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Abstract: Robotic assistance systems are being used more
and more frequently in the operating room, with the goal to
support surgeons and to automate parts of a procedure. The la-
paroscopic cholecystectomy is one of the most common proce-
dures in Germany. We aim to automate the assistant grasp task
in this procedure. To achieve this goal, first the grasp points on
the gallbladder need to be determined. In this work, we there-
fore present a statistical shape model fitting to the gallblad-
der for grasp point determination. Gallbladder and liver point
clouds are utilized as inputs. A registration algorithm is used
to fit the shape model to the gallbladder mesh. The process
is evaluated on three different datasets achieving a success-
ful grasping point identification of 90% for artificially created
gallbladders, 100% for our silicon phantom model, and 90%
for ex-vivo organs.
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1 Introduction

Robotic systems are increasingly becoming an important part
of modern surgical procedures, as they offer greater precision
and stability. One of the critical challenges in cholecystectomy
is the accurate identification of grasp points on the soft tis-
sue, which is essential for successful surgical manipulation.
This paper explores the application of statistical shape models
(SSM) to address this challenge. SSMs, which have been ex-
tensively used in various medical imaging and analysis tasks
[1], offer a robust framework for understanding and predicting
anatomical structures from complex datasets.

*Corresponding author: Christian Kunz, Franziska
Mathis-Ullrich, Friedrich-Alexander-Universitat
Erlangen-Nurnberg, Department of Artificial Intelligence in
Biomedical Engineering (AIBE), 91052 Erlangen, Germany,
E-Mail: franziska.mathis-ullrich@fau.de, christian.kunz@fau.de
Maria Kraus, Intelligente Prozessautomation und Robotik (IPR),
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
Rayan Younis, Martin Wagner, Department of Visceral-, Thoracic
and Vascular Surgery, Faculty of Medicine, University Hospital
Carl Gustav Carus & Center for the Tactile Internet with Human in
the Loop (CeTl), Technische Universitat Dresden, 01307 Dresden,
Germany, E-Mail: martin.wagner@ukdd.de

B Grasping Points

Fig. 1: Results of grasp point determination on a surgical phan-
tom.

Sarkalkan et al. [2] investigated how statistical shape
models can be applied to bones for the study of osteoarthri-
tis development, accuracy improvement for the prediction of
bone fractures, the design of orthopedic implants, and surgical
planning. Liithi [3] investigates the creation and usage of sta-
tistical shape models from a machine learning perspective, as
well as their application in the planning of cranio-facial surg-
eries. Han et al. [4] utilized preoperative CT scans and Ac-
tive Shape Models to perform an automated trajectory plan-
ning for pelvic trauma surgery. Kunz et al. [5] introduced an
approach were two SSMs were used for autonomous planning
of catheter placements in neurosurgical interventions, like the
ventricular puncture. The shape models were utilized to de-
termine the entry points on the skull and target points inside
the ventricular system. The puncture trajectory was visualized
with an augmented reality headset. Frangi et al. [6] developed
a statistical shape model (SSM) of the left and right ventricles
of the heart using MRI data. They began by constructing an at-
las of the ventricles, then automatically extracting landmarks
from it. Finally, a volumetric nonrigid registration technique
was used for the model fitting.

In this work we present an approach to create a statisti-
cal shape model from data and fit it to the gallbladder for the
determination of grasp points. We reach high accuracy values
and find a valid grasp point in at least 90% of cases.
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2 Materials & Methods

In this chapter we provide an overview of the methods for
grasp point determination on a gallbladder. Our method uses
point clouds as input from three different scenarios: virtual
models, a phantom, and ex-vivo porcine livers.

2.1 Statistical Shape Model Creation

First, we created gallbladder and liver models based on
recorded point clouds from ex-vivo experiments. The phan-
tom that was used in this work was presented by us in [7]. It
is based on the same virtual gallbladder models that were arti-
ficially created. We randomly deformed the gallbladder model
with Open3D [8] to create 30 realistic pig gallbladders, to re-
flect shape variations that can be found in reality. The frame-
work Scalismo is used in this work to create and fit the statis-
tical shape model. The SSM of the gallbladder was generated
from the created dataset. To create the SSM, a Point Distribu-
tion Model was chosen, where all parameters are automatically
derived from the dataset:

r=2+ Pb (1)

where z is the vector of landmark positions that represent the
shape of an object, z represents the mean shape, P is a matrix
of eigenvectors obtained from the principal component analy-
sis and b is a vector of shape parameters that weigh the con-
tributions of each principal mode of variation to the specific
instance of the shape. The grasp points are defined manually
on the shape model. We define three grasp points as an exam-
ple to represent different grasp positions for different stages of
the gallbladder removal. They are defined on a vertex point of
the mesh. Additionally we define 18 landmarks on the surface
of the gallbladder as depicted in Figure 2 d). The landmarks
are used as anchor points and we want to register them to the
corresponding points on the target mesh. These are additional
points to reach correspondence. This is especially useful for
organs with few points of interest or features.

2.2 Shape Model Fitting

In a first process step, a semantic segmentation is carried out
to semantically segment the recorded point clouds. We have
presented an approach in [9]. Each point in the point cloud
is classified as gallbladder, liver, or background. The method
presented in this paper only takes the points of the gallbladder
into account.

In this work, we investigate fitting a SSM to a target mesh.
Statistical shape models are represented as surface meshes.
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Several preprocessing steps need to be carried out to prepare
our input point clouds for the fitting procedure. This involves
the correction of the orientation and completion of the gall-
bladder. Further, a mesh is generated from the given points
and a landmark determination is carried out. The whole pre-
processing workflow is depicted in Figure 2.

2.2.1 Preprocessing

First the gallbladder is oriented with Open3D on the x,y plane
and in positive z-space as depicted in Figure 2 a). We assume
that the camera captures the gallbladder from above, so that
the liver and the gallbladder are visible.

First, a bounding box is created based on the given point
cloud of the gallbladder. To ensure that the gallbladder is ori-
ented upwards, a line is calculated that starts in the center of
the point cloud and points in positive z-direction. If the line
intersects with the points, the point cloud is rotated by 180°.
To orient the gallbladder correctly on the x,y plane in positive
x-direction, two helping planes are constructed to measure the
thickness of the point cloud at 25% and 75%. Through surgi-
cal knowledge we know that the fundus of the gallbladder is
larger than its neck. The gallbladder is then rotated so that the
neck points to the right (positive x direction).

As the point cloud is only visible from one side, we thus
need to reconstruct the whole body of the gallbladder. In the
next steps we reconstruct the oriented point cloud to its esti-
mated full shape. We take surgical knowledge about the volu-
metric shape of the gallbladder into account. First, a help plane
is created that is parallel to the x,y plane. We assume that ap-
proximately half of the gallbladder of one side is visible. We
calculate the center of the recorded point cloud and translate
the help plane to this position. We then mirror the points to get
a partial full shape of the gallbladder by computing the dis-
tance of every point to the mirror plane and creating a mirrored
point on the other side of the plane. In a consecutive stage,
we need to fill all shape holes and construct a surface mesh.
We do so by using the Open3D alpha shape algorithm imple-
mentation [10]. To obtain better fitting results, landmarks are
determined on the target mesh. These points are used as an-
chor points, where corresponding points on the SSM and on
the target mesh are aligned as closely as possible. To do so,
we construct two help planes parallel to the x,y and x,z planes,
respectively, orthogonal to each other. We then move a third
orthogonal z,y plane over the gallbladder from the neck to the
fundus and create on six positions landmarks: One point at the
fundus and the neck, and four points at 20%, 40%, 60%, and
80% respectively. We create a point at each side of the gall-
bladder (+z,-z,+y,-y) where the distance to the center point of
the z,y plane is maximized. This is visualized in figure 2 d).
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Fig. 2: Process of the shape model fitting.

2.2.2 Shape Model Fitting

After preprocessing, the fitting process is carried out. The
shape model fitting consists of several consecutive stages.
First, a rough alignment is performed to provide a suitable ini-
tial fitting. Next the fine alignment is done to match the shape
model as closely as possible with the target mesh. In the last
step, the grasp points are determined.

The initial rough alignment consists of two stages. First,
the landmarks of the shape model mesh and the target mesh are
rigidly registered to each other without deforming the shapes
using Open3D. In the second stage a gaussian process regres-
sion (GPR) is performed. GPR is a flexible non-parametric
method for shape model fitting. The results can be seen in
Figure 2 f). To perform the fine alignment, the parametric non
rigid registration algorithm is used. For initial parametrization,
the output of the rough alignment is used. The algorithm itera-
tively minimizes the distance between the target and the shape
model mesh. In a last step, the grasp points are determined on
the target mesh. They can be automatically derived as they are
defined on the shape model and were deformed accordingly in
the fitting process.

3 Results

The results of the fitting procedure and the grasp point deter-
mination are presented below.

For the shape model fitting we determined the follow-
ing metrics: the average distance (in mm), the Hausdorff dis-

tance (in mm), and the processing time (in seconds). The aver-
age distance is the distance between defined landmarks of the
shape model and target mesh, while the Hausdorff distance
represents the distance of two set of points. Table 1 summa-
rizes the results.

Average Distance | Hausdorff Time (sec)

(mm) Distance (mm)
Artificial

0.14-0.01 | 0.93+0.24 | 59.3441.03
Phantom

0.33+0.25 | 7.78+7.71 | 60.164-1.06
Ex-vivo

0.72+ 0.54 | 11.2247.94 | 67.711:3.04

Tab. 1: Results of the parametric, non-rigid registration fitting, with
18 landmarks used.

We evaluated the fitting accuracy in all three scenarios.
In all three scenarios we reach an average distance of un-
der 1 mm. For the artificial and the phantom scenarios, the
Hausdorff distance is 0.93+0.24 mm and 7.78+7.71 mm, re-
spectively. For the ex-vivo scenario the Hausdorff distance
is 11.2247.94 mm. The processing time is 59.34+1.03 sec-
onds (sec) for the artificial gallbladder, 60.16+1.06 sec for the
phantom, and 67.71+3.04 sec for the ex-vivo organ.

The grasp point determination was evaluated by a med-
ical expert for all three scenarios. He had the option to rate
a detected grasp point as "good", "minor deviation", and "not
usable". Grasp points rated as "minor deviation" are usable but
may lead to unfavorable grasps.

43



— C. Kunz, et al., Statistical Shape Models for Grasp Point Determination in Laparoscopic Surgeries

Artificial: The shape model fitting was performed on 19
artificially created gallbladders. 90% of the determined grasp
points were rated as "good", 8.33% as "minor deviation" and
1.67% as "not usable". Phantom: To evaluate the fitting to our
phantom we used nine point cloud recordings. All determined
grasp points were rated as "good". Ex-vivo: The fitting was
performed on nine ex-vivo organs. 90% of the grasp points
were determined as "good", 3.33% as "minor deviation", and
6.67% as "not usable".

An example of determined grasp points on a phantom is
visualized in figure 1.

4 Discussion

There are many different possibilities to construct a statistical
shape model. We used the approach of automatically gener-
ate a Point Distribution Model through variations of artificially
generated gallbladders. Additionally, there are some parame-
ters that can be altered to fine tune the shape model.

In our result section we present the best fitting results
based on the distance metrics. One limitation, when working
with statistical shape models is often the time needed to per-
form a fitting. To reach the highest fitting accuracy our ap-
proach needs approximately one minute to fit the shape model
to a scene. However, we tested different parameter combina-
tions and evaluated the distance metrics and processing time.
For lower average distance values of 2-4 mm, the processing
time is faster.

In our scenario this would still be sufficient, while in other
scenarios, e.g. neurosurgical scenarios, the approach needs to
be as accurate as possible. It is planned to examine various
fitting algorithms in the future that enable faster fitting and at
the same time provide accurate fitting results.

We have defined three grasp points on the gallbladder, re-
flecting most used grasp areas during the removal of the gall-
bladder. The exact definition of the correct position of a grasp-
ing point is difficult and can be debated. The presented results
need to be interpreted in this context.

5 Conclusion

In this work, we have presented a statistical shape model for
the determination of grasp points on the gallbladder for differ-
ent scenarios. We were able to find at least in 90% of cases
valid grasp points even in difficult deformation states on ex-
vivo organs. We reach an average distance of the fitting of un-
der 1 mm.
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Future work will investigate how the fitting step can be
optimized to minimize the process time. Additionally, further
usage possibilities of the shape model will be investigated, e.g.
as a digital twin.
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