

EUROfusion Star

Thermal-hydraulic Scaling of the Prototypical Mock-Up for European DEMO HCPB Breeding Blanket First Wall

Gaurav Verma, Guangming Zhou and Francisco A. Hernández Institute for Neutron Physics and Reactor Technology (INR) Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany

Corresponding Author: gaurav.verma@kit.edu

Significance of FW-PMU

- Thermal-hydraulic scaling methodology of First Wall (FW)-Prototype Mock-Up (PMU) for DEMO Helium Cooled Pebble Bed (HCPB) Breeding Blanket [1], which reproduces thermal-hydraulic behaviour of HCPB Breeding Blanket FW, is presented.
- Primary objectives of FW-PMU:
- Demonstration of manufacturing procedure of V-ripped FW using P92 steel
- Exhibition of capability of V-ripped FW for handling high heat flux (tests)
- Estimation of flow distribution into each breeder zone channels and manifold (tests)
- Estimation of pressure-drop across FW and manifold section with flow rate (tests)

Scaling Methodology for FW-PMU

- Scaling methodology of Power-to-Volume scaling is adopted within Hierarchical Two-Tiered Scaling methodology (H2TS) deduced by preserving Characteristic Time Ratio for FW Channels of PMU and DEMO FW [2].
- For hydraulic scaling of manifold section, methodology of scaling component dimensions is adopted such that consistent velocity field, mass flow distribution and cross-section area variation along the manifold is achieved.

For control volume V_{cv} , volume occupied by a particular constituent C with fraction α_c is V_c $V_c = \alpha_c V_{cv}$

If constituent C has many phases, for phase P, total volume occupied is V_{cp} with fraction α_{cp} of volume V_c , $V_{cp} = \alpha_{cp} V_c$

1	
0.4928	
0.4928	
	0.4928 0.4928

Table-3: *II* estimation for R/LIB of DEMO HCPB FW for *h*

Segment	T	ρ	c _p	u	h	L	A _h	V	Π^R
	(°C)	(kg/m^3)	(J/kg.s)	(m/s)	(W/m ² .s)	(m)	(m^2)	(m ³)	
R/LIB 12	339.89	6.18422	5197	26.41	3678.338	1.614	0.01798	0.000207	0.6059
R/LIB 11	360.77	5.98426	5197	27.30	3682.369	1.536	0.01711	0.000216	0.5265

• Lower bound value of $\Pi^{R}_{Low} = 0.3142$ for L/ROB 1 and upper bound value of $\Pi^{R}_{Hi} = 0.6061$ for L/RIB 12.

To preserve $\Pi^R = \Pi^M$ for FW-PMU, lower bound value of Π^{M}_{Low} and upper bound value of Π^{M}_{Hi} is considered.

Table-5: Controlling parameters of FW-PMU channel having V-ribs

	I	Controlling Parameters				
Π ^M	$\begin{array}{c} \textbf{Transfer} \\ \textbf{Area,} A_h(m^2) \end{array}$	Coolant Vol., V (m ³)	Coolant, ρ (kg/m ³)	Coolant, c _p (J/kg.s)	$\frac{q''}{(\Delta T)u}$ (W.s/m ³ °C)	$\frac{Q''}{(\Delta T)u}$ (W.s/m ³ °C)
0.3142				5105	367.98	389.1
0.6061	0.006027	5.98 x 10 ⁻⁵	6.47	5197	709.85	750.58

 $\Delta T(^{\circ}C)$ Fig. 3: Controlling parameters for testing in FW-PMU based on scaling analysis

Hydraulic Scaling For Manifold Section

Table-6: Hydraulic scaling parameters for the PMU Manifold Section Parameter **DEMO Breeder Zone inlet PMU Manifold** manifold (For COB) Section No. of Inlet Channels $N_D = 7.6$ $N_M = 6$ $A_D^0 = 0.014616 \text{ m}^2$ $A_M^O = 0.0053856 \text{ m}^2$ Cross-section Area at X-X $A_D^C = 0.003712 \text{ m}^2$ $A_M^C = 0.0023616 \text{ m}^2$ Cross-section Area at Y-Y $U_D^O = \frac{\dot{m}_D}{\rho A_D^O} = U_M^O = \frac{\dot{m}_M}{\rho A_M^O}$ Coolant Velocity at X-X $U_D^C = \frac{\dot{m}_D}{\rho A_D^C} = U_M^C = \frac{\dot{m}_M}{\rho A_M^C}$ Coolant Velocity at Y-Y Total Mass Flow Rate at X-X $\dot{m_D^0} = 98 {
m g/s}$ $\dot{m_D} = 7.6 \text{ x } 35 \text{g/s} = 266 \text{g/s}$ Total Mass Flow Rate at Y-Y $\dot{m}_{D}^{C} = 169.23 \text{g/s}$

• Coolant mass flow for consistent velocity field in manifold at X-X is 98g /s & for Y-Y, the mass flow is 169.23 g/s.

Height = 36mm	 Average coolant mass flow at X-X is 16.33g/s per channel and at Y-Y is 28.21 g/s per channel. 	Fig. 6: Controlling parameters for testing in FW-PMU based on Coupled thermal-hydraulic Scaling
<i>Ф</i> 36mm Fig. 5: Schematic geometry of FW-PMU Manifold Section	 Test parameters for FW-PMU are obtained by coupling thermal- hydraulic scaling of FW channels & manifold section. 	Abbreviation
C	 <i>L</i>: length of the section of interest <i>u</i>: mean velocity of the fluid 	
 In the present work, scaling methodology adopted for PMU methodology (H2TS) deduced by preserving Characteristic Tin 	 Two-Tiered Scaling <i>T</i>: average coolant temperature <i>ρ</i>: density of the fluid for <i>T</i> <i>H</i>: fluid enthalpy per unit mass 	
 For PMU manifold, methodology involving scaling of component Test parameters for PMU are obtained by coupling the therm obtained controlling parameters for tests, the data obtained from 	 s flow distribution. d section. Using the h: heat transfer coefficient c_n: specific heat at constant pressure for T 	
[1] G. Zhou et al., Design of a prototypical mock-up of first wall for the EU-DEM [2] Zuber, N. et al., An integrated structure and scaling methodology for severe a	 Q": incident heat flux ΔT: temperature difference ω: specific frequency of the transfer 	
IT – The Research University in the Helmholtz Asso	ciation This work has been carried out we Consortium, funded by the European U Programme (Grant Agreement No 1010) expressed are however those of the European Union or the Ferrogram Program or the Ferrogram Program	ithin the framework of the EUROfusion Union via the Euratom Research and Training 052200 — EUROfusion). Views and opinions uthor(s) only and do not necessarily reflect European Commission Neither the European

KIT – The Research University in the Helmholtz Association

expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Commission. Neither the European Union nor the European Commission can be held responsible for them.