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ABSTRACT

Dynamic graphs are often the initial data for scientific analyses.
However, existing methods designed for static graphs struggle with
efficiency and accuracy when applied dynamically. One challenge
occurs when local interactions in dynamic graphs influence global
phenomena. Practitioners then follow the evolution of relationships
between individual elements in local structures. Such structures are
called Durable Graph Patterns or evolving subgraphs. This work
introduces the Durable Graph Pattern Query Language (DPQGL),
which allows for user-friendly querying of durable graph patterns
on dynamic graphs. DPGQL is, by design, agnostic to the under-
lying durable pattern-matching algorithm. We base our proposed
language on the widely used Cypher Query Language. In our ex-
periments with seven pattern shapes in 24 variations on real-world
materials science data, we explore the impact on query runtimes
from query complexity and the frequency of graph changes.

CCS CONCEPTS

« Information systems — Query languages for non-relational
engines.
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1 INTRODUCTION

In dynamic networks, large-scale behavior often emerges from
the collective, intermittent interactions of the system’s intrinsic
small-scale elements. These elements can form lasting relationships
in their local area, so-called durable patterns [16, 17], that impact
the whole system. This article considers querying such patterns
in dynamic graphs with frequently occurring changes, which is of
great importance in scientific simulations and experiments.

Example 1.1 (Dislocation dynamics). Dislocations are line defects
on the atomic length scale in a material’s crystallographic structure.
The collective motion of dislocations in solid materials results in
plastic deformation [1]. To date, the plastic deformation behavior
is not well understood for complex dislocation networks due to a
large variety of dislocation interactions [9]. These interactions lead
to the formation of junctions, which collectively change the mate-
rial’s properties while forming new dislocations, dissolving existing
ones, or stabilizing the network. Understanding junctions’ reaction
properties within complex networks is key for materials scientists
to predict where and when a material irreversibly deforms [3, 13].

To study such phenomena, scientists run simulations that cal-
culate the behavior of the individual elements on a microscopic
scale [5, 19]. Such simulations result in temporal graph data G[; ;,
i.e., sequences Gj, Gj41, . .. G; of static graphs over changing sets
of nodes N, edges &, and properties K. Connecting back to the
example, each microscopic element is modeled as a node with a list
of properties, an identifier, and a type label. A straightforward
approach to identifying durable patterns is to apply a pattern-
matching algorithm to every graph snapshot G; € G; j; and to
aggregate the results into series of subgraphs.

A stable junction [12, 15] is a special type of dislocation, acting
as a barrier against other moving dislocations. Listing 1 and 2 show
a Cypher and a DGPQL query for mobile dislocations attached to
stable junctions, whose length and curvature can change over time.
Their evolution is of particular interest as they play a key role in
understanding how and when these barriers can dissolve again.

After querying the graph as in Listing 1, the user must still aggre-
gate the patterns from individual snapshots into durable patterns.
In order to do so, three points remain to be done: (1) identifiers of
all nodes and edges in the pattern are required across all its states,
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(2) redundant patterns must be identified and pruned, requiring
constraints on the identifiers or isomorphism checks for the queried
subgraphs, and (3) feeding the patterns to an algorithm identifying
the durable patterns.

MATCH (p1)-[11:Link]-(p2)-[j:Junction]-(p3)-[12:

Link]-(p4)
WHERE p1.id <> p2.id <> p3.id <> p4.id
and 11.id <> 12.id and 11.id < 12.id
and j.type =1
and n.time >= 500 and n.time <= 2000
RETURN p1.id, p2.id, p3.id, p4.id, j.id,
1.id, 11.time, 11.length, 1l1.curvature,
12.id, 12.time, 12.length, 12.curvature

Listing 1: Cypher query for mobile dislocations /1 and /2.

MATCH ()-[11:Link]-()-[j:Junction]-()-[12:Link]-()
[500, 2000]
WHERE j.type =1
RETURN 11(time, id, length,
12(id, length,

curvature),
curvature)

Listing 2: DPQGL equivalent of the Cypher query.

Our proposed query language performs (1), (2) and (3) transpar-
ently for the user. In addition, it is agnostic of the underlying data
model by having time intervals as part of the query pattern (see
Listing 2, Line 1). Therefore, a query engine can choose the most
promising durable pattern-matching algorithm as part of physical
query optimization. Specifically, our contributions are as follows:

We propose and formalize the Durable Graph Pattern
Query Language (DGPQL), a query language that facilitates con-
cise and flexible queries for durable patterns in dynamic graphs.

We experimentally show runtimes of querying durable
graph patterns using real-world data. We queried 20 durable
patterns from seven common pattern shapes [4] to explore how
pattern complexity and lifespan impact query runtimes.

2 INTRODUCING DGPQL

We first introduce DGPQL by example. Figure 1 shows a dynamic
Graph G| 4] representing a simplified excerpt of dislocation move-
ment data. For simplicity, we include only one node and two edge
types, junctions : J, and links : L. A junction is an edge where two
dislocations interact. A link is a freely moving dislocation connected
to junctions at both ends.

:J1->(p2)-[j2:31->(p3)[2,3]
J),j2¢id, L)

Listing 3: Querying a double junction between t; and ts.

MATCH (p1)-[j1
RETURN j1(id,

To illustrate the temporal aspect of DGPQL, we query for double
junctions, i.e., places where multiple dislocations meet each other, in
Listing 3. A query over window [1,4] would return an empty result,
as no such durable pattern exists. For the window [2,3] the result
contains the double junctions (ji,4, ja,7), (J2,1, j1,3), and (js 2, jo,1)-
Increasing our window to either [1,3] or [2,4] will return a subset
of these patterns. Note that, while we are only interested in the
properties of the junctions, the nodes p1,p2,p3 are still relevant
to identify the durable patterns. Users can specify fixed windows
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Figure 1: Temporal graph G| 4; with a small set of changing
nodes and edges.

[t1,t2], single time instants [t], open windows with [t,] and
[,t], or omit the statement entirely to query over the graphs full
duration.

MATCH p = (p1)--(p2)--(p3),(p2)--(p4)[t,t+1]
MATCH (p2)-[*2..4]1-(p5) [t-1,t]

OPTIONAL MATCH (p2)--(p6)

RETURN p, p5, pé

Listing 4: Querying a pattern with variable length and
optional components.

Listing 4 shows how to create complex query patterns by con-
necting patterns with at least one shared variable, here p2. We can
do so by specifying multiple MATCH statements (Line 1-2) or using
the same comma operator (Line 1) as Cypher does to chain pattern
strings together. If several MATCH statements specify different query
windows, only the overlap of both windows is evaluated. The query
will yield the Cartesian product of both patterns if no variable rep-
resenting a node or an edge occurs in the distinct patterns. To allow
variable length graph structures, we use wildcards for relationships
and optional components for patterns (Listing 4, Line 2-3).

3 FORMAL SPECIFICATION AND QUERY
EVALUATION

Our design bases on Cypher [7, 8], the high-level query language
of Neo4j. We limit our discussion to our modifications; see [8] for
the full specification. To enable temporal graph processing and
durable pattern matching our data model extends Cypher’s model
with temporal graphs and replaces its tables with durable patterns.
Both languages consist of expressions, patterns, clauses, and queries.
The syntax for expressions and patterns remains unchanged, we
modify the clauses and queries by removing incompatible language
aspects and adding support for temporal specifications.

Our core idea is to allow, given a temporal property graph G, a
pattern 7, and a query window 7 under an assignment u of values,
to find all durable patterns m € M that satisfy the matching relation.
We write the pattern matching relation as (p, G, u, 7) |= 7. To find
an assignment u of values for an expression expr on a graph G, we
define the semantics of expressions as [expr] g ,. Lastly, we have
the semantics of clauses and queries, where a query Q (or clause C)
on a graph G is associated with a function [Q] g which takes a set
of durable patterns M and returns a modified set of patterns.

3.1 Data Model

An interval 7 specifies query windows or represents the lifetimes
of nodes and edges. A temporal graph is associated with a set 7 of
intervals for every node and edge. We ask that a set of time intervals
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query ::= RETURN ret | clause query
ret = | ret_node | ret, ret_node
ret_node == a | a(ret_prop) (1)
ret_prop ==k | ret_prop, k
clause ::= [OPTIONAL|MATCH p_tuple [WHERE expr] (2)
p_tuple == pattern | pattern time | pattern, p_tuple
time == [d] | [d_1,] | [.d_2] | [d_1,d_2]

Figure 2: Syntax of queries and clauses.

I for a pattern m is overlapping and continuous [16, 17]. We use
the shorthand [i, j] for intervals [¢;,tj]. We base our definition of
temporal graphs on labeled property graphs (LPG; [8]).

Definition 3.1 (Labeled Temporal Property Graph; LTPG). AnLTPG
gw] in time interval 7 = [i, j] is a sequence {G;, Gi+1,...,Gj} of
LPGs, also referred to as graph snapshots.

The lifespan of a node u or edge e is the duration it exists in an
LTPG; it is a continuous interval with finite start and end.

Definition 3.2 (Durable Graph Pattern). A durable graph pattern
m is an LTPG with the lifespan 7, = () {r;}, ie., the overlap of

T,€1m
all lifespans for nodes and edges in Zp,.

A graph pattern query asks for all occurrences, or matches, of a
user-specified graph pattern P = (Np, Ep, srcp, tgtp,1p, Ap, dp) in a
graph G = (N, E, src, tgt, 1, A, §); see [8] for details.

Definition 3.3 (Durable Graph Pattern Matching). Given an evolv-
ing graph Gy, ;|, a graph pattern query P, a set of of time intervals
I}, and a query window 7, a continuous-time durable graph pattern
query find the subgraphs m of G such that (1) there exists a bijective
mapping f : Np — Ny, such that ¥V, € Np, 45 (0) € Am(f(v)) and
for each edge e € &), f(e) € Em, and (2) Ispan(m, P, G[; j1) ® Ip C
7 is continuous and exists during the full query window.

3.2 Syntax and Semantics

Figure 2 shows the syntax of clauses and queries. A query is a
sequence of clauses that ends with a RETURN statement. In our lan-
guage, the return is a list of names for nodes and edges, see (1). A
second list can follow these names, further specifying which prop-
erty keys to return. The semantics are collected in Figure 3, with
queries Q and clauses C. The set of durable patterns M contains
all matched patterns.

DPGQL clauses are functions that, relative to an LTPG G, take a
set of durable graph patterns M and return the modified set based
on the function and its parameters. Clauses only require a MATCH
statement, see (2), which returns the values as sequences for the
matched durable patterns. The OPTIONAL and WHERE statements can
be omitted.

4 EXPERIMENTS

Our dataset from materials science is a simulation of dislocation
dynamics. The simulation mimics an irreversible deformation of an
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Queries:
[RETURN*] g(M) = M if has at least one entry
[RETURNey,...,em]lg(M) ={(e1,....,em) I meM
A(er... em) Cm}
[colg(M) =[Qlg ([Clg(M)

[MATCHz] (M) = U {m € match(r,G,u,7)}
ue M
Clauses:

[MATCH = WHERE expr] (M)
= [WHERE expr] ([[MATCH e M))
[OPTIONAL MATCH n WHERE expr]g(M)

B U [MATCH m WHERE true]g({u}) if+0
- otherwise

oM (u, (free(u, zr) : null))
[OPTIONAL MATCH x]g(M)

= [OPTIONAL MATCH = WHERE true]|g(M)

[WHERE exprg(M) = {u € M | [exprlgu = true}

Figure 3: Semantics of queries and clauses.

Table 1: Seven pattern shapes in 20 variants.

Name Variants #
Single Edge - 1
Chain 3 to 6 nodes 4
Tree One or two branches 2
Star 3 to 5 satellite nodes 3
Cycle 3 to 5 nodes 3
Flower at least 2 of petal, stem, and stamen 4
Clique 3 to 5 nodes 3

aluminum cube of 2 pm length. The initial configuration consists
of 400 randomly seeded dislocations, resulting in a high volume of
interactions over 95 temporal snapshots. The dislocations are then
transferred into a property graph G; [11], which consists of nodes
with physical properties connected by links or junctions.

We created a comprehensive list of the most common graph
patterns, with Table 1 giving an overview of all queried patterns.
Our list extends [4] with cliques, which also frequently occur in our
context [14, 16, 17]. Single edges have no variants. Chains are three
or more nodes in a row. A tree is a pattern where every node has
exactly one path to any other node. A single-branch variant is a tree
with five nodes over three levels, and two branches are seven nodes
over three levels. A star has a center node to which every satellite
node connects. A cycle is a chain where the last node connects to
the first node. [4] defines a flower as a node with at least two of
three attachments; petals (cycles), stamens (chains), or stems (trees
that are not chains). The variations of the flower pattern consist
of either tree and chain (flower12), tree and petal (flower13), chain
and petal (flower23), or all three attachments (flower123).
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Figure 4: Average query runtimes for all pattern variants.

We ran our experiments with the baseline [17] and the pattern-
matching of Neo4j 5.15. We evaluate the runtime needed to find
durable patterns for all 20 variations of our seven shapes over
five query windows. To obtain the average, we sample five query
windows per pattern. We limited the matched patterns to 10,000
per snapshot to reduce experiment runtime. We further limited our
query windows to no more than a lifespan of 10, as too few patterns
existed longer.

Our results are in Figure 4. One sees that more complex queries
tend to require more time and match our expectations. While the
most complex pattern—flower123—takes the longest, it is surprising
that flower13 and cycle4 are relatively close. Cycle5 and cycle6 are
only found in query windows with size < 3 but require significantly
longer computation than any other patterns. We hypothesize that
the cause for these runtimes is due to inefficient processing of their
permutations. On the other hand, one observes striking differences
in runtime between patterns with the same amount of nodes and
edges but otherwise different configurations, e.g., treel, tree2, and
flower variants with trees. We suppose that the increased number
of possible paths between nodes is the reason for these increases.

5 RELATED WORK

A baseline and an improved algorithm for durable graph pattern-
matching were introduced for mining stable author groups in ci-
tation networks [16, 17]. The former finds matches in each static
graph snapshot and then orders each match’s identifiers, reducing
the problem to string matching. The latter transforms the snapshot
graph into a labeled version graph and uses several indexes to filter
and refine a candidate set to identify durable patterns. A recent tree-
based durable subgraph matching algorithm combined with a query
decomposition method [14] improves upon their performances.
Modern graph databases and their query languages such as
Cypher [8], SPARQL [18], or G-CORE [2] are aimed at static graphs
and only offer limited support for temporal graphs. Graph databases
to store temporal graphs exist [10], but focus on efficient storage
and quick retrieval of snapshots over arbitrary time windows for
static graph queries. To our knowledge, the only other temporal
graph query language is T-GQL [6]. It is designed to solve the spe-
cific problem of temporal path queries, e.g., the fastest-, earliest-,
shortest-, or latest-departure path; it does not address our use case.
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6 CONCLUSIONS

Current limitations regarding mining dynamic graphs are twofold:
First, existing query languages lack support for temporal queries.
Second, graph database systems can not handle temporal graphs,
let alone in a unified fashion. In this work, we tackle the former and
propose the high-level query language DPGQL for temporal graphs,
which facilitates the mining of durable graph patterns. DPGQL is,
by design, agnostic of the underlying durable pattern-matching
algorithm. Hence, advances in these algorithms directly benefit
existing queries.
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