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Abstract
Ontologies are widely used in materials science to describe experiments, processes, material properties, and
experimental and computational workflows. Numerous online platforms are available for accessing and sharing
ontologies in Materials Science and Engineering (MSE). Additionally, several surveys of these ontologies have
been conducted. However, these studies often lack comprehensive analysis and quality control metrics. This
paper provides an overview of ontologies used in Materials Science and Engineering to assist domain experts in
selecting the most suitable ontology for a given purpose. Sixty selected ontologies are analyzed and compared
based on the requirements outlined in this paper. Statistical data on ontology reuse and key metrics are also
presented. The evaluation results provide valuable insights into the strengths and weaknesses of the investigated
MSE ontologies. This enables domain experts to select suitable ontologies and to incorporate relevant terms from
existing resources.
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1. Introduction

The field of Materials Science and Engineering (MSE) has seen a rapid increase in the number of
available ontologies, taxonomies, terminologies, and vocabularies to semantically describe various
aspects of research, such as experimental procedures, material properties, computational workflows,
and experimental outcomes [1]. Online repositories and portals such as MatPortal1, BioPortal2, and
IndustryPortal3 provide access to theseMSE ontologies. However, a significant drawback is the relatively
small number of registered and published ontologies. Moreover, the metadata accompanying many
ontologies is often inadequate, hindering users’ ability to understand the ontology’s scope and domain.
This makes it difficult for MSE domain experts to assess the ontology’s relevance to their specific needs.

While several surveys have examined ontologies in the MSE domain, they often lack comprehensive
coverage and in-depth analysis. For example, the survey by Zhang et al .[1] evaluates nine ontologies,
six of which are currently inaccessible, hindering content verification. Similarly, Bayerlein et al. [2]
provide a general overview but fall short in offering comprehensive evaluations and quality assessments.
Recently, Baas et al. [3] reviewed 43 domain-level ontologies (DLOs) for Materials Science, providing
an overview of their features and proposing an alignment methodology to enhance interoperability.
While their study offers valuable insights, it lacks a comprehensive evaluation of ontology quality
based on quality-control metrics. Additionally, these surveys, along with others, often overlook detailed
analysis of usability, structural complexity, and application relevance, hindering domain experts in their
ontology selection process.
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Consequently, MSE domain experts struggle to identify and select suitable ontologies for their
applications. A comprehensive review encompassing all existing ontologies, detailing their reuse in the
MSE domain, and providing a quality assessment is urgently needed to guide expert decision-making.
This paper aims to address the current lack of comprehensive knowledge about MSE ontologies

by providing a thorough review and analysis. Our objectives include identifying available ontologies,
understanding their specific purposes, developing criteria for ontology selection, and determining the
necessary information for informed decision-making by domain experts. All evaluation results are
available online4.

The paper is structured as follows: Section 2 describes the methodology used to collect and evaluate
theMSE ontologies. Section 3 presents quantitative results of the review process and provides a thorough
discussion of these findings in the context of our study objectives. Finally, Section 4 summarizes the
primary outcomes of this study and outlines potential future research directions.

2. Methodology

This section outlines the comprehensive methodology employed to evaluate ontologies in the Materials
Science and Engineering (MSE) domain. The methodology comprises three Key components: expert
insights and surveys, quality requirements and corresponding criteria, and ontology evaluation metrics.
Each component significantly contributes to a thorough assessment of ontologies, empowering MSE
experts to select the most suitable ontology for their specific needs. The following subsections provide
detailed explanations of each methodological aspect:

2.1. Expert Insights and Survey

This subsection details the process of gathering expert insights and conducting a survey to identify
ontology requirements within the MSE domain. Expert insights provide a foundational understanding of
practical needs and challenges faced by domain professionals. To ensure the relevance and effectiveness
of the selected ontologies, an internal survey was conducted as part of the Platform Material Digital
(PMD) project5. The PMDproject comprises 13 industry-led pilot projects with the shared requirement of
(re)using ontologies in the MSE domain. A key finding from our qualitative analysis is that the responses
of the 13 projects focused on different aspects of the ontologies. This highlights the varied priorities and
perspectives of the participating experts. The publicly available interview results6 highlight the specific
requirements identified by MSE experts. We asked the responsible PIs of the thirteen PMD projects to
gather essential information about MSE-related ontologies within their domain. The survey targeted
MSE experts, including material engineers, scientists, process and application engineers, and simulation
experts, aiming to standardize taxonomy and metadata for materials and their properties. Key survey
questions addressed the desired ontology domains, intended use and requirements of the ontology,
target users, and the specific competency questions (CQ) the ontology should answer. Table 1 presents
quality requirements, their justifications, and corresponding criteria, as determined by survey results.
The criteria mapped to these requirements include Completeness (ensuring sufficient information
for specified tasks), Coverage (measuring the breadth of domain information), Availability (assessing
the accessibility of the ontology and its documentation), and Adaptability (evaluating the ontology’s
capacity to accommodate changes without compromising verified definitions). Relevancy measures the
ontology’s alignment to specified tasks, while Accuracy assesses the precision and correctness of its
representations. Compliance ensures adherence to defined rules and standards, and Internal Consistency
guarantees logical coherence. Credibility reflects the ontology’s acceptance and trustworthiness, and
Complexity measures its structural intricacy. Finally, Comprehensibility measures users’ understanding,
and Modularity assesses the ontology’s composability from discrete, manageable units [4].

4https://ise-fizkarlsruhe.github.io/mseo.github.io/
5https://www.materialdigital.de/
6https://git.material-digital.de/ontologies/pmd-ontologies/-/tree/main/Partner%20project%20CQs
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This paper specifically focuses on Availability (presence of ontology files and documentation), Adapt-
ability (number of CQs answered correctly after changes), Complexity (structural properties like depth
and breadth), Internal Consistency (presence of logical/formal contradictions), Compliance (total num-
ber of breached rules), Credibility (number of other ontologies that link to it or positive user feedback),
Comprehensibility (degree of annotations and naming conventions), and Modularity (number of on-
tology partitions and root nodes). While the metrics for these criteria are defined, future work will
address Coverage, Completeness, and Accuracy for a more holistic evaluation [4].

2.2. Ontology Evaluation Metrics

This subsection outlines the detailed metrics employed to evaluate the ontologies within the MSE
domain. Focusing on base, schema, and graph metrics, we measure ontology structure, complexity, and
usability. These metrics, categorized accordingly, were used in conjunction with the ROBOT tool7 [5]
and OntoMetrics8 [6] to assess ontology quality.

Table 2 presents the key metrics used in our evaluation including descriptions and significance. These
metrics align with W3C Semantic Web standards, specifically OWL and OWL DL. Base metrics include
Axioms, Class Count, Object Properties Count, Datatype Properties Count, Annotation Assertions
Count, and DL Expressivity. These metrics collectively indicate the overall size, complexity, and breadth
of the ontology, as well as the richness of relationships, data values, and applied logical constructs.
For schema metrics, Attribute Richness, Inheritance Richness, Relationship Richness, Axiom Class
Ratio, and Equivalence Ratio are included. These metrics reflect the detailed knowledge representation,
categorization, interconnectedness, logical definition detail, and redundancy among named classes.
Complex class definitions are excluded from these metrics. Graph metrics evaluated include Absolute
Root Cardinality (NoR), Absolute Leaf Cardinality (NoL), Number of External Classes (NoC), Depth,
Breadth, and Tangledness are evaluated. These metrics assess the foundational structure, granularity,
interdependence with external ontologies, hierarchical complexity, width, and interconnectivity of the
ontology.
Furthermore, the OOPS! (Ontology Pitfall Scanner!) tool [7] was to detect common ontology devel-

opment errors, including missing property domains or ranges, incorrect subclassing, and redundant
relationships. Identifying these pitfalls is crucial for ensuring ontology usability and effectiveness in
real-world applications. A detailed overview of the identified issues of MSE ontologies is provided in
the Appendix A.

3. Results and Discussion

3.1. Analysis of the MSE Ontologies

In our comprehensive analysis of semantic artifacts relevant to the Materials Science and Engineering
(MSE) domain, a total of 94 semantic artifacts were identified, comprising 2 vocabularies and 92 on-
tologies. These ontologies can be categorized as follows: 11 general scientific ontologies, 7 without
publicly available files, 4 top-level ontologies, 8 mid-level ontologies, 60 domain-level ontologies, and
2 application-level ontologies. Notably, 7 ontologies could not be evaluated due to issues with their
imports. These ontologies include the Virtual Materials Marketplace (VIMMP) [83] Ontology, Chemical
Entities of Biological Interest (ChEBI) [84], Chemical Information Ontology (CHEMINF) [85], Metal
Alloy (MetalAlloy) [86], tribAIn Ontology [58], Semantic Materials Manufacturing Design (SEMMD)
[39], and Chemical Methods Ontology (CHMO) [31]. This highlights the necessity for improved import
handling and integration in ontology development processes. Consequently, 60 ontologies, as summa-
rized in Tables 3, 4, and 5, were evaluated using our introduced methodology9. This list comprehensively
details each ontology’s name, abbreviated short name, domain, projects utilizing it, purpose, publication

7http://robot.obolibrary.org/
8https://ontometrics.informatik.uni-rostock.de/ontologymetrics/
9Link to the list of ontologies
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Table 1
Quality requirements and their justifications with mapped criteria.

Quality Requirements Justification Mapped Criteria
REQ1: The ontology must provide a com-
prehensive taxonomy covering necessary sub-
domains of materials science.

The term ”comprehensive” suggests
that the ontology should be complete
and cover all necessary sub-domains.

Completeness, Cov-
erage, Availability

REQ2: The ontology should be capable of rep-
resenting both experimental and simulation
data.

The capability to represent various
types of data indicates a complete and
adaptable ontology.

Completeness,
Adaptability, Avail-
ability

REQ3: The ontology should accurately repre-
sent relations between different concepts.

Accuracy is crucial for representing re-
lationships, and relevancy ensures that
these relationships matter to the do-
main.

Accuracy, Relevancy,
Availability

REQ4: The ontology must standardize and
unify metadata descriptions in compliance
with existing standards.

Standardization implies compliance
and internal consistency.

Compliance, Internal
Consistency, Avail-
ability

REQ5: The ontology must provide comprehen-
sive representations for experimental settings,
outcomes, high-throughput analysis data, and
literature.

Comprehensive representations imply
completeness and coverage.

Completeness, Cov-
erage, Availability

REQ6: The ontology must facilitate trust-
worthy and verifiable quality management of
data.

Trustworthiness and verifiability imply
credibility and accuracy.

Credibility, Accuracy,
Availability

REQ7 (more specific): The ontology should
enable querying specifically designed for ma-
chine learning model development.

Specificity for machine learning makes
it relevant, complex, and comprehen-
sive for that purpose.

Relevancy, Complex-
ity, Comprehensibil-
ity, Availability

REQ8 (more specific): The ontology must rep-
resent predicted values frommachine learning
models.

Representation of machine learning
and predicted properties implies com-
pleteness and coverage.

Completeness, Cov-
erage, Availability

REQ9: The ontology should be modular
enough for diverse projects beyond its primary
application.

Modularity and the ability to be used
in diverse projects imply adaptability.

Adaptability, Modu-
larity, Availability

of competency questions (CQs), licensing, last update date, homepage, ontology category, and a link to
the ontology file. Additionally, it includes references to academic papers, citation counts, practical use
cases, distinguishing features that contribute to its common use, and any special problems or challenges.
Table 6 highlights the distribution of ontologies across various MSE sub-domains, with Materials

Representation andMaterials Characterization having themost extensive coverage due to the complexity
of these fields. Process Modeling, Nanomaterials, Computational Materials Science, and Materials
Data also show significant ontology usage. However, domains such as Batteries, Chemistry, Energy
Systems, Tribology, Biomaterials, and Sensors comprise fewer ontologies, indicating a need for further
development to enhance their modeling capabilities and support advanced research applications.

Among the ontologies identified, the top-level ontologies include: Basic Formal Ontology (BFO) [8],
Elementary Multiperspective Material Ontology (EMMO) [9], the Descriptive Ontology for Linguistic
and Cognitive Engineering (DOLCE) [11], and Suggested Upper Merged Ontology (SUMO) [10]. The
mid-level ontologies encompass PMD Core Ontology, Material Science and Engineering Ontology,
Baden Württemberg Material Digital Domain Mid Level Ontology, EMMO Datamodel ontology, EMMO
Mappings ontology, Materials Data Science Ontology, Ontology of Scientific Experiments, and The
Open Provenance Model for Workflows. The application-level ontologies are MatoLab Brinell Test
Ontology and Matolab Tensile Test Ontology.
Our analysis highlights the diversity and complexity of MSE ontologies, reflecting their varied

applications and the necessity for rigorous evaluation methodologies. BFO is prominently reused in
16 ontologies, EMMO in 12, BWMD-MID in 3, NPO in 2, and SSN, PMD Core, and GPO in one each,
indicating its broad applicability and acceptance in the community. This frequent reuse suggests that



Table 2
Summary of Ontology Evaluation Metrics (Structural Metrics) [6].

Type Metric Description Impact
B
as
e
M
et
ri
cs

Axioms

Total number of axioms for
classes, properties, datatype
definitions, assertions, and
annotations.

Indicates the overall size and complexity of the ontology.
Higher numbers suggest richer, more comprehensive on-
tologies.

Class Count
Total number of classes de-
fined in the ontology.

Shows the breadth of concepts covered. Higher counts
imply broader domain coverage and the ability to repre-
sent a wide range of concepts.

Object Prop-
erties Count

Total number of object prop-
erties in the ontology.

Indicates the variety of relationships between classes.
More object properties suggest richer interconnections
and better representation of complex interactions.

Datatype
Properties
Count

Total number of datatype
properties in the ontology.

Reflects the range of data values associated with classes.
Higher counts indicate detailed representation of class
attributes.

Annotation
Assertions
Count

Total number of annotations
in the ontology.

Shows the amount of descriptive metadata provided.
More annotations enhance documentation and under-
standability.

DL Expressiv-
ity

The description logic expres-
sivity of the ontology.

Indicates the complexity of logical constructs used.
Higher expressivity allows for nuanced and complex rea-
soning.

Sc
he

m
a
M
et
ri
cs

Attribute
Richness

Average number of at-
tributes per class.

Higher values indicate detailed knowledge representa-
tion, essential for conveying complex information and
improving usability in applications.

Inheritance
Richness

Average number of sub-
classes per class.

Helps in understanding how knowledge is categorized
and structured. Higher values suggest better categoriza-
tion and hierarchical structuring.

Relationship
Richness

Ratio of non-inheritance re-
lationships to total relation-
ships.

Important for understanding interconnectedness. Higher
values imply a more interconnected and informative on-
tology.

Axiom Class
Ratio

Average number of axioms
per class.

Indicates the level of detail in logical definitions. Higher
ratios suggest more detailed and well-defined concepts.

Equivalence
Ratio

Proportion of equivalence
axioms to all classes.

Reflects redundancy and synonymy, indicating how
terms are defined as equivalent. Higher values improve
the ontology’s integration ability.

G
ra
ph

M
et
ri
cs

Absolute Root
Cardinality
(NoR)

Number of root classes in
the ontology.

Indicates cohesion and foundational structure. More
root classes suggest a diversified foundational structure.

Absolute Leaf
Cardinality
(NoL)

Number of leaf classes in the
ontology.

Assesses granularity and detail. More leaf classes en-
hance the ability to capture fine-grained knowledge.

Number of Ex-
ternal Classes
(NoC)

The total number of classes
referenced from external on-
tologies.

Indicates the degree of interdependence with other on-
tologies. A higher count suggests better interoperabil-
ity, reusability, and alignment with external standards,
though it may also introduce complexity.

Depth
Depth from root to leaf
nodes.

Shows hierarchical complexity. Greater depth indicates
more detailed hierarchical levels.

Breadth
Breadth at each level,
summed across all levels.

Indicates the number of sibling classes, reflecting the on-
tology’s width. Greater breadth suggests comprehensive
coverage at each level.

Tangledness
Degree of interconnectivity,
measuring multiple hierar-
chical paths.

Evaluates complexity and overlap in the hierarchical
structure. Higher tangledness suggests greater complex-
ity and potential difficulty in navigation.

BFO and EMMO are considered high-quality foundational ontologies representing various aspects of
MSE.

The study found that only nine of these ontologies explicitly published their competency questions:
PRovenance Information in MAterials science, Crystal Structure Ontology, Computational Material
Sample Ontology, Metadata4Ing Ontology, Open Energy Ontology, Materials Design Ontology, Disloca-
tion Ontology, SMART-Protocols, and PMD Core Ontology. Publishing CQs is crucial for clarifying
the ontology’s intent, facilitating adaptability assessment, and ensuring human-readable answers [4].



Table 3
List of Top, Middle, and Domain level ontologies in the domain of Materials Science and Engineering. The
columns are defined as follows: Type (ontology level), Ontology Name, Domain, Used in Project(s), Competency
Questions (CQs), Licensing (Lic.), Top-Level Ontology Alignment (TLO), Reused Ontologies (Reused Ont.),
Modularity (Mod.), and Adoption of Ontology Design Patterns (ODPs). The list was updated in June, and all the
ontologies were found to the best of our knowledge. 7means that the information could not be found either
from the ontology repository or from the publication reference of the ontology.

Type Ontology Name Domain Used in Project(s) CQs Lic. TLO Reused
Ont. Mod. ODPs

To
p-
le
ve
l

Basic Formal Ontology (BFO) [8]

Supporting
information retrieval,

analysis and
integration in

scientific and other
domains

300 ontologies, 50 organizations,
PubChem, ODE_AM,

DIGITRUBBER
7

CC BY
4.0

7 7 3 7

Elementary Multiperspective Mate-
rial Ontology (EMMO) [9]

A multidisciplinary
ontology for applied

sciences

EMMC-CSA, SimDOME,
MarketPlace, VIMMP, OntoTrans,
ReaxPro, OntoCommons, OYSTER,
NanoMECommons, OpenModel,
Know-Now, iBain, KupferDigital,
StahlDigital, SmaDi, DiProgMag,

SensoTwin

7
CC BY
4.0

7 7 3 7

Suggested Upper Merged Ontology
(SUMO) [10]

An upper ontology
designed to serve as

a foundational
framework for

various computer
information

processing systems.

Adimen-SUMO, YAGO-SUMO
integration, smart city initiatives,
psychoinformatics, and many

other projects.

7

GNU
Public
Li-

cense

7 7 3 7

Descriptive Ontology for Linguis-
tic and Cognitive Engineering
(DOLCE) [11]

A multidisciplinary
ontology for applied

sciences

EBRiO, MITE, SMARTEST, SORTT,
I-TROPHYTS, and many other

projects.
7

GNU
Public
Li-

cense

7 7 3 7

M
id
-l
ev
el

PMD Core Ontology (PMDCO)
[12]

Materials Science
and Experiment

Know-Now, KupferDigital,
StahlDigital, DiProgMag,
DigiBatMat, GlasDigital,
SensoTwin, LeBeDigital

3 7
PROVO
[13]

PROVO 3 7

Material Science and Engineering
Ontology (MSEO) [14]

Material Science and
Engineering

Materials Open Laboratory,
LeBeDigital, KupferDigital

7 7 BFO 7 7 7

Baden Württemberg Material Dig-
ital Domain Mid Level Ontology
(BWMD-MID) [15]

Materials Science
Materials Open Laboratory,
AluTrace, DMD4Future,
KMU-akut: ADAM

7 7 BFO 7 7 7

EMMO Datamodel ontology
(EMMO Datamodel) [16]

Ontology-Based
Data Modelling

MarketPlace, OntoTrans,
OpenModel, VIPCOAT

7
CC BY
4.0

EMMO EMMO 3 7

Materials Data Science Ontology
(MDS) [17]

Materials Science
Materials Data Science for

Stockpile Stewardship: Center of
Excellence, SDLE Research Center

7 7 BFO PMDCO 7 7

Ontology of Scientific Experiments
(EXPO) [18]

Scientific
Experiments

- 7 7 SUMO 7 7 7

The Open Provenance Model for
Workflows (OPMW) [19]

Process Modeling - 7
CC BY-
NC-SA
2.0

PROVO
P-Plan
[20]

7 7

EMMO Mappings ontology
(EMMO Mappings) [21]

Mapping to domains
and ontological

concepts

MarketPlace, OntoTrans,
OpenModel

7
CC BY
4.0

EMMO EMMO 7 7

D
om

ai
n-
le
ve
l

PRovenance Information in MAte-
rials science (PRIMA) [22]

An ontology that
captures the
provenance

information in the
materials science

domain.

EOSC-Pillar project, Helmholtz
Metadata Collaboration (HMC),

NFFA-Europe Pilot
3

CC BY
3.0

PROVO

PROVO,
QUDT
[23],

PMDCO

3 7

EMMO Mechanical Testing
(EMMO Mechanical Testing) [24]

Mechanical testing
MarketPlace, Oyster, UrWerk,

iBain, StahlDigital
7

CC BY
4.0

EMMO EMMO 7 7

EMMOMicrostructure (EMMOMi-
crostructure) [25]

Metallic
microstructures

iBain, StahlDigital 7 7 EMMO EMMO 7 7

SMART-Protocols (SP) [26]
Experimental
protocols

7 3
CC BY
4.0

BFO NPO 3 7

Baden Württemberg Material Dig-
ital Domain Ontology (BWMD-
DOMAIN) [15]

Material Digital
Ontology,
GlasDigital

Materials Open Laboratory,
AluTrace, DMD4Future,
KMU-akut: ADAM

7 7 BFO
BWMD-
MID

7 7

MatOnto (MatOnto) [27] Materials discovery 7 7 MIT DOLCE DOLCE 3 7

NanoParticle Ontology (NPO) [28]
Cancer

nanotechnology
research

caB2B, eNanoMapper, nano-TAB 7
BSD-3-
Clause

BFO 7 7 7

Smart Applications REFerence
(SAREF) [29]

Energy EEBus, SmartM2M 7
BSD-3-
Clause

7 7 7 7

Semantic Sensor NetworkOntology
(SSN) [30]

Sensors
SENSEI, SmartProducts, SPITFIRE
FP7, SemsorGrid4Env, Exalted,

CSIRO
7 OpenGIS DOLCE DOLCE 3 7



Table 4
List of Domain level ontologies in Materials Science and Engineering. The columns are defined as follows: Type
(ontology level), Ontology Name, Domain, Used in Project(s), Competency Questions (CQs), Licensing (Lic.),
Top-Level Ontology Alignment (TLO), Reused Ontologies (Reused Ont.), Modularity (Mod.), and Ontology Design
Patterns (ODPs). The list was updated in June, and all the ontologies were found to the best of our knowledge.
7means that the information could not be found either from the ontology repository or from the publication
reference of the ontology.

Type Ontology Name Domain Used in Project(s) CQs Lic. TLO Reused
Ont. Mod. ODPs

D
om

ai
n-
le
ve
l

Characterisation Methodology Do-
main Ontology (CHAMEO) [31]

Materials
Characterization

NanoMECommons, OYSTER,
Big-Map, OntoTran

7
CC BY
4.0

EMMO EMMO 7 7

NanoMine (NanoMine) [32]
Polymer

nanocomposites
NanoMine 7

CC BY
4.0

SIO 7 7 7

EMMO General Process Ontology
(GPO) [33]

Model processes
KIproBatt, OpenSemanticLab,
Battery Value Chain Ontology

7
CC BY
4.0

EMMO EMMO 7 7

EMMO Battery Value Chain Ontol-
ogy (EMMO BVC) [34]

Model processes
along the Battery

value chain
eLi /eLi-PLUS, KiProBatt 7

CC BY
4.0

EMMO
EMMO,
GPO

7 7

EMMO Crystallography (EMMO
Crystallography) [35]

Crystallography
Demystify ontologies, OntoTrans,

MarketPlace, BIG-MAP
7

CC BY
4.0

EMMO
EMMO,
CIF
core

7 7

CIF Core Ontology (CIF-core) [36] Crystallography
Demystify ontologies, OntoTrans,

MarketPlace, BIG-MAP
7

CC BY
4.0

EMMO EMMO 7 7

EMMO Atomistic and Electronic
Modelling (EMMO Atomistic) [37]

Atomistic and
electronic modelling

MarketPlace 7
CC BY
4.0

EMMO EMMO 7 7

Materials Ontology (MATINFO)
[38]

Exchanging
Materials

Information and
Knowledge

Data exchange of AIST, NIMS,
MatDB

7 7 7 7 3 7

Semantic Materials, Manufactur-
ing, and Design (SEMMD) [39]

Materials,
Manufacturing

7 7
CC

BY-SA
4.0

BFO QUDT 7 7

eNanoMapper (eNanoMapper) [40]
Nanomaterial safety

assessment

NanoSolveIT, NanoCommons,
OpenRiskNet, eNanoMapper,

NANoREG, NanoReg2, GRACIOUS
7

CC-BY
3.0

BFO NPO 7 7

Dislocation Ontology (DISO) [41]
Defects in crystalline

materials

European Research Council
through the ERC Grant Agreement
No. 759419 MuDiLingo, Helmholtz
Metadata Collaboration (HMC)

within the Hub Information at the
Forschungszentrum Jülich

3 MIT EMMO
EMMO,
QUDT

7 7

EMMO Battery Interface Ontology
(EMMO BattINFO) [42]

Batteries and their
interfaces

BIG-MAP 7
CC BY
4.0

EMMO 7 7 7

MatWerk Ontology (MWO) [43]
Research Data
Description

NFDI MatWerk 3
CC BY
4.0

BFO
NFDI-
core

3 7

Materials And Molecules Basic On-
tology (MAMBO) [44]

Molecular materials 7 7 7 7
MDO,
EMMO,
QUDT

3 7

Laser Powder Bed Fusion Ontology
(LPBFO) [45]

Additive
manufacturing

Materials Open Laboratory,
AluTrace, DMD4Future,
KMU-akut: ADAM

7 7 BFO
BWMD-
MID

7 7

Additive Manufacturing Ontology
(AMONTOLOGY) [46]

Additive
Manufacturing

NIST’s Systems Integration for
Additive Manufacturing project

7 7 7 7 7 7

Building Material Ontology (BMO)
[47]

Materials Science
Linked data and Ontologies for

Semantic Interoperability,
BIM4EEB

7
CC BY
4.0

7 7 7 7

Standards-Specific Ontology Stan-
dard (SSOS) [48]

Life cycle
information

7 7 7 7 7 7 7

Materials Design Ontology (MDO)
[49]

Materials design
Materials Design (OPTIMADE)

project
3 MIT EMMO

EMMO,
PROVO

3 7

TheDevices, Experimental scaffolds
and Biomaterials Ontology (DEB)
[50]

Medical devices,
experimental
scaffolds and
biomaterials

Database of Experimental
Biomaterials and their Biological

Effect
7

GPL-
3.0

7 7 7 7

Ontology for Simulation, Mod-
elling, and Optimization (OSMO)
[51]

Materials modeling
and simulation

VIMMP Marketplace 7
LGPL
v3

EMMO EMMO 7 7

Materials Vocabulary (MatVoc) [52] Materials Science STREAM project 7 7 7 7 7 7

While formulating CQs is an integral part of ontology development, they are often not published along
with ontologies, hindering evaluation efforts. Although modern design methodologies advocate for
user stories, personas, and contextual statements beyond CQs [87], none of the examined ontologies
adopted these approaches. This emphasizes the need for a more comprehensive approach to capturing
and addressing user needs and requirements.



Table 5
List of Domain and Application level ontologies in Materials Science and Engineering. The columns are defined
as follows: Type (ontology level), Ontology Name, Domain, Used in Project(s), Competency Questions (CQs),
Licensing (Lic.), Top-Level Ontology Alignment (TLO), Reused Ontologies (Reused Ont.), Modularity (Mod.), and
Ontology Design Patterns (ODPs).

Type Ontology Name Domain Used in Project(s) CQs Lic. TLO Reused
Ont. Mod. ODPs

D
om

ai
n-
le
ve
l

Computational Material Sample
Ontology (CMSO)

Computational
Materials Science

NFDI MatWerk 3 7 7 7 7 7

Open Energy Ontology (OEO) [53]
Energy modelling

domain
SzenarienDB 3

CC0
1.0

BFO

IAO [54],
RO [55],
UO [56],
OMO [57]

3 7

tribAIn Ontology (tribAIn) [58] tribology 7 7
CC BY
4.0

SUMO 7 7 7

Chemical Methods Ontology
(CHMO) [59]

Materials
Characterization

7 7
CC BY
4.0

7 BFO 7 7

Chemical Information Ontology
(CHEMINF) [60]

Chemistry 7 7
CC BY
3.0

7 BFO 7 7

ONTORULE steel ontology (ON-
TORULE) [61]

Steel Industry ONTORULE project 7 7 7 7 7 7

Photovoltaics Ontology (Photo-
voltaics) [62]

Perovskite Solar
Cells

7 7
CC BY
4.0

7 EMMO 7 7

Materials Data Science Ontology
(MDS) [63]

Materials Science
Materials Data Science for

Stockpile Stewardship: Center of
Excellence, SDLE Research Center

7 7 BFO
PMDCO,
BFO

7 7

Dislocation Simulation and Model
Ontology (DSIM) [64]

Computational
Materials Science

NFDI-MatWerk 7
CC BY
3.0

7

PROVO,
MDO,
QUDT,
CSO,
DISO

7 7

Crystal Structure Ontology (CSO)
[65]

Materials
Characterization

MuDiLingo, Helmholtz Metadata
Collaboration (HMC)

3
CC BY
3.0

7

MDO,
QUDT,
ChEBI,
BFO

7 7

Atomistic Simulation Methods On-
tology (ASMO) [66]

Computational
Materials Science

NFDI-MatWerk 7
CC BY
4.0

7
PROVO,
MDO

7 7

Point Defects Ontology (PODO)
[67]

Materials
Characterization

NFDI-MatWerk 7
CC BY
4.0

7 7 7 7

Crystallographic Defect Core On-
tology (CDCO) [68]

Materials
Characterization

7 7 7 7 7 7 7

Line Defect Ontology (LDO) [69]
Materials

Characterization
7 7 7 7 7 7 7

Planar Defects Ontology (PLDO)
[70]

Materials
Characterization

NFDI-MatWerk 7
CC BY
4.0

7 7 7 7

Material Science Lab Equipment
Ontology (MSLE) [71]

Materials
Characterization

7 7 7 7 7 7 7

Open Innovation Environment
(OIE) - 5 Ontologies [72]

Materials Science OYSTER 7
CC BY
4.0

7 EMMO 3 7

Metadata4Ing Ontology (M4I) [73] Process Modeling NFDI4Ing 3
CC BY
4.0

7 7 7 7

MaterialsMine (MaterialsMine)
[74]

Materials Science 7 7 MIT SIO
NanoMine,
PROVO

7 7

Periodic Table Ontology (Period-
ictable) [75]

Representation of
the Periodic Table of

the Elements
7 7 7 7 7 7 7

Ontology to Describe Workflows in
Linked Data (WILD) [76]

Process Modeling DigiBatMat 7 7 7 FOAF 7 7

Ontology for Biomedical Investiga-
tions (OBI) [77]

Representation of
study design,
protocols and

instrumentation in
Biomedicine

OBO Foundry, Allotrope™,
PubChem

7
CC-BY
3.0

BFO

GO [78],
ChEBI,
PATO,
OBO

7 7

Phenotype And Trait Ontology
(PATO) [79]

Phenotypic, Physical
Qualities

OBO Foundry, Allotrope™ 7
CC-BY
4.0

BFO
GO,

ChEBI
7 7

Material properties ontology (MAT)
[80]

Materials Science H2020 BIMERR Project 7
CC BY
4.0

7 SAREF 7 7

A
pp

l.
-l
ev
el

Matolab Tensile Test Ontology
(MOL TENSILE) [81]

Tensile test Materials Open Laboratory 7 7 7
BWMD-
MID

7 7

Matolab Brinell Test Ontology
(MOL BRINELL) [82]

Mechanical testing 7 7 7 7 7 7 7

3.2. Evaluation of the MSE Ontologies

The evaluation of MSE ontologies reveals varying levels of complexity and detail across different
sub-domains, as shown in Tables 9 and 10. In Materials Characterization, ontologies like EMMO
Crystallography and CIF-core demonstrate moderate axiom counts and high annotation axiom counts,
indicating a balance between detailed representation and descriptive metadata. CHAMEO, with substan-
tial object properties and annotation axioms, emphasizes detailed relationships and descriptive details.



In Process Modeling, GPO, EXPO, and PMDCO have high axiom and class counts, reflecting their capa-
bility to model complex processes comprehensively. The high DL expressivity of GPO (𝒮ℛ𝒪ℐ𝒬(𝒟))
indicates its advanced logical constructs and reasoning capabilities.
In Computational Materials Science, CMSO and MDO show diverse modeling approaches with

substantial axiom counts, indicating detailed and comprehensive domain representation. Materials
Representation ontologies like MatOnto and MSEO, with high axiom and class counts, suggest rich and
detailed modeling capabilities across various sub-domains. For Nanomaterials, NPO stands out with ex-
tensive axioms and classes, indicative of detailed nanoparticle interaction modeling. eNanoMapper and
NanoMine, with lower axiom counts and simpler DL expressivity, focus on specific nanomaterial aspects.
In Mechanical Testing, MOL Brinell has a high axiom count but simpler DL expressivity (𝒜ℒ(𝒟)),
suggesting a thorough yet straightforward representation. Additive Manufacturing ontologies, such as
LPBFO, exhibit detailed and complex representations, whereas AMONTOLOGY offers a broader but

Table 6
List of ontologies in the domain of Materials Science and Engineering, categorized based on the subdomain.

Domain Number of
Ontologies Ontologies

Materials Represen-
tation

14 Material Science and Engineering Ontology, MatOnto, Standards-
Specific Ontology Standard, Semantic Materials Manufacturing De-
sign, Materials AndMolecules Basic Ontology, Periodic Table Ontology,
Metal Alloy, Building Material Ontology, Material properties ontology,
Materials Ontology, Materials Vocabulary, Materials Data Science On-
tology, PRovenance Information in MAterials science, OIE materials

Materials Characteri-
zation

13 EMMO Crystallography, CIF Core Ontology, Dislocation Ontology,
Characterisation Methodology Domain Ontology (CHAMEO), EMMO
Microstructure, Material Science Lab Equipment Ontology, Chemical
Methods Ontology, Crystal Structure Ontology, Point Defects Ontol-
ogy, Crystallographic Defect Core Ontology, Line Defect Ontology,
Planar Defects Ontology, OIE Characterisation Methods

Process Modeling 10 EMMO General Process Ontology, PMD Core Ontology, SMART-
Protocols, Baden Württemberg Material Digital Domain Mid Level
Ontology, Baden Württemberg Material Digital Domain Ontology, On-
tology of Scientific Experiments, Metadata4Ing Ontology, The Open
Provenance Model for Workflows, Ontology to describe Workflows in
Linked Data, Ontology for Simulation Modelling Optimization

Nanomaterials 4 NanoParticle Ontology, eNanoMapper, MaterialsMine, NanoMine
Computational Ma-
terials Science

6 EMMOAtomistic and ElectronicModelling, Materials DesignOntology,
Computational Material Sample Ontology, Dislocation Simulation and
Model Ontology, Atomistic Simulation Methods Ontology, OIE models

Materials Data 5 EMMO Datamodel ontology, EMMO Mappings ontology, MatWerk
Ontology, Virtual Materials Marketplace (VIMMP) Ontology, OIE soft-
ware

Mechanical Testing 3 EMMO Mechanical Testing, Matolab Tensile Test Ontology, MatoLab
Brinell Test Ontology

Additive Manufactur-
ing

3 Additive Manufacturing Ontology, Laser Powder Bed Fusion Ontology,
OIE manufacturing

Batteries 2 EMMO Battery Interface Ontology, EMMO Battery Value Chain On-
tology Ontology

Chemistry 2 Chemical Entities of Biological Interest, Chemical Information Ontol-
ogy

Energy Systems 1 Smart Applications REFerence
Tribology 1 tribAIn Ontology
Biomaterials 1 The Devices, Experimental Scaffolds and Biomaterials Ontology
Sensors 1 Semantic Sensor Network Ontology



simpler structure. In the Batteries domain, EMMO BattINFO and EMMO BVC present similar metrics,
indicating detailed modeling capabilities.
Schema metrics provide insights into the richness and interconnectedness of these ontologies, as

seen in Tables 11 and 12. High ACR and RR values denote detailed and interconnected models, which
are essential for capturing the complexity of material characterization. However, these also bring
increased computational challenges. High IR values suggest well-structured hierarchies, enhancing
knowledge organization but potentially complicating ontology maintenance. The diversity in metrics
indicates that while some ontologies are well-suited for detailed and complex modeling, others may
offer more streamlined and efficient structures, highlighting the need for balance depending on specific
application requirements. For instance, in the Materials Characterization domain, ontologies like
CSO and PLDO show high Attribute Richness (AR) and Axiom Class Ratio (ACR), indicating detailed
knowledge representation and logical definitions, making them suitable for applications requiring
extensive detail. EMMO Crystallography and CSO excel in Inheritance Richness (IR), suggesting a well-
structured hierarchical categorization, are beneficial for understanding domain taxonomy. CHAMEO
and DISO are notable for their high Relationship Richness (RR), implying a well-connected structure
that enhances relationship understanding. The choice of ontology depends on the application needs,
with CSO, PLDO, and CDCO recommended for detailed logical reasoning, EMMO Crystallography and
CSO for hierarchical structuring, and CHAMEO and DISO for comprehensive relationship mapping.

Graphmetrics, detailed in Tables 13 and 14, provide a deeper understanding of the structural properties
of the ontologies. Higher root cardinality (NoR) indicates a diversified foundational structure, enhancing
the ontology’s ability to cover a broad range of concepts. Conversely, a higher number of leaf classes
(NoL) suggests greater granularity and specificity, crucial for capturing detailed knowledge within the
domain. The number of External Classes (NoC) is calculated by comparing the ontology’s namespace
with the namespaces of the referenced classes. Classes that have a different namespace than those present
in the ontology are considered external. For ontologies that consist of multiple modules, the modules are
considered part of the core ontology. Therefore, classes from these modules are not treated as external.
To be classified as external, a class must have a namespace that differs from any of the namespaces used
within the core ontology and its modules. This ensures that only truly external references are counted,
reflecting the ontology’s degree of interdependence with other distinct ontologies. The number of
external classes (NoC) highlights the degree of interoperability and alignment with external standards,
with a higher count indicating better integration but potentially adding complexity. Together, these
metrics reveal the balance between foundational diversity, detail specificity, and interconnectivity,
impacting the ontology’s usability and effectiveness in representing complex domains. For instance,
in the Materials Characterization domain, ontologies like EMMO Crystallography and MSLE exhibit
high root cardinality, which may suggest a broad foundational structure. However, ontologies like
CSO and CDCO have fewer root classes, potentially indicating a narrower scope. It is important to
note that this metric is just a hint; a thorough examination of the ontologies’ content is necessary to
draw valid conclusions. An ontology with fewer root classes might still have a broader scope at deeper
levels of the hierarchy, and the reduced number of root classes could result from a higher-level top
classification. Ontologies such as EMMO Microstructure and OIE Characterisation Methods show high
leaf cardinality, reflecting a high level of detail and specificity. In terms of external class references,
CHAMEO and EMMO Microstructure demonstrate better interoperability with higher counts, whereas
PODO and PLDO have fewer external references, implying less reliance on external ontologies. Depth
and breadth metrics indicate complex hierarchical structures in ontologies like EMMO Crystallography,
while others, such as CSO and CDCO, display simpler, more focused structures. Overall, these metrics
highlight the diversity in foundational breadth, detail granularity, and external interconnectivity across
the Materials Characterization ontologies, impacting their comprehensiveness.

For detailed evaluations in other domains, please refer to Appendix C and D. The appendix includes
the same evaluations applied to ontologies in different domains such as Biomaterials, Sensors, and
Energy, providing a comprehensive understanding of their complexities and structures.



4. Conclusion and Outlook

In conclusion, this study provides a comprehensive evaluation of 94 ontologies within the field of
Materials Science and Engineering (MSE), offering a detailed analysis based on quality-control metrics.
The findings highlight both the strengths and weaknesses of the evaluated ontologies, emphasizing
their structural complexities, domain-specific relevance, and reuse of existing ontological frameworks.
However, the study also identifies critical areas for improvement, such as the limited adoption of
competency questions and ontology design patterns, and the need for better documentation and user
support to address common pitfalls and enhance overall quality and usability.

Future work will focus on several key areas to further advance ontology development in MSE. Efforts
will be made to systematically identify and extract Ontology Design Patterns (ODPs) to enhance quality
and reusability. Additionally, further research will aim to comprehensively evaluate the complete-
ness, domain coverage, and accuracy of these ontologies by extracting relevant domain terms and
concepts within the subdomain of materials science. Moreover, the assessment of FAIRness (Findability,
Accessibility, Interoperability, and Reusability) of the ontologies will be incorporated into future studies.
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Supplementary Information

This supplementary section provides a comprehensive evaluation of various aspects of MSE ontologies.
Section A focuses on error detection using the OOPS! tool. Section B presents base metrics, examining
structural aspects. Section C evaluates schema metrics. Finally, Section D details graph metrics.

A. Error Detection

The OOPS! (Ontology Pitfall Scanner!) tool was employed for error-checking evaluations. Identifying
and categorizing these pitfalls is essential for the evaluation process. Critical pitfalls impact ontology
consistency, reasoning, and applicability, leading to significant issues in how the ontology is used and
interpreted. Important pitfalls, while not affecting the core functionality, can still degrade the quality
and reliability of the ontology. Minor pitfalls are less problematic but addressing them can enhance
the ontology’s organization and user-friendliness. By comparing the presence of these pitfalls across
different ontologies, MSE domain experts can make informed decisions about which ontology best
meets their needs, ensuring that the chosen ontology is robust, reliable, and suitable for their specific
applications. Table 7 describes only the pitfalls that exist in the MSE ontologies, along with their
descriptions and impact levels.
Table 8 details the results of ontology evaluation using the OOPS! tool. Critical pitfalls affecting

ontology consistency and reasoning include P19 (Multiple domains or ranges for properties), P40
(Namespace hijacking), P31 (Incorrect use of owl:equivalentClass), P05 (Incorrect use of owl:inverseOf),
P29 (Incorrect use of owl:TransitiveProperty), and P27 (Incorrect use of owl:equivalentProperty). Impor-
tant pitfalls, although less severe, still affect ontology quality and should be addressed. Minor pitfalls,
while not critical, can be improved for better organization and user-friendliness.

The frequent occurrence of critical pitfalls such as P19 and P40 across multiple ontologies suggests a
need for more stringent guidelines and validation tools during ontology development. The presence
of these pitfalls can significantly impact the usability and accuracy of the ontologies in real-world
applications. For instance, P19’s misinterpretation issues can lead to incorrect inferences, while P40 can
hinder effective data retrieval and integration.

B. Base Metrics

The Tables 9 and 10 provide an evaluation of the base metrics for MSE ontologies. It includes several
columns such as Domain, Ontology Name, and the total number of Axioms. Additionally, it details
the Class Count, Object Property (OP) Count, Data Property (DP) Count, and Annotation Axiom (Ann.
Axm.) Count. The table also highlights the Description Logic Expressivity10 (DL Expr.) and includes
information on the OWL2 profile11.

C. Schema Metrics

Materials Characterization ontologies such as EMMO Crystallography (NoR: 33, NoL: 4) and MSLE (NoR:
63, NoL: 6) show broad foundational structures and detailed coverage, indicated by deep (Max Depth:
4) and broad (Max Breadth: 1760) hierarchies. CHAMEO and OIE Characterisation Methods have
high leaf cardinality (NoL: 34-35) and demonstrate good interoperability with moderate tangledness
(0.05-0.12). Process Modeling ontologies like GPO (NoR: 115, NoL: 8) and EXPO (NoL: 202) reflect broad
foundational coverage and significant depth (Max Depth: 8-12) with moderate tangledness (0.10-0.11).
PMDCO shows a balanced structure with extensive roots (NoR: 194) and low tangledness (0.02).

In Computational Materials Science, ASMO (NoR: 28, NoL: 3) and CMSO (NoR: 31, NoL: 2) have broad
structures with no tangledness. DSIM (NoR: 17, NoL: 4) exhibits moderate depth and higher tangledness

10https://en.wikipedia.org/wiki/Description_logic
11https://www.w3.org/TR/owl2-profiles/

https://en.wikipedia.org/wiki/Description_logic
https://www.w3.org/TR/owl2-profiles/


Table 7
Identified Pitfalls [7] in the MSE Ontologies.

Imp. Pitfall Description Impact
C
ri
ti
ca
l

P19
Multiple domains or ranges defined for
properties: Leads to misinterpretation as
a conjunction in OWL.

Affects consistency
and reasoning

P40
Namespace hijacking: Terms from another
namespace are used without proper defi-
nition, preventing information retrieval.

Hinders information
retrieval

P31
Incorrect use of owl:equivalentClass:
Defining non-equivalent classes as equiva-
lent.

Affects class defini-
tion accuracy

P05
Incorrect use of owl:inverseOf: Defining
non-inverse relationships as inverse.

Impacts relationship
integrity

P29
Incorrect use of owl:TransitiveProperty:
Defining non-transitive relationships as
transitive.

Distorts relationship
hierarchy

P27
Incorrect use of owl:equivalentProperty:
Defining non-equivalent properties as
equivalent.

Compromises prop-
erty definitions

Im
po

rt
an

t

P11
Lack of domain or range definitions: Prop-
erties without defined domain or range
may cause misunderstandings.

Leads to ambiguous
property usage

P24
Defining classes as instances: Instances
incorrectly defined as classes, causing con-
fusion in class hierarchy.

Confuses class hier-
archy

P30
Misuse of transitive property: Improper
use of transitive property affects ontology
reasoning.

Affects transitive rea-
soning

M
in
or

P04
Misuse of symmetric property: Misuse can
lead to incorrect inference.

Leads to incorrect in-
ference

P08
Using different naming conventions: In-
consistent naming conventions reduce on-
tology clarity.

Reduces clarity

P13
Use of deprecated classes or properties:
Use of deprecated elements affects ontol-
ogy maintenance.

Affects maintenance

(0.24). Materials Representation ontologies like MatOnto (NoR: 848, NoL: 13) and MSEO (NoR: 100,
NoL: 5) suggest deep, wide structures with no tangledness. Nanomaterials ontologies such as NPO
(NoR: 65, NoL: 5) and NanoMine (NoR: 1, NoL: 5) show extensive depth (Max Depth: 14) and breadth
(Max Breadth: 284-1593) with moderate to low tangledness (0.03-0.31). Mechanical Testing ontologies
like EMMO Mechanical Testing (NoR: 13, NoL: 7) and MOL Brinell (NoR: 17, NoL: 3) have moderate
depth (Max Depth: 3-7) and tangledness (0.21). Additive Manufacturing ontologies like AMONTOLOGY
(NoR: 5, NoL: 3) and LPBFO (NoR: 2, NoL: 4) show moderate depth and breadth with low tangledness.
Batteries ontologies like BattINFO (NoR: 10, NoL: 3) and EMMO BVC (NoR: 11, NoL: 4) suggest broad



foundational coverage with high horizontal coverage (Max Breadth: 1203-1781) and low tangledness
(0.01-0.05).

D. Graph Metrics

Materials Characterization ontologies like EMMO Crystallography (NoR: 33, NoL: 4) and MSLE (NoR:
63, NoL: 6) show extensive foundational structures and detailed coverage, with deep (Max Depth: 4)
and broad (Max Breadth: 1760) hierarchies. CHAMEO and OIE Characterisation Methods have high
leaf cardinality (NoL: 34-35) and good interoperability with moderate tangledness (0.05-0.12). Process
Modeling ontologies like GPO (NoR: 115, NoL: 8) and EXPO (NoL: 202) reflect broad foundational
coverage and significant depth (Max Depth: 8-12) with moderate tangledness (0.10-0.11). PMDCO
shows balanced structure with extensive roots (NoR: 194) and low tangledness (0.02).
In Computational Materials Science, ASMO (NoR: 28, NoL: 3) and CMSO (NoR: 31, NoL: 2) indicate

broad structures with no tangledness. DSIM (NoR: 17, NoL: 4) hasmoderate depth and higher tangledness
(0.24). Materials Representation ontologies like MatOnto (NoR: 848, NoL: 13) and MSEO (NoR: 100,
NoL: 5) suggest deep, wide structures with no tangledness. Nanomaterials ontologies like NPO (NoR:
65, NoL: 5) and NanoMine (NoR: 1, NoL: 5) show extensive depth (Max Depth: 14) and breadth (Max
Breadth: 284-1593) with moderate to low tangledness (0.03-0.31). Mechanical Testing ontologies like
EMMO Mechanical Testing (NoR: 13, NoL: 7) and MOL Brinell (NoR: 17, NoL: 3) have moderate depth
(Max Depth: 3-7) and tangledness (0.21). Additive Manufacturing ontologies like AMONTOLOGY
(NoR: 5, NoL: 3) and LPBFO (NoR: 2, NoL: 4) show moderate depth and breadth with low tangledness.
Batteries ontologies like BattINFO (NoR: 10, NoL: 3) and EMMO BVC (NoR: 11, NoL: 4) suggest broad
foundational coverage with high horizontal coverage (Max Breadth: 1203-1781) and low tangledness
(0.01-0.05).



Table 8
The results of error checking evaluation of ontologies using OOPS! tool. The numbers indicate the frequency of
each type of pitfall (P) encountered in the ontologies.

Ontology Name Critical Important Minor
P19 P29 P05 P11 P24 P30 P34 P04 P08 P13 P36

AMONTOLOGY 9 - - 2 1 - 60 2 305 9 1
ASMO - - - 2 - 1 - 1 33 14 1
BWMD-DOMAIN 1 - - 30 - 13 - 1 37 24 1
BWMD-MID 1 - - 30 - 12 - 1 37 24 1
CDCO - - - - - - 1 3 3 - 1
CHAMEO - - - - - - - - - - 1
CIF-core - - - 5 - 1 - 20 72 4 1
CMSO - - - 3 - 1 1 1 73 13 1
CSO - - - 4 - - - - 31 19 1
DEB - - - - - - - - - - -
DISO - - - - - - - - - - -
DSIM - - - - - - - - - - -
EMMO Atomistic - - - - - - - - - - -
EMMO Crystallography - - - - - - - - - - -
EMMO Mappings - - - - - - - - - - -
EMMO Mechanical Testing - - - - - - - - - - -
EMMO Microstructure - - - - - - - - - - -
EXPO - - - - - - - - - - -
GPO - - - - - - - - - - -
IAO - - - - - - - - - - -
LDO - - - - - - 1 3 6 - 1
LPBFO 1 - - 31 - 13 - 1 46 25 1
MAMBO 2 3 - 7 - 1 1 5 153 26 1
MDO - - - 8 - - - 2 15 32 1
MDS - - - - - - - - - - -
MOL BRINELL - - - 21 - - - 23 58 17 1
MOL TENSILE 1 - - 91 - 13 - 1 116 81 1
MSEO - - - - - - - - - - -
MSLE - - - - - - - - - - -
MaterialsMine - - - 3 - - - 2 20 25 1
NanoMine - - - - - - - - - - 1
OA - - - - - - 3 - - - 1
OBO - - 5 17 - 1 1 - - 6 1
OEO - - - - - - - - - - -
OSMO 5 2 - - - - 20 - 318 119 1
PLDO - - - 3 - 1 - 1 17 2 1
PMDCO - - - - - - - - - - -
PODO - - - 4 - 1 1 1 11 - 1
PRIMA - - - 11 - - - 2 29 15 1
QUDT - - - 217 3 1 10 1 139 82 1
QUDV - - - 25 - 1 1 1 43 12 1
SAREF - - - 12 2 1 - - - 22 1
SKOS MDO 1 - - - - - 1 2 2 - 1
SP 3 - - 21 3 3 - 1 249 39 1
SSN - - - 23 1 1 - 16 3 3 1
WILD - - - - - - 2 - - - 1



Table 9
Base metrics evaluation of MSE ontologies (Part 1). The columns include Domain, Ontology Name, Axioms
(total number of axioms), Class Count (total number of classes), Object Property (OP) Count, Data Property
(DP) Count, Annotation Axiom (Ann. Axm.) Count, Description Logic Expressivity (DL Expr.), and OWL2 profile
information (OWL2 P.).
Domain Ontology Name Axioms Class OP DP Ann. Axm. DL Expr. OWL2 P.

Materials
Characteriza-
tion

EMMO Crystallography 357 61 5 1 175 𝒜ℒ𝒞ℐ𝒬(𝒟) OWL2
EMMO Microstructure 183 61 2 0 60 𝒜ℒℰ OWL2
CIF-core 321 31 1 1 176 𝒜ℒ(𝒟) OWL2-DL
DISO 373 38 33 12 147 𝒜ℒ𝒞ℋℐ𝒬(𝒟) OWL2-DL
CHAMEO 491 74 44 2 234 𝒜ℒ𝒞ℋ(𝒟) OWL2
MSLE 181 82 0 2 0 𝒜ℒ𝒞 OWL2-DL
CSO 374 136 30 25 19 𝒜ℒ𝒞ℐ𝒬(𝒟) OWL2
PODO 176 16 10 0 5 𝒜ℒ(𝒟) OWL2-RL
CDCO 60 3 0 0 34 𝒜ℒ OWL2-RL
LDO 69 6 0 0 37 𝒜ℒ OWL2-RL
PLDO 212 30 11 2 7 𝒜ℒℋ(𝒟) OWL2
OIE Characterisation Meth-
ods

129 44 0 0 44 𝒜ℒ OWL2

Process
Modeling

GPO 6249 963 86 5 2532 𝒮ℛ𝒪ℐ𝒬(𝒟) OWL2
EXPO 2067 325 78 0 646 𝒜ℒ𝒞ℋ𝒩 OWL2-DL
PMDCO 2154 264 36 9 1454 𝒜ℒ𝒞ℋℐℱ (𝒟) OWL2
SMART-Protocols 2999 399 43 0 1781 𝒮ℋℐ OWL2
BWMD-MID 1546 336 27 12 771 𝒜ℒ𝒞ℋℐ (𝒟) OWL2-DL
BWMD-DOMAIN 1800 459 0 0 917 𝒜ℒ OWL2-DL
OPMW 202 96 21 22 18 𝒜ℒ𝒰ℋℱ (𝒟) OWL2
WILD 73 19 13 1 2 𝒮ℋ(𝒟) OWL2
OSMO 1786 173 152 46 360 𝒮ℛ𝒪ℐ𝒩 (𝒟) OWL2
M4I 1203 38 57 37 751 𝒮ℛℐ𝒩 (𝒟) OWL2-DL

Computa-
tional
Materials
Science

ASMO 519 36 18 4 327 𝒜ℒ𝒞ℋℐ (𝒟) OWL2
CMSO 508 40 19 28 270 𝒜ℒ𝒰ℋℐ (𝒟) OWL2
DSIM 492 41 45 33 185 𝒮ℋℐ𝒬(𝒟) OWL2
OIE Models 353 114 5 0 130 𝒜ℒℰℋℐ OWL2
EMMO Atomistic 64 18 3 1 34 𝒜ℒℰℋ(𝒟) OWL2
MDO 574 38 32 32 268 𝒜ℒ𝒞𝒬(𝒟) OWL2

Materials
Representa-
tion

MSEO 890 150 2 0 618 𝒜ℒℋ OWL2
MatOnto 5235 848 83 13 1841 𝒮ℋ𝒪ℐ𝒬(𝒟) OWL2
MATINFO 549 140 13 8 202 𝒜ℒ𝒬(𝒟) OWL2
MatVoc 154 28 12 3 75 𝒜ℒℐ (𝒟) OWL2
SSOS 244 27 19 21 79 𝒮ℋℐ (𝒟) OWL2-RL
MAMBO 400 57 35 63 57 𝒮ℋℐ𝒬(𝒟) OWL2-DL
Periodictable 1756 7 6 7 2 𝒜ℒ𝒰𝒪𝒩 (𝒟) OWL2-DL
BMO 362 26 56 7 44 𝒜ℒ𝒞ℛℐ (𝒟) OWL2
MAT 549 140 13 8 202 𝒜ℒ𝒬(𝒟) OWL2-DL
MDS 1698 256 11 1 890 𝒜ℒ(𝒟) OWL2
PRIMA 146 54 21 15 2 𝒜ℒ𝒞ℋ OWL2-DL
OIE materials 460 119 1 0 204 𝒜ℒ𝒞 OWL2

Table 10
Base metrics evaluation of MSE ontologies (Part 2). The columns include Domain, Ontology Name, Axioms
(total number of axioms), Class Count (total number of classes), Object Property Count (OP Ct.), Data Property
Count (DP Ct.), Annotation Axiom Count (Ann. Axm. Ct.), Description Logic Expressivity (DL Expr.), and OWL2
profile information (OWL2 P.).

Domain Ontology Name Axioms Class
Ct.

OP
Ct.

DP
Ct.

Ann. Axm.
Ct. DL Expr. OWL2 P.

Nano-
materials

NPO 28924 1906 65 22 11343 𝒮ℋℐ𝒩 (𝒟) OWL2
eNanoMapper 2809 772 2 0 1341 𝒜ℒℰ OWL2
NanoMine 815 172 1 0 429 𝒜ℒℰ𝒪 OWL2
MaterialsMine 2154 264 36 9 1454 𝒜ℒ𝒞ℋℐℱ (𝒟) OWL2

Mechanical
Testing

EMMO Mechanical Testing 1740 393 13 6 657 𝒜ℒ𝒞ℋℐ𝒬(𝒟) OWL2
MOL Brinell 16349 37 17 4 191 𝒜ℒ(𝒟) OWL2
MOL Tensile 354 35 61 7 120 𝒜ℒ𝒞ℋℱ (𝒟) OWL2

Additive Man-
ufacturing

AMONTOLOGY 130 85 5 0 3 𝒜ℒℰ OWL2
LPBFO 663 179 2 0 346 𝒜ℒ𝒞ℋ OWL2-DL
OIE manufacturing 763 228 5 0 304 𝒜ℒℰℋℐ OWL2

Batteries
BattINFO 442 137 10 0 203 𝒜ℒℰℐ OWL2
EMMO BVC 568 182 11 0 131 𝒜ℒ𝒞ℋ OWL2

Biomaterials DEB 2135 601 12 109 296 𝒜ℒℋ(𝒟) OWL2-RL
Sensor SSN 313 16 21 2 248 𝒜ℒℐ (𝒟) OWL2-RL
Energy SAREF 631 81 35 5 264 𝒜ℒ𝒞ℐ𝒬(𝒟) OWL2-DL



Table 11
Schema metrics evaluation of MSE ontologies (Part 1). The columns include Domain, Ontology Name, Attribute
Richness (AR), Inheritance Richness (IR), Relationship Richness (RR), Axiom Class Ratio (ACR), and Equivalence
Ratio (ER).

Domain Ontology Name AR IR RR ACR ER

Materials
Characteriza-
tion

EMMO Crystallography 0.00 1.84 0.03 0.20 0.04
EMMO Microstructure 0.01 1.26 0.22 0.84 0.13
CIF-core 0.03 1.04 0.10 4.72 0.04
DISO 0.32 1.63 0.39 9.82 0.00
CHAMEO 0.03 0.80 0.44 6.64 0.00
MSLE 0.04 1.54 0.25 1.76 0.00
CSO 0.63 1.63 0.35 12.47 0.00
PODO 0.50 1.00 0.00 17.60 0.00
CDCO 0.00 0.00 0.00 20.00 0.00
LDO 0.00 0.50 0.00 11.50 0.00
PLDO 0.64 0.91 0.17 19.27 0.00
OIE Characterisation Methods 0.00 0.95 0.02 2.93 0.02

Process
Modeling

GPO 0.00 1.12 0.24 1.77 0.13
EXPO 0.00 1.33 0.51 6.36 0.00
PMDCO 0.04 1.00 0.36 7.72 0.14
SP 0.00 1.19 0.20 7.52 0.00
BWMD-MID 0.03 1.00 0.11 4.26 0.00
BWMD-DOMAIN 0.02 1.00 0.06 2.29 0.00
OPMW 0.56 1.42 0.57 3.16 0.03
WILD 0.05 0.47 0.65 3.84 0.00
OSMO 0.27 1.63 0.39 10.32 0.10
M4I 0.97 1.11 0.58 31.66 0.03

Computa-
tional
Materials
Science

ASMO 0.11 0.67 0.45 14.42 0.03
CMSO 0.70 0.55 0.46 12.70 0.00
DSIM 0.80 1.41 0.47 12.00 0.00
OIE Models 0.01 1.07 0.25 1.05 0.12
EMMO Atomistic 0.01 1.66 0.12 0.12 0.13
MDO 0.84 1.92 0.31 15.11 0.00

Materials
Representa-
tion

MSEO 0.01 1.40 0.35 3.72 0.15
MatOnto 0.02 1.40 0.31 6.17 0.33
MATINFO 0.11 0.99 0.05 0.10 0.00
MatVoc 0.78 0.85 0.52 9.04 0.00
SSOS 0.78 0.85 0.52 9.04 0.00
MAMBO 1.11 0.75 0.56 11.09 0.00
Periodictable 1.00 3.14 0.29 250.86 0.43
BMO 0.18 0.80 0.63 2.05 0.08
MAT 0.06 1.24 0.07 3.92 0.00
MDS 0.00 0.86 0.05 6.63 0.00
PRIMA 0.10 1.81 0.28 6.95 0.00
OIE materials 0.00 1.08 0.19 2.53 0.09



Table 12
Schema metrics evaluation of MSE ontologies (Part 2). The columns include Domain, Ontology Name, Attribute
Richness (AR), Inheritance Richness (IR), Relationship Richness (RR), Axiom Class Ratio (ACR), and Equivalence
Ratio (ER).

Domain Ontology Name AR IR RR ACR ER

Nano-
materials

NPO 0.01 1.46 0.82 15.18 0.21
eNanoMapper 0.00 0.93 0.02 3.64 0.01
NanoMine 0.00 1.25 0.14 0.47 0.03
MaterialsMine 0.00 1.25 0.14 0.47 0.03

Mechanical
Testing

EMMO Mechanical Testing 0.01 1.60 0.09 2.07 0.09
MOL Brinell 0.11 0.38 0.55 441.86 0.00
MOL Tensile 0.04 1.00 0.21 0.91 0.00

Additive Man-
ufacturing

AMONTOLOGY 0.02 1.92 0.07 0.41 0.06
LPBFO 0.02 1.00 0.09 1.30 0.00
OIE manufacturing 0.00 1.04 0.15 1.76 0.06

Batteries
BattINFO 0.00 1.57 0.05 0.24 0.03
EMMO BVC 0.00 1.63 0.10 0.42 0.09

Biomaterials DEB 0.18 1.11 0.03 3.55 0.01
Sensor SSN 0.12 0.00 1.00 19.56 0.00
Energy SAREF 0.06 1.81 0.21 7.79 0.00



Table 13
Topology metrics of MSE ontologies (Part 1). The columns include Domain, Ontology Name, Absolute/Aver-
age/Maximum Depth (Abs./Avg./Max. Depth), Absolute/Average/Maximum Breadth (Abs./Avg./Max. Breadth),
Tangledness (Tngld.), Number of Root Classes (NoR), Number of External Classes (NoC), and Number of Leaf
Classes (NoL).

Domain Ontology Name Abs./Avg./Max.
Depth

Abs./Avg./Max.
Breadth Tngld. NoR NoC NoL

Materials
Characteriza-
tion

EMMO Crystallogra-
phy

1869/1.04/4 1803/112.69/1760 0.01 33 15 4

EMMO Microstruc-
ture

322/1.37/4 235/7.58/176 0.05 0 35 35

CIF-core 193/2.01/6 96/4.80/51 0.10 12 14 6
DISO 22/1.69/4 13/3.25/9 0.03 10 9 4
CHAMEO 145/1.88/3 77/4.05/24 0.12 52 24 5
MSLE 368/3.44/6 107/5.10/26 0.02 63 5 6
CSO 2/1.00/1 2/2.00/2 0.00 2 2 1
PODO 25/2.27/3 11/2.75/6 0.10 7 1 3
CDCO 3/1.00/1 3/3.00/3 0.00 3 3 1
LDO 11/1.83/3 6/2.00/3 0.00 4 3 3
PLDO 27/2.45/4 11/2.75/5 0.00 8 1 4
OIE Characterisation
Methods

163/3.70/5 44/4.00/10 0.00 0 34 34

Process
Modeling

GPO 968/2.47/8 392/4.61/218 0.11 115 38 8
EXPO 2036/6.26/12 325/2.62/15 0.10 0 202 202
PMDCO 1029/3.50/6 294/4.08/51 0.02 194 8 6
SP 3167/7.94/14 399/2.77/24 0.08 256 1 14
BWMD-MID 1297/3.57/7 363/5.76/88 0.00 274 9 7
BWMD-DOMAIN 1640/2.08/6 787/5.70/363 0.00 322 35 6
OPMW 94/1.29/3 73/5.21/56 0.09 9 13 3
WILD 31/1.63/3 19/3.80/10 0.00 15 10 3
OSMO 912/3.75/6 243/2.96/25 0.48 108 25 6
M4I 73/1.92/4 38/2.71/13 0.16 25 13 4

Computa-
tional
Materials
Science

ASMO 61/1.74/3 35/4.38/12 0.00 28 12 3
CMSO 60/1.54/2 39/4.33/18 0.00 31 18 2
DSIM 48/1.78/4 27/2.45/12 0.24 17 12 4
OIE Models 697/2.08/6 335/9.57/230 0.01 80 9 6
EMMO Atomistic 550/1.03/4 534/48.55/523 0.01 8 8 4
MDO 92/2.42/4 38/4.75/24 0.47 31 1 4

Materials
Representa-
tion

MSEO 476/1.99/5 239/4.69/115 0.00 100 26 5
MatOnto 1640/2.08/6 787/5.70/363 0.00 848 4 13
MATINFO 609/1.00/2 606/303.00/603 0.00 140 7 2
MatVoc 68/2.52/3 27/3.38/8 0.00 28 4 3
SSOS 193/2.01/6 96/4.80/51 0.10 27 4 3
MAMBO 94/1.77/3 53/3.31/17 0.04 57 17 3
Periodictable 4/1.00/1 4/4.00/4 0.00 7 4 1
BMO 206/1.16/3 177/35.40/157 0.00 26 6 3
MAT 0/0.00/0 0/0.00/0 0.00 140 0 2
MDS 677/2.64/4 256/4.34/36 0.00 256 36 4
PRIMA 45/2.14/3 21/2.10/5 0.38 54 4 3
OIE materials 1173/4.64/10 253/3.51/70 0.09 119 7 10



Table 14
Topology metrics of MSE ontologies (Part 2). The columns include Domain, Ontology Name, Absolute/Aver-
age/Maximum Depth (Abs./Avg./Max. Depth), Absolute/Average/Maximum Breadth (Abs./Avg./Max. Breadth),
Tangledness (Tngld.), Number of Root Classes (NoR), Number of External Classes (NoC), and Number of Leaf
Classes (NoL).

Domain Ontology Name Abs./Avg./Max.
Depth

Abs./Avg./Max.
Breadth Tngld. NoR NoC NoL

Nano-
materials

NPO 11326/6.45/14 1756/3.92/284 0.31 65 284 5
eNanoMapper 2014/2.60/7 775/6.80/99 0.00 2 59 5
NanoMine 2086/1.19/5 1748/46.00/1593 0.03 1 18 5
MaterialsMine 41/1.58/3 26/3.71/13 0.00 36 18 5

Mechanical
Testing

EMMO Mechanical
Testing

3403/2.62/7 1301/5.56/496 0.21 13 47 7

MOL Brinell 53/1.43/3 37/3.70/23 0.00 17 23 3
MOL Tensile 415/1.07/3 387/32.25/363 0.00 61 11 3

Additive Man-
ufacturing

AMONTOLOGY 322/1.12/3 288/16.94/256 0.05 5 26 3
LPBFO 695/1.37/4 509/11.84/363 0.00 2 33 4
OIE manufacturing 1304/2.94/8 443/6.71/215 0.01 5 9 8

Batteries
BattINFO 2115/1.13/5 1902/35.89/1781 0.01 10 43 3
EMMO BVC 1757/1.29/ 1359/18.12/1203 0.05 11 43 4

Biomaterials DEB 2135/2.63/5 608/5.58/56 0.13 12 601 5
Sensor SSN 16/1.00/1 16/16.00/16 0.00 21 16 3
Energy SAREF 51/2.04/3 25/3.57/6 0.00 35 5 3
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