KIT | KIT-Bibliothek | Impressum | Datenschutz

Web Application Penetration Testing with Artificial Intelligence: A Systematic Review

Sanchez Collado, Gustavo ORCID iD icon 1,2; Olayinka, Olakunle; Pasikhani, Aryan
1 Institut für Automation und angewandte Informatik (IAI), Karlsruher Institut für Technologie (KIT)
2 Institut für Informationssicherheit und Verlässlichkeit (KASTEL), Karlsruher Institut für Technologie (KIT)

Abstract:

Penetration testing is an intricate activity, yet vital for the security of web applications and the protection of user data. Due to its time-consuming nature, recent developments have emphasized the use of artificial intelligence to enhance efficiency, shorten testing times, and substantially improve penetration testing results. By combining artificial intelligence with conventional penetration testing techniques, researchers aim to improve the processes, providing organizations with the means to create stronger web applications. This paper presents a thorough review of research conducted between 2013 and 2024 on the application of artificial intelligence in web application penetration testing. We highlight advancements and challenges in employing learning-based methods to enhance penetration testing, providing a comprehensive overview of the current state and future directions in the field.
Our results show that leveraging artificial intelligence has proven to be more efficient than traditional approaches, but they still face significant challenges.


Zugehörige Institution(en) am KIT Institut für Automation und angewandte Informatik (IAI)
Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Publikationstyp Sonstiges
Publikationsjahr 2024
Sprache Englisch
Identifikator KITopen-ID: 1000175432
HGF-Programm 46.23.02 (POF IV, LK 01) Engineering Security for Energy Systems
Verlag IEEE Computer Society
Bemerkung zur Veröffentlichung The 22nd International Symposium on Network Computing and Applications (NCA 2024), Bertinoro, 23rd-26th October 2024, in press
Externe Relationen Konferenz
Schlagwörter Machine learning, security, web applications.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page