted in Fig. 7(a) and the eigenvalues

FIG. 7. Comparison between the real part of theminimal eigenvalue of the system

matrix A and eigenvalues of matrix K21K12 in terms of the coupling strengths k̃.
(a) Real part of the minimal eigenvalue of the system matrix A in terms of the

coupling strengths k̃. (b) Eigenvalues of the matrix K21K12 in terms of the coupling

strengths k̃. Herein, the bifurcation points λ
(i)
H , i = 1, . . . , 7 are defined by the

intersections of the blue and red curves with the critical points depicted black.

given by (26) in terms of the parameter k̃ are shown in Fig. 7(b).
Particularly, the theoretical results align with numerical simulation,
respectively.

2. Dominant critical point

Subsequently, consider two coupled identical groups of MEMS
sensors for the case k = k11 = k22 with a natural frequency
ω1 = 2π × 3500 1

s
. This system has in total nine possible

Hopf–Hopf bifurcations since there are two polynomials of degree 4
and one polynomial of degree 1. The solution of these polynomials
is given by

• k(1,2)
HH,1 = −0.3, k(1,2)

HH,2 = −0.3, k(1,2)
HH,3 = 0.11, and k(1,2)

HH,4 = 0.11
between the bifurcations 1 and 2,

• k(1,3)
HH,1 = −0.3, k(1,3)

HH,2 = −0.3, k(1,3)
HH,3 = 0.11 + 0.05i, and k(1,3)

HH,4

= 0.11 − 0.05i between the bifurcations 1 and 3, and
• k(2,3)

HH = −0.093 between the bifurcations 2 and 3.
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FIG. 8. Critical coupling strength of two coupled, identical, MEMS sensors in
terms of a symmetric feedback strength k(= k11 = k22).

Note that the Hopf–Hopf bifurcation k(2,3)
HH is the only valid solu-

tion in the sub-critical regime, since it is the only critical point

satisfying kH,12 ≤ k(2,3)
HH ≤ kH,11. Hence, the critical point k(2,3)

HH is only

investigated further so that the critical coupling strength λ
(1)
H can be

omitted for the analysis, since the critical point k(2,3)
HH is not induced

by this critical coupling strength. In Fig. 8, the critical point of λ
(2)
H

and λ
(3)
H in terms of the feedback k is shown. Particularly, by assign-

ing a feedback k, the position of the critical coupling strengths can be

changed. For instance, if k > kHH,1, then the coupling strength λ
(2)
H

becomes dominant, i.e., λ(2)
H is smaller than λ

(3)
H . Hence, it is possible

to assign a dominant bifurcation by choosing the feedback strength
k, accordingly.

B. Tunability

The tunability of two groups of coupled MEMS sensors is eval-
uated numerically. This is done by verifying the predictions and
investigating the connection between the dominant critical point
and the tunability in the sub-critical regime.

1. Characteristic frequency

In the following, the characteristic frequencies ωC,1, ωC,2, and
ωC,3 are investigated when the network of two coupled groups is
at their corresponding critical points. Furthermore, the variation of
the characteristic frequencies in the sub-critical regime is of inter-
est, such that the simulation is performed in terms of the feedback
strengths k11 ∈ [kH,12, kH,11] and k22 ∈ [kH,22, kH,21]. Moreover, the
Hopf–Hopf bifurcation between the first and third Andronov–Hopf
bifurcation is computed numerically with (25a), since the numeri-
cal values of these two Andronov–Hopf bifurcations have the same
sign when choosing appropriate parameters. The variations of the
characteristic frequencies ωC,1, ωC,2, and ωC,3 in terms of the feed-
back strengths k11 and k22 are shown in Fig. 9. Similar to the two
coupled Andronov–Hopf oscillators, the characteristic frequency
can be assigned by choosing the feedback strengths k11 and k22,
accordingly. Interestingly, the simulations lead to the conclusion
that the resulting characteristic frequencies can be tuned by control-
ling the asymmetry of the corresponding network. Moreover, the

FIG. 9. Characteristic frequency fC of the three bifurcations in terms of the feed-
back k11 and k22. Herein, the Hopf–Hopf bifurcation between the first and third
is visualized by the solid line. (a) Characteristic frequency fC,1 in terms of the
feedback strengths k11 and k22. Herein, the double Andronov–Hopf bifurcation is
marked by the blue line. (b) Characteristic frequency fC,2 in terms of the feedback
strengths k11 and k22. (c) Characteristic frequency fC,3 in terms of the feedback
strengths k11 and k22. Herein, the double Andronov–Hopf bifurcation is marked by
the blue line.

Hopf–Hopf bifurcation of the bifurcations corresponding to char-
acteristic frequencies ωC,1 and ωC,3 is depicted in Figs. 9(a) and 9(b)
by a blue line. Particularly, the regime above the blue line is interest-
ing for a tunable characteristic frequency, since then the bifurcation
corresponding to the characteristic frequency ωC,1 is dominant in
this regime. Thus, this bifurcation is called tunable from now on.
Moreover, this observation leads to the conclusion that the feedback
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FIG. 10. Comparison between the maximal tunable frequency difference and magnitude of the critical points for different Q-factors. The natural frequency is given by
ω = 2π f and the solid lines depict the coupled MEMS sensors without self-coupling, i.e., k11 = 0. In particular, the tunable interval, i.e., the regime, where the bifurcation
becomes dominant, whose characteristic frequency is tunable in the interval [ω1,ω2], is visualized by the gray area. In contrast to the solid line, the dashed lines show a
self-coupling k11, which is shifted toward the critical point kH,1, i.e., k11 = 0.8kH,1. This shift results in a decrease of the magnitude of this critical point so that the tunable
frequency difference and its interval is increased. (Top) The Q-factors are given byQ1 = Q2 = 30. (Bottom) The Q-factors readQ1 = Q2 = 50. (a) Critical feedback strength
kH of a single MEMS sensor in terms of the natural frequency f . (b) Maximal frequency difference 1f = |f1 − f2| in terms of the natural frequency f1. (c) Critical feedback
strength kH of a single MEMS sensor in terms of the natural frequency f . (d) Maximal frequency difference 1f = |f1 − f2| in terms of the natural frequency f1.

strengths k11 and k22 influence, which bifurcation becomes domi-
nant. This comes from the fact that these feedback strengths also
influence the eigenvalues, which correspond to the bifurcation.

2. Maximal frequency difference

To evaluate which MEMS sensors can be coupled so that
the tunable bifurcation becomes dominant, the maximal difference
between the natural frequencies ω1 and ω2 of two MEMS sensors is
evaluated numerically for different Q-factors, i.e., Qi ∈ {30, 50} for
all i ∈ {1, 2}. For this, denote the normalized frequency for a given
frequency ω > 0 by f = ω/2π . Then, the analysis is done in two
steps:

First, the frequency interval
[

f, f̄
]

in terms of the feedback

strengths k11 and k22 is investigated. For this, the results obtained

for two coupled groups of identical MEMS sensors are used, i.e.,
the relationship between the critical coupling strengths kH,1 and
kH,2. This is done by evaluating the intersection of the bifurcation
points kH,1 and kH,2 numerically.63 Second, the frequency difference
1f = |f1 − f2| is computed with (25b) for the quantified regions
numerically. Note that the maximal interval for this investigation is
the hearing range of humans, i.e., the interval R = [20, 20 000] Hz.12

The critical feedback strengths of a single MEMS sensor kH,1

and kH,2 for the frequency interval R are depicted in Figs. 10(a) and
10(c) for two different situations. The solid line shows the critical
feedback strengths of a MEMS sensor, which is not shifted by feed-
back. In this situation, the critical feedback strength kH,1 is smaller
than the other critical feedback strength kH,2 in an interval from
approximately 165 to 9550 Hz for Qi = 30 and from approximately
165 to 15 170 Hz for Qi = 50, respectively. Note that this interval is
marked by the gray region in Fig. 10. In particular, the bifurcation
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FIG. 11. Gain with respect to the harmonic excitation of the fundamental frequency for the MEMS sensor 1 and MEMS sensor 2 as a function of the amplitude r and the
relative coupling strength d. (a) Gain G11 of MEMS sensor 1, which can be approximated by G11 ≈ 1022.434 × r−0.6739 V/PA in the nonlinear regime. (b) Gain G12 of MEMS
sensor 1, which can be approximated by G12 ≈ 1024.658 × r−0.6615 V/PA in the nonlinear regime.

of the characteristic frequency ωC,1 has a smaller magnitude in these
intervals rendering it the dominant bifurcation when coupling two
identical MEMS sensors. This can be seen from the fact that the
critical point of the two coupled identical MEMS sensors is given
by the square of the critical feedback strength of a MEMS sensor.
For comparison, the network is moved closer to the critical point
of the tunable bifurcation. This is done by setting the self-feedback
strength critical of one MEMS sensor to k(ω) = 0.8 × kH,1(ω). The
results are depicted by the dashed lines. Interestingly, the interval, in
which the tunable bifurcation is dominant, is extended to the whole
frequency interval R.

With these considerations, the frequency difference 1f is com-
puted numerically. This is done for a system without feedback and
a system with feedback relatively close to the critical point of the
first MEMS sensor, i.e., k11(ω) = 0.8 × kH,1(ω) and k22 = 0. The
results are shown in Figs. 10(b) and 10(d). In the situation without
the shifted feedback, the numerical method converges in an interval
from approximately 165 to 9550 Hz for Qi = 30 and from approxi-
mately 165 to 15 170 Hz for Qi = 50, respectively. This is depicted by
the solid line. Note that in this situation, the dominant bifurcation
outside of this interval is given by the characteristic frequency ωC,3.
This can be changed by assigning a feedback closer to the critical
point kH,1 of the first MEMS sensor. Then, the frequency differ-
ence has both a larger interval and a larger magnitude. In addition,
it can be concluded that an increased Q-factor increased both the
intervals, in which the oscillators without shifted feedback, can be
coupled.

With the previous simulation, it is shown that the tunability of
the characteristic frequencies is achieved in three independent inter-
vals restricted by the characteristic frequencies of the uncoupled
MEMS sensors. Herein, the emergence and its respective character-
istic frequency of the dominant bifurcation are controlled by the
asymmetry of the network, such that the asymmetries can either
improve or deteriorate the tunability of two coupled groups. This
comes from the fact that the asymmetry between two coupled groups
can change their consensus for a limit cycle, such that the tunable
critical point might be dominant.

C. Reaction of the system

Finally, the reaction of injectively coupled MEMS sensors is
evaluated numerically for different coupling strengths. For practical
reasons, only two coupled MEMS sensors are investigated and it is
done by employing the so-called envelope mode, which is discussed
in Appendix B. In addition, the coupling strength is given as

γij = d

√

λ
(k)
H ,

with the relative coupling strength d ∈ [0, 1] for the oscillators
i, j = 1, 2, i 6= j and solutions k = 1, 2, 3. Herein, the relative gain is
assumed to be d ∈ {0, 0.95, 0.995, 0.999, 1} and the fundamental fre-
quency ωs is asserted to maximize the gain of the system by setting
ωs = ωC. The results for the critical Point I are visualized in Fig. 11.
The gain G11 of MEMS sensor 1 is depicted in Fig. 11(a), while the
gain G21 of MEMS sensor 2 is shown in Fig. 11(b). It turns out that
the gain in the linear regime is different for these sensors. In contrast
to this, both MEMS sensors enter the nonlinear regime for the same
external amplitude r. To compare the behavior of the MEMS sensors
with the cochlea, the compressive nonlinearity of the MEMS sensors
is approximated by64,65

Gi1 = Gi0r
−pi , (27)

with the amplitude r =
√

ν2
1 + ν2

2 of the harmonic excitation of the
fundamental frequency, the initial gain Gi0 > 0, and the exponent
pi > 0 for the oscillators i = 1, 2. Fitting (27) for gain G11 and G21,
results in

G11 ≈ 1022.434 × r−0.6739,

G12 ≈ 1024.658 × r−0.6615.

In comparison, the exponents p1 = 0.6739 and p2 = 0.6615 of
the coupled MEMS sensors are similar to the exponent of the cochlea
pcochlea = 2/3, which has been determined in Dierkes et al.64 and
Nadrowski et al..65

Chaos 34, 103135 (2024); doi: 10.1063/5.0217847 34, 103135-15

© Author(s) 2024

 21 O
ctober 2024 20:14:34

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

VI. CONCLUSIONS

The tunability of the resonance frequency of two coupled
groups of oscillators undergoing Andronov–Hopf bifurcations is
investigated. For this, the respective critical points in the network
are derived. Herein, the eigenvalues of the product of the adjacency
matrices between these two groups are the bifurcation parameters.
In particular, injectively coupled mathematical models of MEMS
sensors described by a dominant mode model are considered and
the critical points of the arising Andronov–Hopf bifurcations are
computed analytically. It turns out that the two coupled groups
can exhibit three Andronov–Hopf bifurcations for each eigenvalue
of the product between the cross-coupling matrices. In addition,
the resonance frequencies of these Andronov–Hopf bifurcations
become tunable within physical limits by adjusting the asymmetry of
the network. Moreover, the emergence of Hopf–Hopf bifurcations
in these networks is studied numerically. This is done by finding a
critical feedback strength or a critical natural frequency such that
two bifurcation points are equal, such that regions for different con-
sensus are identified. In view of a practical realization, this analysis
yields design rules on how two coupled artificial hair cells to achieve
high tunability.
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APPENDIX A: DETERMINANT OF A BLOCK MATRIX

Lemma A.2 (Ref. 66). Let A ∈ R
N1×N1 , B ∈ R

N2×N1 ,
C ∈ R

N1×N2 , D ∈ R
N2×N2 , A and D invertible, and N1, N2 ∈ N. Then,

the determinant of the block matrix consisting of A, B, C, and D is

given by

det

[

A B
C D

]

= det(A) det
(

D − CA−1B
)

= det(D) det
(

A − BD−1C
)

.

APPENDIX B: ENVELOPE MODEL OF INJECTIVELY

COUPLED MEMS SENSOR

To compare the behavior of the coupled MEMS sensors and the
cochlea, the gain of the system (1) has to be determined. Note that
the compression in the nonlinear regime is particularly interesting
as this can be compared to experimental values.64,65 The theoret-
ical values of the compression can be obtained by evaluating the
equilibrium of the so-called envelope model,67–69 which can be deter-
mined by writing the state vector x and the external input p as a
time-dependent Fourier series,

1χ = q0 +

Nq
∑

i=1

[

q2i−1 cos(iωst) + q2i sin(iωst)
]

, (B1a)

p = ν0 +

Nq
∑

i=1

[ν2i−1 cos(iωst) + ν2i sin(iωst)] . (B1b)

The Fourier coefficients, the fundamental frequency, and the num-
ber of the modes are given by qj(t) ∈ R

4, νl,j(t) ∈ R, ωs > 0, and
Nq ∈ N for the modes j = 0, 1, . . . , 2Nq. Substituting (B1) into (1)
and sorting terms results in

dq

dt
= Aqq + Bqν1 + ζ fq(q), (B2)

with the envelope vectors of the state and input q = [qT
0 , qT

1 , . . . ,
qT

2Nq
]T ∈ R

8Nq+4, ν = [ν0, ν1, . . . , ν2Nq ]T ∈ R
2Nq+1 and the vector-

valued nonlinearity fq(q) ∈ R
8Nq+4. The system matrix and the input

matrix are given by

Aq =












A 0 0 · · · 0 0
0 A −ωs · · · 0 0
0 ωs A · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · A −Nqωs

0 0 0 · · · Nqωs A












∈ R
(8Nq+4)×(8Nq+4),

Bq =












b 0 0 · · · 0 0
0 b 0 · · · 0 0
0 0 b · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · b 0
0 0 0 · · · 0 b












∈ R
(8Nq+4)×(2Nq+1),
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with the vector b = [0, 1/(ρh), 0, 0]T
∈ R

4. Note that the modes are only coupled by fq,ij(q) = 1χ
2
4 for the state i = 3 and the modes

j = 0, 1, . . . , Nq, while the other entries of the nonlinearity vanish, i.e., fq,ij = 0 for the states i = 1, 2, 4 and the modes j = 1, 2, . . . , Nq. In
particular, the coupling between the modes can be determined by truncating the modes larger than Nq, i.e., l > Nq. For instance, the nonlin-
earity fq,4j for Nq = 2 is given by (C3) in Appendix C. With these considerations, the gain with respect to the excitation of the fundamental

frequency of the kth output with the oscillator index k = 1, 2, . . . , N is given by10

Gkl =
1

r

√

q2
4k,2l−1 + q2

4k,2l, (B3)

with the amplitude r =
√

ν2
1 + ν2

2 for the oscillators k = 1, . . . , N and modes l = 1, . . . coSizeq. It has to be stressed that (B3) has to be
computed numerically, since the equilibrium of (B2) is a polynomial with a degree larger than 4.70–73

APPENDIX C: CRITICAL POINT OF THE ANDRONOV–HOPF BIFURCATIONS

The equations for the matrix Q and the resonance frequency are summarized. For this, let i = 1, 2, 3. Then, the bifurcation point of a
network consisting of two different MEMS sensor is given by (C1) and (C2). In addition, the nonlinearity fq of the envelope model for N = 2
is given by (C3).

1. Critical point and resonance frequency

ω2
R =

a11b21 − a21b11 − b11b21(k11 − k22 + 2q21)

a13b21 − a23b11

, (C1a)

q11 =
a13[a21 + b21(q21 − k22)] − a23[a11 − b11(k11 + q21)]

a13b21 − a23b11

, (C1b)

q12 =
1

2b11b21(a13b21 − a23b11)3/2
√

a11b21 − b11[a21 + b21(k11 − k22 + 2q21)]

× [a21b11(b21(2a11(b11 − b21) + a12(a13b21 − a23b11) − 2b11(b11 − b21)(k11 − k22 + 2q21)) + a22b11(a23b11 − a13b21))

+ b21(a11(b21(a12(a23b11 − a13b21) + 2b11(b11 − b21)(k11 − k22 + 2q21)) + a22b11(a13b21 − a23b11))

+ b11(k11 − k22 + 2q21)(b21(a12(a13b21 − a23b11) − b11(b11 − b21)(k11 − k22 + 2q21)) + a22b11(a23b11 − a13b21))

+ a2
11b21(b21 − b11) + a10(a23b11 − a13b21)

2) + (b21 − b11)a
2
21b

2
11 − a20b11(a23b11 − a13b21)

2], (C1c)

q21 =
c2

3c3

−
2

3|c3|

√

c2
2 + c1c3 cos

[

2π i

3
+

1

3
arccos

(

c3

|c3|

9c1c2c3 − 2c2
2 − 27c0c

2
3

2|c2
2 + c1c3|

3
2

)]

, (C1d)

q22 =
1

2b11b21(a13b21 − a23b11)3/2
√

a11b21 − b11[a21 + b21(k11 − k22 + 2q21)]
(C1e)

× [a21b11(b21(a12(a13b21 − a23b11) − 2a11(b11 + b21) + 2b11(b11 + b21)(k11 − k22 + 2q21)) + a22b11(a13b21 − a23b11))

+ b21(a11(b21(a12(a23b11 − a13b21) − 2b11(b11 + b21)(k11 − k22 + 2q21)) + a22b11(a23b11 − a13b21))

+ b11(k11 − k22 + 2q21)(b21(a12(a13b21 − a23b11) + b11(b11 + b21)(k11 − k22 + 2q21)) + a22b11(a13b21 − a23b11))

+ a2
11b21(b11 + b21) + a10(a23b11 − a13b21)

2) + a2
21(b11 + b21)b

2
11 + a20b11(a23b11 − a13b21)

2]. (C1f)

2. Auxiliary constants

c0 = (−a21b11(b21(2a11(b11 + b21) + a12(a23b11 − a13b21) − 2b11(b11 + b21)(k11 − k22)) + a22b11(a23b11 − a13b21))

+ b21(a11(b21(a12(a23b11 − a13b21) − 2b11(b11 + b21)(k11 − k22)) + a22b11(a23b11 − a13b21))

+ b11(k11 − k22)(b21(a12(a13b21 − a23b11) + b11(b11 + b21)(k11 − k22)) + a22b11(a13b21 − a23b11)) + a2
11b21(b11 + b21)

+ a10(a23b11 − a13b21)
2) + a2

21(b11 + b21)b
2
11 + a20b11(a23b11 − a13b21)

2)(a23(b11k11 − a11) + a13(a21 − b21k22)), (C2a)

Chaos 34, 103135 (2024); doi: 10.1063/5.0217847 34, 103135-17

© Author(s) 2024

 21 O
ctober 2024 20:14:34

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

c1 = 2b11b21(a
2
13b21(b21(a22b11(k11 − 2k22) − a12b21k22 − a11a22 + a10a23) − 2a20a23b11 + a21(2a22b11 + a12b21))

+ a13(−2a21(b21((2b11 + b21)(a11 − b11k11) + b11(3b11 + 2b21)k22) + a22a23b
2
11)

+ b21(b21(a11 − b11k11)(a11 − 2a12a23 − b11k11) + 2k22(b21(2b11 + b21)(a11 − b11k11) + a22a23b
2
11)

− 2a10a
2
23b11 + b11b21(3b11 + 2b21)k

2
22) + a2

21b11(3b11 + 2b21) + a20a
2
23b

2
11) + a23(a11b11(2b21(a12a23 − (2b11 + 3b21)k11

+ (b11 + 2b21)k22) + a22a23b11 − 2a21(b11 + 2b21)) + b2
11(a21(−a12a23 + 2(b11 + 2b21)k11 − 2b21k22)

+ k11(b21(2b11 + 3b21)k11 − a23(a22b11 + 2a12b21)) + b21k22(a12a23 − 2(b11 + 2b21)k11) + a2
21 + a10a

2
23 + b2

21k
2
22)

+ a2
11b21(2b11 + 3b21)) + a20a

3
13b

2
21), (C2b)

c2 = −4b2
11b

2
21(a13(b21(2a11 − a12a23 − 2b11k11 + (3b11 + b21)k22) + a22a23b11 − a21(3b11 + b21))

+ a23(b11(−2a21 + a12a23 − (b11 + 3b21)k11 + 2b21k22) + a11(b11 + 3b21)) − a22a
2
13b21), (C2c)

c3 = 8(a13 + a23)b
3
11b

3
21. (C2d)

3. Nonlinearity of the envelope model

fq,30 =
1

2
k2

11

(

q2
41 + q2

42 + q2
43 + q2

44

)

+ k12k11

(

q41q81 + q42q82 + q43q83 + q44q84

)

+
1

2
k2

12

(

q2
81 + q2

82 + q2
83 + q2

84

)

, (C3a)

fq,31 = k11k12

(

q43q81 + q44q82 + q41q83 + q42q84

)

+ k2
11

(

q41q43 + q42q44

)

+ k2
12

(

q81q83 + q82q84

)

, (C3b)

fq,32 = k11k12

(

q44q81 − q43q82 − q42q83 + q41q84

)

+ k2
11

(

q41q44 − q42q43

)

+ k2
12

(

q81q84 − q82q83

)

, (C3c)

fq,33 = k11k12

(

q41q81 − q42q82

)

+
1

2
k2

12

(

q2
81 − q2

82

)

+
1

2
k2

11

(

q2
41 − q2

42

)

, (C3d)

fq,34 = k11k12

(

q42q81 + q41q82

)

+ k2
11q41q42 + k2

12q81q82, (C3e)

fq,70 =
1

2
k2

21

(

q2
41 + q2

42 + q2
43 + q2

44

)

+ k22k21

(

q41q81 + q42q82 + q43q83 + q44q84

)

+
1

2
k2

22

(

q2
81 + q2

82 + q2
83 + q2

84

)

, (C3f)

fq,71 = k21k22

(

q43q81 + q44q82 + q41q83 + q42q84

)

+ k2
21

(

q41q43 + q42q44

)

+ k2
22

(

q81q83 + q82q84

)

, (C3g)

fq,72 = k21k22

(

q44q81 − q43q82 − q42q83 + q41q84

)

+ k2
21

(

q41q44 − q42q43

)

+ k2
22

(

q81q84 − q82q83

)

, (C3h)

fq,73 = k21k22

(

q41q81 − q42q82

)

+
1

2
k2

21

(

q2
41 − q2

42

)

+
1

2
k2

22

(

q2
81 − q2

82

)

, (C3i)

fq,74 = k21k22

(

q42q81 + q41q82

)

+ k2
21q41q42 + k2

22q81q82. (C3j)
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