KIT | KIT-Bibliothek | Impressum | Datenschutz

RedMotion: Motion Prediction via Redundancy Reduction

Wagner, Royden ORCID iD icon 1; Tas, Omer Sahin ORCID iD icon 2; Klemp, Marvin 1; Fernandez, Carlos 1; Stiller, Christoph 1
1 Institut für Mess- und Regelungstechnik (MRT), Karlsruher Institut für Technologie (KIT)
2 Institut für Mess- und Regelungstechnik mit Maschinenlaboratorium (MRT), Karlsruher Institut für Technologie (KIT)

Abstract:

We introduce RedMotion, a transformer model for motion prediction in self-driving vehicles that learns environment representations via redundancy reduction. Our first type of redundancy reduction is induced by an internal transformer decoder and reduces a variable-sized set of local road environment tokens, representing road graphs and agent data, to a fixed-sized global embedding. The second type of redundancy reduction is obtained by self-supervised learning and applies the redundancy reduction principle to embeddings generated from augmented views of road environments. Our experiments reveal that our representation learning approach outperforms PreTraM, Traj-MAE, and GraphDINO in a semi-supervised setting. Moreover, RedMotion achieves competitive results compared to HPTR or MTR++ in the Waymo Motion Prediction Challenge. Our open-source implementation is available at: https://github.com/kit-mrt/future-motion


Zugehörige Institution(en) am KIT Institut für Mess- und Regelungstechnik (MRT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2835-8856
KITopen-ID: 1000175424
Erschienen in Transactions on Machine Learning Research
Verlag OpenReview.net
Vorab online veröffentlicht am 24.09.2023
Externe Relationen Siehe auch
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page