
The Java Verification Tool KeY:A Tutorial

Bernhard Beckert1 , Richard Bubel2(B), Daniel Drodt2 , Reiner Hähnle2 ,
Florian Lanzinger1 , Wolfram Pfeifer1 , Mattias Ulbrich1 ,

and Alexander Weigl1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{beckert,lanzinger,wolfram.pfeifer,ulbrich,weigl}@kit.edu

2 Technische Universität Darmstadt, Darmstadt, Germany
{richard.bubel,daniel.drodt,reiner.haehnle}@tu-darmstadt.de

Abstract. The KeY tool is a state-of-the-art deductive program verifier
for the Java language. Its verification engine is based on a sequent calcu-
lus for dynamic logic, realizing forward symbolic execution of the target
program, whereby all symbolic paths through a program are explored.
Method contracts make verification scalable. KeY combines auto-active
and fine-grained proof interaction, which is possible both at the level of
the verification target and its specification, as well as at the level of proof
rules and program logic. This makes KeY well-suited for teaching pro-
gram verification, but also permits proof debugging at the source code
level. The latter made it possible to verify some of the most complex
Java code to date. The article provides a self-contained introduction to
the working principles and the practical usage of KeY for anyone with
basic knowledge in logic and formal methods.

Keywords: Program verification · Deductive verification · Dynamic
Logic · Java Modeling Language

“. . . and the aeroplane shot further away and
again,

in a fresh space of sky, began writing a K,
an E, a Y perhaps?”

—Virginia Woolf, Mrs. Dalloway

1 Introduction

What Is KeY? The KeY tool [3,4,15] is a state-of-the-art program verification
tool for one of the most widely used programming languages: Java. Its capa-
bilities enable the formal specification and verification of unmodified industrial
Java code at source-code level. Notable examples of its application include the
TimSort effort [28] and, more recently, the verification of a Java implementa-
tion of in-place super scalar sample sort [8], one of the fastest general-purpose
sorting algorithms [18]. In addition to its role as a program verifier, KeY serves
as a versatile research platform for implementing various formal methods for
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14934, pp. 597–623, 2025.
https://doi.org/10.1007/978-3-031-71177-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71177-0_32&domain=pdf
http://orcid.org/0000-0002-9672-3291
http://orcid.org/0000-0003-3036-8220
http://orcid.org/0000-0001-8000-7613
http://orcid.org/0000-0001-8560-6324
http://orcid.org/0000-0002-9478-9641
http://orcid.org/0000-0002-2350-1831
http://orcid.org/0000-0001-8446-4598
https://doi.org/10.1007/978-3-031-71177-0_32

598 B. Beckert et al.

Java by leveraging KeY’s symbolic execution engine. For instance, KeY has been
used to facilitate the generation of test cases with high code coverage [6] and
to implement a symbolic-state debugger [41]. The maturity of KeY’s verification
approach and of the tool make it suitable for teaching in BSc- and MSc-level
courses. KeY is an academic, noncommercial tool that can be used freely by any-
one (it is published under GNU Public License V2). It is completely written in
Java, so it can run on any platform for which a Java virtual machine is available.

The roots of the KeY project trace back to 1999, when the continuous devel-
opment and refinement of KeY and its verification methodology was started. On
the occasion of KeY’s 25th birthday, this tutorial serves to showcase the mature
program verification and analysis tool that KeY is today.

This Tutorial, Its Accompanying Material, and Further Reading. This
tutorial caters to all who want to learn about the KeY tool methodology: New-
comers to the field as well as experienced researchers in formal methods outside of
deductive verification. It offers an exploration of KeY’s underlying methodology,
its capabilities, and its practical application. The tutorial covers the basics of
KeY while giving a glimpse at its advanced features. Participants of the live con-
ference tutorial gain hands-on experience with KeY. By the end of the tutorial,
you are able to actively use KeY for (simple) verification tasks and to understand
which advanced KeY features permit the verification of complex algorithms.

Videos, slides, and all examples of the conference tutorial, as well as the KeY
tool itself, are available for download at www.key-project.org/tutorial-fm-2024.
For further reading, the book on the KeY system, published in 2016 [4], contains
tutorial chapters on using the KeY tool, based on both simple (chapter “Using
the KeY Prover” [7]) and more advanced (chapter “Formal Verification with KeY:
A Tutorial” [13]) examples.

KeY’s Verification Methodology in a Nutshell. KeY’s deductive verifi-
cation engine is based on a sequent calculus for Java Dynamic Logic [17] (see
Sect. 2). The calculus rules perform symbolic execution whereby all symbolic
paths through a program are explored. Method contracts make verification scal-
able because one can prove one method at a time to be correct relative to its
contract. Contracts do not need to be expressed in Dynamic Logic, but can be
given at the source code level as Java Modeling Language (JML) annotations [48].

KeY features a domain-specific textual language (called taclets) to add
axioms of theories and lemmas, and to define proof rules. This allows one to
extend and tailor the deduction engine without having to know implementation
details.

KeY’s Interaction Patterns and User Interface. In contrast to most other
program verification tools, KeY seamlessly combines auto-active interaction and
fine-grained interaction: Interaction is possible both at the level of the Java
verification target and its JML specification (auto-active interaction pattern),

https://www.key-project.org/tutorial-fm-2024

The Java Verification Tool KeY: A Tutorial 599

as well as at the level of proof rules and the underlying program logic (fine-
grained interaction pattern). In auto-active verification (used in, for example,
Why3 [22], Frama-C [47], AutoProof [63], VeriFast [44], VerCors [21], VCC [27],
and Dafny [50]), interaction at the input level (adding, removing, or rephrasing
specifications, adding hints) is user-friendly as it does not require knowledge
and understanding of intermediate proof states. But the lack of insight into the
intermediate proof steps makes it hard to identify which additional specification
annotations might be needed or which need to be rephrased. On the other hand,
fine-grained interaction (most popular with general purpose theorem provers
such as Isabelle [53] or Coq [20]), where the proof is constructed either manually
or with the help of proof scripts (which may use automatic proof tactics), can
give deep insights into possible issues and provides effective control as the user
can inspect partial proofs, but it requires a considerable amount of expertise.

Upon loading an annotated Java file proof obligations are automatically
translated into Java Dynamic Logic and presented in the GUI. This GUI is
a central component of KeY. Its design is based on a point-and-click interac-
tion style to support proof exploration and proof construction. For instance, the
selection of a calculus rule—out of over 1500(!)—is greatly simplified by allowing
the user to highlight any syntactical subentity of the proof goal simply by posi-
tioning the mouse; a dynamic context menu offers only the few proof rules which
apply to this entity. Drag-and-drop mechanisms greatly simplify the instantia-
tion of quantified variables. Other supported interactions are the inspection of
proof trees, the pruning of branches, and unlimited undoing of proof steps.

KeY’s Verification Process. The user provides Java source code with anno-
tations written in JML. These consist of requirement specifications as well as
auxiliary specifications such as loop invariants and contracts of called methods.
KeY translates these into proof obligations in Java Dynamic Logic. Now, the
user is left with the choice of trying to let the prover verify fully automatically
or of starting interactively by applying calculus rules to the proof obligation.
If the user chooses to start the automated proof search strategy offered by the
prover, the result can be either that (i) the prover succeeds in finding a proof
or (ii) the prover stops after a number of steps with a partial proof. This is the
point in the proof process, where the user gets involved. The user inspects the
proof state and decides whether to continue with fine-grained interaction or to
continue in auto-active style and revise the JML annotation or the source code.
Recently, a lightweight proof scripting language was provided that complements
the GUI’s point-and-click style interaction. It fosters proof reuse and mitigates
the need to redo the initial part of failed proof attempts by hand [18].

2 Verification Approach

Arguably, the most important structuring concept in programming languages is
methods (aka procedures, functions, etc.). Methods abbreviate code that would
else have to be repeated many times over, they structure a program into groups

600 B. Beckert et al.

of related code, they foster abstraction of different behavior into a common
implementation, and finally, they encapsulate the effect of a computation to
local memory.

With methods being such a central structuring concept of programs, it is
natural that verification proofs should reflect and be able to benefit from the
structure inherent to the program under verification. In fact, without structural
similarity between the verification target and the proof object, it is exceedingly
difficult to verify complex software systems. This is why most modern deductive
verification approaches, including KeY, are contract-based [37].

2.1 The Principle of Contract-Based Verification

A contract, in the context of software verification, is a specification artifact that
makes it possible to mimic the method structure of a program in a correctness
proof. The central idea is to describe the effect of a possible execution of a
given method in terms of logical formulas. This has a decisive consequence:
Whenever in a proof over a program, it is necessary to reason about a called
method, then, instead of going into the implementation of that method, it is
sufficient to consider the formulas in the method’s contract. This simple and
natural approach has dramatic consequences for program verification:(i) Since
contracts consist not of code but of formulas, we replace program execution by
substitution and deduction, and (ii) in contrast to code, which, in general, admits
an unbounded number of different execution paths, contracts consist of a finite
number of formulas whose semantics is declarative.

Together, these two observations enable procedure-modular, in some cases
even linear-size [23], verification proofs: the structure of verification proofs fol-
lows the structure of methods, and an unbounded number of possible method
executions is described with a finite number of logical formulas.1 But how,
exactly, are method contracts defined? And how does one ensure that a given
method implementation conforms to its contract?

2.2 Method Contracts

A method contract, similar to a legal contract, has two main aspects:(i) It spec-
ifies the conditions under which it goes into effect and, if so,(ii) it gives guaran-
tees. It may also (iii) specify collateral effects and give (iv) a temporal statute
on delivery. Translated to the domain of programs and methods:

Definition 1 (Method Contract). A method contract for a method m is a
tuple (pre, post [,mod] [, acc] [, trm]), where pre and post are formulas, called pre-
and postcondition, respectively, the optional modifiers mod and acc are set
expressions over memory locations, and the optional termination witness trm
is a first-order term of a type equipped with a well-order ≺.

1 A similar mechanism is loop invariants that describe an unbounded number of iter-
ations. Indeed, procedure contracts can be seen to generalize loop invariants.

The Java Verification Tool KeY: A Tutorial 601

Its semantics is as follows: if m is started in any execution state where pre
holds, then, in any state where m terminates, post must hold as well. If mod
is present, then m may change at most the value of memory locations in mod
(otherwise, it may change anything). If acc is present, then m may read at most
the value of memory locations in acc (otherwise, it may read anything). If trm
is present, then its value must decrease with respect to ≺ before m is called recur-
sively, thus enforcing termination of recursive calls. Otherwise, m may diverge.

Just like legal contracts, method contracts interface with two parties: the
client and the provider. In programs, the client is the code containing a call to
m, while the provider is the implementor of m. It is the latter’s responsibility to
ensure post (and, if present, mod , acc, and trm) provided that pre holds at the
time when m is called which is the caller’s responsibility. The different parts of
a contract lead to different verification tasks that may or may not be proven
separately: partial correctness, i.e. the relation between pre and post established
by the implementor, framing, i.e. the correctness of memory change (mod) and
access (acc), as well as termination.

2.3 Java Modeling Language

So far, the components of contracts are left abstract. In deductive verification of
imperative programs, one typically uses (typed) first-order formulas or expres-
sions to formalize them and a program logic to express the semantics of con-
tracts. However, languages such as Java are very much richer than first-order
logic, which makes it tedious to write contracts. For this reason, it is common
to specify contracts based on behavioral modeling notations having a rich syntax
and thus being closer to the target language. Contracts written in such a mod-
eling language are then automatically desugared into first-order and program
logic [36]. In KeY we use the Java Modeling Language (JML) [48].

We introduce JML contracts by example. Listing 1 shows a contract for
binSearch(), a recursive Java implementation of binary search between indices
low (inclusive) and up (exclusive) on an integer array a:

We observe that JML is placed in Java comments augmented by a leading
@ sign (the remaining @’s are purely cosmetic). JML permits visibility modifiers
(“private”) with the same semantics as Java. Any side effect-free Java expres-
sion may occur in JML, any boolean expression can serve as a formula. Non-
Java keywords in JML expressions are indicated by a leading backslash. Beyond
Java expressions, first-order universal and existential quantifiers are allowed in
JML. These are evaluated over the domain specified in their variable declaration
and have an optional range expression, for example, low <= idx < up, which
restricts the values being quantified over.

This idiom, where a quantifier ranges over integers and is further restricted
by upper and lower bounds, is characteristic of specifications over array types.

The JML keyword requires indicates the pre slot of a contract. In the exam-
ple, two requires clauses state the various index bounds and that array a is

602 B. Beckert et al.

/*@ private normal_behavior
@ requires 0 <= low <= up <= a.length;
@ requires (\forall int x, y; 0 <= x < y < a.length; a[x] <= a[y]);
@ ensures \result == -1 || low <= \result < up;
@ ensures (\exists int idx; low <= idx < up; a[idx] == v) ?
@ \result >= low && a[\result] == v : \result == -1;
@ assignable \nothing;
@ measured_by up - low;
@*/

private int binSearch(int[] a, int v, int low, int up) {
if (low < up) {

int mid = low + ((up - low) / 2);
if (v == a[mid]) { return mid; }
else if (v < a[mid]) { return binSearch(a, v, low, mid); }
else { return binSearch(a, v, mid + 1, up); }

}
return -1;

}

Listing 1. Recursive implementation of binary search with JML specification

sorted, respectively. If a keyword occurs multiple times, as here, then the conjunc-
tion of all expressions must hold. The JML keyword ensures indicates the post
slot of a contract. The first ensures clause expresses that the returned value is
either a valid index of a or -1. The keyword \result denotes the returned value
of a method. The second ensures clause is a conditional expression (observe
that quantifiers can be nested), saying that (i) either the searched element v is
present in a between the given bounds, in which case a valid index, where v can
be found, is returned or else (ii) the constant -1 is returned.

The JML keyword assignable indicates the mod slot of a contract. A
search method is expected not to change the heap, so we specify the empty
set of locations, for which the keyword \nothing stands. To prove termina-
tion of the recursive implementation we add a measured_by clause. The top-
level call will be of the form binSearch(a,v,0,a.length), so initially the
measure is equal to the value of a.length. It decreases at each call, because
low < low+((up-low)/2)+1 holds; it is never negative because the relation
low <= up is maintained.

2.4 Dynamic Logic

How does one prove, for example, that the implementation of binSearch in
Listing 1 conforms to its contract? In KeY we use dynamic logic, a program
logic due to Pratt [55] (the name dynamic logic was coined in [39]).

In a nutshell, dynamic logic is obtained from Hoare logic [43] by closing it
syntactically with respect to first-order formulas. In consequence, correctness
assertions may be nested which adds useful expressiveness.

The Java Verification Tool KeY: A Tutorial 603

Definition 2 (Dynamic Logic, DL). Dynamic logic extends first-order logic
with a binary operator [p]φ and is inductively defined as follows: (1) Every first-
order formula is a DL formula. (2) If p is a program and φ a DL formula, then
[p]φ is a DL formula. (3) The set of DL formulas is closed under propositional
and first-order operators.

Formula [p]φ is valid in a first-order model M if the following holds: For any
execution state s, if p is started in s and it terminates in a state s′, then φ is
valid in M and s′.

Obviously, [p]φ expresses partial correctness of p with respect to postcon-
dition φ, whenever φ is a first-order formula. A first-order contract (pre, post)
for p can be expressed as pre → [p]post , which corresponds to the Hoare triple
{pre}p{post} [43]. The remaining contract elements are discussed later.

DL being syntactically closed, we can define the dual operator 〈·〉 by 〈p〉φ ≡
¬[p]¬φ, which expresses total correctness of p, keeping in mind [p]φ trivially
holds for non-terminating programs and assuming programs are deterministic.

It is important to observe that DL is a modal logic: in general, execut-
ing p changes the execution state. However, it is convenient to assume the
value of first-order variables stays invariant. For example, we might want to
write ∀x. (x ≥ 0 → [p](\result ≥ x)) and be sure that x is not changed by p.
To achieve this, it is necessary, unlike in Hoare logic, to sharply differentiate
between memory locations in programs (variables, arrays, fields, . . .) and first-
order variables. The former are modeled as non-rigid constants and functions
whose interpretation may change from state to state; the latter are, as usual, eval-
uated under a rigid first-order model and variable assignment. In consequence,
we do not permit quantification over program variables—this would result in
extremely complex scoping rules. On the other hand, it makes perfect sense to
write a DL formula such as i .= 0 → [p]i 	 .= 0 and expect it to be valid, for
example, when p is ++i.

For the KeY tool, we use a Java-specific extension of dynamic logic called
JavaDL. The main difference to vanilla DL [38] is that JavaDL contains many
predefined rigid and non-rigid first-order functions and predicates, including
suitable first-order theories that model Java features in first-order logic. The
intended first-order models M (Definition 2) must be defined accordingly. For
example, there is a non-rigid function that returns the length of an array a in
the current execution state as length(a). In JavaDL we also permit Java-style
syntax a.length. JavaDL is a typed first-order logic whose type system includes
all Java primitive and reference types that are equipped with Java’s typing rules.
Obviously, all JavaDL terms are assumed to be well-formed according to Java
rules, which is enforced by KeY’s parser.

2.5 State Updates

A common approach to performing logical inference in program logic is to com-
pute the weakest precondition [32] of [p]post , i.e. the logically weakest formula
wp(p, post) such that wp(p, post) → [p]post holds. It is constructed from post by

604 B. Beckert et al.

unraveling p backwards. For example, in Hoare calculus wp(x := e, φ) = φ[x/e]
(assuming x is a scalar variable and e a simple expression). The weakest pre-
condition computation is iterated until the beginning of a program p is reached.
Branching statements split into several weakest preconditions, such that the
overall result of the process is a finite set of first-order formulas vc1, . . . , vcn for
which

∧
i vci → [p]post holds. The vci are called verification conditions and can

be discharged, for example, with automated theorem provers or SMT solvers.
Iterative or recursive constructs require strongest invariants to compute wp;
otherwise, (stronger) necessary conditions are obtained.

This verification condition generation (VCG) is simple and amenable to
automation, but is problematic whenever full automation is not achievable:(i)
Verification conditions tend to become large and complex, and then they are
difficult to understand in case they are not provable; (ii) executing a program
backwards is unnatural for humans and makes it hard to follow a failed verifica-
tion attempt.

In KeY we assume that contracts and loop invariants (Sect. 3) for complex
programs must be at least partially created manually. Getting them right requires
understanding of intermediate proof situations. For this reason, the JavaDL
inference system is not based on a VCG architecture but on forward symbolic
execution. Unfortunately, computing the dual of wp(p, post), i.e. the strongest
postcondition of a program started in a state satisfying pre, is expensive and
unnatural for assignment statements. Therefore, we use a technical trick that
avoids computing explicit strongest postconditions:

Definition 3 (Elementary Update). Let v be a program variable of primitive
type and e a simple (not nested) and side effect-free expression such that the
assignment v = e is well-formed. Let e be the first-order representation of e.2
Then v := e is called an elementary update.

The semantics of an elementary update v := e are all state transitions where
the value of v in the final state is set to the value that e had in the first state.

Updates capture the effect of symbolic state changes and are streamlined to
represent (simple) assignments. As we shall see below, updates can be viewed
as explicit substitutions that represent a symbolic state change. By prefixing
JavaDL formulas with updates, we can express that a formula is evaluated in
the state represented by these updates:

Definition 4 (JavaDL with Updates). If u is an update, φ a DL formula,
and e a DL expression, then {u}φ is a DL formula and {u} e a DL expression.

2.6 A JavaDL Calculus

For a simple assignment v = e, the DL formulas [v = e; p]φ and {v := e} [p]φ
are logically equivalent. This observation is the basis for a forward symbolic

2 From now on, we adopt the convention that the first-order translation of a Java
expression uses the same letter but is typeset in Roman font.

The Java Verification Tool KeY: A Tutorial 605

execution calculus to prove the validity of JavaDL formulas: For each type of Java
statement st in a program formula [st; p]φ, we compute a finite set of formulas
that implies [st; p]φ and, therefore, can replace it. These formulas have the form
{φi → Ui[sti; p]φ}i, where Ui are updates, the sti typically are (possibly empty)
sub-statements of st, and the φi (optional) preconditions (the above replacement
of an assignment is a special case of this general schema). This characterization
permits to further reduce the [sti; p]φ and so on. All that remains to do is to
turn this schema into a calculus and to design the actual rules.

We assume the reader is familiar with the basics of sequent calculi (see,
for example, [33]). As usual, we use naming conventions for schema variables:
φ, ψ, . . . stand for JavaDL formulas, Γ, Δ for sets of JavaDL formulas, and U
denotes an arbitrary sequence of updates. More schema variables are introduced
as needed. A typical (unary) rule may have the general form of the left rule
schema below, where DL formulas φ, ψ are rewritten while the update U and
formulas in Γ, Δ remain unchanged (Γ might contain assumptions or theories).

Γ, Uφ′ =⇒ Uψ′, Δ

Γ, Uφ =⇒ Uψ, Δ

φ′ =⇒ ψ′

φ =⇒ ψ

To make rule notation more succinct, we drop context formulas and leading
updates in the following as in the rule schema above on the right, where contexts
are implicit, but we actually mean the rule above on the left. With this convention
in place, we formalize the observation at the beginning of this subsection as the
sequent rule given below on the left. As usual in sequent calculi, the rules are
applied bottom-up. On the right is the rule that stops symbolic execution once
there is no further statement left to evaluate:

=⇒ {v := e} [p]φ
assignment

=⇒ [v = e; p]φ
=⇒ φ

emptyBox
=⇒ []φ

Example 1. Let us prove correctness of in-place value swap (ignoring possible
arithmetic overflow) of two int variables i, j, as formalized in the sequent:

i .= i0, j
.= j0 =⇒ [i = i+j; j = i-j; i = i-j;](i .= j0 ∧ j .= i0)

After applying the assignment rule three times, then rule (emptyBox), we obtain:

i .= i0, j
.= j0 =⇒ {i := i+j} {j := i-j} {i := i-j} (i .= j0 ∧ j .= i0) (1)

The example shows that we need rules for applying an update to a first-order
formula or term. Updates can be viewed as explicit substitutions [2], thus update
application is obvious: A straightforward homomorphism on formulas and terms,
except the base case: {v := e} w yields e in case v = w and w, otherwise.

We apply the updates (1), starting with the last one, which yields (2) and,
after two more update applications, the provable first-order sequent (3):

i .= i0, j
.= j0 =⇒ {i := i+j} {j := i-j} (i-j .= j0 ∧ j .= i0) (2)

i .= i0, j
.= j0 =⇒ i+j-(i+j-j) .= j0 ∧ (i+j)-j .= i0 (3)

606 B. Beckert et al.

At this point, three important observations can be made: (i) The first-order
formula on the right of sequent (3) is the weakest precondition of the program
and postcondition in Example 1. Updates allow us to compute it in a forward
fashion. (ii) It is unnecessary to define a substitution operator on programs
(which is highly complex for languages such as Java), because updates are applied
only on formulas and terms. Difficulties, such as aliasing or side effects, are
dealt with at the level of symbolic execution rules, as we shall see below. (iii)
There is a potential inefficiency in the so-far lazily applied updates. For example,
when some code is unreachable, that is discovered late. In addition, iterative
substitutions can blow up term size drastically. The last point is mitigated by
performing eager update simplification. To this end, we define parallel updates
v1 := e1 || · · · || vn := en, where each slot is an elementary update and all vi are
different.

The semantics of parallel updates are those state transitions, where all the
elementary updates are performed in parallel, i.e. the old values of the right
hand side are used in each elementary update. For example, the parallel update
j := i || i := j simultaneously sets i to the previous value of j and vice versa.
Since all left-hand sides in a parallel update are different, this is well-defined
(for the moment, we ignore aliasing, which is discussed in Sect. 3). To turn a
sequence of elementary updates into a parallel update, the following rewrite rule
is applied, where u is any, possibly parallel, update:

{u} {v := e} � {u\v || v := {u} e} seqToPar

where update u\v is identical to u, except elementary updates with left-hand
side v are dropped. This is to keep left-hand sides unique and is justified by the
fact that any v occurring in u on the left is overwritten by the later update of v.

If we apply rule (seqToPar) to the formula in sequent (1), we obtain

{i := i+j || j := (i+j)-j} {i := i-j} (i .= j0 ∧ j .= i0) .

Then, before applying rule (seqToPar) again, it is possible to perform arith-
metic simplification on the expression (i+j)-j. Such a strategy of eager update
parallelization and simplification helps to keep symbolic expressions small and
is crucial for performance.

2.7 Forward Symbolic Execution of Straight-Line Programs

To be able to verify straight-line programs with the JavaDL calculus, two more
components are needed: Handling complex expressions and conditional state-
ments. We start with the former. Typically, in a rich language such as Java is
that an array assignment could be of the form e[e′] = e′′, where each of e, e′, e′′

might be a complex expression. Moreover, evaluation of e′′ can incur side effects
that may or may not influence evaluation of e′ (i++ vs. ++i). Symbolic execution
must respect Java’s evaluation rules and record side effects at the correct place.
Not surprisingly, a large number of rules are required. Luckily, all of these rules
follow the same simple principles. We discuss one typical representative. This

The Java Verification Tool KeY: A Tutorial 607

rule handles the case when the array reference nse is not a simple expression
and possibly has side effects.

=⇒ [Tnse v; v = nse; v[e] = e′; p]φ
assignmentUnfoldLeftArrayRef

=⇒ [nse[e] = e′; p]φ

First, a fresh variable v is allocated that holds the reference expression nse.
Subsequently, the original assignment is unfolded and nse replaced with v. The
premise can now be symbolically executed, relying on v being simple. Of course,
further rules must be applied to deal with e, e′.

All rules for complex assignments follow this simple schema:(i) Memorize a
non-simple sub-expression, (ii) unfold a complex expression with the memorized
value, (iii) arrange the sequence of assignments to reflect Java’s evaluation rules.

The same principle is used to ensure that guards of conditionals and loops are
side effect-free, simple expressions (here named se) before they are symbolically
executed. In consequence, the rule for conditionals is straightforward:

se
.= TRUE =⇒ [p; r]φ se

.= FALSE =⇒ [q; r]φ
ifElseSplit

=⇒ [if (se) p else q; r]φ

2.8 Procedure-Modular Verification: Contracts and Method Calls

To verify the example in Listing 1, we need to handle recursive procedure calls
(for loops, see Sect. 3). We focus on a simple case to avoid the main idea getting
buried under technicalities: Assume a method signature static T m(T′ arg);
with a contract (pre, post). We design a JavaDL rule that, instead of inlining
m’s implementation, uses its contract (how to verify contracts is shown next). In
the conclusion of the rule below, we assign the result of a call to m with a simple
argument se compatible to T′ to a simple location expression v compatible to T.
Further, we assume that pre ′ and post ′ are the desugared first-order translations
of pre and post , respectively, where res corresponds to JML’s \result.
=⇒ {arg := se} pre ′ =⇒ {arg := se || res := cr} (post ′ → {v := res} [p]φ)

=⇒ [v = m(se); p]φ
(4)

The left premise validates that m’s contract goes into effect by proving the
precondition with se as the value of arg. The right premise uses the postcondition
in the remaining proof. To this end, first res is initialized with an unknown value
(fresh Skolem constant cr), then post ′ is added as an assumption. Whatever post ′

knows about res is propagated to v and can be used to establish [p]φ.
The general case for method contract application can be more complicated.

Specifically, for non-static method calls (dynamic dispatch), the implementation
of m might be impossible to determine statically. In this case, the verification
branches into different cases, one for each potential implementation. In addition,
the caller expression must be correctly set up and possible side effects of the call,
as described in the assignable clause, must be considered. Finally, m might
terminate with an exception. We refer to [35] for a full treatment.

608 B. Beckert et al.

To formalize verification of a contract’s correctness is easy in JavaDL, because
the modal correctness formulas are closely aligned to the semantics of contracts.
With the terminology from above, to verify a contract, we prove the following
sequent (arg is the name of m’s parameter used in pre ′):

pre ′ =⇒ [res = m(arg);]post ′

To avoid a circular argument, rule (4) is not permitted, but m is inlined. Again,
this does not yet account for the possibility that m may throw an exception. To
exclude this case, one can simply wrap the method call in a try statement and
add a check to the postcondition, ensuring no exception was thrown.

We close the section observing that the expressiveness of dynamic logic per-
mits to formalize method contract correctness and method contract usage as a
single JavaDL formula resp. a JavaDL calculus rule. This is in contrast to VCG
style verification based on Hoare logic, where this must be encoded with numer-
ous assert statements dispersed throughout the program under verification.

2.9 Proving the Contract of Binary Search

We prove the contract shown in Listing 1. Thus, we expect the following JavaDL
formula to be provable:

{v := v0 || low := l || up := u} (pre ′ → 〈res = binSearch(a,v,low,up);〉post ′)

Observe that this is a total correctness formula while the rules so far were for-
mulated with partial correctness operators. Fortunately, the calculus for partial
and total correctness is exactly the same, except for Java constructs with poten-
tially unbounded behavior. These are recursive calls and loops. To deal with the
former, a check for the measure to decrease must be added to rule (4). When
provable, total correctness of all method contracts in a given program implies
total correctness of any program. This follows from a result proved in [51].

Before we can prove the DL formula above with KeY, there is one last loose
end to tie up: It concerns how assignments involving array types are handled.
Due to the considerations in Sect. 2.7 we can assume that all locations are simple
and side effect-free. Yet the assignment rules—below the one for array access on
the right of the sequent—are relatively complex:

a 	 .= null, 0 ≤ e < a.length =⇒ {v := a[e]} [p]φ
a .= null =⇒ [throw new NullPointerException(); p]φ

a 	 .= null, 0 > e ∨ e ≥ a.length =⇒ [throw new AIOoBException(); p]φ

=⇒ [v = a[e]; p]φ

This rule (as other array rules) reflects that in Java an array access can throw
a NullPointerException or an ArrayIndexOutOfBoundsException (abbrevi-
ated with AIOoBException), which in general cannot be statically excluded (for
symbolic execution of exceptions, see Sect. 3.3). The actual update happens in

The Java Verification Tool KeY: A Tutorial 609

/*@ private normal_behavior
@ requires (\exists int idx; 0 <= idx < a.length; a[idx] == v);
@ requires (\forall int x, y; 0 <= x < y < a.length; a[x] <= a[y]);
@ ensures 0 <= \result < a.length;
@ ensures a[\result] == v;
@ assignable \nothing;
@ also private exceptional_behavior
@ requires !(\exists int idx; 0 <= idx < a.length; a[idx] == v);
@ assignable \nothing;
@ signals_only NoSuchElementException;
@*/

private int binSearch(int[] a, int v) {
int low = 0;
int up = a.length;

/*@ loop_invariant 0 <= low <= up <= a.length;
@ loop_invariant (\forall int x; 0 <= x < low; a[x] != v);
@ loop_invariant (\forall int x; up <= x < a.length; a[x] != v);
@ assignable \nothing;
@ decreases up - low;
@*/

while (low < up) {
int mid = low + ((up - low) / 2);
if (v == a[mid]) { return mid; }
else if (v < a[mid]) { up = mid; }
else { low = mid + 1; }

}
throw new NoSuchElementException();

}

Listing 2. Iterative implementation of binary search with JML specification

the first premise. Array updates v := a[e] constitute a new class of elemen-
tary updates with a dedicated set of update application and simplification rules,
reflecting the semantics of Java arrays. In particular, these rules take into account
that in Java array references might be aliased.

3 Towards Real Java

So far, we learned how to specify and verify a simple program, but the preceding
section left some gaps. The symbolic execution rules discussed above only con-
sider updates on local variables without aliasing and, for the most part, without
exceptional behavior. Furthermore, just like in Hoare calculus, KeY’s JavaDL
calculus requires loop invariants. In this section, we introduce the concepts nec-
essary to specify and verify the iterative version of binary search in Listing 2: the
heap model, exceptions and other abnormal termination, and loop invariants.

610 B. Beckert et al.

3.1 Aliasing: State Updates on the Heap

A major difficulty in verifying object-oriented programs is aliasing on the heap.
Consider an assignment to a field o.f. Then, the assignment rule from Sect. 2 no
longer suffices because changing the value of o.f might also change the value of
o2.f if o .= o2. To accommodate aliasing, JavaDL models the heap as an array
with indices (o, f) (called heap locations), where o is a first-order expression
of type Object and f is a first-order expression of type Field , the type of field
references. The axiomatization is based on the theory of arrays [52], but it is
extended by axioms specific to JavaDL. The list of these axioms is found in [59],
here we explain the functions defined through these axioms informally.

Given a program variable h of type Heap, a heap location (o, f), and an
expression e, the expression store(h, o, f, e) evaluates to a heap identical to h
except that the value of location (o, f) is e. For any Java type A, there is a
function selectA such that selectA(h, o, f) evaluates either to the value at the
location (o, f), if that value has type A, or to an underspecified value otherwise.

Now, we can give an update rule for field assignments. If either side of
an assignment is a complex expression, we first apply unfolding rules similar
to the rule (assignmentUnfoldLeftArrayRef) from Sect. 2.7. For a field assign-
ment where both sides are simple expressions, we have the following rule.
Similar to the rule seen in Sect. 2.9, we need a premise to deal with a possi-
ble NullPointerException. The first premise translates the assignment to an
update using the store function on the heap.

v 	 .= null =⇒ {heap := storeA(heap, o, f, v)} [p]φ
v .= null =⇒ [throw new NullPointerException();p]φ

assignmentToField
=⇒ [o.f = v;p]φ

To support modular verification as presented in Sect. 2, we need a way to
model the effects of a method call on the heap. KeY uses a variant of dynamic
frames [45,60], an approach which uses sets of heap locations as first-class logical
variables. To model the heap after a method call, we use a function which takes
a heap h and a location set s and replaces the value of any location in s by an
unknown value. This is accomplished by the anonymization function anon: The
expression anon(h, s, h′) evaluates to a heap equal to h except that all values of
locations in s are taken from h′. If h′ occurs nowhere else in the sequent, then
these values are unknown. Then, exactly the information in the postcondition
is what is known about the new values. Our anonymization is related to the
“havoc” notion in Boogie [11].

3.2 Loop Invariants in JML and JavaDL

To verify unbounded loops, KeY requires a manually specified loop invariant. A
loop invariant is a formula that holds before entering the loop and after every
loop iteration. Additionally, we need a termination witness (called loop variant)
to prove total correctness.

The Java Verification Tool KeY: A Tutorial 611

The loop invariant in Listing 2 consists of three clauses: The first limits the
range of the index variables low and up, like in the precondition of the recursive
version. The other two clauses differ from the recursive contract. The recursive
contract states that the searched value is between the indices low and up. When
using a loop invariant, we must instead state that the searched value is not
between the indices 0 and low nor between up and a.length. (KeY also permits
recursive loop contracts [64], but this is beyond the scope of this tutorial).

The loop variant (decreases) is an expression whose value is always at least
0 but strictly decreases with every loop iteration. Finally, the loop needs an
assignable condition to prove the surrounding method’s assignable condition.

When encountering a loop in JavaDL’s calculus, one must prove three
claims:(i) The loop invariant holds when entering the loop; (ii) the loop invari-
ant is preserved by the loop body; (iii) after the loop terminates, the invariant
ensures that the postcondition holds after executing the rest of the program.
These claims are captured in the three premises of the following rule (a simpli-
fied version that only applies to loops without side effects in the loop guard and
without abnormal termination; it also does not consider the loop variant):

Γ =⇒ U inv
Γ =⇒ UA((inv ∧ cond .= TRUE) → [body]inv ∧ frame)

Γ =⇒ UA((inv ∧ cond .= FALSE) → [πω]φ)
simpleInv

Γ =⇒ U [π while (cond) { body } ω]φ

Here, we drop the notational convention established in Sect. 2.6 and write the
update U and antecedent Γ explicitly. We also write ω for the rest of the program
and π for the inactive prefix, which may include a sequence of opening braces
{ and initial try blocks “try {”. The initial update U captures the state of
symbolic execution before the loop. The first premise ensures that the invariant
inv holds upon entering the loop. The second and third premises contain the
update A = {heap := anon(heap,mod , ah) ||l1 := c1 || · · · || ln := cn} , Here,
mod corresponds to the assignable clause, ah is an unknown heap (i.e., a heap
which occurs nowhere else in the sequent) and li := ci are updates which set
any local variable li written in the loop body to an unknown value ci. The two
updates UA are applied sequentially to transfer that part of the symbolic state
that is unchanged by the loop across the loop boundary. If, in that partially
anonymized state, the invariant and loop guard both hold, executing the loop
body must preserve the invariant and the frame condition, which ensures that
any heap location outside mod is unchanged. If the invariant holds but the
loop guard does not (the loop terminates), the postcondition must hold after
executing the program rest ω.

3.3 Exceptions in JML and JavaDL

In Sect. 2 we considered programs that terminate normally. But the version of
binSearch in Listing 2 throws an exception if the element is not found (instead
of returning -1). To specify this, we add a second contract using the keyword

612 B. Beckert et al.

also. That contract starts with exceptional_behavior, which specifies that
the method terminates with an exception if the precondition holds. The keyword
signals_only followed by a list of exception types states that the method throws
no other exceptions except those listed.

The translation to JavaDL combines both contracts: The JavaDL precondi-
tion is the disjunction pre ∨ pre ′ of both preconditions, and the postcondition is

(pre → exc .= null ∧ post) ∧ (pre ′ → instanceOfNSEE(exc))

where post is the translation of the ensures clause and exc is a reserved program
variable set when a throw statement is symbolically executed.

3.4 Integer Semantics

Recall that in Example 1, we glossed over the issue of arithmetic overflows.
We treated Java’s int type as the mathematical integers Z and all arithmetic
operations on int as their mathematical counterpart (our discussion focuses on
integers, but similar considerations apply to byte/long). Clearly, it is unsound
to disregard overflows. Consider the DL formula

i ≥ 0 → [i = i + 1;](i > 0)

At first glance, it seems to be valid. But in case i’s value is the maximal int
value, there is an overflow resulting in a negative value of i. To render the
formula valid, we can strengthen the precondition by i < Integer.MAX_VALUE.

To permit flexibility in the choice of the arithmetic model, KeY translates
operations +, -, *, etc., to abstract JavaDL functions during symbolic execu-
tion. For example, a + b becomes javaAddInt(a, b) (assuming that a,b are of
type int). The interpretation of these abstract functions can be configured
in the KeY tool (option “intrules”). Three options for integer semantics are
available:

(I) The default integer semantics, arithmeticSemanticsIgnoringOF, translates
to Z, as we did in Example 1. This semantics allows for easy prototyping and
teaching—also specifications tend to be much simpler—but it is unsound. Nor
is this semantics complete, as some valid formulas cannot be proven, such as
i .= Integer.MAX_VALUE → [i = i + 1;](i < 0). (II) To verify a program
that does not rely on overflows, the semantics checkedOverflow is suitable. It
checks that for all abstract functions, the result is in the value range of int,
i.e. it proves the absence of overflows. While checkedOverflow is sound, it is
not complete. If an intentional overflow occurs, the proof cannot be finished.
Both proof and specification efforts tend to be bigger with this option than for
the mathematical semantics. (III) The javaSemantics accurately models most
operations on Java’s int and provides soundness and completeness. All abstract
functions are translated to accurate calculations for int, at the cost of even more
complex proofs.

Integer semantics options let the user trade off the complexity of proofs and
specifications against the accuracy of the modeling: Is an exact model of Java’s

The Java Verification Tool KeY: A Tutorial 613

int required, which will complicate the proof? Is showing the absence of over-
flows sufficient? Is the limited accuracy of mathematical integers acceptable?
The answer will depend on the specific case.

Floating Point Numbers. KeY recently added support for floating point num-
bers, using a combination of theories in taclets and SMT solvers [1].

4 Inside KeY’s Core

4.1 Prover Architecture

As discussed in Sect. 2.5, KeY does not have a VCG architecture. Unlike such
tools as OpenJML [26] or Dafny [49], KeY comes with a built-in theorem prover,
but can also use external SMT solvers. It works directly on Java source code
avoiding an intermediate representation. Instead, it utilizes updates to achieve
forward symbolic execution, relying on its JavaDL calculus and automatic prover
to close goals. The latter is strong enough in many complex situations.

In addition to avoiding the limitations of VCG discussed in Sect. 2.5, this app-
roach has four main advantages:(I) Proofs generated by KeY are self-contained
without a reference to—or trust placed in—external tools. It is always possi-
ble to examine the current proof state in KeY without the need to understand,
for example, the SMTLIB format [12]. (II) The user of the KeY prover and the
tool itself work on the same structure and goals. This simplifies understanding of
proofs, the underlying calculus, and potential errors. (III) The automation capa-
bilities of KeY enable it to simplify any JavaDL formula, not only quantifier-free
first-order expressions, during symbolic execution. Since the automation strate-
gies aggressively simplify updates, first-order formulas, and terms while symbol-
ically executing a program, many branches in a proof tree are closed early or are
not created in the first place. Simplification is crucial to lessen the impact of path
explosion—a well-known issue in symbolic execution [9]. (IV) KeY generates an
explicit, self-contained proof object. A KeY proof can be saved and reloaded, even
when it is incomplete. A proof consists of the claim to be proven plus a series of
rule applications. This permits to share and re-play proofs, increasing trust in
KeY artifacts and enabling reproducible results. Hence, the trusted code base is
only KeY and its 25 years of experience.

The downside of the KeY architecture is that, when verifying exceptionally
complex code, KeY’s automatic capabilities may be insufficient. In this case,
KeY can hand a (first-order) goal over to an SMT solver, such as Z3 [30] or
cvc5 [10]. This is especially useful for floating point numbers (see Sect. 3.4). In
this manner, KeY can still profit from the advances in SMT-solving technology,
albeit at the cost of sacrificing self-contained proof objects.

4.2 Taclets

As a proof assistant, KeY allows significant flexibility regarding its underlying
calculus. Most rules of the JavaDL calculus are not hard-coded but written in

614 B. Beckert et al.

a simple, but expressive, language for such rules called taclets. We provide a
succinct description of taclets. For a more in-depth coverage of taclets, their
features, and correctness, see [57].

Taclets are very versatile and permit axiomatization of data structures, def-
inition of symbolic execution rules, rules for propositional and first-order logic,
etc. They allow users to define their own rules to accommodate a specific verifi-
cation purpose. To ensure soundness of first-order taclets, KeY generates a proof
obligation expressing the soundness of the taclet, which is proven in KeY itself.

We only present one form of taclets: rewrite taclets. Recall the rule in
Sect. 2.6 for symbolically executing assignments. Listing 3 defines the same rule
as taclet. The assignment rule has four parts: (i) A definition of schema vari-
ables matching formulas (post), program variables (#loc), and side effect-free
expressions (#se); (ii) a \find clause, defining the formula “in focus,” i.e., to be
replaced in the premise—in this case a modality of any kind with an assignment;
(iii) \replacewith providing the formulas in the premises; (iv) a \heuristics
clause, instructing the automatic prover when this rule should be applied.
assignment {

\formula post; \program Variable #loc; \program SimpleExpression #se;
\find(\modality{#allmodal}{.. #loc = #se; ...}\endmodality(post))
\replacewith({#loc:=#se}\modality{#allmodal}{.. ...}\endmodality(post))
\heuristics(simplify_prog)

};

Listing 3. A taclet defining the rule for symbolically executing an assignment.

The opening and closing ellipses ’..’ and ’...’ in the modality stand for the
inactive prefix π and the rest of the program ω, respectively (see Sect. 3.2).

5 Advanced Concepts for Object-Orientation

For the verification of non-trivial object-oriented programs, two specification fea-
tures are important: (i) Data abstraction by which the content of data structures
is represented using mathematical values thus hiding implementation details and
(ii) data encapsulation that allows reasoning about data structures locally pro-
vided that any structure operates only on memory locations belonging to itself.

5.1 Ghost and Model Fields, Model Methods

Abstraction is relevant for programs operating on non-trivial data structures,
as dealing with the details and memory layouts of data structure implementa-
tions unnecessarily increases proof complexity. So it is important (and often an
enabling factor) to possess means to abstract from implementation details and
to work with abstract values describing and capturing the state of data struc-
ture objects. For object-oriented programs, the state of an object is often best
captured abstractly in form of one or more values in mathematical data types.

The canonical abstraction of the state of a doubly linked list implementation,
for example, is a sequence of its entries. The expected behavior of list operations

The Java Verification Tool KeY: A Tutorial 615

interface List {
//@ instance ghost \seq content;

//@ requires 0 <= idx < content.length;
//@ ensures \result == (int)content[i];
int get(int idx);

//@ ensures content == \old(content) + \seq(value);
void add(int value);

}

class ArrayList implements List {
int[] array;
//@ invariant content == \array2seq(array);
...

}

Listing 4. Implementation and specification of a list with model entities

can be described in contracts using this abstraction. A client using such lists does
not need to know anything about the data structure’s actual implementation.
KeY supports three means to introduce abstract values as JML annotations into
class files: Ghost fields, model fields, and model methods.

Ghost fields (and variables) are fields (and variables) that only exist for
verification purposes. Since JML annotations are written in comments, they are
ignored during compilation. For verification, however, ghost entities are treated
like normal Java fields and variables. In particular, ghost fields give rise to heap
locations as outlined in Sect. 3.1. Ghost entities in JML may have types which are
only available in JML but not in Java. In assignments, expressions that go beyond
the expressiveness of Java (like quantifiers) can be used with ghost variables.
Ghost fields and variables are often used to store redundant information or
intermediate results, which are not required for computations at run time, but
can considerably simplify deductive verification.

The example in Listing 4 illustrates how a ghost field is used to abstract from
a concrete data structure. The List interface declares the ghost field content
holding the list’s abstraction, which is a sequence of values. The abstraction
suffices to specify the contract of method get, which obtains the integer value
stored at index idx. The method add ensures that a value is appended to the
content. It is specified using the sequence operator “+” in KeY’s JML. The
implementing class ArrayList uses an array that actually holds the list’s values.
The connection between the abstract list and its implementation is established
via a coupling invariant. In this case the function \array2seq can be used to
read the sequence of values from an array.

Modifications of ghost fields must be made explicitly using assignments in
contracts. For example, the contract of method add (not shown here, but avail-
able in the tutorial sources), must set content explicitly to the new value.

616 B. Beckert et al.

Model fields are, like ghost fields, only visible during verification and not at
compile time. However, unlike ghost fields, model fields do not have a state of
their own but are observer symbols whose value is computed from the current
heap state. They are more like side effect-free Java query methods than Java
fields. A model field is declared by adding the JML modifier model.

The benefit of model fields is that they need not (and cannot) be updated
explicitly since they “automatically” change their value. However, verification of
programs with model fields usually needs significantly more interactions than
programs with ghost fields, and proofs tend to be larger and more complex.

Model methods are a generalization of model fields in the sense that they
have arguments. They are side effect-free methods declared in JML annotations.

5.2 Dynamic Frames

Data encapsulation is closely related to data abstraction: If a data structure
is well encapsulated, then its abstract value does not depend on memory areas
outside the data structure. This is known as the framing problem: How to specify
and verify that the abstract state of an object does not interfere with another
unrelated object? Framing is usually addressed by requiring that the memory
locations of data structures do not overlap. Over the last two decades, mainly
three concepts to solve the framing problem have emerged: Separation logic [56],
ownership type systems [31], and dynamic frames [46].

The KeY tool implements dynamic frames [60], where the set of locations
that “belong” to a data structure, i.e. those locations that can be read or written
by its operations are explicitly modeled as a set of memory locations, often called
the footprint of an object. A ghost field is used to model this location set.

Revisiting the List example, in Listing 5 we specify at the interface level
that the get query method may at most read memory locations in the foot-
print (using the keyword accessible). The function add may modify at most
these locations (specified using assignable). When the footprint grows in add,
only fresh locations that were not yet allocated prior to the call may be added
to ensure that footprints remain separate. This is a typical specification pat-
tern used when specifying and verifying object-oriented programs with dynamic
frames. The List example is covered in the tutorial material.
interface List {

//@ instance ghost \locset footprint;

//@ accessible footprint;
//@ assignable \nothing;
int get(int index);

//@ assignable footprint;
//@ ensures \new_elems_fresh(footprint);
void add(int);

}

Listing 5. Specification pattern using dynamic frames for the list interface

The Java Verification Tool KeY: A Tutorial 617

The value of a query invocation can only change if an element in the footprint
is modified. The following axiom is available in KeY:

(∀o, f. (o, f) ∈ list.footprint → select(h1, o, f)
.= select(h2, o, f)

) →
get(h1, list, idx) .= get(h2, list, idx) (5)

It expresses that the get function computes the same result in heaps h1, h2 if all
locations in footprint hold the same values in h1, h2. When lists are known to
have disjoint footprints, then the dynamic frame axiom (5) allows to infer that
adding an element to one list has no influence on a query to the other list.

6 KeY as a Tool for the Community

Due to its maturity and openness, KeY is a valuable tool for the community.
This includes the use of KeY as a tool for verification projects or for teaching,
but also the use of KeY in research projects for building new tools on top of it.

6.1 KeY as a Tool to Verify Real-World Software

Over the years, a plethora of case studies has been conducted, where KeY was
used to verify a plethora of real-world algorithms and data structures. We present
a selection; a more comprehensive list is on the KeY project website.

A verification case study that received much attention is TimSort, an algo-
rithm combining merge and insertion sort. It is prominently used as Java’s
default for sorting collections of objects. However, that implementation had a bug
and crashed for certain large collections. This issue was detected and explained
in [29], a fixed version has been presented and verified with KeY in [28].

While the JDK uses TimSort to sort collections of objects, collections of prim-
itive types are sorted using Dual Pivot Quicksort, which is a standard quicksort
that partitions into three instead of into two parts. The implementation pro-
vided by the JDK has been proven correct in [19], which includes the sortedness
property, the permutation property, and the absence of integer overflows.

In [24], the core of the JDK’s Identity Hash Map was specified and verified.
In that case study, a novelty is the use of several JML tools: KeY, the bounded
model checker JJBMC [16], and OpenJML [25], to exploit the strengths of each
of them and jointly verify a large project.

Researchers at CWI showed that Java’s LinkedList implementation breaks
when lists with more than 231 elements are created [42]. They propose a fixed
version and verified it successfully with KeY. This case study shows the capability
of KeY to reason about bounded integer data types and handle overflows.

The most recent large case study performed with KeY is the verification of
the sorting algorithm in-place super scalar sample sort [18]. This algorithm is
efficient on modern machines, as it avoids branch mispredictions, allows high
instruction parallelism by reducing data dependencies in the innermost loops,
and it is very cache-efficient. This case study shows that with KeY it is possible to
verify state-of-the-art sorting algorithms of considerable size (in this case about
900 lines of Java) and complexity without having to modify the source code.

618 B. Beckert et al.

6.2 KeY for Teaching

KeY is well suited for teaching. It comes with a GUI that provides context-
specific actions, such as the rules that are applicable to the specific selected
term. It provides means to inspect partial proofs and to explore the state of
the prover interactively. The approach and the tool are very mature, and a lot
of material exists that describes them in great detail (e.g., [4,5,14]). For these
reasons, KeY is used in many courses at various universities, a list can be found
at https://www.key-project.org/applications/key-for-teaching/. There is also a
plethora of course notes and slides.

6.3 KeY as Library and Research Platform

In addition to the use of KeY as a standalone GUI-centric tool, it is possible
to use KeY as a platform for research or to include it in a project as a library
employing its symbolic execution and automated reasoning capabilities. One tool
that uses KeY in such a way is CorC [58], which is an Eclipse-based tool that
allows users to construct correct programs by stepwise refinement. To verify that
the Java statements adhere to their “contracts” (pre- and postconditions created
via refinement from the top-level specifications), CorC calls KeY as a backend.

KeYmaera [54] is an offspring of KeY that can be used to prove properties
about cyber-physical systems, which are systems that have continuous behav-
ior as well as discrete state changes (for example cars or planes). However, its
successor KeYmaera X [34] is a green-field implementation and does not share a
common code base with KeY anymore.

The Symbolic Execution Debugger [40] can be used to symbolically execute a
program and obtain a tree of possible program paths. This helps to understand
program and specification and to detect bugs, for example when unexpected
paths are present or expected ones are missing. More recently, the Refinity tool
[61] extends KeY by abstract execution [62] and lets one prove the correctness of
refactorings. Both tools make use of KeY as a library.

6.4 Open Source and Open Development

KeY has been open source since the inception of the project in 1999. In February
2023 the sources were moved to a public repository on GitHub.3 The open devel-
opment model facilitates bug reports and feature requests. GitHub also provides
the possibility to contact the developers.

The annual KeY Symposium takes place since 2002. With an international
field of participants, it has been a breeding ground for new ideas and features
for KeY. Growing over the years, the most recent edition has been the largest
ever with about 40 attendees. To transfer knowledge from experienced to newer
developers, two hackathons have been organized (in 2018 and 2024). Both events
were a great success and led to multiple new features and bug fixes.

3 https://github.com/KeYProject/key.

https://www.key-project.org/applications/key-for-teaching/
https://github.com/KeYProject/key

The Java Verification Tool KeY: A Tutorial 619

Acknowledgments. This work was supported by the DFG projects BE 2334/9-1,
BU 2924/3-1, HA 2617/9-1, and UL 433/3-1 as well as the Helmholtz topic Engineering
Secure Systems (KASTEL) and the Helmholtz pilot program KiKIT.

Data Availability Statement. All tools and demos of this tutorial paper are avail-
able at Zenodo (DOI: 10.5281/zenodo.11669182).

References

1. Abbasi, R., Schiffl, J., Darulova, E., Ulbrich, M., Ahrendt, W.: Deductive ver-
ification of floating-point java programs in KeY. In: TACAS 2021. LNCS, vol.
12652, pp. 242–261. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72013-1_13

2. Abrial, J.R.: The B Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

3. Ahrendt, W., et al.: The KeY tool: integrating object oriented design and formal
verification. Software and System Modeling 4(1), 32–54 (2005). https://doi.org/
10.1007/s10270-004-0058-x

4. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification – The KeY Book: From Theory to Practice. No.
10001 in LNCS, Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-
6

5. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Ulbrich, M. (eds.): Deductive
Software Verification: Future Perspectives. No. 12345 in LNCS, Springer (2020).
https://doi.org/10.1007/978-3-030-64354-6

6. Ahrendt, W., Gladisch, C., Herda, M.: Proof-based test case generation. In: Deduc-
tive Software Verification – The KeY Book. LNCS, vol. 10001, pp. 415–451.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6_12

7. Ahrendt, W., Grebing, S.: Using the KeY prover. In: Deductive Software Verifi-
cation – The KeY Book. LNCS, vol. 10001, pp. 495–539. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49812-6_15

8. Axtmann, M., Witt, S., Ferizovic, D., Sanders, P.: Engineering in-place (shared-
memory) sorting algorithms. Comput. Res. Repository (CoRR) abs/2009.13569
(2020). https://doi.org/10.48550/arXiv.2009.13569

9. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. (CSUR) 51(3), 50 (2018).
https://doi.org/10.1145/3182657

10. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

11. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.P. (eds.) FMCO, pp. 364–387. Springer,
Berlin, Heidelberg (2006)

12. Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB) (2016). www.SMT-LIB.org

13. Beckert, B., Hähnle, R., Hentschel, M., Schmitt, P.H.: Formal verification with
KeY: a tutorial. In: Deductive Software Verification – The KeY Book. LNCS, vol.
10001, pp. 541–570. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
49812-6_16

https://doi.org/10.5281/zenodo.11669182
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/978-3-030-72013-1_13
https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/s10270-004-0058-x
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-030-64354-6
https://doi.org/10.1007/978-3-319-49812-6_12
https://doi.org/10.1007/978-3-319-49812-6_15
https://doi.org/10.48550/arXiv.2009.13569
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-49812-6_16
https://doi.org/10.1007/978-3-319-49812-6_16

620 B. Beckert et al.

14. Beckert, B., Hähnle, R., Schmitt, P. (eds.): Verification of Object-Oriented Software
The KeY Approach. No. 4334 in LNCS, Springer (2006). https://doi.org/10.1007/
978-3-540-69061-0

15. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-69061-0

16. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular verification of JML
contracts using bounded model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA
2020. LNCS, vol. 12476, pp. 60–80. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-61362-4_4

17. Beckert, B., Klebanov, V., Weiß, B.: Dynamic logic for Java. In: Deductive Software
Verification – The KeY Book. LNCS, vol. 10001, pp. 49–106. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49812-6_3

18. Beckert, B., Sanders, P., Ulbrich, M.: Formally verifying an efficient sorter. In:
Finkbeiner, B., Kovács, L. (eds.) Tools and Algorithms for the Construction and
Analysis of Systems - 30th International Conference TACAS, Luxembourg City,
Luxembourg. LNCS, Springer, Cham (2024). https://doi.org/10.1007/978-3-031-
57246-3_15

19. Beckert, B., Schiffl, J., Schmitt, P.H., Ulbrich, M.: Proving JDK’s dual pivot quick-
sort correct. In: Paskevich, A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712,
pp. 35–48. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72308-2_3

20. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development –
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

21. Blom, S., Darabi, S., Huisman, M., Oortwijn, W.: The VerCors tool set: verification
of parallel and concurrent software. In: Polikarpova, N., Schneider, S. (eds.) IFM
2017. LNCS, vol. 10510, pp. 102–110. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66845-1_7

22. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: Shepherd your herd of
provers. In: Boogie 2011: First International Workshop on Intermediate Verification
Languages, pp. 53–64. Wrocław, Poland (2011)

23. de Boer, F.S., Hiep, H.A.: Completeness and complexity of reasoning about call-
by-value in Hoare logic. ACM Trans. Prog. Lang. Syst. 43(4), 17:1–17:35 (2021).
https://doi.org/10.1145/3477143

24. de Boer, M., de Gouw, S., Klamroth, J., Jung, C., Ulbrich, M., Weigl, A.: For-
mal specification and verification of JDK’s identity hash map implementation. In:
ter Beek, M.H., Monahan, R. (eds.) Integrated Formal Methods, pp. 45–62. no.
13274 in LNCS, Springer International Publishing, Cham (2022).https://doi.org/
10.1007/978-3-031-07727-2_4

25. Cok, D.R.: OpenJML: JML for Java 7 by extending OpenJDK. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
472–479. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_35

26. Cok, D.R.: OpenJML: Software verification for Java 7 using JML, OpenJDK, and
Eclipse. In: Dubois, C., Giannakopoulou, D., Méry, D. (eds.) 1st Workshop on
Formal Integrated Development Environment, F-IDE, Grenoble, France, pp. 79–
92. No. 149 in EPTCS (2014)

27. Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte, W.: VCC: Contract-
based modular verification of concurrent C. In: International Conference on Soft-
ware Engineering – Companion Volume, pp. 429–430 (2009)

https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-319-49812-6_3
https://doi.org/10.1007/978-3-031-57246-3_15
https://doi.org/10.1007/978-3-031-57246-3_15
https://doi.org/10.1007/978-3-319-72308-2_3
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1145/3477143
https://doi.org/10.1007/978-3-031-07727-2_4
https://doi.org/10.1007/978-3-031-07727-2_4
https://doi.org/10.1007/978-3-642-20398-5_35
https://doi.org/10.1007/978-3-642-20398-5_35

The Java Verification Tool KeY: A Tutorial 621

28. De Gouw, S., De Boer, F.S., Bubel, R., Hähnle, R., Rot, J., Steinhöfel, D.: Verifying
OpenJDK’s sort method for generic collections. J. Automated Reasoning 62(6),
93–126 (2019)

29. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: the good, the bad and the worst case. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273–289.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_16

30. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

31. Dietl, W., Müller, P.: Universes: lightweight ownership for JML. J. Object Technol.
4(8), 5–32 (2005). https://doi.org/10.5381/JOT.2005.4.8.A1

32. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976)
33. Fitting, M.C.: First-Order Logic and Automated Theorem Proving, 2nd edn.

Springer-Verlag, New York (1996). https://doi.org/10.1007/978-1-4612-2360-3
34. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an

axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6_36

35. Grahl, D., Bubel, R., Mostowski, W., Schmitt, P.H., Ulbrich, M., Weiß, B.: Modular
specification and verification. In: Deductive Software Verification – The KeY Book.
LNCS, vol. 10001, pp. 289–351. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49812-6_9

36. Grahl, D., Ulbrich, M.: From specification to proof obligations. In: Deductive Soft-
ware Verification – The KeY Book. LNCS, vol. 10001, pp. 243–287. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49812-6_8

37. Hähnle, R., Huisman, M.: Deductive software verification: from pen-and-paper
proofs to industrial tools. In: Steffen, B., Woeginger, G. (eds.) Computing and
Software Science. LNCS, vol. 10000, pp. 345–373. Springer, Cham (2019). https://
doi.org/10.1007/978-3-319-91908-9_18

38. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (Oct, Foundations of
Computing (2000)

39. Harel, D., Meyer, A.R., Pratt, V.R.: Computability and completeness in logics of
programs (preliminary report). In: Hopcroft, J.E., Friedman, E.P., Harrison, M.A.
(eds.) Proceedings of the 9th Annual ACM Symposium on Theory of Computing,
Boulder, CO, USA, pp. 261–268. ACM, New York, NY (1977). https://doi.org/10.
1145/800105.803416

40. Hentschel, M., Bubel, R., Hähnle, R.: Symbolic execution debugger (SED). In:
Bonakdarpour, B., Smolka, S.A. (eds.) Runtime Verification, 14th International
Conference, RV, Toronto, Canada, pp. 255–262. No. 8734 in LNCS, Springer (2014).
https://doi.org/10.1007/978-3-319-11164-3_21

41. Hentschel, M., Bubel, R., Hähnle, R.: The Symbolic Execution Debugger (SED):
a platform for interactive symbolic execution, debugging verification and More.
STTT 21(5), 485–513 (2018)

42. Hiep, H.-D.A., Maathuis, O., Bian, J., de Boer, F.S., van Eekelen, M., de Gouw,
S.: Verifying OpenJDK’s LinkedList using key. In: TACAS 2020. LNCS, vol.
12079, pp. 217–234. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45237-7_13

43. Hoare, C.A.R.: An axiomatic basis for computer programming. Comm. ACM
12(10), 576–580, 583 (1969)

https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.5381/JOT.2005.4.8.A1
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-49812-6_9
https://doi.org/10.1007/978-3-319-49812-6_9
https://doi.org/10.1007/978-3-319-49812-6_8
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1007/978-3-319-91908-9_18
https://doi.org/10.1145/800105.803416
https://doi.org/10.1145/800105.803416
https://doi.org/10.1007/978-3-319-11164-3_21
https://doi.org/10.1007/978-3-030-45237-7_13
https://doi.org/10.1007/978-3-030-45237-7_13

622 B. Beckert et al.

44. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical Report CW-520,
Department of Computer Science, Katholieke Universiteit Leuven (2008). http://
www.cs.kuleuven.be/~bartj/verifast/verifast.pdf

45. Kassios, I.T.: Dynamic frames: support for framing, dependencies and sharing
without restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.
LNCS, vol. 4085, pp. 268–283. Springer, Heidelberg (2006). https://doi.org/10.
1007/11813040_19

46. Kassios, I.T.: The dynamic frames theory. Formal Aspects Comput. 23(3), 267–288
(2011). https://doi.org/10.1007/S00165-010-0152-5

47. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

48. Leavens, G.T., et al.: JML reference manual (2013). http://www.eecs.ucf.edu/
~leavens/JML//OldReleases/jmlrefman.pdf, draft revision 2344

49. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

50. Leino, K.R.M., Wüstholz, V.: The Dafny integrated development environment. In:
F-IDE 2014, pp. 3–15. No. 149 in EPTCS (2014)

51. Lidström, C., Gurov, D.: An abstract contract theory for programs with proce-
dures. In: FASE 2021. LNCS, vol. 12649, pp. 152–171. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-71500-7_8

52. McCarthy, J.: Towards a mathematical science of computation. In: 2nd IFIP
Congress, pp. 21–28. North-Holland (1962)

53. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

54. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7_15

55. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: 17th Annual Sym-
posium on Foundations of Computer Science, Houston, TX, USA, pp. 109–121.
IEEE Computer Society, Los Alamitos, CA (1976).https://doi.org/10.1109/SFCS.
1976.27

56. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Symposium on Logic in Computer Science (LICS) 2002, pp. 55–74. IEEE Computer
Society (2002).https://doi.org/10.1109/LICS.2002.1029817

57. Rümmer, P., Ulbrich, M.: Proof search with taclets. In: Deductive Software Veri-
fication – The KeY Book. LNCS, vol. 10001, pp. 107–147. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49812-6_4

58. Runge, T., Schaefer, I., Cleophas, L., Thüm, T., Kourie, D., Watson, B.W.: Tool
support for correctness-by-construction. In: Hähnle, R., van der Aalst, W. (eds.)
FASE 2019. LNCS, vol. 11424, pp. 25–42. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-16722-6_2

59. Schmitt, P.H.: First-order logic. In: Deductive Software Verification – The KeY
Book. LNCS, vol. 10001, pp. 23–47. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-49812-6_2

60. Schmitt, P.H., Ulbrich, M., Weiß, B.: Dynamic frames in java dynamic logic. In:
Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 138–152.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18070-5_10

http://www.cs.kuleuven.be/~bartj/verifast/verifast.pdf
http://www.cs.kuleuven.be/~bartj/verifast/verifast.pdf
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/11813040_19
https://doi.org/10.1007/S00165-010-0152-5
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-030-71500-7_8
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-319-49812-6_4
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-030-16722-6_2
https://doi.org/10.1007/978-3-319-49812-6_2
https://doi.org/10.1007/978-3-319-49812-6_2
https://doi.org/10.1007/978-3-642-18070-5_10

The Java Verification Tool KeY: A Tutorial 623

61. Steinhöfel, D.: REFINITY to model and prove program transformation rules. In:
Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470, pp. 311–319. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64437-6_16

62. Steinhöfel, D., Hähnle, R.: Schematic program proofs with abstract execution:
theory and applications. J. Autom. Reason. 68(7), 7:1–7:57 (2024)

63. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46681-0_53

64. Tuerk, T.: Local reasoning about while-loops. In: VSTTE Theory Workshop (VS-
Theory) (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-662-46681-0_53
https://doi.org/10.1007/978-3-662-46681-0_53
http://creativecommons.org/licenses/by/4.0/

	The Java Verification Tool KeY:A Tutorial
	1 Introduction
	2 Verification Approach
	2.1 The Principle of Contract-Based Verification
	2.2 Method Contracts
	2.3 Java Modeling Language
	2.4 Dynamic Logic
	2.5 State Updates
	2.6 A JavaDL Calculus
	2.7 Forward Symbolic Execution of Straight-Line Programs
	2.8 Procedure-Modular Verification: Contracts and Method Calls
	2.9 Proving the Contract of Binary Search

	3 Towards Real Java
	3.1 Aliasing: State Updates on the Heap
	3.2 Loop Invariants in JML and JavaDL
	3.3 Exceptions in JML and JavaDL
	3.4 Integer Semantics

	4 Inside KeY's Core
	4.1 Prover Architecture
	4.2 Taclets

	5 Advanced Concepts for Object-Orientation
	5.1 Ghost and Model Fields, Model Methods
	5.2 Dynamic Frames

	6 KeY as a Tool for the Community
	6.1 KeY as a Tool to Verify Real-World Software
	6.2 KeY for Teaching
	6.3 KeY as Library and Research Platform
	6.4 Open Source and Open Development

	References

