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Abstract

The impact of telecommuting on travel demand has been the subject of debate
for almost five decades. The assumption, that working from home axiomatically
reduces travel demand as individuals commute less into the office, is flawed. Tele-
commuters can leverage the flexibility gained by working from home to conduct
non-work activities, including, for example, leisure activities as well as drop-
ping off children at childcare. Additionally, telecommuting is often conducted
only on some days of the week, which means that any travel demand reducti-
on effects might not be spread evenly across all days of the week. It remains
unclear to which extent these effects impact travel demand within a transport sys-
tem. Although activity-based models are theoretically well-suited for evaluating
this relationship, including telecommuting behavior adequately requires a model
to consider (i) all activities simultaneously, (ii) household interactions, and (iii)
day-to-day variability. To date, none of the previously presented activity-based
approaches account for all three of these features.
To address this gap, this thesis presents an activity generation and scheduling mo-
del that accounts for all three of the listed requirements. Themodel development is
informed by detailed empirical analyses of data from the German Mobility Panel
regarding the impact of telecommuting on activity patterns, focusing on different
household configurations and roles within the household. A comprehensive data-
set is generated that is used for the development of the scheduling model.
The model presented in this work considers all activities at the same time to allow
for trade-offs between telecommuting and other planned activities. It generates
schedules for one week considering household interaction both at the activity
generation as well as scheduling phases of the model.
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Zusammenfassung

Der Einfluss von Telearbeit auf die Verkehrsnachfrage wird seit fast fünf Jahrzehn-
ten diskutiert. Die Annahme, dass das Arbeiten von zu Hause aus automatisch
die Verkehrsnachfrage reduziert, da weniger Personen ins Büro pendeln, ist zu
vereinfacht. Die Arbeit im Homeoffice erhöht die Flexibilität bei der Aktvititäten-
planung, sodass zusätzliche, nicht-arbeitsbezogene Aktivitäten durchgeführt wer-
den können, wie zum Beispiel Freizeitaktivitäten oder das Bringen von Kindern
zur Kinderbetreuung. Außerdem arbeiten viele nur an einigen Tagen der Woche
im Home-Office,wodurch etwaige Reduktionseffekte in der Verkehrsnachfrage
möglicherweise nicht gleichmäßig über alle Wochentage verteilt sind. Es bleibt
unklar, in welchem Ausmaß diese Effekte die Verkehrsnachfrage innerhalb ei-
nes Verkehrssystems beeinflussen. Obwohl aktivitätsbasierte Modelle theoretisch
gut geeignet sind, um diese Einflüsse abzubilden und zu bewerten, erfordert die
angemessene Berücksichtigung von Telearbeit, dass ein Modell (i) alle Aktivitä-
ten gleichzeitig betrachtet, (ii) Haushaltsinteraktionen berücksichtigt und (iii) die
tägliche Variabilität berücksichtigt. Bisher schließt keines der bisher vorgestell-
ten aktivitätsbasierten Ansätze alle drei dieser Merkmale bei der Erstellung von
Aktivitätenplänen ein.
Um diese Lücke zu schließen, wird in dieser Arbeit ein Modell zur Aktivitätser-
zeugung und -planung vorgestellt, das alle drei genannten Anforderungen berück-
sichtigt. Die Modellentwicklung basiert auf detaillierten empirischen Analysen
des Deutschen Mobilitätspanel mit Fokus auf die Auswirkungen von Telearbeit
auf Aktivitätsmuster, unter Berücksichtigung unterschiedlicher Haushaltskonfigu-
rationen und Rollen innerhalb des Haushalts. Es wird ein umfassender Datensatz
erstellt, der für die Entwicklung des Modells verwendet wird.
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Zusammenfassung

Das in dieser Arbeit vorgestellte Modell berücksichtigt alle Aktivitäten gleich-
zeitig, um Abwägungen zwischen Telearbeit und anderen geplanten Aktivitäten
zu ermöglichen. Es erstellt Zeitpläne für eine Woche, wobei sowohl bei der
Aktivitätserzeugung als auch in den Planungsphasen des Modells die Haushalts-
interaktionen berücksichtigt werden.
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Bypasses are devices which allow some people to dash from point A to
point B very fast. People living at point C, being a point directly in
between, are often given to wonder what’s so great about point A that
so many people from point B are so keen to get there. They often wish
that people would just once and for all work out where the hell they
want to be.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy
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1 Introduction

Telecommuting has been considered a policy measure to reduce travel demand for
over 50 years. Nilles et al. (1976) coined the phrase “telecommuting” as the act of
working from home using telecommunication technology instead of commuting
to work. With every new technological advance, the hope that telecommuting
could reduce travel increased. Indeed, the rise of the personal computer and the
expansion of internet connectivity removed most of the friction of working from
home. Although not every job can be performed remotely, the shift from an in-
dustrialized society to a service society in many countries has created favorable
conditions for adopting telecommuting. However, until the COVID-19 pandemic,
adoption rates of teleworking remained lower than predicted. Even when disregar-
ding that not every type of work is suitable for telecommuting, the issues remain
that employers may not allow their employees to work from home and that even
if someone is allowed to work from home, they may choose not to do so.

This changed considerably with the COVID-19 pandemic as many governments
used working from home as a policy measure to reduce the spread of the virus
both during the commute and in the office (Hale et al. 2021). The unparalleled
conditions imposed by the pandemic forced employers and employees to disregard
any adverse attitudes toward working from home and make telecommuting work.
When asked about telecommuting after the pandemic, many employees attested
they would like to keep working from home for at least part of the week (de Haas
et al. 2020).

Indeed, working from home is one of the pandemic-induced changes which is
said to be here to stay. This has re-ignited discussions about telecommuting as a
policy measure to reduce travel. In 2021, the German Federal Ministry for Digital
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1 Introduction

and Transport included telecommuting as one of six measures in their emergency
program to meet the climate targets set out in the German Climate Change Act
(Bundesministerium für Digitales und Verkehr 2022).

The rationale behind this measure is straightforward: when fewer people com-
mute to their workplace and work from home instead, they conduct fewer trips
and decrease their traveled mileage. However, there has been an ongoing debate
on whether rebound effects nullify or even outweigh the changes in commuting
patterns, as telecommuting allows for more temporal and spatial flexibility. Spatial
flexibility enables employees to live further away from their work location as the
commute becomes less constraining. Temporal flexibility entails that telecommu-
ters can travel outside peak hours and reinvest the time they would usually spend
commuting into other activities. While there is an extensive body of research
on travel behavior implications of telecommuting, it remains unclear how these
effects translate into changes in travel demand on the transport system as only a
few studies have regarded telecommuting in travel demand models.

Models are a representation of the real world which take a set of input data and
process them to generate information about the system of interest. In the case
of travel demand models, the system of interest is the transport system within a
defined study area. The output of a travel demand model are the traffic volumes
on the network within the study area. Land use data of the study area and a re-
presentation of the population living within that area serve as the input of a travel
demand model. Travel demand models can be differentiated by the level of aggre-
gation of the considered population and subsequently the output of the model. In
macroscopic models, travelers are aggregated into groups of homogenous beha-
vior or market segments, e.g. employed people with cars. Alternatives to this are
disaggregated or microscopic models which regard travelers as individuals. Travel
demand models can further be differentiated by the demand generation process
into trip-based and activity-based models. Although trip-based models are still
widely used, especially in practice, they suffer from the drawback that they are not
based on the underlying cause of traffic: people’s desire to participate in activities
that often require them to travel from one place to another. This problem is mitiga-
ted by activity-based models in which the travelers’ activity patterns are estimated
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1 Introduction

and serve as the cause for travel within the model. While the trip-based approach
has been implemented both macroscopically and microscopically, activity-based
models are generally disaggregated.

Activity-based travel demand models have evolved considerably over the last de-
cades. They can be differentiated into rule-based and econometric models. While
rule-based models are easier to implement, they are limited regarding behavioral
realism as the travelers’ behavior in the model is solely based on hard-coded rules.
In econometric-based approaches, the behavior is based on the theory of utility
maximization. The process of generating and scheduling activities is often split
into a sequence of choices. This implies a hierarchy between different activity
purposes which is imposed solely at the researcher’s discretion. Work activities
are usually considered early on in the process of activity generation and schedu-
ling as they often pose the largest constraints within a schedule. This influences,
how many other activities are chosen and when they are conducted. While this
used to be appropriate when most workers were limited to working in the office,
telecommuting offers a level of flexibility that requires a more balanced choice of
activities. Sequential models would be able to account for this flexibility leading
to more or longer non-work activities. However, the opposed effect of a person
choosing to work from home because they want to conduct more or longer lei-
sure activities cannot be accounted for. In this case, the simultaneous trade-off
between different alternative activities is needed, which can be accounted for in
Multiple Discrete Continuous Extreme Value (MDCEV) models. In the MDCEV
approach, a combination of goods and the level of consumption is considered. This
approach has been applied to activity time-use models, in which the combination
of activities and the time invested in them is modeled in one step. Most recent
developments even consider activity episodes and the order they are conducted,
essentially generating and scheduling activities in one step.However, these approa-
ches only consider single-day activity schedules and individual decision-makers.
This limits the applicability when accounting for telecommuting behavior. First-
ly, telecommuting requires us to consider multiple days as not everyone works
remotely every day and travel demand effects could differ throughout the week.
Secondly, rebound effects do not necessarily occur on the day one telecommutes
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1 Introduction

but could be observed e.g. at the weekend. Thirdly, telecommuting offers levels
of flexibility which may lead to reorganization of household responsibilities in
which case the individual-level approach is not sufficient.

1.1 Thesis aims and contributions

The overarching goal of this dissertation is to enhance the precision and appli-
cability of activity-based travel demand models that allow for the representation
of telecommuting behavior. Thereby contributing to more effective travel demand
management policies. Specifically, the aims of this thesis are:

1. Understanding the interdependence between telecommuting and ac-
tivity patterns: This thesis first seeks to establish a comprehensive un-
derstanding of the relationship between telecommuting and daily activity
patterns. By reviewing existing literature and conducting empirical analy-
ses, it aims to identify how telecommuting influences the timing, frequency,
and type of daily activities, as well as possible household interaction effects.

2. Generation of a comprehensive data set for model development: Buil-
ding on the insights gained from the interdependence analysis, this research
aims to generate the requisite datasets that capture detailed aspects of tele-
commuting and related activity patterns. This includes data on household
interactions, telecommuting frequencies, and associated activity characte-
ristics.

3. Developing a scheduling model for activity-based simulation: The core
contribution of this thesis is the development of a sophisticated scheduling
model that accurately generates activity schedules over a one-week period,
taking into account household interactions. This model distinguishes itself
by incorporating telecommuting behavior not only as an isolated activity
but as an integral part of the daily activity pattern of agents in the model.

4



1.2 Thesis plan

The model developed in this thesis provides a robust foundation for further rese-
arch and practical application. By employing the developed model, future studies
can simulate and analyze the impact of telecommuting on travel demand, provi-
ding empirical evidence on how telecommuting can serve as an effective travel
demand management policy, potentially leading to reduced traffic congestion and
environmental impacts. This outlook sets the stage for future explorations into the
efficacy of work-from-home measures within urban travel demand management
strategies.

Definition of telecommuting in this thesis

There is no generally accepted definition of telecommuting. In this thesis, telecom-
muting is defined as the act of working from home.1 The terms telecommuting,
telework, and work from home are used interchangeably throughout this thesis. In
tables and figures, it is also often abbreviated as wfh.

1.2 Thesis plan

The rest of this thesis is structured into the following chapters:

Chapter 2 provides the necessary background to the work in this thesis. Firstly,
a literature overview of research on telecommuting and its impact on activity
patterns as well as the interdependence between these patterns, the choice to
work from home and household interactions is provided. Subsequently, previous
approaches to activity generation and scheduling are presented. The literature
section concludeswith an evaluation of previously presentedmodeling approaches
concerning their capability of accounting for telecommuting behavior. Secondly,

1 Please note that telecommuting or telework can refer to working from locations other than the
traditional office, not just from home. The work in this thesis focuses on working from home due
to the limited availability of data for other types of telecommuting.
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the main methods applied in the activity generation and scheduling model are
introduced, detailing the econometric as well as the optimization methods.

The subsequent Chapter (3), introduces the data sources used in this thesis. The
model developed is based on two surveys which are presented first. Subsequently,
necessary data preparation steps are detailed, specifically the steps to transform
travel diary data into activity schedules. Further, the integration of telecommuting-
relevant information into the data set is detailed, including an approach to predict
telecommuting engagement in travel diary survey data is presented and evaluated.

Chapter 4 includes empirical analyses of the data described in the previous chapter.
The analysis focuses on the relationship between telecommuting and activity
patterns, both in the general population of employed individuals as well as by
different household types, and household roles.

Subsequently, the modeling framework developed in this work is introduced in
Chapter 5. First, an overview of the framework is presented, including how the fra-
mework is placed within agent-based travel demand simulation. Subsequently, the
steps of the model are presented in detail. The validity of the model approach and
its efficacy concerning the representation of telecommuting behavior is analyzed
based on the application of the model. The chapter concludes with a discussion
of the presented framework, including the limitations of the approach.

Finally, Chapter 6 offers conclusions on the thesis. The main findings of the thesis
are summarized and core contributions are presented. Lastly, possible avenues for
future work are derived based on the findings and model presented in this thesis.
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2 Background

Der Nutzen ist das große Idol der Zeit, dem alle Kräfte frohnen und alle
Talente huldigen sollen.

Friedrich Schiller

2.1 Literature Review

Research on the relationship between telecommuting and travel behavior dates
back decades, with Nilles et al. (1976) first exploring to what extent work from
home can be used as a travel demand management measure in the 1970s. The
majority of these studies are focused on trip-related attributes, vehicle or personal
miles traveled. In order to adequately account for telecommuting in travel demand
models, we need to take a step back and look at the activities that cause people
to (not) travel in the first place. The following section thus presents an over-
view of studies conducted on the impact of telecommuting on activity patterns.
Subsequently, activity-based models are reviewed and their features are explored.
The literature review chapter concludes with an evaluation of these activity-based
models concerning their capabilities in accounting for telecommuting behavior.

2.1.1 Impact of telecommuting on activity patterns

Studies on the impact of telecommuting on activity patterns mostly focus on the
impact of working from home on other activities (and in some cases vice versa).

7



2 Background

Although not entirely conclusive, most studies find evidence that telecommuting
is associated with increased non-work activity participation. Exploring a Regional
Household Travel Survey conducted in New York, New Jersey, and Connecticut
in 2010 and 2011 using a Structural Equation Modelling (SEM) approach, Asgari
et al. find that telecommuting is associated with an increase in nonmandatory
activity participation, which is the highest for full-day telecommuters indicating
that the flexibility gained through telecommuting is leveraged to participate in
non-work activities (Asgari et al. 2016, Asgari and Jin 2017). Their analysis fur-
ther indicates a reciprocal effect in that participating in non-work activities such
as shopping, maintenance, and discretionary activities, increases the propensity
to telework and decreases the propensity to commute to the office. These findings
are corroborated by Paleti and Vukovic (2017) who analyze data from the 2009
US National Household Travel Survey (NHTS) using a Poisson model to analy-
ze telecommuting frequency and a Multiple Discrete Continuous Extreme Value
Model (MDCEV) to assess activity-time use preferences. Their work shows that
flexible work arrangements are associated with a higher likelihood of eating out
and maintenance activities. Khaddar et al. (2023) analyze data from the Okanagan
Travel Survey conducted in 2018 in the Central Okanagan region of British Co-
lumbia, Canada using anMDCEVmodel with ordered preferences (MDCEV-OP).
They also find that telecommuters leverage the gained flexibility to participate in
recreational and shopping activities as well as eating-out and escorting activities,
i.e., picking someone up or dropping them off. They further find that among tele-
commuters, the most time is invested into social activities indicating an additional
need to seek out social interactions when working from home. Budnitz et al.
(2020) analyze data from the UK National Travel Survey from 2002-2016 using
a Multinomial Logit Model (MNL), finding that telecommuters conduct more
escort, errands, and personal business trips as well as leisure and recreational
trips compared to their non-telecommuting counterparts. Additionally, they find
that telecommuting is associated with a higher proportion of walking or jogging,
corroborating findings from the US indicating that telecommuting increases the
likelihood of meeting the recommended duration of moderate exercise (Chakra-
barti 2018). Rhee (2008) presents one of the few studies that find that the time
saved through telecommuting is almost exclusively invested back into work with
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2.1 Literature Review

almost no time left for additional leisure activities. It should be noted that this
study is not based on empirical data but on a spatial equilibrium model including
households and firms, which is used for studying the effects of telecommuting
and relocation. Therefore, comparing these findings to those of the other studies
is not appropriate.

The findings from these studies indicate that telecommuting is at least to some
extent leveraged to gain a better work-life balance. This is especially true for
households with children for whom previous research has indicated a signifi-
cantly higher risk of time poverty. Through analysis of data from the American
Time Use Study, Bernardo et al. (2015) find that dual-earner households with
children run a higher risk of social exclusion given the childcaring and work
responsibilities that do not allow them to participate in leisure and social activi-
ties. Telecommuting has been shown to improve the reconciliation of work and
family demands. An analysis of the California component of the NHTS shows
that telecommuting is associated with a higher propensity of escorting trips (Su
et al. 2021). Paleti and Vukovic (2017) also find that children in the household
are associated with a decreased propensity to commute to work and an increased
likelihood of escorting activities. He and Hu (2015) also find that telecommuters
conduct more household-related activities based on their analysis of data from
the 2007 Chicago Regional Household Travel Inventory. Khaddar et al. (2023)
corroborates these findings and shows that especially high-income telecommu-
ters leverage the gained flexibility to accommodate childcare, which is expressed
through increased escorting activities. Findings presented by Budnitz et al. (2020)
show a significant difference in escorting trips conducted by full-time workers,
part-time workers, and teleworkers, in that full-time workers, conduct the fewest
pick ups/drop offs and part-time workers the most, followed by telecommuters.
These findings indicate that the temporal flexibility gained through telecommuting
similar to part-time work is a means to gain more schedule control to reconcile
work and family obligations (Kelly et al. 2011). These findings are further suppor-
ted by studies based on time use data, which compared to traditional travel diary
data, allow for analysis of in-home activities in addition to activities associated
with travel. Giménez-Nadal et al. (2019) analyze data from the American Time
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Use Survey from years 2003-2015 and find that compared to commuters, those
who work from home spend more time on unpaid labor, i.e., household chores
and childcare.

The described gains in flexibility are not distributed equally and a strong gender
effect is identified by numerous studies, in that women who telecommute are more
likely to engage in activities associated with household responsibilities whereas
telecommuting men have a higher propensity to leverage the gained flexibility of
work from home to increase recreational activities. Asgari and Jin (2017) find that
women are more likely to report shopping activities. Paleti and Vukovic (2017)
presents findings showing that men who telecommute are more likely to spend
time eating out and on discretionary activities and less inclined to participate in
shopping, maintenance and pick up/drop off activities. These results are similar
to those presented by He and Hu (2015) who find that female telecommuters
are more likely to conduct drop-off/pick-up activities compared to their male
counterparts. These findings are supported by those presented based on time-use
data. Losa Rovira et al. (2022) analyze data from the United Kingdom Time Use
Survey and find that females have a higher propensity to engage in and allocate
more time to shopping and homecare compared to males, who are less likely to
allocate time to chores. These results are consistent with findings based on the US
Time Use survey, which was analyzed byWight and Raley (2009) to evaluate how
work at home influences time use patterns. They find that while both mothers and
fathers are more likely to multitask childcare and paid work activities at home,
telecommuting fathers are less likely to engage in primary childcare. Along the
same lines, Giménez-Nadal et al. (2019) find that while telecommuting parents
allocate more time to childcare compared to commuting parents, in both cases
mothers do so more than fathers. These findings show that gender disparities
in childcare that have been found among traditional working parents (see e.g.
(Offer and Schneider 2011)) also translate to telecommuting parents (Zhang et al.
2020). Interestingly, these disparities seem to depend on society’s perception of
gender roles and childcaring responsibilities. Kurowska (2020) compares how
gender effects differ in countries with different models of labor division using
an SEM based on data from the Generations and Gender Survey. She compares
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models from Poland, which follows a traditional division of labor, and Sweden, in
which labor tends to be divided equally among mothers and fathers. Her findings
indicate that the gender disparities concerning childcare among telecommuters
that have been presented in previous studies are prevalent only in Poland, whereas
in Sweden, the effects of telecommuting on childcare and homecare are similar
among men and women.

Furthermore, studies find behavior differs depending on the household composi-
tion. Based on an analysis of the English National Travel Survey from 2005-2019,
Caldarola and Sorrell (2022) find that the propensity for increase in non-work acti-
vities is larger for single-worker households compared to dual-worker households
indicating a different division of household responsibilities and an intra-household
effect of telecommuting depending on the household type. This household-level
effect in the form of a shift in household responsibilities towards the telecommuter
in the household is also reported by Asgari et al. (2016).

2.1.2 Activity generation and scheduling approaches

Activity-based models have emerged as a response to the limitations of trip-
based approaches, in that the latter do not account for the actual mechanism
underlying travel, which is driven by the need to conduct activities at different
locations. Activity-based models rely on activity schedules which represent an
individual’s activity pattern throughout a given time frame, often a single day.
The activity schedules are the source of the trips that are simulated within an
activity-based model. Activity-based models aim to represent realistic behavior
and are therefore often complicated. However, this complexity provides a strong
foundation to analyze travel behavior within travel demand models (Miller 2023).
Activity generation and scheduling models can broadly be categorized into rule-
based, utility-based, and optimization-based models. It should be noted that this
categorization is not strict. Some rule-based models have econometric parts and
some optimization-based models are formulated under random utility theory. The
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allocation of these models to the three groups is based on their similarities to the
other models within that group.

One of the first rule-based approaches is the SCHEDULER model Gärling et al.
(1989), Golledge et al. (1994) in which the cognitive process behind activity sche-
dule generation is implemented as a computer program. Activities are assigned a
priority and scheduled given they do not violate previously defined constraints.
Interestingly, one of the first use cases of the model was the analysis of tele-
commuting effects on travel behavior. Although an operational model was never
developed, this model was the conceptual basis for many other models.
A few years later, Pendyala et al. presented AMOS - Activity Mobility Simulator -
which is made up of several modules to generate activity patterns that allow for the
analysis of travel demand management policies (Pendyala et al. 1997, 1998). The
first module processes individual trip data from travel diaries, ensuring logical
consistency and completeness, and establishes a baseline activity-travel pattern
for each person. Subsequently, utilizing a neural network trained with data from
hypothetical transport control measures (TCM) scenarios, this module predicts
the primary behavioral response of individuals to a TCM, based on their baseline
activity patterns and socio-economic factors. Based on this response, the next
module generates feasible modified activity-travel patterns, taking into account
secondary and tertiary behavioral changes induced by the primary response. Next,
the utility of the modified activity-travel patterns is assessed to determine whether
these new patterns are accepted or rejected. Finally, the output module collects
and reports detailed travel data from accepted patterns.
Another extensive rule-based model is Albatross, first presented by Arentze and
Timmermans (Arentze et al. 2000, Arentze and Timmermans 2004). Albatross is
made up of several control agents that handle e.g., data consistency, simulation
of activity patterns, and alternative model scenarios. The model scheduler is at
the core of the scheduling process, in which decision trees represent the decision-
making process. The subjects of the model are households and thus, household
interactions are considered in various parts of themodel. These interactions are ad-
ditionally the focus of subsequent model development and application (Anggraini
et al. 2012, Timmermans and Zhang 2009). Albatross was later reimplemented
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and published as FEATHERS (Bellemans et al. 2010). The model is developed
in a modular way such that the scheduling core can be replaced by other models.
The adapted model was applied in the region of Flanders.
Another rule-based model is ADAPTS, presented by Auld and Mohammadian
(2009, 2012). Within the model, the activity generation and scheduling are con-
ducted in three subsequent phases. The first phase is activity generation, which
involves deciding whether or not to add an activity of a certain type. The second
phase is activity planning, where the actual details of the activity are specified.
Finally, the third phase is activity scheduling, where the activities are added to the
planned schedule and any conflicts are resolved. Compared to the previous model,
the decisions at various points in the model are represented by choice models,
which is why the model is also referred to as a hybrid model, that combines facets
of rule-based and utility-based models.
The aforementioned approaches generate activity schedules for one day. In con-
trast, Märki et al. (2014), Märki (2014) presents C-TAP, which allows for the
consideration of multi-week periods. C-TAP models an agent’s underlying moti-
vations through behavioral targets. Discomfort is introduced in the model when
an agent is in a condition that deviates from their target. The resulting discomfort
can be minimized by conducting activities at different locations. External conditi-
ons and constraints are introduced through effectiveness functions, which inform
agents of the efficacy the activities and locations have concerning the ability to
reduce discomfort. Within C-TAP, activities are modeled continuously, driving
the behavior of the agents based on past, current, and (possible) future states.

Utility-based models generate activity schedules based on econometric models,
such as Logit and Probit models. One of the earliest advanced utility-basedmodels
is the day activity scheduler presented by Bowman and Ben-Akiva (2001). In this
model, activity scheduling is considered a multidimensional choice through an
extensive Nested Logit formulation, structured into five tiers. At its core, indivi-
duals in the model choose whether to conduct an activity pattern that includes
traveling from one place to another, selecting from 54 different travel patterns.
This choice process begins with a fundamental decision about travel, followed
by deeper selections within a nested logit framework where each pattern’s utility
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incorporates linked decisions from subordinate tours. The model further differen-
tiates between primary and secondary activities. Primary activities, deemed most
crucial, dictate themajor tour of the day concerning time, destination, andmode of
transport. Secondary activities, though less critical, are scheduled similarly. Tours
are categorized based on their complexity, number of stops, and purposes, with
work tours subdivided into various types, from direct round trips to more complex
journeys involving multiple stops or work-based subtours. Similarly, school and
other activities follow a simpler categorization.
Around the same time, Kitamura and Fujii (1998) presented the PCATS model,
which is short for Prism-Constrained Activity Travel Simulator. The model divi-
des the day into open and blocked periods, with open periods allowing for flexible
activities and travel, while blocked periods are reserved for fixed activities at de-
signated locations. Decisions about activities are made sequentially, focusing on
immediate past activities within the constraints of these periods, without antici-
pating future activities beyond them. Activities are categorized as either fixed or
flexible based on their timing within these periods. Activity choice is modeled
using a two-tier nested logit structure. The initial tier involves choosing among
broad categories such as in-home activities, activities near the next fixed location,
or other out-of-home activities. The subsequent tier refines these choices further,
determining specifics like the type of out-of-home activity or whether to stay at
home or move on to another location. Destination and mode choices are also mo-
deled using a nested logit approach, where the first tier selects the destination and
the second tier decides the travel mode based on the chosen destination. Finally,
the maximum duration of an activity is confined by the size of the time-space
prism, considering factors like travel speed and the scheduling of adjacent fixed
activities. Durations are adjusted to fit these constraints, ensuring that each acti-
vity fits within the available time window by truncating the duration distribution
model at the maximum allowable duration.
Along the same lines of assigning a priority to different activities, Bhat et al.
(2004) present CEMDAP - the Comprehensive Econometric Microsimulator for
Daily Activity-Travel Patterns. Within the model, an individual’s activity patterns
are first divided into different periods, depending on whether they are working fol-
lowing the assumption that activities are generally scheduled around work. Thus
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these periods are defined as before work, home-to-work commute, work period,
work-to-home commute, and after work period. The model applies choice models
to determine if the individual participates in an activity. These choice models are
applied incrementally following a pre-defined order with work being the first acti-
vity. The same method is used for students. Subsequently, the simulator includes
non-mandatory activity generation.
Another utility-based model is presented by Bradley and Vovsha (2005). CT-
RAMP generates activity schedules for the period of one day considering house-
hold interactions by explicitly accounting for utilities at the household level. Daily
activity patterns and travel decisions are categorized into three types: mandatory,
non-mandatory, and at-home activities, with further scheduling for mandatory
activities to determine frequency and timing, leaving room for potential non-
mandatory or joint activities. Joint household travel is modeled to simulate joint
tours, including the number, purpose, participants, destination, and timing. Main-
tenance and discretionary tours are allocated within households for tasks like
shopping or other non-essential outings, deciding their destination and timing.
Again, these described utility-based models are limited to one day. Hilgert et al.
(2017), Hilgert (2019) present actiTopp, a model that generates activity schedules
for the period of one week. Similar to the previously presented approaches, the
schedules are generated in a sequential manner by applying numerous Logit mo-
dels. First, the main activity of each day is determined, followed by the number
of hours per day and their purpose. Subsequently, the number of activities per
tour and their purpose is chosen. Based on a weekly time budget per activity and
agent, the duration of each activity is assigned. Based on the personal preferences
of the agents, the start of the tour is determined. If joint activities are planned for
the week, the schedules of each household member are adapted such that the joint
activities align.
In a very similar way (and based on the same data - the German Mobility Panel),
Moeckel et al. (2024) presents the Activity-Based Incremental Transport Model
(ABIT). In this model, first mandatory activity participation and frequency are
determined followed by incremental models to determine discretionary activities
for each agent given a hierarchy of the purposes. Each mandatory tour can include
subtours, which are determined in the next step. Given the main tours and subtours
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by activity purpose, duration and start times for each activity are generated based
on a probability distribution from empirical data. For each activity without a fi-
xed destination (i.e., home, education and work), a destination is chosen. Finally,
based on a vehicle allocation model, a Nested Logit model is applied to determine
the mode that the agent uses to get to each activity.
Another utility-based approach is presented by Ordóñez Medina (2016), who
presents a model that generates multi-day schedules of flexible activities given the
input of a skeleton activity agenda. The skeleton agenda includes mandatory acti-
vities that dictate when flexible activities can be scheduled. The flexible activities
are generated based on a binary Logit model determining if the agent conducts a
given activity.
The aforementioned utility-based models all utilize some version of a discrete
choice model, in which a hierarchy of activities has to be assumed as activities
cannot be considered simultaneously. This limits the models’ behavioral realism
as no trade-offs between the activities are accounted for. This is addressed by
models that apply the Multiple Discrete Continuous Extreme Value Model (MD-
CEV), first presented by Bhat (2005). In this model, all activities are considered
simultaneously, and both the activity participation as well as the duration are de-
termined at the same time (see Section 2.2). Applying anMDCEVmodel does not
yield schedules but generates time use patterns without episode-level information.
Palma et al. (2021) have extended the model formulation such that not aggregated
time use patterns are generated, but episode-level activities during one day. They
formulate the model in a way that each episode is considered as a separate alter-
native within the utility function and apply the forecasting algorithm proposed by
Pinjari and Bhat (2010b) to generate multiple activity episodes. However, there
is still a scheduling module missing that determines the order in which these
episodes are conducted. This is addressed by Saxena et al. (2022) who propose
an MDCEV model formulation with ordered preferences. Specifically, the model
prevents that time is allocated to activity at position n jn if no time is allocated to
activity jn−1. The model determines activity type, duration, episodes, and their
order, thus providing full activity schedules.
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The final category of activity generation and scheduling models consists of
optimization-based models. These models propose that household or individu-
al activity schedules are based on the solution of an optimization problem subject
to a set of constraints. The presented models derived under this approach al-
most all include multiple objectives. The models differ in (a) the objectives (b)
the constraints (c) how the weights associated with the objectives are estimated.
The first optimization-based model presented to generate activity schedules was
presented by Recker (1995), who formulated and proposed a solution to the so-
called Household Activity Pattern Problem (HAPP). In this problem, the activity
patterns are generated through solving a pickup and delivery problem with time
windows (PDPTW), in which activities are picked up by a household member
and completed at a given location. Once the activity is completed, it is delivered
through returning back home. In the original form, the problem is formulated
as a multiobjective optimization problem in which all objectives are considered
equally important. Later formulations assign weights to each objective thus for-
mulating the problem using the weighted sum method (Recker et al. 2008). The
weights in this formulation are determined by applying a genetic algorithm such
that the Levenshtein distance between the generated sequence of activities and the
observed sequence of activities is minimized.
Similar to the HAPP approach, Allahviranloo and Axhausen (2018) propose a
bi-level optimization model where the lower level generates activity schedules
based on a PDPTW formulation and the upper level maximizes the accuracy of
the generated schedules measured based on survey data. The parameters are again
determined using a genetic algorithm.
While these formulations provide an efficient way of handling multiple dimensi-
ons of the decision-making process, the focus of a HAPP is on scheduling and not
activity generation, which have to be provided as input to the problem. To address
this issue, Xu et al. (2017, 2018) propose a variation of the HAPP in which they
include the activity participation decision. They develop their problem under the
random utility maximization theory. In the proposed framework, for each indivi-
dual, a choice set is generated by first clustering observed activity patterns and
selecting a subset of these patterns. The generated choice set is individualized
such that no infeasible patterns are part of the choice set. Finally, the parameters
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of the utility function are estimated using a Path Logit model.
A similar approach is presented by Pougala et al. (2023) in the OASIS model
- Optimisation-based Activity Scheduling with Integrated Simultaneous choice
dimensions. Similarly to the HAPP, the utility is a function of utility components
that describe activity-travel behavior including activity participation, the start time
of each activity, their durations and a penalty associated with the travel time to get
to the location associated with each activity. They face the same problem as Xu
et al. in that the complete choice set is too large for the problem. They propose to
generate the choice set by applying the Metropolis-Hastings algorithm. Based on
the OASISmodel, Rezvany et al. (2023) extend themodel formulation to explicitly
account for interactions between household members. They consider pick-up and
drop-off activities, joint activities and a combination of the two, i.e. drop-off and
stay. In contrast to the original OASIS formulation, in this formulation, the hou-
sehold utility is maximized under individual and household constraints. OASIS
has also been extended to model multiple days, however, not while accounting for
household interactions (Rezvany et al. 2023).

2.1.3 Evaluating activity-based models in the context of
telecommuting

Based on the findings from the literature review on the effects of telecommuting
on activity patterns, this section evaluates the capability of existing activity-based
models to account for telecommuting behavior. A common theme across previous
studies is that telecommuters gain more flexibility that most are likely to leverage
for increased non-work activities and vice versa. Thismeans that increased demand
for non-work activity participation can lead some to choose to telecommute to
satisfy this demand. This reciprocal relationship between telecommuting and
activity engagement challenges the assumption that telework can be adequately
modeled in approaches that represent activities hierarchically.
Previous studies have further identified that there is a gender bias regarding how the
gained flexibility affects non-work activities.Whilemen aremore likely to conduct
leisure activities, studies indicate that women are more likely to telecommute to
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reconcile household responsibilities. This is especially the case for households
with children. If wewant themodel to adequately represent this behavior including
the allocation of household-level activities, the framework has to account for
household interactions at the activity generation as well as the scheduling level.
Furthermore, telecommuting is not equally spread throughout the week, as not
everyoneworks fromhome full-time.As the literature indicates (Asgari et al. 2014,
Asmussen et al. 2023), there are preferred days of the week on which individuals
telecommute. It is therefore integral that any activity-based model accounts for
day-to-day variation in telework demand and subsequently travel demand if the
results are to inform policy-makers on the efficacy of telecommuting as a travel
demand management measure.

Household interactions have been the focus of several model development efforts.
For example, Anggraini et al. (2012) analyze the interactions between members
of car-deficient households in the case of vehicle allocation for non-work tours
by applying the Albatross model. More recently, Rezvany et al. (2023) integrated
household interactions and the allocation of chores to the household members into
the OASIS model. These developments offer great insights into how household
interactions can be regarded in activity-based models, however, they both consider
the simulation period for one day and are thus currently not suitable for the
representation of telework.

There have also been great strides in multi-day approaches. Both Hilgert (2019)
and Moeckel et al. (2024) present model approaches based on the 7-day travel
diary data from the German Mobility Panel. Ordóñez Medina (2016) presents a
two-phase approach tomodel multi-day schedules in which first a travel skeleton is
created,which is later supplementedwith flexible activities.Although the temporal
scale of these models would fit the analysis and integration of telecommuting well,
the formulation of the choice situations is discrete in all models, which means
that there reciprocal effects of activity generation cannot be accounted for. The
work by Märki et al. (2014) stands out in that it does not utilize choice models but
simulates activities continuously in multi-week scenarios. This model approach
seems promising in terms of its capability of integrating telecommuting behavior.
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The data needed for the model is extensive multiday travel diary data, which is
expensive to acquire, thus the transferability to other modeling contexts is limited.

Lastly, recent modeling efforts have improved the state-of-the-art of activity-
based models regarding trade-offs in multiple dimensions. The model proposed
by Saxena et al. (2022) models activity episodes, their duration, and order in
a given day in a single choice model. The OASIS model (Pougala et al. 2023)
and the extension of the HAPP model by Xu et al. (2018) also consider multiple
constraints and trade-offs at the same time during activity scheduling. However,
they also focus on single-day simulations. Although Pougala (2024) proposes an
approach to extend the model to the multi-day case, the runtimes become too large
to make the approach feasible in large-scale applications.

Overall, there have been great advances in activity-based models, however, there
exists no approach that allows for the representation of the intricacies of telecom-
muting.

2.2 Random Utility Theory

The work in this thesis on multiple occasions relies on the application of models
rooted in random utility theory. More specifically, both discrete and multiple
discrete choice models are applied. As readers are likely more familiar with
discrete choice models, random utility models are first derived based on the
example of discrete choices. Subsequently, multiple discrete continuous choice
models are introduced.

2.2.1 Discrete Choices

Discrete choices describe situations in which a decision-maker chooses exactly
one option from a set ofmutually exclusive discrete alternatives based on how their
preferences for each option compare to the other alternatives. This process can be
expressed based on utility theory, which, in general, establishes a mathematical
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relationship between, for example, the goods we consume, transport modes we
use or days we work from home and our preferences, assuming that we aim to
maximize our utility. Models based on utility theory are derived as follows. Let
J be a set of mutually exclusive alternatives and n the decision-maker who faces
a choice among those alternatives. The utility obtained by the decision-maker
from choosing alternative j is denoted by Unj . The assumption underpinning
utility theory is that the decision-maker chooses alternative i over j if and only
if Uni > Unj∀i ̸= j. The choice can be influenced both by attributes of the
alternatives perceived by the decision-maker xnj as well as attributes of the
decision-maker sn.

In traditional utility theory, this choice is assumed to be deterministic, meaning
that a decision-makerwill always gain the same utility in different choice situations
if these situations are characterized by the same factors xnj and sn. Vice versa,
this means that any choice that violates that assumption would be inconsistent and
considered irrational. However, the decision-maker does not necessarily consider
all attributes of an alternative equally across choice situations and thusmay behave
inconsistently across choice situations. Moreover, the choice may be influenced
by factors that are not captured within xnj and sn. Both effects can explain
inconsistencies in choice behavior while still assuming the rationality of the
decision-maker. These inconsistencies can be accounted for in random utility
models (Block 1974). Random utility models account for the inconsistencies by
introducing an error term εnj . This error term is added to the deterministic utility,
which we shall now refer to as Vnj , such that Unj = Vnj + εnj . In the binary case
of two alternatives in the choice set, the decision-maker n will choose alternative
i over j if the utility of i is greater than that of j, i.e., Vni + εni > Vnj + εnj .
Because the random term ε cannot be observed, the choice of the decision-maker
cannot be predicted exactly. However, given a probability density function (PDF)
and the corresponding cumulative distribution function (CDF) of ε, we can derive
the probability for the choice of each alternative in the choice set. Discrete choice
models differ in the assumption about these functions. In Logit models, the PDF
is assumed to be a Gumbel distribution, whereas Probit models are derived under
a Standard normal distribution of the error term. In the following, discrete choice
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probabilities are derived for the Logit model, as this is mainly applied in this
thesis. The probability density function of the standard Gumbel distribution is
given by

f(x) = e−(x+e−x) = e−xe−e
−x

and the cumulative distribution function is

F (x) = e−e
−x

Based on the Gumbel distribution, the PDF of the unobserved utility component
of alternative j is given by:

f(εnj) = e−εnje−e
−εnj

The CDF is given by:

F (εnj) = e−e
εnj

Based on the PDF and CDF of the unobserved component of the utility functions,
we can derive the choice probabilities. The probability that decision-maker n
chooses alternative i over j is defined as:

Pni = Pr(Vni + εni > Vnj + εnj , j ̸= i)

= Pr(εnj < Vni + εni − Vnj , j ̸= i)

If we assume εni is given, we can determine the conditional probability Pni|εni.
In this case, the probability that decision-maker n chooses alternative i given εni,
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is that the unobserved utility component of alternative j, εnj , is smaller than the
value of Vni + εni − Vnj ,∀j ̸= i:

Pni|εni =
∫ Vni+εni−Vnj

−∞
e−xe−e

−x

= e−e
−x
∣∣∣Vni+εni−Vnj

−∞

= e−e
−(Vni+εni−Vnj) − lim

x→−∞
e−e

−x

︸ ︷︷ ︸
→0

= e−e
−(Vni+εni−Vnj)

Moving on from the binary case to the case of multiple j, we have to calculate
the probability that εnj < Vni + εni − Vnj for all j ̸= i. Because in a Logit
model, each εnj is assumed to be independent, this probability is determined by
the product of the individual probabilities:

Pni|εni =
∏
j ̸=i

e−e
−(Vni+εni−Vnj)

Because εni is not given, we must determine the unconditional probability Pni.
Applying the law of total probability given by P (A) =

∫∞
−∞ P (A|X = x)fxdx,

the unconditional choice probability is:

Pni =

∫ ∞

−∞
(Pni|εni) · fεnidεni

=

∫ ∞

−∞

∏
j ̸=i

e−e
−(Vni+εni−Vnj) · e−εnie−e

−εni
dεni

Evaluating this integral results in a closed-form expression:

Pni =
eVni∑
j e
Vnj

The arithmetic steps to arrive at this expression are given in appendix A.1.
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2.2.2 Multiple Discrete Continuous Choices

Discrete choice models have been applied extensively in activity-based modeling
frameworks (see 2.1.2). However, they assume that alternatives are perfect substi-
tutes for each other and that they have a hierarchy in which they can be modeled.
Moreover, given the discreteness of the models, they rely on the choice of con-
ducting a given activity and the estimation of time use of the respective alternative
in separate steps. These assumptions lead to inadequate representation of choice
behavior. These shortcomings are addressed in models of “multiple-discreteness”,
which have first emerged in marketing literature to account for the fact that buyers
in many markets can choose among multiple units of a brand and multiple brands
of the same good (Hendel 1999). Bhat (2005) has extended these models to the
use case of discretionary activity time-use decisions. Based on themodel structure
presented by Kim et al. (2002), he introduces the Multiple Discrete Continuous
Extreme Value Model (MDCEV), which compared to previous models of this
kind, can account for a large number of discrete alternatives. The model is derived
under random utility theory in that decision maker n maximizes their utility of
consuming k alternatives. The formulation differs from discrete choice models in
both the way the utility function is formulated as well as how the probabilities
of consumption are derived. The utility is represented by a direct utility function
U(x), where x is the consumption quantity vector. In the case of activity time use,
this would be the duration spent on each activity k. The overall utility function is
given by:

U(x) =
∑
k

γk
αk
ψk((

xk
γk

+ 1)αk − 1) (2.1)

subject to the constraint that the household’s time budget E is maintained:

E =

K∑
k=1

xk (2.2)
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In themodel presented in this work, a one-week time frame is considered, resulting
in the household’s time budget E being the product of 10,080 minutes and the
number of household members. In equation 2.1, K represents the number of
alternatives, and xk denotes the time allocation for activity k. ψk represents the
base utility of alternative k, i.e., the marginal utility of the alternative when time
allocation is 0 minutes. The parameters α and γ serve as saturation parameters,
however, with different roles in the model. γ is a satiation parameter as in higher
values of γk correspond to more time invested into activity k. It also serves as
a translation parameter through which the model allows for corner solution, i.e.,
zero time investment into activity k. In turn, αk is only associated with satiation.
As an exponent of the baseline marginal utility ψk, it reduces the marginal utility
with increasing time investment into alternative k. A comprehensive overview of
the function of each parameter is presented by Bhat (2008). As in Logit models,
the expressions ψ and γ can be parametrized as follows:

ψk = eβk,zzh+εk (2.3)
γk = ζk,zzh (2.4)

where zk accounts for the sociodemographic characteristics of household h, βk,z
and ζk,z are estimated parameters, and εk is an extreme value error term. Maxi-
mizing this utility function based on the budget constraint poses a mathematical
optimization problem (see section 2.3) of a nonlinear function, which can be sol-
ved by forming the Lagrangian and applying the Karush-Kuhn-Tucker conditions.
The Lagrangian of the general utility function in 2.1 is given by1:

L =

K∑
k=2

γk
αk
ψk((

xk
γk

+ 1)αk − 1)− λ

(
K∑
k=1

xk − E

)
, (2.5)

1 Note: The model derivation presented in Bhat (2008) allows for price normalization of each
good. This is unnecessary in activity time use estimation as no price is associated with spending
time on an activity. The terms accounting for price normalization are therefore omitted from the
equations.
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where λ is the Lagrangian multiplier. The Karush-Kuhn-Tucker conditions for the
optimal time investment x∗k are then given by:

ψk

(
x∗k
γk

+ 1

)αk−1

− λ = 0, if x∗k > 0, k = 1, 2, . . . ,K (2.6)

ψk

(
x∗k
γk

+ 1

)αk−1

− λ < 0, if x∗k = 0, k = 1, 2, . . . ,K (2.7)

.

Solving for the lagrangian multiplier λ for the first good in equation 2.6, and
substituting for the other alternatives in equations 2.6 and 2.7, the Karush-Kuhn-
Tucker conditions can be rewritten as:

Vk + εk = V1 + ε1, if x∗k > 0, k = 2, 3, . . . ,K (2.8)
Vk + εk < V1 + ε1, if x∗k = 0, k = 2, 3, . . . ,K,where (2.9)

Vk = βk,zzh + (αk − 1) ln

(
x∗k
γk

+ 1

)
, k = 1, 2, 3, . . . ,K (2.10)

.

Based on this general utility formulation, Bhat (2008) presents different model
structures and formulations for several choice situations. This thesis utilizes a
model structure with an outside good, in which one alternative is always chosen;
in the model presented in section 5.2, alternative home is considered as an outside
good. This model is defined as follows:

U(x) =
1

α1
ψ1x

α1
1 +

K∑
k=2

γk
αk
ψk((

xk
γk

+ 1)αk − 1) (2.11)

Compared to the general utility formulation, there is no γ parameter defined for
alternative 1, as this alternative is always consumed and thus no corner solutions
of zero consumptions have to be accounted for. Regardless of whether a model is
defined with or without an outside good, we cannot estimate both γk and αk at
the same time. There are three “profiles” that can be estimated:
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2.2 Random Utility Theory

• α-profile: the αk parameters are estimated while defining γk = 1

• γ-profile: the γk parameters are estimated while defining αk → 1,∀k ≥ 2

• α-γ-profile: the γk parameters are estimated while αk = c where c is
a constant that does not vary between alternatives, serving as a “pinning
effect” from the satiation parameter for the outside good.

Although there are estimation procedures for all three profiles, there currently
exists no numeric forecasting procedure for a model based on an α-profile. As the
intention of the modeling framework proposed in this work is to be applied within
an agent-based demand model, it is essential that there is a suitable forecasting
procedure available. Thus, the models in Section 5.2 are based on the α-γ-profile.
The probability thatM of theK alternatives are consumed is given by:

P (x∗1, x
∗
2, x

∗
3, . . . , x

∗
M , 0, 0, . . . , 0) (2.12)

=

[
M∏
i=1

fi

][
M∑
i=1

1

fi

] ∏M
i=1 e

Vi(∑K
k=1 e

Vk

)M
 (M − 1)!

where Vk given the α-γ-profile is defined as:

Vk = βzk + (α− 1) ln

(
x∗k
γk

+ 1

)
∀k ≥ 2 (2.13)

V1 = (α− 1) ln(x∗k)

and fi is defined as:

fi =
1− αi
x∗i γi

(2.14)

Based on the initial introduction of theMDCEVmodel by Bhat (2008) as outlined
above, there have been many extensions. Most relevant to this work is theMultiple
Discrete Continuous Nested Extreme Value Model (MDCNEV) presented by
Pinjari and Bhat (2010a), which relaxes the assumptions that the error terms of
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the alternatives are independently distributed. In this model, the error terms are
assumed to be distributed according to a joint extreme value distribution:

F (ε1, ε2, . . . , εK) = exp

− SK∑
s=1

{ ∑
i∈ sth nest

exp

(
− εi
θo

)}θs (2.15)

where s is attributed to one of the Sk nests. Based on the distribution of the
correlated error term, Pinjari and Bhat (2010a) derive the probability of choosing
a combination of alternatives in theMDCNEVmodel, which is defined as follows:

P (x∗1, x
∗
2, ..., x

∗
M , 0, ..., 0) = |J |

∏
i∈CA e

Vi
θi∏SM

s=1(
∑
i∈sthNest e

Vi
θi )qs

·
q1∑
r1=1

· · ·
qs∑
rs=1

· · ·
qsM∑
rsM =1

{
SM∏
s=1

[
(
∑
i∈sthNest e

Vi
θi )θs∑Sk

s=1

{
(
∑
i∈sthNest e

Vi
θi )θs

}]qs−rs+1

×
( SM∏
s=1

sum(Xrs)
)( SM∑

s=1

(qs − rs + 1)− 1
)
!

} (2.16)

Here, θi is the parameter for the associated nest i, which is estimated alongside the
other parameters in the model. Similarly to a Nested-Logit model (Train 2001),
the values should lie between 0 and 1, where a value of 1 indicates no correlation
between alternatives within that nest, making themodel equivalent to theMDCEV
model without a nested structure. The expression sum(Xrs) represents the sum
of elements in a row matrix Xrs. For a more detailed description of the matrix,
please refer to Pinjari and Bhat (2010a). The variable SM describes the nest
containing M alternatives, and qSM represents the chosen alternatives within it.
The set CA represents the set of chosen alternatives. Finally, the variable x∗M
denotes the optimal time allocation, and J stands for the Jacobian matrix.
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2.3 Mathematical Optimization

2.3 Mathematical Optimization

The activity scheduling model presented in this work is formulated as a mathe-
matical optimization problem. This section provides an overview of the methods
under which the scheduling problems are formulated.
In mathematical optimization, we aim to optimize, i.e. maximize or minimize, a
function under constraints. In its most general form, an optimization problem is
defined as:

P =

{
max f(x)

s.t. x ∈ X

}
(2.17)

where f(x) is the objective function to be optimized. Note that each maximization
problem can be transformed into a minimization problem, thus choosing maximi-
zation in the formulation given in 2.17 is without loss of generality. Further, x is
the decision variable and X is called the solution space.

Integer Linear Programming

There are many different types of optimization problems, whose classification
depends on the type of objective function and the values the variables can assume.
The optimization problems formulated in this work are Integer Linear Programs
(ILP). In a linear programming problem, both the objective function and the cons-
traints are linear. A problem is called an integer program or integer optimization
problem when all variables in the problem can only assume integer values. An in-
teger linear program in canonical formwithn decision variables andm constraints
is defined as:

max cTx

s.t. Ax ≤ b, x ∈ Zn
(2.18)

29



2 Background

where

x ∈ Zn is the vector of decision variables. This vector is varied in the process
of finding the optimum of the objective function.

c ∈ Rn are the objective function coefficients.

A ∈ Rnxm is called the coefficient matrix withM rows andN columns

b ∈ Rm is the vector with M components defining the right-hand side of the
linear inequalities.

Multiobjective optimization

The aim of an ILP as presented in Section 2.18 is to optimize exactly one objective.
In some cases, including generating activity schedules, the problem at hand invol-
ves optimizing multiple, often competing objectives. These problems are referred
to as multiobjective optimization problems (MOOP). Multiobjective optimizati-
on allows for the consideration (and illustration) of trade-offs when scheduling
activities, such as household members wanting to spend as much time together as
possible while also having to work or run errands, which in turn should preferably
be allocated equally among household members. A multiobjective optimization
problem is defined as:

max F (x)

s.t. Ax ≤ b,

x ≥ 0

(2.19)
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where F (x) is no longer a single objective function but a vector of p objective
functions:

F (x) =


F1(x)

...
Fp(x)

 (2.20)

As stated above, the objectives of a MOOP are often at least partially conflicting,
which means that there usually does not exist a single point that optimizes all
objectives at once. The goal is rather to find points that are Pareto optimal: A point
is Pareto optimal iff it is impossible to find another point that improves at least one
objective. In the case of a single objective, a Pareto optimal point is often unique.
In a multiobjective problem, there are often many Pareto optimal solutions. To
deal with this issue, we can include preferences among objectives to find a single
solution to a multiobjective optimization problem. There are three different types
of preference-based optimization methods whose classification is based on the
time when the preference is articulated:

A priori methods The preference of the objectives is determined prior to fin-
ding a solution to the optimization problem. Based on the defined prefe-
rence, a priori methods will result in a single solution to the multiobjective
optimization problem.

Interactive or progressive methods The decision maker provides input
throughout the optimization process and progressively shifts the outcome
of the optimization solution towards their preferences.

A posteriori methods In these methods, instead of determining a single solu-
tion, a set of solutions within the solution space is generated. The decision-
maker expresses their preference by choosing the solution best suited to
their needs.

The ultimate aim of the activity modeling framework developed in this thesis is
for the generated activity schedules to be simulated within an agent-based model.
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Although it would be technically possible and indeed interesting to explore for
agents to choose among a set of schedules or have them interact with the sche-
duler during the optimization process to find a solution, both progressive and a
posteriori methods are more computationally expensive than a priori methods in
this use case. Therefore, the scheduler in this thesis is based on a priori methods
to finding a solution to the multiobjective activity scheduling problem. Among
the a priori methods, the weighted sum approach is one of the most frequently
applied methods (Marler and Arora 2010), and has also been applied in other
optimization-based activity scheduling models (see section 2.1.2). Following pre-
vious approaches, the scheduling model developed in this thesis also adopts the
weighted sum method.
The aim of the weighted sum approach is to transform the problem from a multi-
objective to one with a single objective by assigning a weight wp to each objective
function Fp(x) and adding the weighted objectives to one function F̂ (x) which is
then optimized:

max F̂ (x) =
p∑
i=1

wpFp(x)

s.t. Ax ≤ b,

x ≥ 0

(2.21)

The weights are restricted to positive values, i.e., w ≥ 0, to ensure Pareto opti-

mality. Further, the weights have to be set such that
p∑
i=1

wp = 1 to guarantee a

convex combination of the objective functions.

Weight Calibration Approach

The aim of the model presented in this thesis is to simulate activity scheduling be-
havior as realistically as possible. Thus, the primary goal of the weight calibration
step is to tune the model weights so that the results replicate real-world behavior
and patterns observed in the target population. This involves adjusting parameters
within the model to ensure that the emergent behavior of the simulated agents
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matches observed behaviors or data from the real world as closely as possible.
More formally, the calibration process can be described based on the following:

• X: The set of parameters or rules of the model that need to be calibrated.
• Ysim: The output or behavior of the simulated model corresponding to
parameter set X.

• Yobs: The observed real-world behavior or data that we aim to replicate.
• f(X): The function representing the model that maps parameter set X to
simulated behaviorYsim.

• L(Ysim,Yobs): The loss or discrepancy between simulated behavior Ysim

and observed behavior Yobs.

The goal is to find the parameter set X∗ that minimizes the loss function:

X∗ = argmin
X

L(f(X),Yobs)

Here, the loss function can take various forms depending on the nature of the data
and the specific calibration objectives. For instance, it could be the mean absolute
error of the number of weekly activity episodes, or another suitable metric measu-
ring the discrepancy between simulated and observed behavior. There are several
methods to approach this problem, for instance, Bayesian optimization, Genetic
Algorithms, local search, or exhaustive evaluation. In this work, a Bayesian opti-
mization approach is chosen due to its ability to handle expensive evaluations of
objective functions (Brochu et al. 2010).

In Bayesian optimization, the above optimization problem is solved iteratively,
where at each iteration, the surrogate model is updated based on observed data
points (simulated behaviors Dn), and an acquisition function α is used to de-
cide which parameter set to evaluate next in order to balance exploration and
exploitation. Figure 2.1 illustrates the Bayesian optimization approach.

Bayesian optimization employs a surrogate model, which is typically a Gaussian
process (GP). The surrogate model approximates the true objective function (the
loss function) based on the observed data points (simulated behaviors) evaluated
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simulate model with parameter
set Xn+1: f(Xn+1) = Ysim and

evaluate loss function L(Ysim, Yobs)

n = ncalls ?

select new Xn+1by optimizing
acquisition function α

update surrogate model given Xn+1

augment data
Dn = {Dn, (Xn+1, Yn+1)}

no

stop

yes

start

Figure 2.1: Bayesian Optimization process based on Shahriari et al. (2016)

so far. The GP provides a probabilistic representation of the objective function,
including an estimate of the mean and uncertainty (covariance) at each point in
the parameter space. At each iteration of Bayesian optimization, the surrogate
model is updated based on the newly observed data points (simulated behaviors).
This update incorporates the information gained from the evaluations of the
objective function so far, improving the surrogate model’s accuracy and reducing
uncertainty. In addition to the surrogate model, Bayesian optimization uses an
acquisition function to guide the selection of the next parameter set to evaluate.
The acquisition function quantifies the utility or informativeness of evaluating
a particular parameter set based on the current state of knowledge provided by
the surrogate model. It balances exploration (sampling parameter sets in regions
where uncertainty is high or where the model’s predictions are uncertain) and
exploitation (sampling parameter sets that are expected to yield low loss values
based on the surrogate model) (Shahriari et al. 2016).

34



3 Survey Data and Data
Preparation

It is a capital mistake to theorize before one has data. Insensibly one
begins to twist facts to suit theories, instead of theories to suit facts.

Sir Arthur Conan Doyle,
The Adventures of Sherlock Holmes - A Scandal in Bohemia

This thesis is based on two main sources of data: the German Mobility Panel
(MOP) and a household travel survey (HTS) conducted in theMetropolitanRegion
of Stuttgart, Germany. This section provides an overview of the two surveys,
focussing on telecommuting relevant variables.

3.1 The German Mobility Panel

The German Mobility Panel is a national household travel survey that was con-
ducted annually between 1994 and 2023. It is a longitudinal survey in which
travel behavior is reported for seven consecutive days in three consecutive years.
Each yearly sample consists of approximately 3,000-3,400 respondents in about
1,800-2,000 households. All household members over the age of 10 in a partici-
pating household are asked to keep a travel diary for seven days and to provide
information on their socio-demographic characteristics, e.g., age, gender, and job
status. Further, household characteristics are provided, such as the number of cars
in the household and household income. A question on the telecommuting status
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was added to the personal questionnaire in 2012, asking whether respondents can
work exclusively from home on some working days and if they choose to do so.

Responses are captured as a single choice among the following choice options:

• Yes, and I do so frequently (once a week or more)
• Yes, and I do so infrequently (less than once a week)
• Yes, but I do not choose to work from home
• No, I cannot work from home

Figure 3.1 shows the development of responses to this question over the years
since its introduction. The graph shows that the share of telecommuters remained
steady between 2012 and 2017, and a slight increase in telecommuters in 2018
and 2019. What can clearly be seen is the effect the COVID-19 pandemic has
had on the share of telecommuters, which, as a result, increased by 19 percentage
points in 2020 compared to the previous year. It is unclear how representative the
telecommuting shares are for the employed population of Germany. Compared to
the German microcensus (Statistisches Bundesamt 2024), the shares are higher
in the MOP. However, compared to the Global Survey of Working Arrangements
(Aksoy et al. 2022), the telecommuting rate presented here is lower. It should
be noted that the MOP is biased towards high-income respondents (Kuhnimhof
et al. 2006). As those in high-paying occupations are also more likely to be able
to telework, telecommuters may be overrepresented in the MOP.

The yearly sample is relatively small compared to other national household travel
surveys, which could potentially affect the validity and reliability of the statistical
analyses and models developed based on the data. However, this issue can be
mitigated by pooling data from multiple years, leading to a larger sample size
and thereby enhancing the robustness of the analysis. To balance the need for
timely results and sufficient sample size, the analytical and modeling framework
presented in the next chapters are based on data acquired between 2018 and 2022,
with the exclusion of the 2020 wave to avoid biases resulting from the COVID-19
pandemic.
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Figure 3.1: Share of telecommuters among employed respondents in the German Mobility Panel over
the years. The graph is based on weighted data using the weighting factors at the individual
level provided with the data.

Although the MOP provides a sound foundation for analyzing travel behavior and
activity patterns, it lacks comprehensive data on telecommuting behavior. Most
importantly, the survey does not ask whether participants worked remotely on
the day of the survey or how often they did so throughout the week. Therefore,
the data is supplemented by information from another household travel survey
conducted in the Region of Stuttgart. The following section presents an outline of
the survey, followed by an explanation of the supplementation approach.

3.2 Stuttgart Household Travel Survey

The Stuttgart Household Travel Survey (SHTS) was conducted in 2021 as part of
the project VenAMo1 among 9,959 respondents in 5,477 households. The SHTS

1 Full project title: Verkehrsentlastung durch neue Arbeitsformen und Mobilitätstechnologien (ori-
ginal) / Traffic Reduction through new Forms of Work and Mobility Technologies (translation)
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was similar to the MOP and consisted of a travel diary that each household mem-
ber was requested to fill out, along with questionnaires on socio-demographic
information at both the individual and household levels. In contrast to the MOP
survey, the travel diary covers only one day and it is a one-off survey. Further,
there was no age restriction on who should complete the survey. An adult hou-
sehold member was asked to fill out the surveys representatively for children
under the age of 14. Due to the scope of the project, the survey allowed more
nuanced questions on telecommuting. Additionally, the survey was supplemented
by a voluntary online questionnaire focussing on employed respondents and their
working conditions. The supplemented survey was filled out by 659 respondents
of which 443 attested they worked from home. Table 3.1 presents an overview
of the main telecommuting-related questions in the SHTS. The survey results
are similar to those in the MOP wave of the same year (2021). About 51% of
employed respondents have the possibility to work from home. Of those who can
work from home, about 6% choose to (almost) never work from home, whereas
the majority telecommutes frequently. Among those who cannot work from ho-
me, the majority indicate that their type of occupation does not allow them to
work remotely. About 10% said their employer does not allow telecommuting,
and just over 3% of respondents cannot work remotely because their home does
not provide sufficient (quiet) space.

3.3 Data Preparation

The data preparation steps serve two purposes: first, transforming the data to
create a dataset for estimating parameters for the MDCEV model, and second,
using the data as a reference for calibrating schedules. Additionally, the data
needs to contain detailed information about telecommuting behavior, specifically
the days and times during which an individual engages in telecommuting. This
section outlines the performed data preparation steps to generate this data.
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Table 3.1: Overview of the telecommuting-related questions in the SHTS. The presented data is
weighted based on the weighting factors at the individual level provided with the data.

variable levels share question type

wfh possible yes 51% single choice
no 49%

wfh frequency (almost) daily 35% single choice
if possible 1-3 days per week 40%

1-3 days per month 12%
Less than 1 day per month 6%
(almost) never 6%

not possible insufficient (quiet) space at home 3% multiple choice
due to employer does not allow wfh 10%

type of work does not allow wfh 82%
other reasons 9%

3.3.1 From travel diaries to time-use data and activity
schedules

The model presented in this thesis is split into two parts: time use estimation and
the scheduling. Both model parts are based on the travel diaries obtained from the
MOP. However, the format of the data needs to be adapted before it can be used.
For instance, a travel diary may not cover the entire week for a respondent. If a
respondent has conducted out-of-home activities for only three days during the
survey week, then the travel diary would only reflect those three days instead of
the entire week. In such cases, the data is augmented by adding home activities to
each diary. This ensures that each diary starts on a Monday at 00:00 and ends on
a Sunday at 23:59.

As identified in the literature section, household interactions play a vital role
in activity schedules. These interactions are in part reflected by joint activities.
Although the MOP does not collect information on whether an activity was

39



3 Survey Data and Data Preparation

conducted jointly, Hilgert et al. present an approach to identify joint trips and
activities in the MOP travel diaries (Hilgert et al. 2017, Hilgert 2019). This
approach is also applied in this work. For this purpose, activities are identified as
joint activities if they have the same purpose, start and end at the same time, and
if the trips concerning these activities cover the same distance. The MOP data has
a significant drawback in that it lacks geo-coded information on trip destinations.
Consequently, this method is subject to uncertainty. However, it does serve as
a sufficient foundation for the modeling framework suggested later on, which is
set up to be able to account for joint activities once more suitable data becomes
available.

Lastly, travel times have to be accounted for in the activity schedules. Because the
MOP does not include information on trip destinations, the modeling framework
does not include parts on destinations or mode choices. Similar to the work
presented by Hilgert (2019), these choices are made subsequently to generate
activity schedules. Therefore, the duration of each trip is added to the subsequent
activity. This approach simulates the decision-making process of scheduling, aswe
generally reserve a time block for certain activities without knowing exactly how
and when to get there when planning the activity. In order to maintain reasonable
ratios between the travel times and the duration of activities, the scheduled duration
of the activity can be taken into consideration in the destination choice. This can
be ensured by limiting the choice set of destinations to those that would result in
an appropriate ratio between travel time and activity duration. Joint activities are
limited to certain activity purposes, specifically shopping and leisure activities.

The dataset resulting from conducting the aforementioned preparation steps re-
presents activity schedules in the target format of the modeling framework presen-
ted in this thesis. This can be used to calibrate the schedulingmodule of the model.
However, at this point, there is detailed information missing on telecommuting
within these schedules. This information is supplemented in two steps, described
in subsections 3.3.2 and 3.3.3, respectively.
Additionally, an intermediate step of the proposed framework is the generation
of activity time-use at the household level while allowing for individual-specific
alternatives that are not interchangeable between household members. Therefore
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the data has to be aggregated into a dataset that can be used to estimate the activity
time-use model. At this stage, two types of activities are differentiated:

individually specific alternatives Alternatives that are allocated to a specific
household member and cannot be interchanged between different members:
work, work-related, telecommuting, education, leisure

household level alternatives Alternatives that can be allocated interchange-
ably between different household members or that are conducted jointly
and thus pertain to multiple household members: home, shopping, joint
shopping, joint leisure, pick up and drop off

For household-level alternatives, the activity durations for the respective alter-
natives are summed over all household members, whereas individually specified
alternatives are treated as separate alternatives. Time-use for a household of two
household members i ∈ 1, 2may be defined, for example, for the following activi-
ties ai: home, shopping, joint leisure,work1, leisure1,work2, telecommuting2.
Given this data, theMDCEVmodel on time-use can be estimated and the resulting
parameters calibrated.

3.3.2 Prediction of telecommuting engagement

The work in this section has been presented in the following contribution:

Reiffer, A.S., Kagerbauer, M., Vortisch, P. Prediction of Telecommuting Engagement through Ma-
chine Learning to Enhance Travel Survey Data presented at the 103rd Annual Meeting of the
Transportation Research Board, Washington D.C., January 2024.

As mentioned at the beginning of this chapter, telecommuting engagement, i.e.,
whether a respondent worked remotely on a given survey day, is not recorded in
the MOP. As a trade-off between the benefit of week-long data and information
density from the 1-day SHTS, this section presents an approach to predict telecom-
muting engagement for each day of the week using machine learning classifiers
trained on the SHTS. Figure 3.2 shows an overview of the proposed approach.
First, all possibly relevant features are selected from the SHTS; however, they are
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limited to those that are also available in the MOP data. The SHTS is unbalan-
ced regarding the telecommuting engagement variable, so the Synthetic Minority
Over-sampling TEchnique (SMOTE) is used to balance the data (Chawla et al.
2002). The resulting dataset is then split into train and test data. Several feature
selection algorithms are applied to the test data, and for each feature set, different
machine learning classifiers are trained. The trained models are then tested using
the test data set, and their performance is evaluated using several criteria. Finally,
the best model is chosen and used to predict telecommuting engagement in the
MOP data for each reported day of a telecommuter’s travel diary.
It is worth noting that although the MOP is generally limited to one question
on telecommuting, in 2022 an additional questionnaire was included that asked
respondents to indicate how many days they worked from home in the survey
week. This data is also used to test the performance of the classifiers.
In the following, first, all machine learning classifiers are described, followed by
the feature selection techniques and finally, the performance metrics are intro-
duced. Subsequently, the results from the feature selection and classification are
presented.

SHTS data on
telecommuting
engagement

balance data
through SMOTE

train data

test data

feature selection:
• boruta
• RFE
• VSURF

train

classification:
• bayesian networks
• binary regression
• decision trees
• random forest
• support vector machines

test

evaluate performance:
• accuracy
• precision
• recall
• specificity
• F1-score
• mcc

choose best
scoring model

predict telecom-
muting engage-
ment in MOP

Figure 3.2: Approach to predict telecommuting engagement in MOP data based on machine learning
classifiers trained on SHTS
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Machine learning classifiers

Bayesian Networks
Bayesian networks are probabilistic graphical models that represent the dependen-
cies between random variables using a directed acyclic graph (DAG) (Pearl 1997,
Neapolitan 1990). Each node in the graph corresponds to a random variable, and
the edges between nodes encode conditional dependencies. The conditional pro-
bability distribution for each variable given its parents is modeled using Bayes’
rule. Let Xi denote the i-th random variable, and Pa(Xi) be the set of parent
nodes ofXi in the graph. The joint probability distribution of all variables can be
written as:

P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi |Pa(Xi)) (3.1)

Inference in Bayesian networks involves computing probabilities or making pre-
dictions based on observed evidence. Popular algorithms for inference include
variable elimination and Markov chain Monte Carlo (MCMC) methods.

Binary Regression
Binary regression, also known as logistic regression, is a popular supervised
learning algorithm for binary classification tasks. Given a dataset with input-
output pairs (xi, yi), where xi is a feature vector and yi ∈ {0, 1} is the binary
class label, the goal is to learn a model that estimates the probability of the
positive class, i.e., P (yi = 1 |xi). The logistic regression model assumes a linear
relationship between the features and the log-odds of the positive class:

log

(
P (yi = 1 |xi)

1− P (yi = 1 |xi)

)
= wTxi + b (3.2)

where w is the weight vector and b is the bias term. To obtain probabilistic
predictions, the logistic function is applied to the output of the linear model:

P (yi = 1 |xi) =
1

1 + e−(wTxi+b)
(3.3)

43



3 Survey Data and Data Preparation

Decision Trees
Decision trees are non-linear, hierarchical models used for both classification
and regression tasks (Dattatreya and Kanal 1984). They recursively split the data
into subsets based on the values of individual features, aiming to maximize the
information gain or Gini impurity at each split. Each internal node in the tree
represents a decision based on a feature, and each leaf node corresponds to a
predicted class or regression value. The decision tree can be represented as a set
of rules, and the final prediction for a given input is determined by following the
path from the root to the appropriate leaf node.

Random Forest
Random forests are ensemble learning methods that combine multiple decision
trees to improve predictive performance and reduce overfitting (Tin KamHo 1995,
1998). The key idea is to build a collection of decision trees by training each tree on
a random subset of the training data (bootstrap sampling) and selecting a random
subset of features at each split. The final prediction is made by aggregating the
predictions of all individual trees, often using majority voting for classification
problems or averaging for regression problems. Random forests tend to be more
robust and accurate than individual decision trees, and they can handle high-
dimensional data and capture complex relationships between variables.

Support Vector Machines
Support Vector Machines (SVMs) are powerful supervised learning algorithms
used for both classification and regression tasks. SVMs aim to find the optimal
hyperplane that best separates the data points of different classeswhilemaximizing
the margin between the classes (Cortes and Vapnik 1995). In the case of binary
classification, given a training dataset (xi, yi), where xi is the feature vector and
yi ∈ {−1, 1} is the class label, SVMs find the weight vector w and bias term b

that define the decision boundary:

wTxi + b = 0 (3.4)

The margin is computed as the distance between the hyperplane and the closest
data points (support vectors) from each class. SVM aims to maximize this margin
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while penalizing misclassifications. For non-linearly separable data, SVM can use
kernel tricks to map the data into a higher-dimensional space, where linear se-
paration becomes possible. Common kernel functions include polynomial, radial
basis function (RBF), and sigmoid kernels.

Feature Selection

We further present the feature selection algorithms applied. We have trained and
tested all algorithms on the dataset described above using the features determined
by the respective feature algorithm.

Boruta
Boruta is a method for determining the importance of variables in a system using
random forests. The system involves replicating each descriptive variable and
randomly permuting the values of replicated variables across objects (Kursa et al.
2010). The randomization is different for each run of the random forest algorithm.
The importance of each variable is computed for each run, and a statistical test
is performed to determine if the variable is significant or not. An attribute is
considered important for a single run if its level of importance is greater than
the highest level of importance among all randomized attributes. If a variable
is deemed unimportant, it is removed from the system along with its replicated
mirror pair. The procedure is repeated for a predefined number of iterations or
until all attributes are either rejected or deemed important. The algorithm was
applied using the R package boruta (Kursa and Rudnicki 2010).

Variable Selection Using Random Forests - VSURF
Anothermethod based onRF is theVSURF algorithm,which is short for “Variable
Selection Using Random Forests” (Genuer et al. 2015). The procedure consists
of two steps. In the first step, the variables are ranked based on their importance,
estimating a threshold value for variable importance (VI) using the standard
deviation of VI for less important variables and retaining only the variables with
an averaged VI value above the threshold. In the second step, a sequence of
ascending RF models is used to make predictions. Variables are added to each
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model only if they significantly decrease the error rate, using a threshold based
on the out-of-bag (OOB) error decrease. The final set of variables comes from
the last model. In this study, we applied the VSURF method using the R package
with the same name (Genuer et al. 2015).

Recursive Feature Elimination - RFE
Recursive Feature Elimination (RFE) was first introduced by Guyon et al. (Guyon
et al. 2002). It is a method for feature selection similar to backward feature
elimination (Kohavi and John 1997) but allows for the elimination of multiple
variables simultaneously instead of having to eliminate one feature at a time
through exhaustive enumeration. In the RFE procedure, a model is first built
on all features. In the second step, a ranked feature list is created by ranking
the combination of each feature. Lastly, features are eliminated if they do not
meaningfully contribute to the model. We applied the RFE method using the R
package caret (Kuhn 2008).

Performance metrics

We utilize several quantitative metrics to assess the performance of the ML
classifiers. They all rely on the true positive (TP), true negative (TN), false positive
(FP), or false negative (FN) values in one way or another. In the context of this
study, these values are defined as:

• true positive (TP): model correctly classifies a telecommuting day as a
telecommuting day

• true negative (TN): model correctly classifies a non-telecommuting day as
a non-telecommuting day

• false positive (FP): model incorrectly classifies a non-telecommuting day
as a telecommuting day

• false negative (FN): model incorrectly classifies a telecommuting day as a
non-telecommuting day
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Accuracy
The accuracy of a classification model is the percentage of sample objects that are
correctly classified and labeled. This is done by calculating the ratio of the total
number of true predictions to the sum of all observations.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.5)

Precision
Precision, also known as the positive predictive value (PPV), is defined as the
ratio of correctly classified positive cases over all classified positive cases (Chicco
and Jurman 2020).

Precision = PPV =
TP

TP + FP
(3.6)

Recall
Recall, also referred to as sensitivity or true positive rate (TPR), is defined as the
ratio of correctly classified positive cases overall actually positive cases (Chicco
and Jurman 2020). Recall and precision are often trade-offs of each other.

Recall = Sensitivity = TPR =
TP

TP + FN
(3.7)

Specificity
Specificity, also known as the true negative rate (TNR), is determined like the
TPR, except that negative cases are now relevant. The TNR is defined as the ratio
of correctly classified negative cases over all actually negative cases Chicco and
Jurman (2020).

Specificity = TNR =
TN

TN + FP
(3.8)

F1 Score
The F1-score is determined by calculating the harmonic mean of the precision
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(eq. 3.6) and recall (eq. 3.7) (Chicco and Jurman 2020). The F1-score can take
values between 0 and 1, where 1 constitutes a perfect classification. As can be seen
in the formula, this is achieved if the sum of false positives and false negatives is
zero.

F1 =
2 · TP

2 · TP + FP + FN
=

2 · Precision · TPR
Precision+ TPR

(3.9)

Matthew’s Correlation Coefficient
Although many studies use accuracy as the gold standard of model evaluation,
it is very sensitive to unbalanced data, which can lead to a false sense of model
performance (Chicco and Jurman 2020). A way to counteract the issue of class
imbalance when evaluating model performance is to calculate the Matthews Cor-
relation Coefficient (MCC) (Baldi et al. 2000). The MCC is calculated similarly
to the Pearson product-moment correlation coefficient based on the confusion
matrix of the model. The MCC can take on values between -1 and 1, where -1 is
the worst possible value (TP = TN = 0) and 1 is the best possible value (i.e.,
FP = FN = 0).

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
(3.10)

We first assess the results of the feature selection algorithms, which are presented
in 3.2.Most strikingly is the similarity between boruta and rfe. The only difference
in the two feature sets is car access (included in rfe but not boruta) and the number
of work-related trips (included in boruta but not in rfe). The vsurf feature set is the
smallest, consisting of eight features. Features included in all three feature sets are
daily distance traveled, travel time, the hour of the last trip of the day, the number
of work trips the time spent at home, spent for leisure activities, spent shopping,
and on work-related activities.. While it is expected that time spent at home is an
important feature, we initially assumed that this would also be the case for time
spent at work, which was deemed unimportant by the vsurf algorithm.
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Table 3.2: Selected features by selection method. Values indicate if a feature was selected by the
method (1) or not (0)

value boruta rfe vsurf
age 1 1 0
car access 0 1 0
telecommuting Frequency 1 1 0
distance traveled 1 1 1
travel time 1 1 1
escorting someone 1 1 0
first trip of the day 1 1 0
last trip of the day 1 1 1
home 1 1 0
leisure 1 1 0
other 1 1 0
round trip 1 1 0
shopping 1 1 0
work 1 1 1
work-related 1 0 0
time use escorting someone 1 1 0
time use home 1 1 1
time use leisure 1 1 1
time use round trip 1 1 0
time use shopping 1 1 1
time use work 1 1 0
time use work-related 1 1 1
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Figure 3.3: Confusion matrix by classifier and feature selection algorithm

Classification results

After selecting the features, we trained each model with the three feature sets on
70% of the 1-day HTS data. Subsequently, we tested the models on the remaining
30% by predicting whether a respondent in the test data worked from home on
the respective survey day. In order to measure the performance of these models,
we calculated the confusion matrix of predicted and real values, which provided
us with values for true positive, true negative, false positive, and false negative.
Figure 3.3 presents the confusion matrices for each classifier and each feature
selection method.

The highest true positive values are predicted by the random forest model with
238 correctly classified true values based on the boruta and rfe feature sets, and
231 based on the vsurf feature set, respectively. All models have only few false
negative values, with Bayesian networks based on the rfe feature set providing the
lowest false negative values. This seems to come at the price of a very high value
for false positive predictions. These are comparatively low in all other models,
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Table 3.3: Performance metrics by classification model and feature selection algorithm

classifier feature selection accuracy precision sensitivity specificity F1-Score mcc
Bayesian Network rfe 0.55 0.43 0.96 0.33 0.59 0.34
Random Forest rfe 0.88 0.79 0.91 0.87 0.84 0.76
Support Vector Machnie rfe 0.86 0.73 0.92 0.82 0.81 0.71
Binary Regression rfe 0.86 0.75 0.91 0.84 0.82 0.72
Decision Trees rfe 0.86 0.72 0.94 0.81 0.82 0.72
Bayesian Network vsurf 0.86 0.73 0.92 0.83 0.82 0.71
Random Forest vsurf 0.87 0.75 0.94 0.84 0.83 0.74
Support Vector Machnie vsurf 0.87 0.74 0.95 0.83 0.83 0.74
Binary Regression vsurf 0.85 0.72 0.94 0.81 0.81 0.71
Decision Trees vsurf 0.86 0.72 0.94 0.81 0.82 0.72
Bayesian Network boruta 0.77 0.65 0.70 0.80 0.68 0.50
Random Forest boruta 0.89 0.79 0.92 0.88 0.85 0.77
Support Vector Machnie boruta 0.87 0.74 0.93 0.83 0.82 0.73
Binary Regression boruta 0.86 0.74 0.91 0.84 0.82 0.71
Decision Trees boruta 0.86 0.72 0.94 0.81 0.82 0.72

with random forest, again, performing best. Finally, true positive predictions are
highest in the Bayesian network model based on the rfe feature set and lowest
also for the Bayesian network when considering the boruta feature set. This is
an interesting finding, as the boruta and rfe feature sets are almost identical (see
Table 3.2), highlighting the need for pre-processing of data as Bayesian networks
are often unsuited for continuous data or outliers (Cheng and Greiner 2013). All
other models show almost identical confusion matrices for these two feature sets.

To further assess the performance of themodel,we put the values of each confusion
matrix into contextwith each other. The performancemetrics for eachmodel based
on the values in the confusion matrices are presented in table 3.3.

Overall, we can see that almost all models achieved high rates of accuracy with
only two models achieving an accuracy below 0.85. In both cases, bayesian net-
work classification performed much worse compared to the other models. The
recall/sensitivity metric shows even higher values, with, again, only the bayesi-
an network model based on the features selected through the boruta algorithm
reaching values below 0.91. The specificity is not as high as the previous two
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metrics, but overall, almost consistently values of over .80 are reached. Regarding
the F1-Score and the Matthew’s Correlation Coefficient (MCC), a similar trend
concerning Bayesian networks is detectable: overall, the metric values are rela-
tively high and over 0.80 and 0.70, respectively. However, both metrics are much
lower for the Bayesian network model based on the features selected through rfe
and boruta. Our analysis indicates that the random forest model utilizing featu-
res from the boruta selection exhibited the best performance overall. This model
achieved the highest accuracy, specificity, F1-Score, and mcc values in compari-
son to the other models. However, it did present a comparatively low sensitivity
value. On the other hand, the Bayesian network model based on rfe feature selec-
tion demonstrated the highest sensitivity value but underperformed in all other
metrics.

To further evaluate the performance of our proposed approach to data enhance-
ment, we predicted the telecommuting engagement in a separate HTS. For this
purpose, we leveraged data from the GermanMobility Panel in which respondents
keep a travel diary for seven days. As the random forest models performed best,
we used those for prediction. To evaluate how the comparatively large number of
features from the best model (boruta feature set) compares to the smaller feature
set from the vsurf algorithm, we conducted two out-of-sample predictions. Becau-
se information on telecommuting engagement is provided at the week-level and
not the day-level, we cannot calculate the aforementioned performance metrics.
Instead, we predicted the telecommuting engagement for each day and added them
over the week for each respondents to get a comparative measure. At the aggregate
level over the entire dataset, the model based on the boruta feature set performs
slightly better. This model detects 803 telecommuting days out of the 915 (87.7%)
reported days. Whereas the model based on the smaller vsurf feature set predicts
792 work from home days (85.6%) The confusion matrices by the number of
telecommuting days are presented in Figure 3.4. On the left (Figure 3.4a), the
results based on the boruta feature set are depicted, and on the right (Figure 3.4b)
those on the vsurf feature set. Values above the diagonal are likely false negatives
while values below the diagonal are most likely false positives.
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(a) based on the boruta feature set (b) based on the vsurf feature set

Figure 3.4: Predicted and actual number of work-from-home days in German Mobility Panel dataset.

The two models perform very similar. Both have a high rate of predicted non-
telecommuting days over reported non-telecommuting days but also a relatively
large rate of predicted non-telecommuting days over the reported one day of
telework per week. In the latter case, vsurf performs slightly better than boruta.
This performance difference is negated for a larger number of telework days per
week.

Overall, the application of themodels on theMOP dataset shows promising results
and shows that the approach is viable to be applied to other HTS data. Random
forest models are best suited for this approach and performwell even on a relatively
small feature set. To the best of our knowledge, this is the first study testing different
machine learning models to enhance in-home activity information in HTS data.
Thus, we cannot compare our results to other studies. However, other studies
comparing the performance of classification methods also find random forests to
be one of the best performing methods (Zhang et al. 2017, Chen et al. 2020).
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3.3.3 Imputation of telecommuting episodes

As the final data preparation step for the activity schedules, telecommuting epi-
sodes have to be identified for days on which a person telecommutes. For this
purpose, the online survey supplemental to the SHTS is used as it provides de-
tailed information on start and end times as well as durations of telecommuting.
For each work-from-home day, candidate slots are determined among all home
episodes in the schedule based on certain criteria. To be a candidate for a tele-
commuting episode, the home episode has to be between 7:00 AM and 9:00 PM,
and it must be at least 60 minutes long.
Once the candidate slots are identified, the work-from-home duration for that day
is sampled from the distribution of telecommuting durations provided by the data
from the online survey supplemental to the SHTS.
The possible telecommuting slots are then sorted in descending order and re-
labeled as telecommuting episodes until the sampled work-from-home duration is
distributed among the candidate episodes.
For episodes that are not completely replaced by telecommuting, an activity is ad-
ded, and the activity start and end times of the telecommuting and home activity,
respectively, are adjusted accordingly.
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Time is an illusion. Lunchtime doubly so.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

The aim of the modeling framework in this thesis is to generate travel demand ba-
sed on the underlying motivation of travel by accounting for different activity pat-
terns. To be able to build the model accordingly, we first need an understanding of
the effects of telecommuting on activity patterns. This section first presents an ana-
lysis of differences in activity patterns of telecommuters and non-telecommuters.
Subsequently, it delves into a more detailed analysis by differentiating the re-
garded sample by household types, and lastly, activity patterns are analyzed by
roles in family households, i.e., fathers and mothers. This analysis is based on
employed respondents from the MOP waves 2018 through 2022, excluding data
from 2020. Activity patterns are not describable by a one-dimensional variable.
Instead, they are characterized by a multitude of variables and can be considered
at multiple temporal scales. To gain an understanding, the following variables are
investigated:

Weekly time use This variable describes how the 10,080 minutes / 168 hours
in a week are split over different activities.

Number of episodes The term activity episode in the context of an activity
schedule refers to a distinct period of time during which a specific activity
is performed. The number of episodes is the sum of these events.
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Activity duration Duration of individual activity episodes. These are regarded
per day, meaning that episodes can take a maximum value of 1,440minutes.

These variables are analyzed through two types of graphs: The weekly time use
and activity duration are illustrated using boxplots, whereas the number of acti-
vities is presented using a barplot of the mean number of episodes per activity
and the respective analytical variable, with error bars showing the mean standard
error of the distribution. The summary statistics underlying each figure are also
presented in Appendix A.2.
Additionally, statistical tests are conducted to assess the significance of the dif-
ference between different subsamples. To compare the means of the weekly time
use and the activity duration, a Wilcoxon signed-rank test was conducted between
each group. The number of weekly episodes constitutes count data, which is not
suitable for a t-test or a Wilcoxon signed-rank test, thus a Poisson regression was
conducted where the number of episodes was considered as the dependent varia-
ble and the analytical variable of choice was included as an independent variable.
The significance of the test results is depicted in each figure, using the following
notation:

• significance at the 1%-level: ***
• significance at the 5%-level: **
• significance at the 10%-level: *
• no significance: n.s.

4.1 Activity patterns by telecommuting status

First, we analyze weekly time investments into different activities by telecommu-
ting status. Figure 4.1 displays a boxplot of time use by telecommuting status,
with the brackets at the top of each activity group indicating if the distributions
of each telecommuting status by activity are statistically different based on the
Wilcoxon signed-rank test.
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Figure 4.1:Weekly time-use by activity and telecommuting status of employed respondents

The analysis shows that teleworkers spend a significantly higher amount of time
at home and less time in the office. Meanwhile, those who choose not to work
from home spend the least amount of time at home and invest the most into work.
One possible explanation for this is that they prefer to work on-site due to their
responsibilities or career aspirations. Additionally, those who choose not to work
from home spend the least amount of time on leisure walks. On the other hand,
those who work from home spend significantly more time on escorting activities
compared to those who choose not to work from home. However, no significant
difference can be discerned when compared to those who cannot work from home.
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Further analysis of the data reveals differences between the telecommuting groups
regarding the number of conducted activities (see Figure 4.2).

Figure 4.2:Weekly number of episodes by activity and telecommuting status of employed respondents

From the chart, it can be seen that telecommuters conduct the fewest number
of work and work-related episodes. Those who choose not to work from home
conduct significantly more work episodes than those who cannot telecommute.
Further, those who have the option to work from home, regardless of whether
they do so, conduct significantly more leisure episodes compared to those who
cannot work from home. Furthermore, those who choose not to telework conduct
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significantly fewer leisure walks.
There is no significant difference between the groups regarding the number of joint
activities, except for a significantly higher rate of joint leisure activities of adults
by telecommuters compared to those who do not work from home, indicating
that some of the flexibility gained through telecommuting is used to spend more
time with other (adult) household members. The figure also shows significant
differences regarding the number of escorting activities. Those who choose not
to work from home, even though they could, conduct the fewest pickup/drop off
activities, while telecommuters conduct the most, showing significant differences
compared to the other two groups. Although, those who cannot telecommute
conduct significantly fewer escorting episodes, they do conduct more compared to
those who choose not to telecommute, even though both groups can be described
as non-telecommuters.

Considering work episode duration, we see similar trends as with weekly time use
and number of episodes. Figure 4.3 shows the boxplot of the duration of episodes
by activity and telecommuting status.

59



4 Telework Effects on Activity Patterns

Figure 4.3: Duration of episodes by activity and telecommuting status of employed respondents

Thosewhowork from home have the shortest duration, even if they go to the office.
This is likely because they are avoiding peak hours or pushing back the beginning
of on-site work to accommodate childcare and escorting activities. Those who
choose not to work from home have significantly longer escort episodes compared
to the other two groups. These are more likely to involve escorting children to
their leisure activities rather than school runs, which tend to be shorter. Lastly,
those who cannot work from home have the shortest work-related episodes.
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In summary, the data analysis in this section reveals that individuals who work
from home unsurprisingly spend the most time at home and the least time at
work. However, the activity patterns of those who cannot work from home and
those who choose not to telecommute differ significantly although they could both
be categorized as non-telecommuters. Those who choose not to work from home
spend a significantly longer amount of time at work, both weekly and episodically,
compared to those who cannot work from home. This discrepancy is likely due to
the fact that telecommuting is limited to specific industries, such as finance, IT,
and service industries, while manufacturing, retail, and transportation industries
require on-site presence. However, the latter industries also tend to have regulated
work hours and fewer career opportunities. The findings suggest that those who
prefer working in the office even if they have the option to work from home
have responsibilities or career aspirations that are often tied to longer work hours
and on-site engagement, an effect that has also been established in earlier studies
((Maruyama and Tietze 2012)).

4.2 Activity patterns across household types
and telecommuting status

In this section, we examine the activity patterns of the three telecommuting catego-
ries based on household type, distinguishing between couple households, family
households, multi-adult households (i.e., those who share accommodations), and
single households. Figure 4.4 displays the distribution of weekly time use by hou-
sehold type for each telecommuting status, with brackets indicating the results
of the Wilcoxon signed-rank test on whether the distributions of two household
types differ significantly from each other.

Among individuals who are unable to work from home, those living in family
households spend the longest amount of time at home. One possible explanation
for this is that occupations in which employees cannot work from home are often
associated with lower incomes, making it less likely for these households to afford
external childcare compared to those working in telecommuting-prone industries.
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Additionally, those in family households spend significantly more time on pick-
up/drop-off activities, except among those who choose not to work from home,
who are likely to have more disposable income and can afford adequate childcare.
In contrast, those who telecommute might do so because they do not want to
outsource childcare, leading to higher time investment in escorting activities.
Single households and those in multi-adult households spend significantly more
time on leisure activities, indicating a higher likelihood of seeking out social
interaction.

Next, Figure 4.5 displays the average number of episodes conducted by activity and
household type for each telecommuting category. The brackets located at the top
of the chart represent the outcome of the Poisson regression analysis determining
whether two household typeswithin each telecommuting group differ significantly
from each other concerning the number of activities they conduct throughout the
week.
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Figure 4.5:Weekly number of episodes by household type, activity, and telecommuting status of
employed respondents

The findings of the analysis indicate that individuals who live alone spend more
time engaging in leisure activities. Furthermore, they tend to engage in such activi-
ties more frequently, an effect that is particularly prevalent among telecommuters
who live alone. This is likely because teleworkers who live alone have limited op-
portunities for social interaction during the day, unlike those who work in offices
or live with other household members. Therefore, they are more likely to seek
out social interactions through leisure activities, as reflected in the MOP data.
Additionally, teleworkers who live alone engage in significantly more shopping
activities compared to those who live in family households. On the other hand,
individuals who choose not to work from home on average conduct the fewest
escorting activities across all telecommuting groups.
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Figure 4.6 shows boxplots of episode durations by activity and household type for
each telecommuting group with brackets at the top presenting the results from the
Wilcoxon signed-rank test comparing the distribution of episode duration of two
household types for each activity within each telecommuting group.

Figure 4.6: Duration of episodes by household type, activity, and telecommuting status of employed
respondents

The data reveals that the duration ofwork and leisure activities vary across different
telecommuting groups. The group that lives in family households conducts the
shortest work activities. However, the difference in work duration compared to
other household types is the smallest among those who choose not to work
from home. Interestingly, the same cannot be said for work-related activities.
Those who cannot work from home conduct the shortest work-related activities,
while those who can telecommute, regardless of whether they choose to do so,
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conduct longer work-related activities. This suggests that those working from
home might schedule longer work-related activities, such as workshops, which
cannot be replaced by online meetings. On the other hand, those who choose not
to work from home may be required to attend work-related activities that keep
them from teleworking.
Furthermore, the data also shows that those living alone conduct the longest leisure
activities, while those in family households conduct the shortest. Additionally,
those in family households conduct the shortest pick-up and drop-off activities,
which is consistent with school runs. In contrast, those from other households are
more likely to pick up and drop off someone at the train station or airport, which
typically takes longer.

Overall, the findings highlight noticeable disparities in activity habits across va-
rious household compositions. Notably, individuals in single and multi-adult hou-
seholds report significantly higher engagement in leisure activities, indicative of
a need for social interactions outside of a household context, which is parti-
cularly pronounced among teleworkers living alone. The results in this chapter
further indicate that family households, typically with constraints around non-
telecommutable jobs and childcare, spend more time at home and engaged in
pick-up/drop-off activities. This suggests a strong link between household deman-
ds and the flexibility or lack thereof in their employment. Based on prior research
regarding the division of unpaid work in family households and the influence of
telecommuting, it is important to investigate who is responsible for taking care
of children in these households. Therefore, the following section compares the
activity patterns of mothers and fathers.

4.3 Activity patterns of mothers and fathers by
telecommuting status

The final part of the empirical analysis evaluates differences between the activity
patterns of mothers and fathers within each telecommuting group. Figure 4.7
compares the weekly time invested in the different activities.
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Figure 4.7:Weekly time-use by household role, activity, and telecommuting status of employed
respondents

From the graph, it can be seen that mothers tend to spend more time at home and
less time at work than fathers across all groups. This pattern is also observed in
work-related activities, although the difference is statistically significant only for
those who cannot work from home and those who choose to telecommute. For
those who choose not to telecommute, no significant difference is evident in the
weekly time use of non-work activities between mothers and fathers. However, for
mothers compared to fathers who cannot work from home and those who choose
to telecommute, a significant difference is observed in the time spent on shopping
and escorting activities.
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Differences betweenmothers and fathers regarding the number of weekly episodes
by activity are presented in Figure 4.8.

Figure 4.8:Weekly number of episodes by household role, activity, and telecommuting status of
employed respondents

Fathers tend to engage in more work-related activities compared to mothers, which
is more pronounced among those who cannot work from home. However, among
telecommuters, this trend is only true for work-related activities, and the difference
is not statistically significant among those who choose not to work from home.
In line with the findings from the weekly time use analysis, mothers also conduct
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significantly more escorting activities, with the largest difference found among
telecommuters.

Similar to the results of the two previous analyses, Figure 4.9 indicates that there
is a significant difference in the duration of work episodes conducted by mothers
and fathers.

Figure 4.9: Duration of episodes by household role, activity, and telecommuting status of employed
respondents

Specifically, mothers tend to conduct significantly shorter work episodes compa-
red to fathers. However, when comparing the duration of work-related episodes,
no statistically significant difference can be observed between the two genders.
Interestingly, when it comes to leisure activities, fathers tend to conduct signifi-
cantly longer episodes compared to mothers, particularly among those who cannot
work from home and those who choose to telecommute. On the other hand, mo-
thers tend to conduct longer shopping episodes, however, this difference is not
statistically significant concerning those who choose not to telecommute.
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Another noteworthy finding is that fathers tend to conduct longer joint leisure
activities with their children, regardless of whether they choose to telecommute
or cannot work from home. This finding is consistent across both groups.

In summary, there are considerable differences in activity patterns between mo-
thers and fathers, with mothers taking on significantly more unpaid labor like
shopping and escorting activities compared to fathers, who, in turn, tend to work
more and longer hours as well as conduct longer leisure activities, both alone and
with their children. Telecommuting does not alleviate the gender difference in care
work allocation but rather enhances them, corroborating findings presented in the
literature review (see Chapter 2.1.1). The findings based on the MOP reveal that
in Germany, there are still gender inequalities concerning care work distribution
in the household. Indeed, Germany ranks below average among member states of
the European Union concerning the equality of care work (Barbieri et al. 2023).

4.4 Implications for scheduling approach

The results presented here as well as in the literature imply several requirements
that an activity scheduling model has to meet to adequately account for telecom-
muting behavior.
First, the scheduling model must be capable of distinguishing between different
types of work arrangements and corresponding work location preferences. This
involves creating agent profiles that not only specify whether an individual can
telecommute but also capture the choice of whether they want to work from home.
As suggested by Singh et al. (2013) and more recently by Heimgartner and Ax-
hausen (2024), the actual number of telecommuters in a given setting is the result
of a process that encompasses the option of an individual to telecommute, their
preference to telecommute and finally the frequency at which employees choose
to work from home.
Second, the model must account for different household types, recognizing that
those living alone may have different desires and face fewer constraints than tho-
se living with others. For example, single-person households might have more
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flexibility in their scheduling and a higher need for social activities to mitigate
isolation, whereas family households might prioritize schedules that align with
family obligations like childcare.
Third, in order to create a more accurate simulation of daily activity patterns, the
model must take into account the intricate dynamics of household interactions.
This includes the coordination of joint activities and the allocation of household
responsibilities, particularly unpaid labor such as shopping and childcare. By in-
corporating these factors, the model becomes more sensitive to various influences
on activity choice behavior. This level of detail is crucial for analyzing the effects
of policies, such as those related to childcare, which can significantly alter hou-
sehold routines and individual schedules. By factoring in these interactions, the
model not only reflects real-world complexities but also enhances its ability to
predict how policy changes might impact telecommuting trends and broader travel
demands.
Finally, it is crucial to model the reciprocal influences between telecommuting
and other activities within an agent’s daily routine. Since telecommuting can alter
the frequency and duration of non-work activities — and vice versa — these acti-
vities must be considered concurrently rather than sequentially in a hierarchical
order. This allows the model to account for trade-offs between activities and does
not impose the need to prioritize one activity over the other.
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But her friend Rhea had asked her to undertake his education andMetis
was never one to betray a trust. For a year she taught him how to look
into the hearts and judge the intentions of others. (...) How to make a
plan and how to know when a plan needed to be changed or abandoned.

Stephen Fry,
Mythos

Previous versions of the model presented in this chapter have been presented and
in part published in proceedings in the following contributions:

Reiffer, A.S. Generierung von Aktivitätenplänen für agenten-basierte Nachfragemodelle (Translati-
on: Generating Activity Schedules for Agent-Based Travel Demand Models) presented at the
Heureka Congress, Stuttgart, March 2024.

Reiffer, A.S., Vortisch, P. Framework for Generating 7-Day Activity Schedules Considering Hou-
sehold Interactions presented at the 103rd Annual Meeting of the Transportation Research
Board, Washington D.C., January 2024.

Reiffer, A.S., Vortisch, P. Estimating Household-Level Time-Use within a Week Activity Scheduling
Framework -– Application of the MDCEV Model presented at the 11th hEART - Symposium
of the European Association for Research in Transportation, Zurich, September 2023.

With the requirements for the activity scheduling model established, this section
will introduce the modeling framework that integrates these factors. The modeling
framework developed in this thesis is called METiS - Multiagent Estimation of
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Time-Use and Scheduling1. The model generates weekly activity schedules for
each agent of a synthetic population within the context of their household. The
next chapter will provide the prerequisites required before detailing the parts
of the model. It first presents an overview of the proposed framework and its
placementwithin agent-based travel demand simulation. Further, the choicemodel
of telecommuting is presented which has to be applied before generating the
time use of each household as it serves as one of the inputs. The subsequent
sections will detail the individual parts of themodel, includingmodel formulation,
estimation, and calibration procedures as well as results. This chapter concludes
with a discussion of the overall framework and results.

5.1 Prerequisites

5.1.1 Model framework overview

The modeling framework and its placement within an agent-based travel demand
simulation are presented in Figure 5.1, where the work presented in this thesis is
highlighted in blue and the preliminary and subsequent steps of the travel demand
simulation are depicted in gray.

The model is applied to all agents created through a population synthesis. The
population synthesis generates a set of agents within their household context, re-
presenting individuals within a model region, including their socio-demographic
characteristics, e.g., age, gender, household income, and number of cars. To ac-
count for telecommuting, additional information on employment is necessary. For
this purpose, firms in themodel region have to be represented as individual entities
within the model, including information on their industry sector and size. Based
on the characteristics of both the agent and the firms, agents can be allocated
to firms within the model area. A possible allocation procedure is presented by

1 In Greek mythology, Metis was regarded as the goddess of wisdom, foresight and strategic
planning, making her a fitting namesake for this model.
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population synthesis

agents in hh

firm population

workplace allocationwfh policy

MDCEV
parameters MOOP weights

MOP data

hh activity time use
estimation for 1 week

activity allocation
and scheduling

activity schedule
for each hh membertravel demand simulation

METiS

Figure 5.1:METiS modeling framework

Agriesti et al. (2022). Given the assignment of agents to a firm in the model, each
firm can assign a work-from-home arrangement to each agent, representing the
option of each agent to telework. If the modeling framework is applied based on
a population in which this information is not integrated with adequate detail, the
telework option can be assigned to each agent probabilistically or based on an
econometric model of the agent’s socio-demographic characteristics.
For each agent who has the option to work from home, a discrete choice model on
the decision of whether they generally choose to telework is applied, regardless
of if they do so in the modeling week. This distinction is made because the over-
all preference to telecommute is different from the teleworking frequency choice
(Singh et al. 2013, Heimgartner and Axhausen 2024). Opting to work from home
can be regarded as a long-term decision as it includes decisions on whether to
equip the home with a workplace and invest in technical gear in case the employer
does not provide it. The choice of how often to telecommute depends on other
activites to be scheduled and the schedules of other household members. This
choice is thus represented separately in the model. These steps conclude the pre-
liminary steps necessary to apply the modeling framework.
Based on this established input the activity schedules of the agents are genera-
ted in two steps. Although this modeling framework is constructed in a stepwise
manner, the steps don’t pertain to generating individual activities that are added
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in each step but to the level of detail of the schedules. In the first step, the activity
time use of the entire household in a week is generated using a Multiple Discrete
Continuous Extreme Value Model. The result of the MDCEV model application
is the aggregated household time use for the period of one week. Subsequently, the
activities are allocated to household members and scheduled throughout the week
based on two back-to-back optimization problems. Firstly, activity schedules are
created on a coarse level of detail using a multi-objective optimization problem,
resulting in a schedule frame. In this problem, each time slot of a week can be
assigned exactly one activity. This assignment is performed simultaneously for all
household members thus regarding interactions and trade-offs in activity alloca-
tion. Secondly, the schedule frames are finetuned to generate schedules in which
activities are represented with an exact duration and start time. This is achieved
through constraint programming. It should be noted that only the activity type is
modeled and not the location or mode. These steps have to be conducted in the
subsequent travel demand simulation. Although activity scheduling is not con-
ducted separately from location and mode choices, the data used to develop the
METiSmodel does not include information on the locations at which the activities
are conducted. Therefore, these choices have to be modeled after generating the
activity schedules.

The subsequent sections of this chapter are structured as follows: First, the calibra-
tion method is introduced. Then the MDCEV model formulation, the forecasting
approach, and the results are presented. Following the order of the model, sub-
sequently, the schedule frame model formulation and the result of the weight
calibration are presented. The final section is concerned with the formulation of
the schedule fine-tuning problem.

5.1.2 Telecommuting choice model

The telecommuting choice model reflects the decision of an agent to work from
home if the telecommuting policy of their employer gives them the option to
do so. Within the travel demand simulation, the telecommuting choice precedes
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the activity generation and scheduling model and determines if telecommuting is
available as an alternative in the time-use estimation and all subsequent steps. The
variables that can be included in the model are limited to the characteristics of the
agents that are generated at the time themodel is applied. These include household
and individual characteristics of the agents. All variables available were included
in the model and retained in the final model if they were statistically significant
or if their results were intuitive and consistent with results from the literature.

The model is formulated as a binary logit model, with choosing versus not choo-
sing to telecommute as the two alternatives. The sample is a subsample of the
dataset described in the data chapter (section 3.3), consisting of those employed
respondents in the MOP who have the option to telecommute. The results of the
model estimation are presented in Table 5.1.

77



5 The METiS Modeling Framework

Table 5.1: Results of the binary logit model on the choice to telecommute

Parameter variable Estimate Robust t-ratio

alternative specific constant wfh coice 1.914 6.163

household role female without young children* 0.175 1.126
mother with young children* 0.631 2.241
father with young children* -0.191 -0.903

home location urban settlement structure 0.254 1.309

household car ownership yes -0.275 -1.176

transit ticket ownership yes -0.101 -0.592

household type single household -0.699 -4.044

N = 2, 297

ρ2 = 0.4234

log-likelihood (0) = 1, 592.16

log-likelihood (final) = 918.07

*Note: young children are those aged 10 and younger

The alternative specific constant is significant and positive, indicating - all things
equal - there is a preference for choosing to telecommute over choosing not
to telecommute if given the option. Consistent with findings presented in the
literature and the descriptive analyses on telecommuting of parents (see section 4),
mothers with young children are most likely to choose to telecommute compared
to other household roles, whereas fathers of young children are least likely to do
so. Living in an urban area has a positive effect on the choice to telecommute.
This is consistent with previously presented research by Beck et al. (2020), Haider
and Anwar (2023), who argue that those living in urban and densely populated
areas offer sufficient opportunities for social interactions which those living in
rural areas might seek out at their workplace. Both car and public transit pass
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ownership are negatively associated with telecommuting which is intuitive as well
as consistent with literature. Budnitz et al. (2020) also finds that telecommuters
have a slightly lower car ownership rate compared to commuters. These results
corroborate those presented by Habib (2020) concerning transit pass ownership.
The negative relationship is logical, as these tickets are most beneficial for regular
commuters who frequently use public transport. Finally, those living alone are
less likely to choose to telecommute compared to those living in other household
compositions, corroborating findings that those in single households look for
social interactions at work which they miss out on when working from home.

These findings are underscored by the average marginal effects (AME) of the
model variable, which are presented in Figure 5.2. The AME values highlight
that being a mother with young children significantly increases the likelihood
of telecommuting, while being a father with young children reduces it. This
difference likely reflects traditional gender roles and childcare responsibilities,
where mothers may be more inclined or required to work from home. Further,
living in a single-person household is strongly associated with a lower likelihood
of telecommuting, highlighting that those living alone are most likely to benefit
from social interactions in the office.

Figure 5.2: Average marginal effects for each explanatory variable in the telecommuting choice model
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Finally, owning a car or a transit ticket slightly reduces the likelihood of telecom-
muting, indicating that those that are well equipped to commute to work are less
likely to work remotely.

Although the findings are consistent with those presented in the literature, the
model does not necessarily reflect causation. Especially the findings on residential
loctation and mobility tool ownership may be the result of self-selection into (not)
working from home. For example, the results could reflect a true impact of car
ownership on not telecommuting or there could be a simultaneous effect of a pre-
ference for driving on the choice to own a car and the choice to commute to work.
These effects have been identified in past studies regarding residential location,
mobility tool ownership, and mode choice (see e.g. Schmid et al. (2023)). Fu-
ture research could further investigate these self-selection effects and disentangle
causality from correlation in telecommuting behavior.

5.2 Activity Time-Use Estimation

In the METiS model, the activity time use of a household for one week is ge-
nerated econometrically based on an MDCEV model. The model accounts for
socio-demographic information of each household member as well as characte-
ristics of the household. The parameter estimation was conducted using the R
software (R Core Team 2022), using the Apollo package (Hess and Palma 2019,
Hess and Pamla 2021). The parameters were estimated using maximum like-
lihood estimation based on the bgw algorithm presented by Bunch et al. (1993).
The following sections describe the model specifications for single households,
couple households, and finally family households. Subsequently, the forecasting
approach applied in the modeling framework is presented. In this work, multi-
adult households are not regarded as a separate household type. The majority of
these households consist of students sharing accommodation. Thus, the preva-
lence of telecommuting in these households is relatively low. Additionally, little
is known about the household interactions within these households, especially
regarding the allocation of chores. Individuals from multi-adult households are
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thus regarded as independent individuals and modeled as if they lived in single
households.

5.2.1 Model specifications

As presented in the literature review as well as the empirical analyses of the MOP
data, it is imperative to account for different household types within this model
step. In this modeling framework, separate models are estimated for each house-
hold type. Although the household type could be considered as a characteristic
of the household in the model specification, accounting for nuanced influences
of the household type on activities potentially depending on other characteristics,
which means that numerous interaction parameters would have to be defined and
tested.
As previously established, it is further important to account for household inter-
actions. The approach presented in this work estimates the time use of the entire
household while taking into account individual-specific alternatives (ISA) for ac-
tivities that cannot be shared between household members. For example, the work
activities of household member h1 cannot be conducted by h2. However, activi-
ties like shopping can be done by all household members, and the allocation will
depend on the constraints of each household member. In households with more
than one member, the ISA are assumed to be separate activities influenced by the
socio-demographic characteristics of the respective individual. The parameters
associated with ISA, however, are the same across the activity type. For example,
in a 2-person household in which both household members are employed, work
activities for household members h1 and h2 are regarded as alternatives kw1 and
kw2. The parameterization of the baseline utility ψw1 and ψw2 accounting for age
and gender in this example are then given by:

ψw1 = βw + βw,age · age1 + βw,gender · gender1 (5.1)
ψw2 = βw + βw,age · age2 + βw,gender · gender2
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By not modeling activity time use independently for each household member, this
approach is less likely to overestimate overall household-level activities.
All models are formulated based on a α-γ-profile and parameterization of both
the baseline utilityψk as well as the satiation parameters γk were tested to account
for socio-demographic nuances. However, parameterization of the baseline utility
has led the models to generate poor results, thus only constants are estimated for
ψk. The household time use budget depends on its size. Given a household H =

{h1, h2, ..., hn}, then the household budget is determined by E = 10, 080 · |H|,
i.e., the number of minutes in a week multiplied by the household size. In all
models, the following socio-demographic characteristics of the household or its
members were included as parameters in the estimation and kept either based
on the statistical significance of the t-ratio or based on whether they provided a
meaningful impact on the result:

• income (binary, low/high)
• car ownership (binary, yes/no)
• region type of the home (binary, urban/rural)
• age (categorized)
• gender (binary, male/female)
• employment (binary, full-time/part-time)
• public transit ticket ownership (binary, yes/no)

Although the data would allow for the model to account for different types of
employment (full-time, part-time, unemployed, etc.), the best model results were
achieved by only considering the extent of employment, i.e. full-time and part-
time. Similarly, the effect of different education levels was tested in the models,
however, this did not meaningfully impact the results. This may seem unexpected,
given that working from home is often linked with higher levels of education.
However, a higher level of education primarily determines the types of jobs that
can be done remotely. The models presented here suggest that education does not
impact how much someone telecommutes.

As proposed by Bhat (2008), it is useful to constrain the values that the satiation
parameters can assume during estimation. As the γ-parameters have to be strictly
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positive, it is defined in the models as γ∗ = eγ . Further, α has to be≤ 1 and> 0.
This is achieved through defining α∗ = 1

1+eα .

Single households

The simplest model is the single household model, as only one person’s activity
time use is estimated. The household budget is E = 10, 080, i.e., the number
of minutes in a week. During model development, several configurations of the
model were tested, with an MDCNEV model with home as the outside good
providing the best results. In this model, all work activities are grouped into one
nest. The final nesting structure is illustrated in Figure 5.3.

home shopping work activities

w
ork

business

w
fh

leisure walkschool

Figure 5.3: Nest structure of the MDCNEV model for single households

Some activities are not available to everyone and their availability is regarded in
the model specification. For example, as described earlier, work from home is
only available to those who have the option and choose to do so. The activities
with limited availability are work, wfh, business, school.

The estimation results of theMDCNEVmodel for single households are presented
in Table 5.2. Themodel identifies shopping as the activitymost likely to be chosen,
evidenced by its highest baseline utility value. However, shopping also exhibits
the smallest satiation parameter, suggesting that while it is frequently selected,
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individuals tend not to spend a significant amount of time on it. In contrast,
mandatory activities such as work and education are less likely to be chosen,
indicated by lower baseline utility values, but display high satiation parameters,
meaning considerable time is invested in these activities once they are selected.
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Table 5.2: Estimation results of the single household MDCNEV model

Parameter Activity Estimate Rob. t-stat Parameter Estimate Rob. t-stat

satiation baseline utility
work 3.320 31.421 -4.509 -123.925
business 2.734 12.654 -5.393 -122.414
wfh 3.619 21.105 -5.558 -133.032
school 3.674 19.960 -8.724 -40.929
shopping -0.717 -6.871 -1.826 -20.314
leisure 0.729 8.916 -3.208 -79.067
leisure walk 2.360 21.865 -4.849 -121.870

age: under 35 shopping -0.285 -3.625
leisure 0.255 2.683
leisure walk -0.228 -1.339

age: over 60 work -0.110 -1.272
business 0.262 1.775
wfh 0.141 0.832
shopping 0.269 4.543
leisure 0.105 1.806
leisure walk 0.311 2.741

full-time employed Work 0.665 8.800
business 0.535 3.680
wfh 0.089 0.604
shopping -0.502 -8.560
leisure walk -0.247 -2.264

high income work -0.232 -3.328
business -0.261 -2.060
wfh -0.235 -1.939
shopping -0.098 -2.055
leisure -0.063 -1.055
leisure walk 0.104 1.126

urban home location work -0.153 -1.669
business -0.505 -2.803
leisure 0.179 2.449

car wfh -0.239 -1.491

θwork 0.588 29.243
θnon−work 1.000 -
α -24.349 -

N: 2,312
log-likelihood (start): -45627.86
log-likelihood (final): -31069.1
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Notably, walks, though less likely to be chosen as an activity, receive more time
investment compared to other leisure activities, underscoring the distinct nature
of this activity. Socio-demographic factors also significantly influence how indi-
viduals allocate their time across activities. Age appears to play a crucial role;
younger individuals (below 35 years) are less likely to invest time in leisure walks
compared to those over 35, with individuals over 60 showing the highest pro-
pensity to engage in such walks. This trend is similarly observed in shopping
activities. Regarding work, older individuals generally invest less time in on-site
work but more in work-from-home compared to their younger counterparts. In-
come levels inversely affect the time spent on almost all activities except leisure
walks, suggesting that higher-income individuals, likely living in more walkable
and aesthetically pleasing areas, prefer walking.

Urban residents tend to spend less time onwork or business activities, a reasonable
outcome considering shorter commute times in urban settings as captured in the
time use data. These residents are also more inclined to engage in leisure activi-
ties, benefitting from greater accessibility to such opportunities. Additionally, car
ownership influences the allocation of time; those with a car are less likely to work
from home, potentially perceiving their commute as less burdensome compared
to those without access to a car and thus gaining less utility from telecommuting.

Couple households

Compared to single households, the couple household model is more complex as
it has to account for both individual-specific alternatives as well as household-
level alternatives. The ISA are activities that can only be allocated to a specific
householdmember both in the activity generation aswell as the scheduling part. To
allow for correlation among the ISA, a nest is defined for each household member.
The θ-parameter is the same across both nests. Estimation with a nest for the
household level parameters yielded a θ-parameter of 1, indicating that the nest is
unwarranted. Thus, this was kept fixed at 1 during estimation. In addition to the
ISA, this model also accounts for joint activities, namely joint shopping and joint
leisure. The final nest structure of the MDCNEV model on couple households is

86



5.2 Activity Time-Use Estimation

presented in Figure 5.4. At this stage, shopping activities are only regarded at the
household level and not specified as ISA. The shopping activities generated in this
step are allocated to the specific household members in the subsequent scheduling
model.
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Figure 5.4: Nest structure of the MDCNEV model for couple households

In the MDCEV model on couple households (see Table 5.3), the outcomes for
shopping and work closely align with those observed in the single household
model in terms of baseline utility, which indicates the likelihood of choosing
these activities, and the time dedicated to them once chosen. Similarly, leisure
walks remain less frequently selected, but significantly more time is devoted to
them compared to other leisure activities, both performed alone or jointly. A new
insight in the couple model is that joint shopping is less preferred, but if chosen,
it generally involves a longer duration.

Socio-demographic variables exhibit noteworthy impacts on activity participation
and duration. Income negatively influences the time dedicated to working from
home, suggesting that individuals with higher incomes, likely possessing greater
career responsibilities or aspirations, prefer working on-site. Car ownership con-
tinues to reduce the time spent telecommuting and is also negatively correlated
with time spent on shopping and leisure activities; however, those with cars tend
to allocate more time to business activities. Echoing the single household findings,
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urban dwellers spend less time on work and shopping, which could be attributed
to shorter commute times compared to their rural counterparts.

Table 5.3: Estimation results of the couple household MDCNEV model

Parameter Activity Estimate Rob. t-stat Parameter Estimate Rob. t-stat

satiation baseline utility
work 2.479 30.113 -3.131 -81.330
business 0.845 3.188 -3.969 -82.072
wfh 2.998 11.776 -4.055 -91.002
school 2.423 11.490 -7.240 -34.156
shopping -1.699 -8.375 -0.608 -7.624
leisure 0.121 0.955 -2.194 -68.982
leisure walk 1.344 20.850 -3.487 -81.610
joint shopping 0.241 1.793 -2.622 -72.218
joint leisure 0.476 2.266 -1.971 -51.974

high income wfh -0.379 -3.043
business -0.015 -0.107

car wfh -0.077 -0.312
business 0.336 1.525
leisure -0.269 -2.118
shopping -0.200 -1.520
joint shopping -0.099 -0.711
joint leisure -0.183 -0.859

urban home location work -0.150 -1.869
shopping -0.124 -1.575

age: over 60 business -0.231 -1.498
full-time employed work 0.208 2.779

wfh -0.504 -4.467
business 0.457 2.908
leisure 0.058 0.949
leisure walk -0.209 -2.465

gender: male work -0.015 -0.246
business 0.243 2.101
leisure -0.016 -0.335
leisure walk 0.088 1.235

θISA 0.593 28.973
θhh 1 -
α 0 -

N: 1,484
log-likelihood (start): -50518.17
log-likelihood (final): -42170.09
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Age differences are particularly pronounced in business activities, where older
individuals (above 60 years) tend to invest less time compared to younger ones
(under 60 years). Full-time employment is logically linked to more time spent on
work and business activities, and previous studies have documented a negative
association with working from home. Gender differences also emerge, with men
slightly less likely to spend time on work but more on business activities compared
to women. Additionally, men are more inclined to engage in leisure walks

Family households

By far the most complex model is the MDCNEVmodel for family household time
use. There are additional joint activities that are regarded in the model as well as
ISA for up to five household members. The nest structure of the family time use
model is illustrated in Figure 5.5
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Figure 5.5: Nest structure of the MDCNEV model for family households

The model, again, accounts for joint shopping and joint leisure activities. These
are in turn divided into joint activities, in which only adults participate, and those
in which all family members can participate. In an earlier model, these were
also split into joint activities with one adult and children, and joint activities,
in which the entire family participates. However, there are comparatively few
observations of joint family activities. Given the already high complexity of the
model and the many alternatives that are regarded, these joint activities were

89



5 The METiS Modeling Framework

merged into one alternative. This model further explicitly includes pick-up/drop-
off activities, which, as the empirical analysis has shown, are especially important
in the context of telecommuting in households with children. The results of the
parameter estimation of the MDCNEVmodel on family households are presented
in Table 5.4.

Table 5.4: Estimation results of the family household MDCNEV model

Parameter Activity Estimate Rob. t-stat Parameter Estimate Rob. t-stat

satiation baseline utility
work 3.525 99.795 -6.053 -296.059
business 2.293 17.581 -6.770 -180.530
wfh 3.387 45.655 -6.693 -184.037
school 4.128 132.149 -6.534 -307.268
shopping 1.188 -4.046 -2.181 -8.450
pick up/drop off 0.045 -0.668 -4.466 -69.817
leisure 2.144 22.260 -5.520 -306.566
joint shopping adults 1.744 12.505 -5.820 -83.564
joint shopping family 1.941 20.830 -6.040 -84.502
joint leisure adults 1.037 8.770 -6.351 -76.907
joint leisure family 0.797 10.371 -6.291 -80.109

age: under 35 leisure 0.35771 5.24522
age: over 60 leisure -0.02132 -0.09868
high income shopping -0.23926 -2.95650

joint shopping adults 0.11336 0.69461
joint leisure adults -0.26677 -1.78417

full-time employed wfh -0.20224 -1.85387
business 0.37799 2.19276
leisure -0.29916 -3.89804

gender: male work 0.21578 4.58039
wfh 0.10849 1.03498
business 0.40596 2.83517
leisure 0.12512 2.18662

urban home location shopping 0.16796 1.56775
leisure -0.14909 -1.64583

θISA 0.519 49.537
θhh 1 -
α 0 -

N: 662
log-likelihood (start): -38970.34
log-likelihood (final): -30557.04

90



5.2 Activity Time-Use Estimation

In the analysis of baseline parameters for family household activities, theMDCEV
model highlights some distinctive trends. Shopping again surfaces with the highest
baseline utility, indicating a high likelihood of being chosen, yet it is accompanied
by one of the lowest satiation parameters, signifying that minimal time is typically
devoted to it. A similar pattern is observed in pick-up/drop-off activities, which
hold the second-highest baseline utility after shopping but exhibit even lower sa-
tiation, reflecting the brief nature of these engagements.
Work activities, in contrast, show much higher satiation parameters compared to
discretionary activities such as (joint) leisure or joint shopping, suggesting that
significantly more time is allocated to work once these activities are selected.
Socio-demographic factors continue to play a crucial role in activity engagement.
Younger individuals, particularly those under 35 years, tend to spendmore time on
leisure activities compared to older counterparts. Income levels influence shop-
ping behaviors distinctly; higher-income individuals dedicate more time to joint
shopping activities but less to individual shopping, and similarly, less time is spent
on joint leisure activities among parents. This suggests a shift in priority towards
shared experiences in shopping but a reduction in leisure time spent together.
Full-time employment reinforces its influence on activity choices, positively affec-
ting the time spent on business activities while negatively impacting the likelihood
of telecommuting. Gender differences also emerge within family households; ma-
les tend to allocatemore time to bothwork and leisure activities, indicating varying
commitments based on gender roles.
Urban living affects activity patterns distinctly, with urban dwellers spendingmore
time on shopping activities and less on individual leisure activities. This could be
attributed to the accessibility of shopping venues. Further, increased accessibili-
ty decreases travel time which is reflected by a lower satiation parameter in the
model.

5.2.2 Forecasting

The application of the MDCEV or MDCNEV model within an activity-based
modeling framework requires an efficient forecasting procedure. Pinjari and Bhat
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(2010b) present a forecasting algorithm based on the Karush-Kuhn-Tucker condi-
tions (see section 2.2.2) for models formulated as γ- and α-γ-profiles. One of the
required inputs to the algorithm is a set of draws from the distribution of the error
terms. The MDCEVmodel is based on the assumption that the error terms follow
a type I extreme value distribution and thus generating the draws is simple. This
gets more complex for the MDCNEV model as the error terms now have to be
drawn from a generalized extreme value distribution. Calastri et al. (2017) present
an approach to approximate these draws. The algorithm proposed by Pinjari and
Bhat (2010b) and the extension for the MDCNEV model presented by Calastri
et al. (2017) serve as the basis for the forecasting algorithm applied in this model.
However, the general estimation and forecasting approaches have some shortco-
mings, the most notable one being the lack of considering bounds in consumption
or time investments, which means that the model generates activity time use pat-
terns where the time use of an activity can be unrealistically low or high. This is
hard to control for in all cases given the nature of the error terms. There have been
approaches to mitigate this issue. Bhat et al. (2020) investigate bounds on unob-
served budgets and propose to truncate the distribution of the error draws. Again,
this is simple enough for MDCEV models but complex for GEV distributions.
Saxena et al. (2021) integrate additional constraints into the Karush-Kuhn-Tucker
conditions to impose an upper bound on time allocation. In addition to the model
formulation, they also present a forecasting algorithm that can account for the
imposed bounds. Ideally, the model would be both estimated and forecasted using
this formulation. However, there is no open-source software package available that
allows for the estimation of this model. As a first step, in this work, the forecasting
procedure is thus implemented based using parameters estimated based on the
original MDCEV and MDCNEV formulation. The forecasting algorithm genera-
tes a set of chosen alternatives and computes the optimal time allocation for each
activity. The bounds are accounted for by checking whether any activity is assi-
gned more time than a previously determined maximum time limit. If this is the
case, the alternative is added to a set of chosen alternatives and the duration of this
alternative is set to the maximum duration. Then the algorithm is re-initialized,
however, the previously chosen alternatives are removed from the choice set and
the budget is adapted accordingly. All steps of the forecasting procedure applied
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in this work are presented in algorithm 1. The time-use forecasting algorithm is
implemented in Python 3.
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Algorithm 1 : MDCEV forecasting algorithm
Data : Input data, model parameters, η, E
Result : Optimal allocations and choice setM

Initialize K = {1, 2, . . . ,K}, the set of choice alternatives;
Simulate error terms εk and compute baseline utilities ψk and
translation parameters γk for all k ∈ K;
Read available budget E;
Arrange ψk in decreasing order, placing the utility of the outside good first;
Arrange indices k of choice alternatives in the same order;
Assume the outside good is chosen: InitializeM = {1} and setM = 1;
for k = 2 toK do

Compute λ: λ =
ψ1+

∑M
k=2 ψkγk

E−
∑M

k=2
xmin
k

+
∑M

k=2
γk

if λ > ψk or k = K then
Break;

end
M = k;

end
for eachm ∈ M \ {1} do

Compute inside good allocations: t∗m = γm
(
ψm
λ

− 1
)

end
Compute outside good allocation: t∗1 = ψ1

λ

Set t∗k = 0 for all k =M + 1, . . . ,K;
for eachm ∈ M \ {1} do

if t∗m > tmax
k then

Set t∗m = tmax
m ;

Addm to set A;
end

end
if A is non-empty then

Reset budget E = E −
∑
k∈A x

max
k ;

Reinitialize algorithm with updated budget K = K \ A;
else

Return t∗k for all k ∈ K and exit;
end
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5.3 Activity Scheduling

After determining the aggregatedweekly time use of a household, themodelmoves
on to generate episodes and a schedule for each householdmember. This is done in
two steps. In the first step, a schedule frame for each household member is created,
which is fine-tuned in the second step. In both steps, an optimization problem is
solved by considering all household members’ schedules at the same time to allow
for trade-offs between scheduling choices. Both optimization problems are solved
using IBM ILOG CPLEX Optimization Studio, version 22.1.1.0 (ibm 2022) and
called using the API for Python 3.

5.3.1 Schedule Frames

Based on the previously determined time allocation per household tua, the assi-
gnment of activities to individual household members is carried out. The formu-
lation differs depending on the household type, as, for example, single individuals
do not require coordination with other household members, and households with
children have different needs, preferences, and constraints compared to 2-person
households. For brevity, the following focuses on themodel for couple households.

The goal of the model is to capture the motivation and underlying behaviors in the
assignment and scheduling of activities within a household. Various goals conflict
with each other, such as household chores limiting the number or duration of
leisure activities. To address (partially) conflicting goals, multi-criteria optimiza-
tion models are suitable, where multiple variables are optimized in the objective
function. Table 5.5 provides an overview of the sets, parameters, and variables
included in the schedule frame model.
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Table 5.5: Sets, parameters, and variables in the schedule frame problem

A Activity type
Ai ⊆ A Individual specific activity
Aw ⊆ A Work activities
Awfh ⊆ Aw Work from home activities
As ⊆ A Shopping activities
Ach ⊆ A Chores
Ah ⊆ A In-home activities
Al ⊆ A Leisure activities
Aj,l ⊆ A Joint leisure activities
Aj,sh ⊆ A Joint shopping activities
Aj,a ⊆ A Joint activities of adults
Aj,f ⊆ A Joint activities of adults and children
H Household members
Hw ⊆ H Employed household members
Hwfh ⊆ Hw Household members working from home
Ha ⊆ H Adult household members
Hk ⊆ H Underage household members
D Day of the week
Dw ⊆ D Work days
DPD,wfh ⊆ D Preferred days to work from home
DUPw ⊆ D Non-preferred office days
Ds ⊆ D Days of the week where shops are open
T Time of day
Ts ⊆ T Time of day when shops are open
xa,h,d,t ∈ {1, 0} Decision variable; 1 if a is assigned to h on d at t
λh,i,d,t ∈ {1, 0} Auxiliary variable; is 1 if household member h and household member i

are at home on the same day d at the same time t
tua household time-use by activity a
WTmax maximum daily work hours
HTmin minimum duration per day spent at home
ASa Activity switches of activity a
CHT common time spent at home
WDIFF difference in work hours between days
CHDIFF difference in allocated chores
OOHT daily out of home time
WDend Deviation of realized end of workday compared to preferred end of workday
PWFHD Time spent working from home on preferred work-from-home days
UPWD Time spent working in the office on non-preferred office days
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In themodel approach presented here, the generation of activity plans is formulated
as a multi-objective linear optimization problem.

The decision variable to be determined by the optimization, xa,h,d,t, takes the
value of 1 when activity a is assigned to household member h on day d in time
slot t, and 0 otherwise. A graphical representation of the decision variable and its
dimensions is presented in Figure 5.6. Theoretically, t can represent different time
units, but solving the problem for time units finer than an hour becomes too large
to provide results for application in an agent-based model in a reasonable time.
Since the result of the previous step indicates time allocation in minutes, it needs
to be rounded to the nearest hour for the first optimization problem. Subsequently,
the time allocation for home activities is adjusted to match the weekly time budget.

1
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d

h = 1

1 2 3 4 23...

t

x2,1,7,1 = 1

a = 1

h = 2

a = 2
a = 3

t

x3,2,2,3 = 1

Figure 5.6: Graphical illustration of the different dimensions of the decision variable in the schedule
frame model

The following sections will first explain the fundamental constraints needed ma-
thematically to develop activity programs and those imposed by external circum-
stances. Then, the variables and associated constraints that directly impact the
objective function will be listed.

The assignment of activities to time slots in an agent’s schedule is unique, meaning
that only one activity can be assigned to each time slot on a given day. This
requirement is ensured by the following equality constraint:
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∑
a∈A

xa,h,d,t = 1 ∀h ∈ H, d ∈ D, t ∈ T (5.2)

The following constraint ensures that the sum over all assigned activities equals the
previously determined (rounded) time allocation per activity tua of the household:

∑
h∈H

∑
d∈D

∑
t∈T

xa,h,d,t = tua ∀a ∈ A (5.3)

Furthermore, it must be ensured that individually specific activities (work, busi-
ness, work from home, education, leisure, and walks) can only be assigned to the
corresponding household member. This means that an activity a from the set of
unique individual alternatives Ai of household member i cannot be assigned to
household member h.

xa,h,d,t = 0 ∀a ∈ Ai, h, i ∈ H : h ̸= i, d ∈ D, t ∈ T (5.4)

The execution of joint activities can only occur at the same time, meaning that
these activities must be assigned to the same time slot t on a day d in the plans
of the involved agents. This is achieved through constraint 5.5, which ensures
that the sum of assigned joint activities over all household members is either 0
or > 1. There are two different types of joint activities, those where only adults
participate and those where both children and adults participate. Constraint 5.6
ensures, that activities are not assigned to children in the household. Constraint
5.7 handles joint family activities, in which at least one child and one adult have
to participate in the activity.
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∑
h∈H

xa,h,d,t ̸= 1 ∀a ∈ Ajoint, d ∈ D, t ∈ T

(5.5)∑
h∈Hk

xa,h,d,t = 0 ∀a ∈ Ajoint,adults, d ∈ D, t ∈ T

(5.6)∑
h∈Hk

xa,h,d,t ≥ 1 ⇔
∑
h∈Ha

xa,h,d,t ≥ 1 ∀a ∈ Ajoint,family, d ∈ D, t ∈ T

(5.7)

The scheduling of some activities is determined by external influences, which are
also reflected in the constraints. For example, shopping activities as cannot be
performed outside of store opening hours:

xa,h,d,t = 0 ∀a ∈ As, h ∈ H, d ∈ D \ Ds, t ∈ T \ Ts (5.8)

Further, in households with children, the model only allocates shopping activities
to adults.

xa,h,d,t = 0 ∀a ∈ As, h ∈ Hk, d ∈ D, t ∈ T (5.9)

Work activities are typically limited to weekdays, from Monday to Friday, and
must be performedwithin a specified timewindow.Additionally, the dailyworking
time (WT) is legally restricted to eight or ten hours1. Note that this can be set

1 Despite legal working time regulations, data shows clear exceedances of daily working hours.
Therefore, the limit is adjusted individually for each agent in the model based on weekly working
time tuw .
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dynamically for each agent, thus allowing for differentiated work policies in
the agent population. These constraints in the planning of work activities are
considered through the following constraints:

xa,h,d,t = 0 ∀a ∈ Aw, h ∈ H, d ∈ D \ Dw, t ∈ T \ Tw (5.10)
24∑
t=1

xa,h,d,t ≤ WTmax ∀a ∈ Aw, h ∈ H, d ∈ D (5.11)

Another constraint that needs to be considered when planning activities is that
individuals spend a certain amount of time at home during the day (HT), for
activities like physiological recovery or household management.

24∑
t=1

xa,h,d,t ≥ HTmin ∀a ∈ Ah, h ∈ H, d ∈ D, t ∈ T (5.12)

Based on the decision variable xa,h,d,t, multiple objectives are defined which are
to be minimized in the model. The scalarized objective function considers eight
variables n that affect the objective function value with weights ωn:

100



5.3 Activity Scheduling

minimize
ω1ASw + ω2 (ASl + ASsh + ASl,joint + ASsh,joint)
− ω3CHT
+ ω4WDIFF
+ ω5CHDIFF
+ ω6OOHT
+ ω7WDend
− ω8 (PWFHD− UPWD)

(5.13)

The first objective is driven by the fact that individuals tend to minimize activity
switches to a certain extent. Therefore, this objective aims to minimize switches
between activities that require traveling to a new location. Throughout model
development, it has become apparent that determining andminimizing constraints
for work, leisure, and shopping yields reasonable results while keeping the model
as simple as possible. In the model, the variable ASa keeps track of the switches
between different activities by comparing activities assigned in time slot t and
time slot t+1. Different weights are associated with work activities and non-work
activities to allow for different considerations of the objectives.
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ASw =
∑
a∈Aw

∑
h∈H

∑
t1∈T

∑
t2∈T

|xa,h,d,t1 − xa,h,d,t2 |

ASl =
∑
a∈Al

∑
h∈H

∑
t1∈T

∑
t2∈T

|xa,h,d,t1 − xa,h,d,t2 |

ASsh =
∑
a∈Ash

∑
h∈H

∑
t1∈T

∑
t2∈T

|xa,h,d,t1 − xa,h,d,t2 |

ASl,joint =
∑

a∈Al,joint

∑
h∈H

∑
t1∈T

∑
t2∈T

|xa,h,d,t1 − xa,h,d,t2 |

ASsh,joint =
∑

a∈Ash,joint

∑
h∈H

∑
t1∈T

∑
t2∈T

|xa,h,d,t1 − xa,h,d,t2 |

∀{t1, t2 ∈ T : t2 = t1 + 1}
(5.14)

The second objective in planning activities in households with multiple members
is to maximize the time spent together at home (Vuk et al. 2016). This time is
expressed by the variable λh,i,d,t, which takes the value of 1 when two household
members, i and h, have planned a home activity at the same time, and 0 otherwise.

λh,i,d,t ≤ xa,h,d,t

λh,i,d,t ≤ xa,i,d,t

xa,h,d,t + xa,i,d,t − 1 ≤ λh,i,d,t

CHT =
∑
h∈H

∑
i∈H

∑
d∈D

∑
t∈T

λh,i,d,t

∀{a ∈ Ah, h, i ∈ H, d ∈ D, t ∈ T : h ̸= i}

(5.15)

It is also known from the literature that individuals show a high degree of stability
in the duration of their planned work activities (Hilgert et al. 2017), meaning
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that individuals minimize the difference between the duration of work activity on
different days, which is represented by WDIFF:

∣∣∣∣∣∑
t∈T

xa,h,d,t −
∑
t∈T

xa,h,e,t

∣∣∣∣∣ ≤ WDIFF ∀{a ∈ Aw, h ∈ H, d, e ∈ D : d ̸= e}

(5.16)

The established need for the model to account for the allocation of household
chores to household members is explicitly included in the model. The variable
CHDIFF accounts for the difference in allocated chores between the members
of a household. Through the weight in the objective function, the importance of
the objective can be accounted for. This means that chores are not necessarily
distributed equally.

∣∣∣∣∣∑
d∈D

∑
t∈T

xa,h,d,t −
∑
d∈D

∑
t∈T

xa,i,d,t

∣∣∣∣∣ ≤ CHDIFF ∀{a ∈ Ach, h, i ∈ H : h ̸= i}

(5.17)

Furthermore, each agent has a preference on when they would like to start their
day, and when they would end it, i.e., when the first out-of-home activity starts
and the last one ends, respectively. In the model, this is expressed by the variable
OOHT, which is minimized as part of the objective function.

OOHT ≥
Ps∑
t=1

xa,h,d,t +

24∑
t=Pe

xa,h,d,t

∀{a ∈ A \ Ah, h ∈ H, d ∈ D}

(5.18)
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Similarly, the preferred end of the workday can be accounted for. In this case, the
desired start does not have to be separately accounted for, because as the work
activity is often the first activity of the day, this is already accounted for through
the previous objective. The preferred end of the workday is defined as analogous
to the preferred end of the last out-of-home activity:

WDend ≥
24∑

t=Pwd,e

xa,h,d,t

∀{a ∈ Aw, h ∈ H, d ∈ D}

(5.19)

Finally, the model can account for a preference regarding the day on which to work
from home. This has been shown to not be distributed equally throughout the
week. Considering the day-to-day heterogeneity in the activity scheduler is vitally
important as any travel demand management policy concerning telecommuting
will need to account for the unequal distribution throughout the week. Although
Asgari et al. (2014) has identified that telecommuters are more likely to choose
to work from home on mid-week days, more recent findings indicate that this
has changed since the COVID-19 pandemic. For example Asmussen et al. (2023)
identify Mondays and Fridays as the days on which most choose to telecommute.
However, there are no representative statistics available for the distribution of
telecommuting days in Germany. Thus, the general preference is based on an
analysis of the generated MOP data, which shows that individuals in the sample
prefer to work from home on Thursdays and Fridays. This preference is included
in the following variable:

PWFHD =
∑
t

∑
a

∑
d

∑
h

xa,h,d,t

∀a ∈ Awfh, d ∈ DPDwfh, h ∈ Hwfh

(5.20)
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Further, to account for the fact that these individuals also tend to have full te-
lecommuting days, and do not commute into the office, the scheduling of work
activities on those days is also controlled through the variable unpreferred work
day (UPWD):

UPWDh =
∑
t

∑
a

xa,h,d,t

∀a ∈ Aw, d ∈ DUPw, h ∈ Hwfh

UPWDh = 0

∀a ∈ Aw, d ∈ DUPw, h ∈ H \ Hwfh

UPWD =
∑
h

UPWDh

(5.21)

Preference order of the objectives

The schedule frame model is formulated as a MOOP using the weighted sum
method, which implies a preference order the individual places on the objectives.
To generate activity schedules that are representative of real behavior, the weights
are generated by calibrating them against observed data from the MOP. This
is achieved through Bayesian Optimization aiming to minimize the difference
between the simulated and the real schedules. The difference evaluation is based
on the mean and the variance of the number of episodes generated for each of
the main activities. The calibration process is implemented in Python 3 using
the package scikit-optimize (Head et al. 2021). Table 5.6 shows the result of the
weight estimation.
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Table 5.6: Estimated weights of the schedule frame model

ωn description value preference rank

ω1 work activity fragmentation .23 1
ω2 other activity fragmentation .095 3
ω3 common home time .167 2
ω4 difference in daily work duration .23 1
ω5 difference in allocated chores .023 4
ω6 out of home time .023 4
ω7 end of workday preference .023 4
ω8 preferred wfh days .023 4

The highest importance is placed on weights 1 and 4. The result of weight 4
corroborates the findings of the literature that individuals behave consistently
throughout the week regarding the daily work duration (Hilgert et al. 2017). The
value for ω1 indicates that individuals do not fragment work activities but conduct
them in large blocks of time. This is an inherent result of work policies, which
dictate most employees to be working during a given period of the day, during
which private activities cannot be conducted outside of breaks.
The smaller value forω2 shows that this is less important concerning fragmentation
of other activities. Indeed, these are more likely to be short and spread throughout
the schedule. This result highlights the need to account for activity fragmentation
differently depending on the activity type. The objective with the second highest
importance is the one placed on time spent together at home. This finding is
again consistent with results presented in the literature (Vuk et al. 2016). All
other objectives are valued equally and lower compared to the aforementioned
objectives.
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5.3.2 Schedule Fine-Tuning

The solution to the optimization problem for generating activity schedules consists
of a list of hourly episodes per activity purpose, including their order, the day they
are performed, and the assignment to household members. In the next step, the
discrete schedules serve as input for the fine-tuning of the schedule, which converts
them into minute-based schedules to determine the exact duration and start time
of the episodes. This step is also formulated as an optimization problem but is
less complex. At this point, a constraint-based optimization problem is sufficient,
where the goal is to find a solution while adhering to the constraints without
optimizing an objective function. Table 5.7 lists all sets, parameters, and variables
used in the schedule fine-tuning model.

Table 5.7: Sets, parameters, and variables in the schedule fine-tuning problem

A Activity type
H Household members
E Episodes to be scheduled
ψh,a,e duration in minutes of episode e with activity purpose a assigned

to household member h
τh,a,e start time of episode e with activity purpose a assigned

to household member h in minutes since 00:00
APPROXDURe approximate duration of episode e determined by schedule frame model
daye day on which episode e is scheduled
sho shop opening time
shcl shop closing time

In this step, the temporal resolution is increased, moving from aggregated time-
use at the hour level, to minute-based time-use. Some constraints from the first
step are transferred, and additional constraints are introduced based on the agents’
preferences regarding the start time of work activities. These will be explained in
more detail below.
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The decision variable in this model is τh,a,e, representing the duration of episode
e associated with activity purpose a for household member h. This leads to the
second decision variable, ψh,a,e, which determines the start time of the episodes.
The start times of each episode are given in minutes and refer to the beginning
of the week, for example, ψh,a,e = 4993 refers to the 4,993rd minute of the
week, which corresponds to Thursday at 11:13 PM. A graphical illustration of the
decision variables in themodel is provided in Figure 5.7. Episodes can be extracted
from the activity schedule framework in various ways. Indices are generated as a
sorted sequence over all episodes, a sorted sequence over episodes of the same
activity purpose, or a sorted sequence over a day and an activity purpose. This
allows for various comparisons between the two episodes.

t

τ1,h,1 τ1,w,2 τ1,h,3 τ1,l,4

...

ψ1,l,1 = 0 ψ1,l,3 = τ1,h,1 + τ1,w,2

Figure 5.7: Graphical illustration of the decision variables in the schedule fine-tuning model

The determination of the start time of an episode is based on the following equality
constraints. In essence, constraint (5.23) sets the starting point for the first episode
in a schedule to 00:00 and the start time for all following episodes is determined
by the sum of the duration of the previous episodes.

ψh,a,e =

e∑
1

∑
a

τh,a,e ∀h ∈ H (5.22)

ψh,a,e = 0 ∀h ∈ H, e = 0. (5.23)

Further, the previously exact duration of time spent on each activity must be
adhered to. Similar to the activity framework model, a constraint ensures that the
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sum of the durations of all episodes corresponds to the household’s time usage as
determined by the MDCNEV model.∑

h

∑
e

τh,a,e = tua ∀a ∈ A. (5.24)

As in the previous step of generating activity frameworks, constraints must also be
introduced in this step to ensure that joint activities occur at the same time. This
is achieved by coordinating the durations of activities for the respective household
members h and i and their corresponding start times:

ψh,a,e = ψi,a,f (5.25)
τh,a,e = τi,a,f ∀h, i ∈ H, a ∈ Aj , e, f ∈ Ea : h ̸= i, e = f (5.26)

Furthermore, to carry over the results from the schedule frame model on the
generated durations, the deviation from the determined duration τh,a,e is limited
to 30 minutes:

|τh,a,e − APPROXDURe| ≤ 30,e ∈ E (5.27)

Finally, in this model part, it must also be considered that shopping activities can
only take place during store opening hours, i.e., between opening time sho and
closing time shcl.

ψh,a,e ≥ sho · 60 + daye · 1440 (5.28)
ψh,a,e + τh,a,e ≥ shcl · 60 + daye · 1440 ∀h ∈ H, a ∈ As, e ∈ E (5.29)

The result of this modeling step consists of episodes with precise start times and
durations for each agent in a household of a synthetic population. The activity plans
generated in this way conform to the format of the actiTopp model developed by
Hilgert et al. (2017), Hilgert (2019), ensuring compatibility with the agent-based
demand model mobiTopp (Mallig et al. 2013) and MATSim (Briem et al. 2019).

109



5 The METiS Modeling Framework

5.4 Model Application

To assess the validity and efficacy of the proposed model to account for telecom-
muting behavior and difference, this section presents results from a small-scale
application based on the hold-out sample of the MOP that was used neither for
model estimation nor weight calibration. In the first part, the results are com-
pared to observed data. Subsequently, the simulated telecommuting behavior is
analyzed.

5.4.1 Validation

First, the results of the time-use model step are evaluated. Because the model
combines the discrete and continuous choice, two values are evaluated: the simu-
lated time use of non-zero investment and the choice to conduct the activity at
all, which are labeled in the following plots as mean time use and ratio of times
chosen, respectively.

Time use models

First, the time use model for single households is analyzed. The results are presen-
ted in Figure 5.8. From the plot, we can see that the discrete choice is simulated
well, with minor differences compared to the real values for telecommuting, busi-
ness, and leisure activities. A more discernible deviation from the real values can
be seen for shopping and work activities. In both cases, the simulation underesti-
mates the choice to engage in the activities. Regarding the time use invested in
these activities, we can see that for work activities also the continuous choice is
underestimated. This indicates, that the baseline utility should be higher compared
to the estimated value. For shopping, on the other hand, the simulation overesti-
mates the time use. This result is more difficult to address as the continuous
and the discrete choice are interrelated and increasing, e.g., the baseline utility
of shopping to increase the discrete choice would also increase the continuous
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choice, thus enlarging the difference. This has to be balanced out through the
satiation parameter. Therefore, a thorough calibration approach should be applied
before large-scale model application.

Figure 5.8: Simulated vs. real values of the single time use model

Figure 5.9 presents the result of the time use model for couple households. The
ratios of chosen alternatives over all choices in the population show only small
deviations across the alternatives, except for the shopping alternative. In this
case, the model underestimates the number of times shopping is chosen in the
population. At the same time, the model overestimates the time spent on shopping.
The largest difference in simulated versus real time-use can be seen for joint
leisure activities, where the model considerably underestimates the time invested.
All other differences are moderate, and the simulation findings for telecommuting
closely align with the actual values.
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Figure 5.9: Simulated vs. real values of the couple time use model

Moving on to the results of the family time use model (Figure 5.10), we can see,
that again the ratio of chosen alternatives fits the real data well. Differences are
mostly discernible among household variables, for which the simulated ratio is
lower, except for pick-up/drop-off activities. The analysis of the mean time-use
of activities shows some larger differences between simulated and real values.
Shopping activities show the largest difference, in that the model overestimates
the time use. Further, work 3 and work 4 show considerably different values, in
this case, the model underestimates the time use.

112



5.4 Model Application

Figure 5.10: Simulated vs. real values of the family time use model

The results of the time-use model are promising. Especially the discrete choice,
i.e., engaging in an activity in the week with non-zero time investment is modeled
well. The overall results for the average time spent, if an activity is chosen, are also
close to the observed values. However, for some activities, considerable difference
lies between simulated and real values. This warrants a better calibration of the
parameters. Additionally, it could be fruitful to include interaction parameters
in the model, especially for multi-person households to better understand and
represent intra- and inter-personal heterogeneity. Further, other multiple discrete
continuous approaches could be tested, to improve the results. Especially the
approach presented by Bhat (2018) could be promising. He proposes a model
structure that breaks the tight link between discrete and continuous choice, which
is especially helpful if a good is consumed at large ratios but low values, such as
the shopping activities in this work.
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Scheduling

Turning now to the validation of the scheduling approach, we compare the mean
and variance of the number of daily episodes generated in the scheduling model.
The results are presented in Table 5.8. The table shows the simulated, real values,
and their squared differences for activities that are conducted by all household
types. The result shows a very good match between the simulated and real values.
Across all activities, the squared difference is lower than .1. The mean number of
leisure and work activities is replicated almost perfectly.

Table 5.8: Comparison of statistical moments on the number of daily activities for various activities

Activity Moment Simulated Real Squared Difference

Home Mean 2.031 2.207 0.0311
Home Variance 0.920 0.682 0.0567

Work Mean 1.096 1.076 0.0004
Work Variance 0.087 0.076 0.0001

Business Mean 1.303 1.072 0.0531
Business Variance 0.316 0.067 0.0617

Wfh Mean 1.669 1.600 0.0048
Wfh Variance 0.573 0.557 0.0003

Leisure Mean 1.147 1.142 0.0000
Leisure Variance 0.189 0.141 0.0023

Shopping Mean 1.066 1.230 0.0269
Shopping Variance 0.082 0.223 0.0199

The overall validation results show sound results. Although the time-use models
show some discrepancies, these are likely handled through parameter calibrati-
on. The scheduling results highlight the validity of the formulated problems to
generate activity schedules.
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5.4.2 Analysis of simulated telecommuting behavior

This section explores how sensitive and realistic the model represents telecommu-
ting behavior. The analysis focuses on employed individuals, more specifically,
those who conducted at least one work or work-from-home activity during the
simulation week.
Figure 5.11 compares the start times of out-of-home activities for employed indi-
viduals by their engagement in telecommuting during the simulation week on days
they worked, either from home and/or in the office. Those who do not work from
home at all show the distinctive patterns of the morning and afternoon peak. It can
be seen that during the morning peak hour, telecommuters travel less to conduct
out-of-home activities, however, over the day starting around noon, they are more
active. A small peak can be discerned for telecommuters, which is attributed to
the fact that individuals do not necessarily work from home every day of the week
and also not always the entire day.

Figure 5.11: Distribution of out-of-home activity start times of employed individuals on days they
worked (from home)

The model further allows for the analysis of how the degree to which somebody
teleworks impacts travel demand. Figure 5.12 further differentiates those who
work from home based on whether day do so for the entire day versus just for part
of the day, i.e., a hybrid form of telework. Those who work from home only part of
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the day and part of the time in the office, show multiple peaks throughout the day.
A very discernible morning peak, one in the early afternoon and one later in the
evening, highlighting that the model accounts for the flexibility that working from
home offers resulting in diverse activity patterns observed for telecommuters. On
the other hand, those who telecommute the entire day conduct increased out-of-
home activities later in the day.

Figure 5.12: Distribution of out-of-home activity start times of employed individuals on days they
worked (from home) by differentiated by full-day office work, hybrid office and work
from home, and full-day work from home.

Although the analyses show that especially morning peak-hour travel is reduced
through telecommuting, this is not spread equally throughout the week. Figure
5.13 shows that the model is sensitive to the preference of telecommuting days.
Currently, it is calibrated such that agents prefer to telecommute on Thursdays and
Fridays. However, this can be adapted to fit observed data as well as be subject
to scenario analysis, e.g., to assess which workplace policies would need to be
in place regarding the days of the week on which people can telework such that
travel reductions become apparent. As a comparison, work is scheduled evenly
throughout the simulation week, indicating that the model generates realistic
results.
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Figure 5.13: Share of work from home days and work days by day of the week

The application results further show that telecommuting is taken into account
during the allocation of household activities. As Figure 5.14 shows, those who
telecommute during the simulation week spend considerably more time on pick-
up/drop-off activities. Recall, that while telecommuting is an individual-specific
variable, time-use for escorting activities is generated at the household level and
allocated to the household members in the schedule frame model. The allocation
is thus the result of the different constraints and objectives of the model and the
results indicate that this model generates a realistic allocation of household tasks.

Figure 5.14: Time spent on pick up/drop off activities by telecommuting activities
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5.4.3 Runtime analysis

In this section, runtimes of the simulation are presented to evaluate the scalability
of the model. CPLEX allows for several settings regarding the runtime and ac-
ceptable solution. A time limit can be set at which the program terminates with a
possibly suboptimal solution or no solution at all if none is found within the time
limit. Pougala (2024) set the time limit of the solver to 1,800 seconds to test the
scalability of the multi-daymodel. A similar approach was taken in this work. Two
setups were tested, regarding the timelimit. To allow for comparability with the
multi-day OASIS formulation, in the first setup, the time limit is also set to 1,800
seconds. The second setup puts a more restrictive time limit on all households,
accepting suboptimal solutions, especially for family households. The analysis is
based on 100 simulations per run. The time limit is only imposed on the schedule
frame model. The runtimes are presented for all modeling steps of the METiS
model. The model was run on a 3,70 GHz 8-core intel E-2288 with 128 GB of
RAM.

Table 5.9: Simulation runtimes

time limit average runtime per simulation

1,800s 44.8s (single and couple households )
1,807s (family households)

20s 5.8s (all households)

Analysis of the results given the first setup indicates the time limit is only ever
reached when scheduling activities of family households. This is intuitive as
the dimensions of the problem become larger with more household members to
consider. For both single and couple households, the runtimes lie far below that.
Regarding only the runtimes of scheduling for single and couple households, the
average runtime of each model is 44.8 seconds. This is the average time taken to
run the METiS model where the optimal solution for the schedule frame model of
single and couple households is determined. Accepting suboptimal solutions by
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enforcing a tighter time limit for the model results in an average runtime of each
simulation of 5.8 seconds, taking all households into account.

These results show that the model is suitable for large-scale applications given we
accept suboptimal solutions, at least for family households. It should be noted,
that this might even reflect a more realistic representation of reality as humans are
unlikely to process all options and information (Märki et al. 2014). This warrants
further investigations into which degree of optimality represents observed behavi-
or best. Further speed-ups could be reached through increased computing power.
Given that the models are run separately for each household, the activity schedules
can be generated separately from each other. Although CPLEX already utilizes
parallelization techniques, additional measures could be containerization of the
software and running it on multiple machines could decrease runtimes further.

5.5 Discussion on the modeling framework

This thesis presents a modeling approach that generates activity schedules for the
period of one week while considering household interactions. The overall frame-
work is similar to the HAPPmodel (Recker 1995). However, instead of simulating
schedules for one day, METiS allows for the consideration of a simulation week.
Additionally, activities are generated as part of the model and the activity episodes
do not have to be provided beforehand. Although this issue has been addressed by
Pougala et al. (2023), the proposed model, OASIS, is not suitable for large-scale
applications when considering activity schedules for a week, as runtimes become
too large. Considering the week instead of a day is a vital feature necessary for the
analysis of telecommuting effects. The results of the model application show that
it is sensitive to individual characteristics, preferences, and household interactions
concerning telecommuting behavior. Although the results are promising, there are
some limitations worth noting.
First, the model only crudely considers travel or more precisely destinations for
the respective activities and thus largely ignores agents’ accessibility in activity
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generation and scheduling. Travel times to the locations where the activity is con-
ducted are included in the duration of the activity, thus reserving an appropriate
budget for travel in the model. This can be used in the subsequent destination
choice model to generate a choice set of locations that provide a reasonable ratio
of travel time to activity duration.
Second, the data on telecommuting on multiple occasions relies on imputed data.
This is not an issue of the model, as parameters can be re-estimated with better-
quality data. However, at the current state, any imputation errors will skew the
results of themodel input data and thus themodel results. Therefore, it is advisable
(if possible) to validate telecommuting-related variables in any application of the
model against more detailed data.
Third, theMDCNEVmodels show room for improvement regarding their forecas-
ting ability. It is worth noting that the open-source software available to estimate
MDCEV parameters at all is very limited. Although theoretically great impro-
vements to the initial formulations have been made, these have not yet made it
into statistical modeling software. The results of the model application warrant a
deeper analysis of whether more sophisticated MDC approaches would improve
the model quality.
Fourth, the current implementation of the scheduler is based on the proprietary
software IBM CPLEX. This conflicts with the FAIR (Findable, Accessible, Inter-
operable and Reusable) principles for research software. Although IBM provides
free software licenses for academics, it should be tested how the model runtime
increases using an open-source solver. At least a small reproducible example ba-
sed solely on open-source software should be made available.
Finally, similar to many other activity scheduling models, METiS generates sche-
dules at a specific point in time. This is a simplification of the decision process.
The patterns we observe in most survey data are the result of planning and opti-
mizing activities over time. The decision to participate in an activity during the
week is not necessarily made at the same time the decision on all other activities
is made, indeed it is most unlikely that such a large choice set is considered at
one point in time. However, simply regarding one day is also not the solution to
the problem, as many effects of activity scheduling behavior will be disregarded,
as presented in this thesis. A better approach would be to build the schedule little
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by little over time while tightening constraints with each step in time and then
generating a final schedule. The framework of the METiS schedule is well suited
for such an approach, it follows a similar idea of first generating relatively crude
schedules which are later finetuned. However, this requires data collection efforts
that go far beyond the currently conducted travel surveys.
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I’m smart enough now to know I’m stupid. That’s progress.

Andy Weir,
Project Hail Mary

Telecommuting is often seen as an easy way to reduce travel demand, especially
during peak hours. However, to evaluate howworking from home can be leveraged
as a travel demand management measure, we have to move beyond the rule-of-
three intuition, which leadsmany to believe that teleworking axiomatically reduces
travel because individuals are staying at home instead of commuting to work. The
complexity of teleworking as a travel demand reduction measure starts with the
fact that it is not a transport policy at all, but first and foremost a workplace policy.
Further, it is not a decision employees make solely based on their commute and
travel conditions, but interwoven with their demand for conducting other activities
as well as their needs to arrange their everyday lives, often interacting with other
household members, especially when children are involved. The work in this
thesis presents a modeling approach that allows for the consideration of these
minute intricacies and complexities of telecommuting behavior. This last chapter
provides a summary of this work, including the contributions made to the state of
the art. Finally, avenues for future work are elaborated.
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6.1 Thesis summary and contributions

The work in this thesis presents a modeling framework for the generation and
scheduling of activities that allows for the analysis of telecommuting behavior and
its effects on travel demand. This thesis investigates the complex dynamics intro-
duced by telecommuting through an empirical analysis of data from the German
Mobility Panel, highlighting substantial behavioral deviations among telecom-
muters compared to non-telecommuters. The research reveals that telecommuters
reallocate their saved commuting time to other activities, with these decisions
deeply influenced by individual household contexts. Notably, while telecommu-
ting mothers often merge care responsibilities with work, fathers typically gain
personal time. These findings emphasize the necessity of incorporating household
interactions into activity generation and scheduling models.

The lack ofmodels that can account for telecommuting behavior can at least in part
be explained by the limited data availability. In this research, a machine-learning-
based approach is presented showing how telecommuting data can be incorporated
into survey datasets where it was previously unrecorded. This method has proven
effective within this study and holds potential for broader applications, such as
merging time use and travel diary data.

The core of this thesis is the development of the METiS model, which is designed
to generate activity schedules over a week while explicitly considering household
interactions. The model integrates a specification of the MDCEV model to esti-
mate activity time use at the household level for one week. It effectively captures
the trade-offs that occur not just at the individual activity level, but across the
household collectively. These interactions are also considered in the scheduling
module, which is divided into two parts. First, schedule frames at the hourly level
are generated. The model is formulated as a multi-objective optimization problem
applying the weighted sum method to represent the preferences of the objecti-
ves. The weights are calibrated against real data, thus providing a valid base for
scenario analysis. The results of the schedule frame model are activity episodes
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scheduled throughout the week with approximate start times and durations. The-
se are finetuned in the second part of the model, which is formulated such that
constraints are kept consistent across the two model parts.

Application of the model has proven that it can successfully account for the in-
tricacies of telecommuting behavior at different levels. The model results clearly
show different daily patterns of telecommuters versus non-telecommuters. They
also show that behavior differs depending on the degree to which an individu-
al teleworks. And lastly, it can account for the uneven distribution of telework
throughout the week. These features allow for a comprehensive analysis of the
efficacy of telecommuting as a policy measure to reduce travel demand and related
emissions through demand simulation based on the results of the METiS model.

Central to the METiS model is its capacity to manage multiple scheduling ob-
jectives, each weighted to reflect different priorities. The calibration of these
weights against observed data using Bayesian optimization for instance reveals
that currently low importance is put on the equal allocation of chores. This insight
could suggest that such an objective might be deemed unnecessary in the sche-
duler based on current norms. However, the main contribution of the model lies
in its ability to simulate different scenarios that offer a unique avenue for socie-
tal exploration. As the weights can be dynamically adapted, different scheduling
preferences can be evaluated.

6.2 Suggestions for future work

The METiS model offers interesting paths for future research. Based on the
comprehensive empirical analyses and model development, the work presented in
this thesis can substantially guide data collection efforts to include more nuanced
details about telecommuting habits, such as the intensity and regularity of telework
across different sectors and job types. This could enable the refinement of the
METiS model to better reflect the variability in telecommuting practices and their
impacts on activity scheduling and travel demand.
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Furthermore, additional in-home activities could be regarded, granted suitable
data is available. This would increase analytic capabilities and allow for a more
nuanced definition of some constraints in themodel. Along the same lines, it would
also be valuable to include online shopping behavior as, similar to telecommuting,
previous research has identified the rebound effect of increased in-store shopping
with a propensity to buy goods online. Integration and analysis of these effects
would be a suitable use case of the model.

Additionally, there is a notable opportunity to explore the long-term effects of
telecommuting on urban planning and transportation infrastructure. Future studies
could use the findings from this thesis as a foundation to simulate various future
scenarios where telecommuting becomes more prevalent, assessing impacts on
traffic congestion, public transit usage, and urban sprawl. Integrating a land-use
model with the METiS model could provide deeper insights into the long-term
effects of working from home, particularly regarding residential relocation and
workplace choice.

Finally, considering the differential impacts of telecommuting on gender and fa-
mily roles as identified in this work, further research could focus on developing
targeted strategies that address these disparities. For instance, creating models that
specifically examine the allocation of time to caregiving and household respon-
sibilities could inform policies aimed at promoting gender equity and work-life
balance in the context of telecommuting. Such studies would not only add depth
to the academic understanding of telecommuting dynamics but also offer practical
insights for employers and policymakers aiming to optimize the benefits of tele-
work arrangements. This could further open new avenues to address the commute
gender gap, which describes the difference in commuting distance or time between
male and female working individuals. Similar to the gender wage gap, research
has shown that females have shorter commutes than their male counterparts, the-
reby limiting their access to higher-paying jobs in the labor market. As the model
can account for the constraints that care work puts on women, scenarios can be
designed and evaluated to unravel which policies would help reduce the commute
gender gap.
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A.1 Logit Choice Probabilities

The following covers the arithmetic steps to get from the general formulation of
the Logit probabilities to the closed-form expression. As derived in section 2.2.1,
the probability that decision-maker n chooses alternative i over j assuming a
Gumbel distribution of the unobserved utility component is given by:

Pni =

∫ ∞

−∞

∏
j ̸=i

e−e
−(εni+vni−vnj)

 e−εnie−e
−εni

dεni

For simplicity, replace εni with s:
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−∞

∏
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Define t = e−s such that dt = −e−sds, then

Pni =

∫ ∞

−∞

(
e−t

∑
j e

−(Vni−Vnj)
)
(−dt)

Note that lims→∞ t = lims→∞ e−s = 0 and lims→∞ t = lims→−∞ e−s = ∞
Given these integral limits, we get:
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A.2 Numerical Data Supporting Figures in
Chapter 4

Table A.1: Summary statistics for weekly time use of employed respondents in MOP by activity, and
telecommuting status

activity wfh N mean median SD
home cannot wfh 3556 117.28 115.78 18.68
home choose not to wfh 342 111.27 109.89 15.67
home wfh 2131 125.25 125.67 21.01
work cannot wfh 3168 32.15 33.33 14.07
work choose not to wfh 324 35.45 37.28 12.00
work wfh 1489 24.55 23.42 13.95
work-related cannot wfh 877 12.45 8.50 12.12
work-related choose not to wfh 112 12.80 10.22 9.82
work-related wfh 742 11.62 8.57 10.23
shopping cannot wfh 3319 5.14 4.03 4.38
shopping choose not to wfh 323 4.97 3.85 4.66
shopping wfh 2008 4.73 3.69 4.04
leisure cannot wfh 2616 9.17 6.50 8.92
leisure choose not to wfh 271 10.26 7.83 9.13
leisure wfh 1663 9.73 7.08 9.38
leisure walk cannot wfh 944 13.84 9.81 13.18
leisure walk choose not to wfh 94 10.11 8.00 7.79
leisure walk wfh 697 15.22 10.00 16.10
joint leisure: adults cannot wfh 1178 7.74 5.75 7.78
joint leisure: adults choose not to wfh 103 8.16 6.75 7.01
joint leisure: adults wfh 770 8.92 5.92 10.41
joint leisure: family cannot wfh 113 5.37 3.75 4.54
joint leisure: family choose not to wfh 9 4.65 2.42 4.46
joint leisure: family wfh 80 5.75 3.71 4.70
joint leisure: one parent with kids cannot wfh 147 4.03 2.97 3.72
joint leisure: one parent with kids choose not to wfh 11 2.73 2.42 1.97
joint leisure: one parent with kids wfh 106 4.27 3.00 3.84
pick up/drop off cannot wfh 1153 2.01 1.17 2.35
pick up/drop off choose not to wfh 121 1.65 1.00 1.91
pick up/drop off wfh 801 2.09 1.28 2.27
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A Appendix

Table A.4: Summary statistics for weekly number of episodes of employed respondents in MOP by
activity, and telecommuting status

activity wfh N mean median SD
work cannot wfh 3168 4.57 5.00 1.66
work choose not to wfh 324 4.87 5.00 1.57
work wfh 1489 3.59 4.00 1.89
work-related cannot wfh 877 4.18 2.00 5.09
work-related choose not to wfh 112 4.00 3.00 3.42
work-related wfh 742 3.64 2.00 4.20
shopping cannot wfh 3319 4.81 4.00 3.30
shopping choose not to wfh 323 5.17 4.00 3.52
shopping wfh 2008 4.86 4.00 3.23
leisure cannot wfh 2616 3.17 2.00 2.54
leisure choose not to wfh 271 3.66 3.00 2.64
leisure wfh 1663 3.47 3.00 2.73
leisure walk cannot wfh 944 2.79 1.00 3.29
leisure walk choose not to wfh 94 1.94 1.00 1.19
leisure walk wfh 697 2.90 2.00 3.45
joint leisure: adults cannot wfh 1178 2.26 2.00 1.92
joint leisure: adults choose not to wfh 103 2.31 2.00 1.67
joint leisure: adults wfh 770 2.61 2.00 2.27
joint leisure: family cannot wfh 113 1.50 1.00 1.13
joint leisure: family choose not to wfh 9 1.11 1.00 0.33
joint leisure: family wfh 80 1.69 1.00 1.13
joint leisure: one parent with kids cannot wfh 147 1.66 1.00 1.12
joint leisure: one parent with kids choose not to wfh 11 1.55 1.00 0.82
joint leisure: one parent with kids wfh 106 1.48 1.00 0.83
pick up/drop off cannot wfh 1153 3.08 2.00 3.03
pick up/drop off choose not to wfh 121 2.50 2.00 2.15
pick up/drop off wfh 801 3.54 2.00 3.26
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A.2 Numerical Data Supporting Figures in Chapter 4
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Table A.7: Summary statistics for episode durations of employed respondents in MOP by activity,
and telecommuting status

activity wfh N mean median SD
work cannot wfh 14480 7.03 7.42 2.92
work choose not to wfh 1579 7.28 7.92 2.87
work wfh 5346 6.84 7.03 3.01
work-related cannot wfh 3669 2.97 2.00 2.82
work-related choose not to wfh 448 3.20 2.50 2.65
work-related wfh 2699 3.19 2.25 2.87
shopping cannot wfh 15966 1.07 0.72 1.19
shopping choose not to wfh 1669 0.96 0.62 1.15
shopping wfh 9758 0.97 0.63 1.15
leisure cannot wfh 8292 2.89 2.17 2.61
leisure choose not to wfh 993 2.80 2.05 2.52
leisure wfh 5773 2.80 2.00 2.71
leisure walk cannot wfh 2638 4.95 4.33 3.55
leisure walk choose not to wfh 182 5.22 4.76 3.43
leisure walk wfh 2023 5.24 4.98 3.64
joint leisure: adults cannot wfh 2665 3.42 2.50 2.89
joint leisure: adults choose not to wfh 238 3.53 2.50 3.03
joint leisure: adults wfh 2006 3.42 2.39 3.14
joint leisure: family cannot wfh 169 3.59 2.67 2.84
joint leisure: family choose not to wfh 10 4.18 2.71 3.28
joint leisure: family wfh 135 3.41 2.33 2.87
joint leisure: one parent with kids cannot wfh 244 2.43 1.83 2.09
joint leisure: one parent with kids choose not to wfh 17 1.77 1.25 1.53
joint leisure: one parent with kids wfh 157 2.88 2.00 2.80
pick up/drop off cannot wfh 3555 0.65 0.33 0.96
pick up/drop off choose not to wfh 302 0.66 0.42 0.81
pick up/drop off wfh 2839 0.59 0.33 0.82
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A.2 Numerical Data Supporting Figures in Chapter 4
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A Appendix

A.3 Difference between real and simulated
values of time use models

Table A.10: Difference between real and simulated values for the single household time use model

activity simulated real difference simulated real difference
mean mean of means ratio ratio of ratios

shopping 9.93 6.65 3.29 87.38 97.50 -10.12
home 71.55 71.25 0.30 100.00 99.50 0.50
leisure 11.19 11.49 -0.30 83.75 82.75 1.00
work 28.87 32.22 -3.35 40.25 47.50 -7.25
wfh 13.74 14.89 -1.16 5.25 7.00 -1.75
business 9.23 12.16 -2.93 17.50 18.25 -0.75

Table A.11: Difference between real and simulated values for the couples time use model

activity simulated real difference simulated real difference
mean mean of means ratio ratio of ratios

shopping 11.49 9.06 2.43 79.69 98.44 18.75
joint shopping (adults) 4.44 7.11 2.67 47.40 48.44 1.04
joint leisure (adults) 6.65 18.95 12.30 51.56 51.56 0.00
home 116.89 129.15 12.26 100.00 93.75 6.25
leisure 1 12.12 8.03 4.09 68.75 73.44 4.69
leisure 2 11.66 7.70 3.96 55.73 51.04 4.69
work 1 31.64 30.59 1.06 34.90 39.06 4.17
wfh 1 18.93 19.45 0.52 7.29 5.21 2.08
business 1 6.03 9.20 3.17 19.27 14.58 4.69
work 2 34.62 29.55 5.07 28.65 28.65 0.00
wfh 2 15.14 15.40 0.25 7.29 5.73 1.56
business 2 8.00 9.36 1.36 16.67 12.50 4.17
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A.3 Difference between real and simulated values of time use models

Table A.12: Difference between real and simulated values for the family household time use model

activity simulated real difference simulated real difference
mean mean of means ratio ratio of ratios

shopping 18.56 8.60 9.96 94.99 99.52 4.53
pick up/drop off 5.73 2.79 2.94 81.86 75.89 5.97
joint shopping (adults) 4.89 3.46 1.43 13.60 18.14 4.53
joint shopping (family) 9.24 4.21 5.03 32.94 39.62 6.68
joint leisure (adults) 3.62 10.49 6.86 22.91 28.88 5.97
joint leisure (family) 12.40 15.01 2.62 49.16 48.69 0.48
home 198.90 200.01 1.11 100.00 100.00 0.00
leisure 1 11.25 12.12 0.87 81.38 87.59 6.21
leisure 2 11.03 12.78 1.74 83.29 80.43 2.86
leisure 3 13.22 14.33 1.11 66.35 68.50 2.15
leisure 4 14.02 13.44 0.59 29.12 27.68 1.43
leisure 5 16.00 19.79 3.79 2.15 2.15 0.00
work 1 29.75 26.55 3.20 78.28 75.89 2.39
work 2 29.29 29.34 0.05 64.20 62.53 1.67
work 3 26.32 35.48 9.15 7.40 6.92 0.48
work 4 28.25 39.16 10.91 3.82 2.86 0.95
work 5 0.00 0.00 0.00 0.00 0.00 0.00
business 1 10.29 12.38 2.10 28.16 28.16 0.00
business 2 10.94 13.19 2.24 24.34 20.76 3.58
business 3 6.67 10.13 3.47 2.86 1.43 1.43
business 4 18.00 19.93 1.93 1.67 0.48 1.19
business 5 0.00 0.00 0.00 0.00 0.00 0.00
wfh 1 14.72 17.34 2.62 30.55 28.88 1.67
wfh 2 18.42 14.80 3.62 21.00 19.57 1.43
wfh 3 4.20 13.49 9.29 1.19 1.67 0.48
wfh 4 21.33 20.27 1.07 0.72 0.95 0.24
wfh 5 0.00 0.00 0.00 0.00 0.00 0.00
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