

HELOKA-US Project: towards the verification of a DEMO-based conventional power plant technology

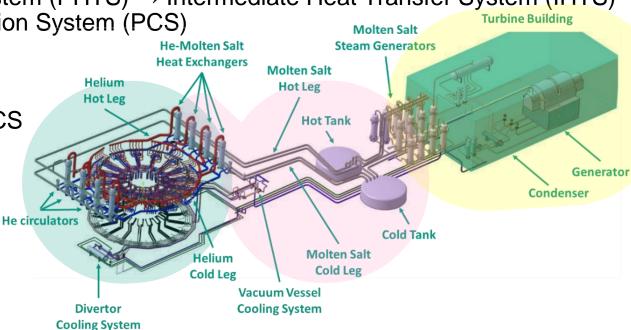
S. Perez-Martin, S. Ruck, X. Gaus-Liu, B. Fluhrer, H. Neuberger

www.kit.edu

Introduction: He-cooled DEMO Balance of Plant

Indirect Coupling Design: Primary Heat Transfer System (PHTS) \rightarrow Intermediate Heat Transfer System (IHTS) with Energy Storage System (ESS) \rightarrow Power Conversion System (PCS)

Features:

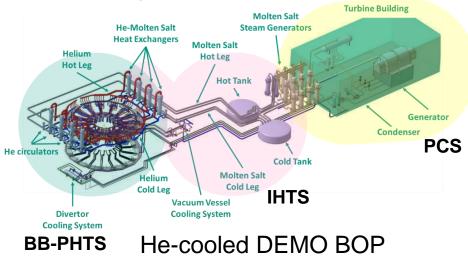

- Decoupling plasma intermittent heat source from PCS
- Buffering energy during pulse and releasing in dwell
- Constant PCS steam load over complete operation

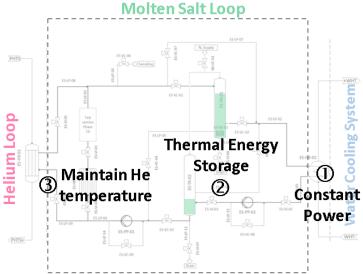
Coming steps:

- Consolidation of the Conceptual Design
- Assessment of the Functional Feasibility
 - Experimental R&D platform supporting He-cooled DEMO BOP Design

Outline

- HELOKA Upgrade Storage: Functional & Operational requirements. Facility Description.
- Numerical results of pre-studies for the thermal-hydraulic behavior.
- Current project status and the experimental scope. Outlook.





HELOKA-US functional and operational requirements

Heat Transfer Arrangement

HELOKA-US

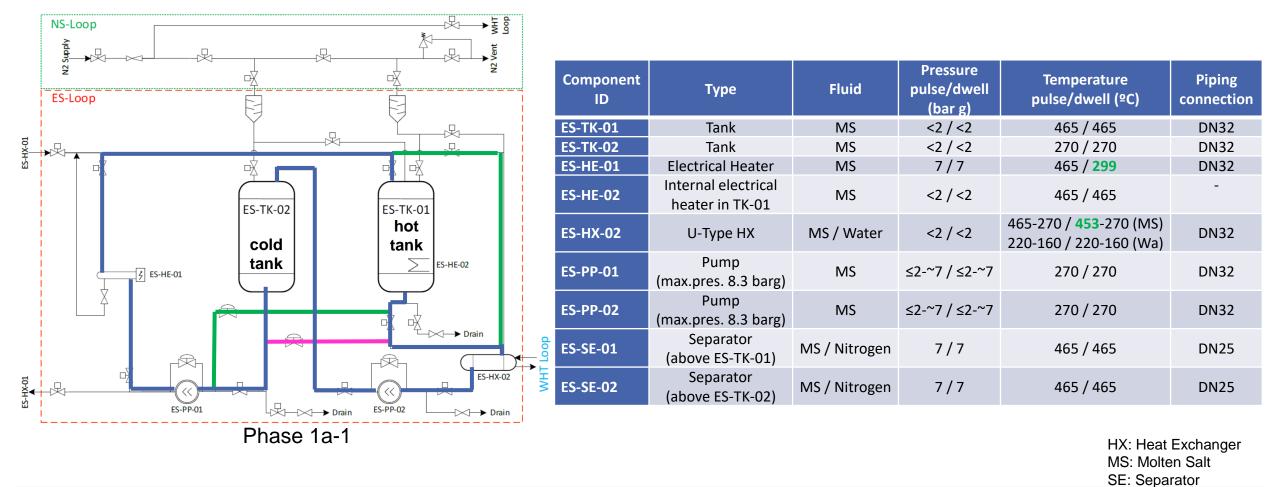
	He supply	He-MS interface	MS heat source	MS Storage	MS heat sink
He-DEMO BOP	BB-PHTS	ІНХ	IHX	ESS (two tanks)	PCS
Phase 1a-1	-	-	elect. Heater	ESS (two tanks)	HELOKA-HP WCS
Phase 1a-2	-	-	elect. Heater + elect. heated MS side Test Section	ESS (two tanks)	HELOKA-HP WCS
Phase 1a-3	HELOKA-HP	He-MS Test Section	elect. Heater + He-MS Test Section	ESS (two tanks)	HELOKA-HP WCS
Phase 1b	HELOKA-HP	He-MS HX	He-MS HX (OTSTHX)	ESS (two tanks)	HELOKA-HP WCS

MS: Molten Salt (HITEC); HX: Heat Exchanger; OTSTHX: Once Through; Shell and Tube HX; WCS: Water Cooling System

HELOKA- US functional and operational requirements

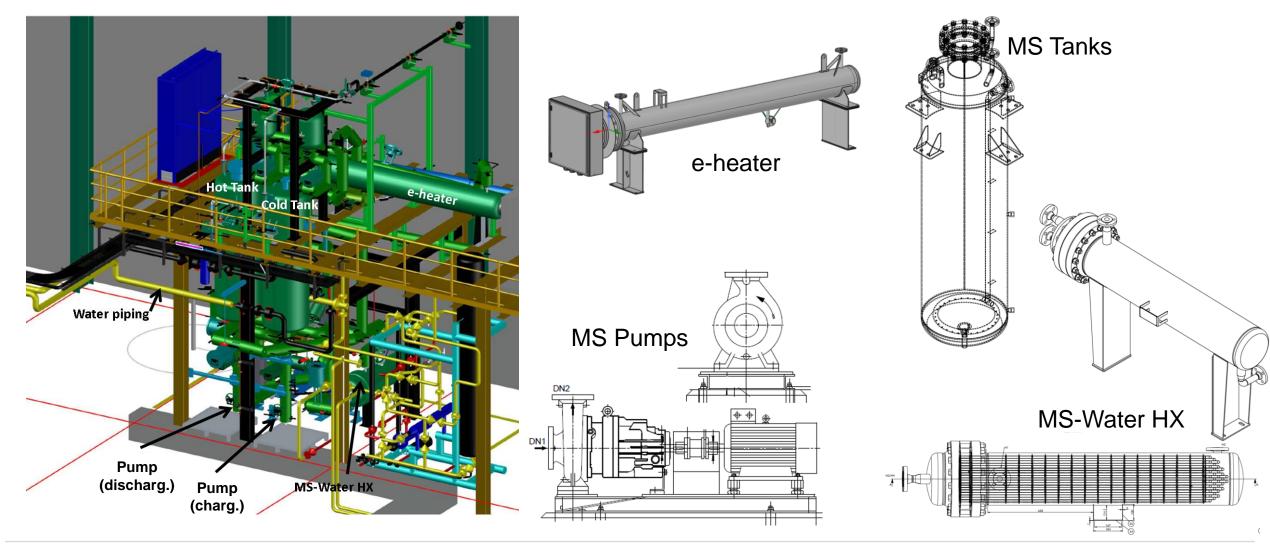
Thermal-Hydraulic Conditions

	He-DEMO BOP *		HELO	KA-US
	Pulse	Dwell	Pulse	Dwell
Thermal power of one PHTS loop (kW)	254,000	2,540	260	2.60
Duration (s)	7,200	600	7,200	600
MS IHX in / out temperature (°C)	270/465	270/299	270/465	270/299
MS SG in/out temperature (°C)	465/270	453/270	465/270	453/270
MS hot tank temperature (°C)	465	465	465	465
MS cold tank temperature (°C)	270	270	270	270
MS flow rate in charging line (kg/s)	898.7	58.4	0.854	0.0581
MS velocity in charging line (m/s)	0.66	0.04	0.452	0.031
MS flow rate in discharging line (kg/s)	810.2	927.0	0.789	0.727
MS velocity in discharging line (m/s)	0.60	0.68	0.417	0.385


In HELOKA-US, the water cooling system acting as heat sink of the MS Loop has an inlet/outlet setpoint of 160/220 °C. The limit is confined by the HITEC melting point of 142 °C, as well as by the final WHT design temperature of 240 °C.

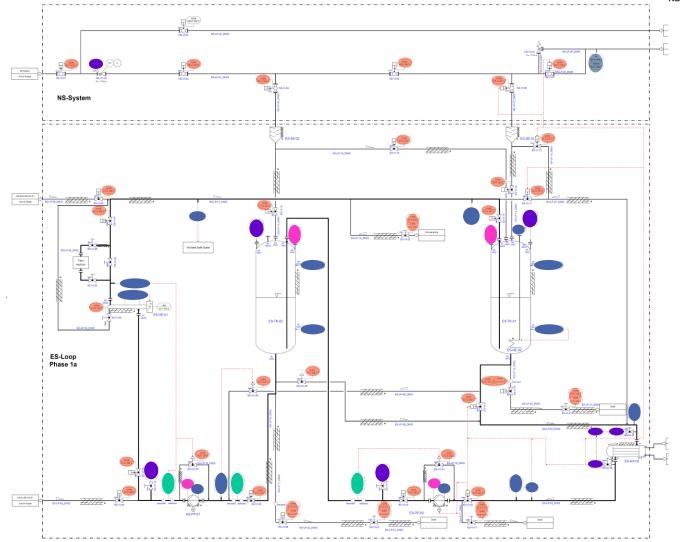
* In one of the 8 BB-PHTS loops.

Description of the HELOKA-US facility



Flexible and upgradable facility

Description of the HELOKA-US facility



Karlsruhe Institute of Technology

HELOKA-US PID

Highly instrumented:

- 16 x Thermocouples •
- 9 x Pressure Sensors •
- 3 x Flowmeters
- 4 x Level Sensors
- 1 x NOx-Sensor
- 33 x Valve indicator •

1.0

0.9

0.8

0.7

0.6 [s/by]

C.5 4

0.3

0.2

0.1

0.0

0.0090 0.0080

0.0070

0.0060

0.0050

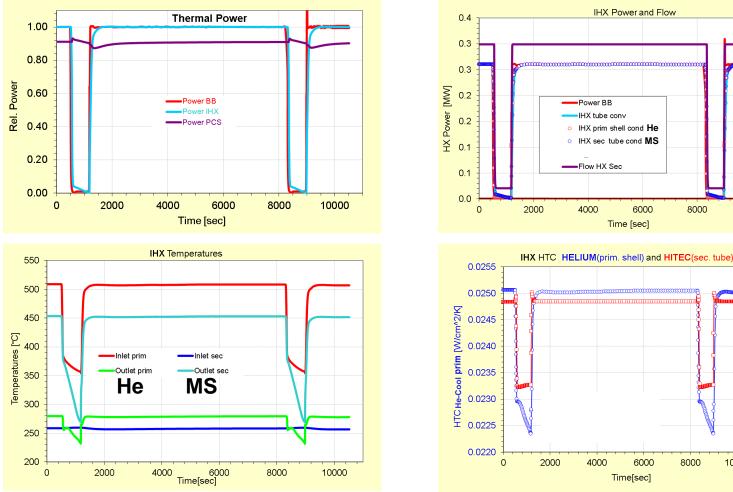
0.0040

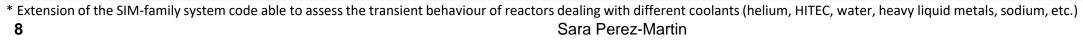
0.0030

0.0020 0.0010

0.0000

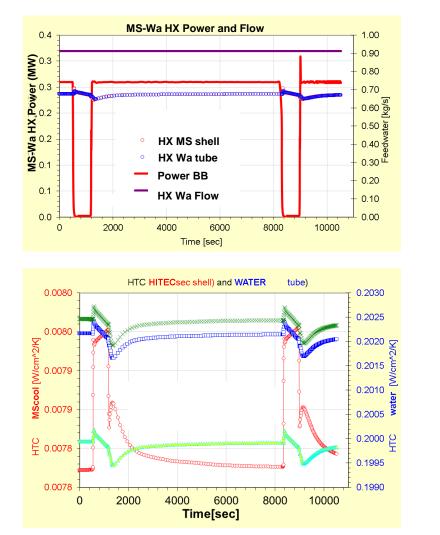
10000

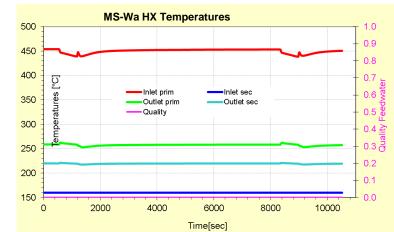

8000

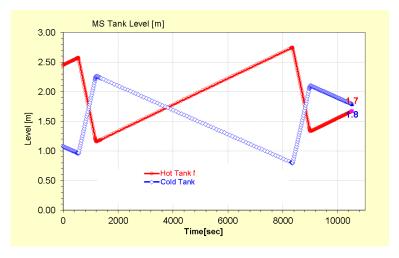

8000

10000

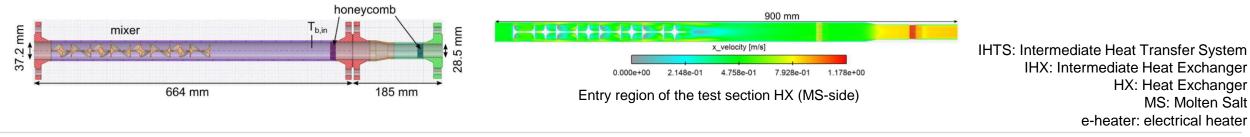
Numerical results of the thermal-hydraulic behavior


Results of SIM-Code^{*} for Phase 1b (He-MS-Water loops)



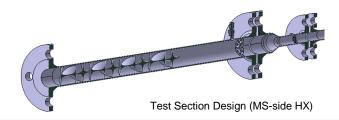


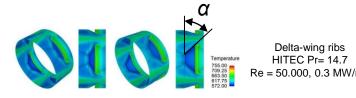
Numerical results of the thermal-hydraulic behavior

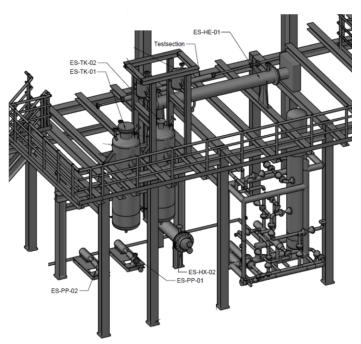

Current project status and the experimental scope

- Phase 1a: MS loop simulating the IHTS Phase 1a: commissioning of the MS loop simulating the HCPB IHTS
 - Ph 1a-1: basic MS loop setup to study IHTS behavior under DEMO conditions
 - Ph 1a-2/3: test sections with representative geometries of HX MS-side/He&MS-sides
- Phase 1b: integration of a scaled-down He-MS HX

	MS heat source	2023	2024	2025	2026	2027
Phase 1a-1	Electrical heater					
Phase 1a-2	Electrical heater + elect. heated MS side TS					
Phase 1a-3	Electrical heater + He-MS TS					
Phase 1b	He-MS HX					
Design	Construction and Commissioning Expe	rimental Ca	impaign			


Test sections will be integrated for investigating the convective heat transfer configurations and the thermohydraulic validation of the IHX design for the HCPB DEMO.




Conclusions and Outlook

- HELOKA-Upgrade Storage Design completed and under construction
- HELOKA-US experimental platform provides unique contributions to:
 - Test innovative geometries of interest for the He-MS HX
 - Experimental data to validate HCPB BOP thermal-hydraulic models
 - Optimize and verify HCPB BOP Control System
 - Operational experience also for IHTS states other than power operation
- Flexible and upgradable platform conceived to be able to support:
 - In getting higher-TRL for key components of the HCPB DEMO BOP
 - Thermal-hydraulic system codes, reduced order models and turbulent HT models in CFD
 - BOP conceptual design for innovative fusion power plants
 - Adaptation to HELIAS (Stellarator) BOP with power-to-X

ES-HE-01: e-heater ES-TK-01: hot tank ES-TK-02: cold tank ES-PP-01: hot MS pump ES-PP-02: cold MS pump ES-HX-02: MS-Water HX

Sara Perez-Martin