KIT | KIT-Bibliothek | Impressum | Datenschutz

JointMotion: Joint Self-Supervision for Joint Motion Prediction

Wagner, Royden ORCID iD icon 1; Tas, Omer Sahin ORCID iD icon 2; Klemp, Marvin 1; Fernandez Lopez, Carlos ORCID iD icon 1
1 Institut für Mess- und Regelungstechnik (MRT), Karlsruher Institut für Technologie (KIT)
2 Institut für Mess- und Regelungstechnik mit Maschinenlaboratorium (MRT), Karlsruher Institut für Technologie (KIT)

Abstract:

We present JointMotion, a self-supervised pre-training method for joint motion prediction in self-driving vehicles. Our method jointly optimizes a scene-level objective connecting motion and environments, and an instance-level objective to refine learned representations. Scene-level representations are learned via non-contrastive similarity learning of past motion sequences and environment context. At the instance level, we use masked autoencoding to refine multimodal polyline representations. We complement this with an adaptive pre-training decoder that enables JointMotion to generalize across different environment representations, fusion mechanisms, and dataset characteristics. Notably, our method reduces the joint final displacement error of Wayformer, HPTR, and Scene Transformer models by 3%, 8%, and 12%, respectively; and enables transfer learning between the Waymo Open Motion and the Argoverse 2 Motion Forecasting datasets.


Verlagsausgabe §
DOI: 10.5445/IR/1000175427
Veröffentlicht am 23.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mess- und Regelungstechnik (MRT)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000175427
Erschienen in 8th Annual Conference on Robot Learning (CoRL), München, 6th-9th November 2024
Veranstaltung 8th Conference on Robot Learning (CoRL 2024), München, Deutschland, 06.11.2024 – 09.11.2024
Vorab online veröffentlicht am 06.09.2024
Externe Relationen Siehe auch
Schlagwörter Self-supervised learning, representation learning, multimodal pre-training, motion prediction, data-efficient learning
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page