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Strange metal behavior is traditionally associated with an underlying putative quantum critical point at zero 
temperature. However, in many correlated metals, e.g., high-Tc cuprate superconductors, strange metallicity 
persists at low temperatures over an extended range of microscopic parameters, suggesting the existence of 
an underlying quantum critical phase, whose possible physical origins remain poorly understood. Systematic 
investigations of physical scenarios giving rise to such a critical, non-Fermi liquid (NFL) phase are therefore 
crucial to better understand this puzzling behavior. In a previous study [Bashan et al., Phys. Rev. Lett. 132, 
236501 (2024)], we considered a solvable large-N model consisting of itinerant electrons coupled to local 
two-level systems (TLSs) via spatially random interactions, inspired by the possibility of emergent metallic 
glassiness due to frustrated competing orders, and found that the system hosts an NFL phase with tunable 
exponents at intermediate couplings. In this paper, we expand our investigation to the following: (i) We study the 
extent to which this NFL phase is generic by considering various deformations of our theory, including coupling 
of electrons to multiple operators of the TLSs and arbitrarily directed TLS fields. We find that the physical picture 
obtained in Bashan et al. [Phys. Rev. Lett. 132, 236501 (2024)] qualitatively persist in a wide region of parameter 
space, showcasing the robustness of the NFL phase. (ii) We analyze the superconducting instability caused by 
the coupling of TLSs to electrons, and find a rich structure, including quantum critical pairing associated with 
the NFL phase and conventional BCS-like pairing in the weak and strong coupling limits. (iii) We elaborate 
on the analysis of Bashan et al. [Phys. Rev. Lett. 132, 236501 (2024)], including single-particle, transport, and 
thermodynamic properties.

I. INTRODUCTION

One of the central problems in condensed matter physics
concerns the low-temperature anomalous normal-state trans-
port properties of correlated metals such as high-Tc cuprate
superconductors and others [1–5]. A hallmark of the anoma-
lous behavior is the linear-in-temperature scaling of the dc
resistivity, known as “strange metal” behavior. Such behavior
stands at odds with conventional Fermi-liquid theory, where a
T 2 scaling is predicted, and is believed to indicate that quan-
tum fluctuations are so pronounced as to completely invalidate
the Landau Fermi-liquid quasiparticle picture [6–9].

The traditional theoretical approach to describe strange
metals and other non-Fermi liquids (NFLs) involves coupling
a Fermi surface to bosonic collective fluctuations of an order
parameter, sometimes leading to NFL behavior when tuning
the system to a quantum critical point (QCP) [10–12]. In this
case, the NFL behavior manifests in a critical fan, emanating
from a single (critical) point at T → 0. Interestingly, while
consistent with some materials, e.g., heavy fermion systems
[13], there are numerous examples, e.g., cuprates [14–17] as
well as twisted bilayer graphene, organic superconductors,
and other systems [5,18–25], where NFL behavior persists
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over an extended region of nonthermal parameters at T → 0
and thus cannot be ascribed to a single QCP. Rather, the
extended NFL behavior raises the possibility of a quantum
critical phase. Since no general prescription exists for this sce-
nario, capturing such behavior within a controlled, physically
motivated theory is considerably challenging.

One potential route to realize an extended critical NFL
phase requires an efficient source of scattering for itinerant
electrons over an extended region of nonthermal parameters,
e.g., by identifying a physical setting where “critical” low-
energy excitations (i.e., with support at the lowest energies)
exist. To this end, in a recent paper [26], we demonstrated
that an NFL phase can arise when itinerant electrons are
interacting with fluctuations of a metallic glass (e.g., charge
or stripe glass), described as a collection of two-level systems
(TLSs) that correspond to quasilocal collective excitations,
analogously to the excitations in structural glasses [29]. Phys-
ically, our theory is motivated by the complex phase diagrams
of such strongly correlated materials that often host multiple
frustrated, competing orders, which can give rise to glassiness,
even in the absence of impurity disorder [30]. The presence of
disorder could further stabilize such extended NFL behavior,
as was observed in Ref. [31].

In fact, it has been long recognized that inelastic scattering
of electrons off of local TLSs can result in a T -linear resistiv-
ity in the weak coupling limit [32]. Nonetheless, going beyond
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weak coupling, the interaction with electrons may dramati-
cally alter the properties of the TLSs, e.g., by renormalization
of the bare TLS parameters or inducing inter-TLS corre-
lations analogously to the Ruderman–Kittel–Kasuya–Yosida
(RKKY) mechanism [33–35]. Clearly these effects can further
affect the electrons themselves.

To study the evolution of the physical picture beyond weak
coupling, in Ref. [26], we considered a large-N theory con-
sisting of itinerant electrons interacting with local TLSs via
spatially random couplings. We found that the non-Gaussian
saddle point of the theory hosts a robust NFL phase with
tunable exponents, which is not associated with quantum crit-
icality; see Sec. V for a summary of our findings. Roughly
speaking, the electrons constitute an ohmic bath for the TLSs,
which results in a renormalization of the TLS energy splitting
towards lower energies. At sufficiently strong couplings, a sig-
nificant portion of the TLSs are renormalized to low energies,
which in turn provides an efficient source of scattering for the
electrons, resulting in an NFL behavior over a finite range of
coupling strengths.

In Ref. [26], we have considered the special case where
electrons are coupled to a single operator of TLSs (i.e., σx

of spin-1/2 Pauli operators), which allowed us to focus on
the effects of inelastic electron-TLS scattering in a simple
setting. Specifically, we considered the case where electrons
are coupled to σx of the TLSs, which we shall refer to as the
“x model” henceforth. Aiming for a broader understanding, it
is natural to ask whether the behavior of the x model persist
to the generic case, where electrons may couple to all three
operators of the TLSs. Another important aspect of the phys-
ical picture concerns TLS-induced pairing, which is expected
to take over at sufficiently low temperatures.

In this paper, we investigate a class of large-N models, gen-
eralizing our study of the x model of Ref. [26] to more generic
settings. We begin by considering the effect of coupling of
spinless electrons to all operators of the TLSs. Importantly,
the low-energy behavior is qualitatively identical to that of
the x model within a wide range of parameters, showcasing
the robustness of the NFL phase found in Ref. [26]. To-
wards a more realistic scenario, we generalize our analysis
to spinful electrons and find a transition to a superconducting
ground state due to TLS-induced pairing. Remarkably, the
rich phenomenology of the normal state in our model is also
manifested in the form of the critical temperature Tc, exhibit-
ing various crossovers, where in particular the transition from
the NFL phase assumes a quantum critical form. In addition
to these key finding, we further study various aspects of the
model, including transport and thermodynamic properties and
1/N corrections.

The structure of the paper is as follows. In Sec. II we
present the model and discuss physically motivated choices
of parameters. In Sec. III we provide a brief summary of
our main results. In Sec. IV we provide a mapping from our
model to a set of decoupled spin-boson (SB) models. In Sec. V
we provide an extensive review of the x model, previously
studied in Ref. [26], which corresponds to the special case
where the electrons interact only with the x̂ component of
the TLSs. In Sec. VI we analyze the general case where the
electrons interact with all operators of the TLSs (dubbed the
xyz model), and in Sec.VII, to the most general case where

the field acting on the TLS is allowed to point in arbitrary
directions. In Secs. VIII, IX, and X we use our results to study
transport, thermodynamic, and superconducting properties of
the model, respectively. In Sec. XI we consider several finite-
N corrections. Section XII contains a summary of our paper
and discuss possible implications and further directions.

II. MODEL

We consider the following Hamiltonian, defined on a
d-dimensional hypercubic lattice:

H =
N∑

k;i=1

(εk − μ)c†
ikcik +

N∑
r;i, j=1

1

N1/2
Vi j,rc

†
irc jr

−
M∑

r;l=1

hl,r · σ l,r + Hint, (1)

where

Hint = 1

N

N ;M∑
r;i, j=1;l=1

gi jl,r · σ l,rc
†
irc jr. (2)

Each site contains N electronic “orbitals” i = 1, . . . ,N , and
M species of TLSs l = 1, . . . ,M where σl,r is a vector of
spin-1/2 Pauli operators at position r. εk and μ denote the
electronic dispersion and chemical potential, respectively, and
are assumed to be diagonal and i independent in orbital space.
We approximate the electronic density of states around the
Fermi surface by a constant up to the bandwidth W , which we
assume to be much larger than any other energy scale in the
problem (relaxing this assumption does not alter our results
qualitatively). For simplicity, we consider spinless fermions.
We will reintroduce the spin index later when we discuss
superconductivity. Thus, electrons create a dynamic local field
that acts on the TLSs while, at the same time, they scatter off
those local degrees of freedom.

Each TLS is subjected to a field hl,r = (hx
l , 0, h

z
l ), with hz

being the asymmetry and hx the tunneling rate between the
two states associated with each TLS, both taken to be indepen-
dent random variables drawn from a probability distribution
Pβa (ha) with a = x, z. Below, we refer to this as the physical
basis for h. Note that hy ≡ 0 in order to respect time-reversal
symmetry. We focus on power-law distributions, Pβa (ha) ∝
(ha)βa , supported on the interval 0 < ha < ha

c . It suffices to
consider positive fields as the sign of ha can be absorbed
into the definition of σz. ha

c denote the TLS bare bandwidth
and βa > −1 is a tunable parameter. The generalization to
other distributions is straightforward. In some cases, it will
be convenient to rotate to the eigenbasis where h = hẑ, with
h =
√

(hx )2 + (hz )2 being the energy splitting of the TLS. We
call this the diagonal basis of h.

While we present throughout this paper general results for
arbitrary βx and βz, there are two physically motivated choices
for the splitting distributions. Working in the “physical” basis
(i.e., the eigenbasis of σz), we assume that the distribution of
the level asymmetry hz has finite weight around hz = 0 [36],
which corresponds to a uniform distribution with βz = 0. It
is then natural to consider the cases where the width of the
distribution of the tunneling rate hx is either comparable or



negligible compared to the asymmetry, corresponding to βx =
0, hx

c = hz
c ≡ hc, or setting hx

c ≡ 0, respectively. In the latter
the diagonal basis coincides with the physical basis, while in
the former, changing to the diagonal basis results in a linear
distribution of the eigenvalues h, i.e., βz = 1.

The couplings gi jl,r = (gx
i jl,r, g

y
i jl,r, g

z
i jl,r) are taken to be

uncorrelated Gaussian random variables with zero mean and
variance g2

a. For a = x, z, we consider real-valued couplings
with

ga
i jl,rg

a
i′ j′l ′,r′ = g2

aδr,r′δll ′ (δii′δ j j′ + δi j′δ ji′ ), (3)

and to ensure that H is time reversal symmetric, gy must be
purely imaginary with

gy
i jl,rg

y
i′ j′l ′,r′ = −g2

yδr,r′δll ′ (δii′δ j j′ − δi j′δ ji′ ). (4)

The ga are all real valued. The different components are un-
correlated, i.e., gaga′ = 0 if a �= a′. (·) denotes averaging over
realizations of the coupling constants. Similarly, the on-site
potential disorder Vi j,r is normally distributed with zero mean
and variance V 2. Note that setting the couplings gx and gz to
be uncorrelated in the physical basis or in the eigenbasis is
not equivalent in the cases where both hx, hz > 0. Here we
first consider simple variants of the model where gx and gz are
uncorrelated in the diagonal basis (i.e., setting hx ≡ 0) and
later show that the qualitative physical picture persists when
they are uncorrelated in the physical basis (with hx �= 0).

The Fermi energy EF sets the largest energy scale in theory,
and also corresponds to the cutoff energy of the electronic
bath, traditionally denoted by ωc(= EF ) in the spin-boson
literature [37–39].

The TLS bandwidth satisfies hc � EF , and we restrict the
on-site disorder strength V 2, such that � = 2πρFV 2 � EF

(� being the elastic scattering rate), therefore considering
“good metals”. We do not restrict the interaction strengths
ga, namely, our study covers the range from weak to strong
coupling. We focus on the low-energy limit of the model,
defined by ω,T � hc,R, where hc,R is the renormalized cutoff
of the TLSs, to be defined below.

The dimensionless coupling parameters that will be used in
the following are related to the interaction strengths by (a =
x, y, z),

αa = ρ2
F g2

a

2π2
, (5)

λa = M

N

ρF g2
a

hc,R
. (6)

The parameters αa (defined in accordance to the spin-boson
literature conventions) represent the strength of the dissipation
acting on the TLSs, while λa quantify the strength of the
scattering of electrons by TLSs at low energies.

Throughout this paper we consider the limit N,M → ∞
with a fixed ratio M/N . We will see below that the limit
M → ∞ enables us to (i) reduce the electron’s self-energy
to a summation over rainbow diagrams containing only two-
point correlation functions of the TLSs, which is not clear a
priori as Wick’s theorem does not hold for the TLSs; and (ii)
invoke self-averaging of the TLSs, such that sums over the
TLS flavors can be replaced by averages over the splitting
distribution,

∑M
l=1 f (hl ) → M

∫
f (h)Pβ (h)dh. Importantly,

since the splitting distribution is independent of position, the
self-averaging assumption translates to statistical translation
invariance of the model. Note further that the N → ∞ limit
is essential for the mapping of our model to the spin-boson
(SB) model, where the bosonic bath coupled to the TLSs is
composed of particle-hole pairs, see Sec. IV.

III. BRIEF SUMMARY OF RESULTS

In the following sections we expound on the properties of
different variants of the model. However, for the benefit of
the reader, we first briefly outline the key conclusions of our
paper. We first describe the physical picture of the x model
and then show that this picture qualitatively persists to generic
variants of the model.

Normal state. Consider the normal state properties at low
T , corresponding to regions (I) and (II) in Fig. 1. In region
(I), as the dimensionless coupling α = αx is increased, the
system crosses over from a FL, MFL, and NFL, up to a critical
value α ≈ 1 where the TLS freeze at T = 0. These regimes
are defined by the exponent of the single-particle scatter-
ing rate, �′′(ω) −�′′(0) ∝ |ω|γ , γ (α, β ) = (1 + β )(1 − α)
(shown for β = 1 in Fig. 1). This is also manifested in the dc
resistivity, ρ − ρ0 ∝ T γ . In region (II), the TLSs are frozen
at T = 0, such that scattering off of TLS is mainly elastic.
At finite T for α � 1, however, residual quantum fluctuations
of the TLSs provides a source for inelastic scattering, leading
to an additional sequence of NFL-MFL-FL crossovers with an
inelastic scattering exponent 2(α − 1). This residual contribu-
tion corresponds to a weak T variation of the dc resistivity as
shown in Fig. 1. The behavior in the critical region α ≈ 1 and
T → 0, separating regions (I) and (II), is more involved and
show logarithmic T dependence of the single-particle scat-
tering rate (and the dc resistivity) that smoothly interpolates
between the two regions.

Superconductivity. Considering the model with spinful
electrons, a superconducting transition occurs below a critical
temperature Tc due to TLS-induced pairing; see Fig. 1. Inter-
estingly, Tc is a nonmonotonic function of the coupling αx,
with remarkably rich pairing phenomenology. Specifically, at
intermediate couplings [corresponding, e.g., to the NFL phase
of region (I) in Fig. 1] Tc assumes an algebraic, quantum
critical scaling form, and, as the coupling is further increased
beyond a certain threshold (but still at intermediate values),
crosses over to an Allen-Dynes-like, strong coupling form
[40]. In addition, Tc assumes the standard BCS-like form at
weak coupling, but also at very strong coupling (e.g., for
α > 3/2 in Fig. 1), which corresponds to pairing due to
the residual quantum fluctuations of the nearly frozen spins.
Here BCS-like superconductivity describes a state where the
frequency dependence of the bosonic mode that causes super-
conductivity does not change the dependence of Tc relative to
phonon-mediated BCS theory.

Robustness. To test the extent to which the physical picture
of the x model is generic, we allow for interactions with other
operators of the TLSs. In Fig. 2, we show how the normal
state T = 0 phase diagram of the x model changes upon
introducing coupling to the y (top row) and z (bottom row)
operators of the TLSs for constant and linear TLS-splitting
distributions (left and right columns, respectively). We shall
refer to these variants as the xy and xz models.



(a) (c)

(d) (e)

(b)

FIG. 1. (a), (b) Illustration of the lattice model Eqs. (1) and (2). (a) A unit cell containing a large number of electronic states and local
two-level systems interacting via random couplings; (b) the electrons hop between unit cells. (c) Phase diagram of the x model in α − T
plane (α = αx is the dimensionless coupling strength) for a linear splitting distribution (β = 1). Region (I), defined by T � T� ∼ hc,R, hc,R

being the renormalized cutoff of the TLS-splitting, is characterized by the leading inelastic scattering exponent 2(1 − α) as manifested in the
dc resistivity, see (d); the system crosses over from a Fermi liquid (FL) for α < 1/2, to a marginal Fermi liquid (MFL) for α = 1/2, and a
non-Fermi liquid (NFL) for 1/2 < α < 1. At α ≈ 1, the TLSs undergo a freezing transition at T = 0. In Region (II), for α � 1 at finite T ,
scattering off of the TLSs is mainly elastic with small inelastic corrections that scale ∼T 2(α−1), namely, another set of crossovers from NFL
(1 < α < 3/2) to MFL (α = 3/2) to FL (α > 2); see (e). Region (II) is defined up to T ∼ T��, where T�� is the scale at which standard FL
behavior becomes dominant. The gray line denotes the transition temperature to the superconducting state, Tc, in the spinful version of the x
model. (d)(e) Resistivity as a function of T for regions (I) and (II), respectively, where ρ∞ is the resistivity due to saturated classical TLSs.
Note that, in region (II), the α-dependent coefficient ηα ∝ (hc/EF )2 � 1, corresponding to the weak T -variation of the dc resistivity.

In all cases, the qualitative behavior of the x model per-
sists provided that the largest coupling is orthogonal to the
direction of the TLS field (i.e., to hzσz), namely, the character-
izing exponent γ (α) varies from 1 + β to 0 as the dominant

FIG. 2. T = 0 normal-state phase diagram of the xy model (top)
and xz model (bottom), for constant (β = 0) and linear (β = 1) TLS
splitting distributions. The color represents the exponent in the low-T
behavior of the resistivity, ρ − ρ0 ∝ T γ [analogous to region (I) in
Fig. 1]. The dashed line denotes the BKT transition over which the
TLSs freeze, and beyond which there is a nonuniversal version of the
NFL phase [similar to region (II) of Fig. 1 for αx > 1].

coupling is increased, up to a critical value at which the TLSs
freeze. This sequence of crossovers corresponds to region
(I) in Fig. 1, while the residual crossovers of region (II) are
expected to qualitatively change for sufficiently strong per-
turbations due to nonuniversal corrections. Note that when
the dominant coupling is parallel to the TLS field (i.e., when
αz > αx), the TLSs are essentially static and the system shows
Fermi-liquid behavior with TLS-induced elastic scattering
along with weak FL-like corrections.

IV. MAPPING TO SPIN-BOSON MODEL

In this section, we use an effective action approach to map
our theory to the SB model. We set V 2 = 0 for simplicity. An
alternative diagrammatic derivation of the mapping is given in
Appendix A.

We begin by considering the spin coherent-state path in-
tegral representation for the TLSs. The partition function is
given by

Z[h, g] =
∫

D[σ, c, c]e−S, (7)

with the action, S = S0 + Sint,

S0 =
∑

r

M∑
l=1

SBerry[σ l,r] −
∑

r

M∑
l=1

∫
τ

hl,r · σ l,r

+
N∑

i=1

∑
k

∫
τ

cik(∂τ + εk − μ)cik, (8)

Sint = 1

N

∑
r

N∑
i, j=1

M∑
l=1

∫
τ

gi jl,r · σ l,rcirc jr. (9)



Here we kept the same symbols σ l,r for the unit vectors that
result from the coherent state representation of the Pauli op-
erators. SBerry denotes the Berry’s phase of the TLSs, see e.g.,
[41].

To proceed, we average over the random couplings using
the replica method and introduce the bilocal fields

Gr,r′ (τ, τ ′) = 1

N

∑
i

cir(τ )cir′ (τ ′), (10)

χa,r(τ, τ
′) = 1

M

∑
l

σ a
l,r(τ )σ a

l,r(τ
′). (11)

The constraints (10) and (11) are enforced via conjugated
fields, � and �, respectively. Notice that, for now, we are
considering spinless fermions. In this case, there is no pairing
instability to leading order in 1/N . Later on, we shall consider
a model of spinful fermions, where the anomalous part of
the Green’s function must be considered, and an instability
towards a superconducting state with an intraflavor, on-site
order parameter occurs [42].

To proceed, we integrate over the fermions and substitute
a replica-diagonal Ansatz, which allows us to express the
partition function as Z[h] = ∫ D[G,χ, �,�, σ]e−Seff , where
the effective action is given by

Seff = −NTr ln
(
G−1

0 −�)− N
∫
τ,τ ′

∑
r,r′

∑
σ

Gr,r′ (τ, τ ′)�r,r′ (τ, τ ′) + M

2

∫
τ,τ ′

∑
r,a

χa,r(τ, τ
′)�a

r (τ ′, τ )

+ M

2

∫
τ,τ ′

∑
r

∑
a

g2
aGr(τ, τ

′)Gr(τ
′, τ )χa,r(τ, τ

′) +
∑

r

M∑
l=1

SBerry[σ l,r] −
∫
τ

∑
r

M∑
l=1

hl,r · σ l,r

− 1

2

∫
τ,τ ′

∑
r,a

�a
r (τ ′, τ )

M∑
l=1

σ a
l,r(τ )σ a

l,r(τ
′). (12)

In the limit of large M and N , with fixed ratio M/N , we can
analyze the problem in the saddle point limit [43]. Performing
the variation with respect to G and � gives

�r,r′ (τ ) = δr,r′
M

N

∑
a

g2
aGr,r(τ )χa,r(τ ) (13)

as well as

Gr,r′ (iω) = (G−1
0 (iω) −�(iω)

)−1∣∣
r,r′ . (14)

Here, we have used thermal equilibrium to write the saddle-
point equations with time-translation-invariant correlation
functions and their Fourier transforms. In addition, the sta-
tionary point that follows from the variation with respect to
χ is

�a,r(τ ) = −g2
aGr,r(τ )Gr,r(−τ ). (15)

The Berry phase term SBerry that reflects the fact that no Wick’s
theorem exists for Pauli operators, implies that the TLSs can-
not be simply integrated over as a Gaussian integral. However,
it allows us to recast the TLS problem to that of M decoupled
TLSs per site r,

∑M
r,l=1 Sr,l [σr,l ], coupled to a bosonic bath

of particle-hole excitations. Each TLS is governed by the
spatially local effective action

Sr,l [σ] = SBerry[σ] −
∫
τ

hl,r · σ(τ )

−
∫
τ,τ ′
�r(τ

′ − τ )σ a(τ )σ a(τ ′). (16)

This is indeed the action of the spin-boson model after the
bosonic bath degrees of freedom have been integrated out
[39]. The latter give rise to the nonlocal in time coupling
�a

r (τ ′, τ ) that is, in general, different for each site. Of course,
in our problem the origin of the bath function are not bosons
but the conduction electrons. For the solution of this local

problem this makes, however, no difference. Sr,l still depends
on the random configuration hl,r of the fields.

For a given realization of the fields hl,r the problem
is not translation invariant and correlation functions like
〈σ a

l,r(τ )σ a
l,r(0)〉 fluctuate in space. However, to determine the

self-energy in Eq. (13) we only need to know the average
χa,r(τ ) of this correlation function over the M flavors. To
proceed we assume that the model is self-averaging in the
M → ∞ limit, such that sums over the TLS flavors can be
replaced with averaging over the TLS splitting distribution
(
∑M

l=1 → M
∫
P (hr)dhr). Since the splitting distribution is

independent of position, the self-averaging assumption trans-
lates to a statistical translation invariance of the model, at
least for the average of interest. Hence, χa,r(τ ) = χa(τ ) is
independent on r. The same must then hold for the bath func-
tion�a,r(τ ) = �a(τ ). From the saddle point equations (15) it
follows that the local fermionic Green’s function and through
Eq. (14) the self-energy are both space independent. Hence
we can go to momentum space and find that the theory is
governed by a momentum-independent self-energy and the
Dyson equation for the electrons read

�(τ ) = M

N

∑
a

g2
aχa(τ )G(τ ), (17)

Gk(iω) = 1

iω − εk −�(iω)
, (18)

where G(τ ) = ∫k Gk(τ ) is the local Green’s function. For a
momentum-independent fermionic self-energy we obtain in
the limit of large electron bandwidth

G(iω) =
∫

k
Gk(iω) ≈ −iπρF sgn(ω). (19)



The particle-hole correlation function can now be evaluated.
We find

�a(ω) = ρ2
F g2

a

2π
|ω|, (20)

irrespective of the electronic self-energy. We thus conclude
that each TLS is coupled to an ohmic bath of particle-hole
excitations that is independent of the back reaction of the TLS
on the electronic degrees of freedom. This is a consequence
of the fact that the �a are independent of �. Thus, we have
shown that the (spatially local) TLS-correlator

χa(τ − τ ′) = 1

M

∑
l

〈
σ a

l (τ )σ a
l (τ ′)
〉
, (21)

is determined by the behavior of M decoupled SB models.
The strategy of the solution of our model in the large-

N limit is therefore: (i) Solve the spin-boson problem with
ohmic bath for a given realization of the field h, (ii) average
over the TLS distribution function of the fields, and (iii) use
the resulting propagator χa(ω) of the TLSs to determine the
fermionic self-energy from Eq. (18). The nonlinear character
of the problem is rooted in the rich physics of the spin-boson
problem, along with the averaging over the distribution func-
tions of the fields h. Given the importance of the spin-boson
model for our analysis we will give a summary of this model
in the next section.

V. THE x MODEL

We begin with a review of the solution of the model for
the simplest case where the electrons interact only with σx of
the TLSs’ pseudospins, i.e., we are working in the diagonal
basis and setting gz, gy = 0, as in Ref. [26]. This special case
allows for a more transparent discussion of the key steps of
our analysis. In addition, we will see that the more general
problem reduces in many cases to this model in the limit of
sufficiently low energies. In terms of the mapping provided
in Sec. IV, the model is mapped into the SB model with one
bath. Throughout this section, since αy, αz = 0 we will use the
notation α = αx for simplicity.

A. A simple view of the physical picture for α < 1

Consider first the weak coupling limit, α → 0, where the
effect of interactions can be studied perturbatively. To leading
order in g2 the decay rate of an electron with energy ω is
proportional to the amount of TLSs at accessible energies,
namely,

�′′(ω) ∝
∫ ω

0
Pβ (h)dh ∝ |ω|1+β, (22)

where�′′ denotes the imaginary part of the electronic retarded
self-energy (F ′′ will denote the imaginary part of the retarded
function F throughout the paper). For β = 0 this weak cou-
pling analysis yields marginal Fermi-liquid behavior. On the
other hand, for any β > 0, i.e., for distribution functions that
vanish for h → 0 one only finds Fermi-liquid behavior. In-
creasing the strength of the interaction modifies the behavior
of the TLSs in two main aspects: it renormalizes the energy
splitting of each TLS, such that h� → hR(h�); and broadens

the TLS spectral function. The broadening has negligible ef-
fect on the frequency dependence of �′′ (at sufficiently low
energies). However, as we show in detail below, the renormal-
ization of the energy splitting leads to a renormalization of the
bare TLS-splitting distribution, decreasing its exponent from
β to β − (1 + β )α. Thus, increasing the interaction strength
transfers the spectral weight of the TLSs towards lower ener-
gies (at the limit α → 1, the spectral weight is pushed to zero
energy, signaling a BKT transition of the TLSs to a localized
phase). Consequently, the naive perturbative argument will
hold for the renormalized splitting distribution, resulting in
a tunable exponent as a function of α.

B. Summary of the single-bath spin-boson model

The single-bath spin-boson model (1bSB), or the Caldeira-
Leggett model [39,45], is given by the Hamiltonian (note that
the commonly used convention in the SB literature swaps
σx ↔ σz relative to our convention)

H1bSB = −hσz + gσxφ + Hφ. (23)

The bosonic field φ =∑i(ai + a†
i ) is to be interpreted in

terms of a bath of oscillators whose spectral function, dic-
tated by the Hamiltonian Hφ , is assumed to be of power law
form below some high-energy cutoff ωc, �(ω � ωc) ∝ |ω|s.
The cases where s < 1, s = 1, s > 1 are respectively called
the subohmic, ohmic, and superohmic baths. Throughout our
paper we will exclusively be interested in the ohmic case
�(ω) = π

2 αω, using this as the definition of the dimension-
less coupling constant α. For extensive reviews, see, e.g.,
Refs. [37,39].

Historically, this model was proposed as a toy model for
the study of quantum dissipation and decoherence [46]. For an
ohmic bath, it was found that the spin gradually loses its co-
herence as α is increased and becomes overdamped [in terms
of the one-point function 〈σx(t )〉] beyond α = 1/2 [37,38]. At
α = 1, the spin undergoes a Berezinskii-Kosterlitz-Thouless
(BKT) phase transition after which it becomes localized in
one of the two x̂ states [37,39].

For our purposes, the most important corollary is that in
the delocalized regime (α < 1), the TLS splitting h is renor-
malized due to the high-frequency modes of the bath, which
must adjust to different positions whenever the hσz term at-
tempts to flip the TLS between the two x̂ states (similarly to
the Frank-Condon effect of electron-phonon coupling). This
renormalization process, along with the BKT transition, are
governed by the beta functions of α and the rescaled splitting
h̃ ≡ h/ωc, which, to order h̃2, are given by

dα

d�
= −αh̃2, (24)

dh̃

d�
= (1 − α)h̃, (25)

where e� is the renormalization group rescaling factor. The
flow dictated by Eqs. (24) and (25) on the α − h̃ plane is
shown in Fig. 3: For α near 1 there exists a constant of flow,
x ≡ (1 − α)2 − h̃2, such that the BKT seperatrix corresponds
to the rightmost of the two x = 0 lines, with the localized
(strong coupling) phase to the right of it. The effective energy



FIG. 3. Schematic flow diagram of the 1bSB model. We present
the RG flow of Eqs. (24) and (25). The solid-red line is the BKT
seperatrix between the dynamic phase (I − III) and the localized
phase (IV), and the dashed-black line represents the set of points,
which map into the isotropic Kondo model. For our purposes, we sep-
arate the dynamic phase into subregions according to the functional
dependence of the renormalized scale hR on the bare h̃. In region
I, the flow is nearly vertical (the beta function of α is small), and
the renormalization of hR is power-law like. In region II, the flow
behaves similarly to that of the isotropic Kondo model, and so the
renormalized scale is exponential, with a weakly varying prefactor in
the exponent. Finally, in region III the flow slows down significantly
due to the vicinity to the BKT transition, and the renormalized
scale is exponential and depends on the distance from the transition,
vanishing exactly on the critical line.

scales, i.e., the renormalized splittings hR in the different
regions of the phase diagram are given by

hR = cαωc ×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
h
ωc

) 1
1−α I h/ωc � (1 − α)

e−b ωc
h II

h/ωc ≈ (1 − α) or
h/ωc � |1 − α|

e− π√|x| III h/ωc → α − 1
0 IV else

(26)

where cα is a numerical prefactor, which cannot be determined
solely from the RG equations (but can be extracted using exact
techniques such as bosonization or Bethe Ansatz [47–50]),
and b = b(α, x) is a slowly varying function whose value is
of order 1 away from the BKT transition (both are given
explicitly in Appendix B). The localization of the TLSs in
region IV is because of the fact that the effective tunneling
hR between the the two x̂ states flows to zero in that region.

Using this information on the effective low-energy theory,
we now turn to the study of correlation functions. As we
apply the RG process, the operator σx remains supported at
low energies, such that correlation functions of σx depend
solely on parameters of the low-energy theory, α and hR, and
not explicitly on h or ωc. That is, at zero temperature, the x
susceptibility can be expressed in terms of a one-parameter
scaling form [51],

χ ′′
x (ω) ≡ 1

ω
fα

(
ω

hR

)
, (27)

with hR given by (26), and fα (x) being an α-dependent scal-
ing function. This relation between the frequency and the hR

dependence of the susceptibility will be crucial for obtaining
exact results in the rest of this section. Unlike σx, the cor-
relation functions of the operators σz, σy contain substantial
spectral weight at high energies (of order EF ), and hence
cannot be reduced to a single-parameter scaling form as in
Eq. (27), and will depend on ωc explicitly [52]. This fact will
be important when discussing the subleading contributions to
the electronic self-energy in Sec. VI.

Another approach to the solution of the 1bSB model is
via a mapping to the anisotropic Kondo model (AKM) or
the resonant level model (RLM) [37,54–56]. Remarkably, at
α = 1/2, known as the “Toulouse point”, the model maps to
the noninteracting point of the RLM, and is thus exactly solv-
able. At this point the effective energy scale is hR = πh2/4ωc,
and the temperature-dependent susceptibility is given by

χ ′′
x (ω,T ) = 4

π2

hR

ω2 + 4h2
R

[
Im�(ω,T ) − 2hR

ω
Re�(ω,T )

]
,

(28)

where

�(ω,T ) = ψ

(
1

2
+ hR

2πT

)
− ψ
(

1

2
+ hR

2πT
− i

ω

2πT

)
(29)

[ψ (z) being the Digamma function]. At zero temperature the
scaling form takes the exact form

f1/2(x) = 4

π2

1

x2 + 4
[x tan−1(x) + ln(1 + x2)]. (30)

Having summarized the essential properties of the SB
model, we shall now turn to evaluate the electronic properties
of the x model using the fact that each TLS is equivalent to
a spin with a randomly distributed splitting h. Note also that
the scaling behavior at T = 0 can be extended to sufficiently
small T (to be defined below), as can be verified explicitly in
the Toulouse point and at weak coupling, which enables us to
estimate the finite-T properties of the model in the following.

C. Averaged TLS susceptibility and electronic self-energy

Once we have determined the TLS susceptibility χi(ω),
we can determine the fermionic self-energy from Eq.(18). We
compute the imaginary part of the retarded self-energy using

�′′(ω) = M

N

∑
a=x,y,z

g2
a

∫ ∞

−∞

dν

2π
χ ′′

a (ν)G′′
R(ω + ν)

×
(

coth
( ν

2T

)
− tanh

(
ν + ω

2T

))
. (31)

If we use Eq. (19) for the fermion propagator we obtain that
at T = 0 (here gy = gz = 0 and gx = g),

�′′(ω) = −M

N
ρF g2
∫ ω

0
dν

(
1

M

M∑
i=1

χ ′′
x,i(ν)

)
. (32)

Since each of the M TLSs contributing to this sum has a
randomly distributed splitting hi, the self-energy of each elec-
tron will be a randomly distributed variable. However, since



M � 1 the central limit theorem guarantees that this random
variable will be normally distributed, with width of order
M−1/2. We can thus replace this random variable by its ex-
pectation value (we will revisit this assumption, and consider
when it breaks down for large but finite M, at the end of this
section),

1

M

M∑
i=1

χ ′′
x,i(ω) → χ ′′

x (ω) =
∫

Pβ (h)χ ′′
x (ω, h)dh. (33)

Our task thus reduces to the calculation of the TLS suscep-
tibility averaged over the distribution of splittings Pβ (h). We
note, however, that the distribution, which is of interest to us
is not that of the bare splittings, but of the renormalized split-
tings hR. We can instead define the renormalized distribution

Pr (hR) =
(

dhR

dh

)−1

Pβ (h), (34)

which is nonzero up to the renormalized bandwidth
hc,R ≡ hR(hc). Combined with Eq. (27), we may write
the averaged susceptibility as

χ ′′
x (ω) = sgn(ω)

∫ ∞

|ω|/hc,R

Pr

( |ω|
x

)
fα (x)

x2
dx. (35)

We will now evaluate this integral for the different functional
forms of hR(h) corresponding to the regions I–IV in Fig. 3 at
zero temperature.

1. α < 1 − hc/EF

In region I of Fig. 3, where the flow of α is weak, hR is a
power of h. Thus the effect of the renormalization would be to
alter the exponent in the distribution,

Pr (hR) = γ hγ−1
R

hγc,R
, γ ≡ (1 + β )(1 − α). (36)

For energy scales far below the renormalized cutoff ω � hc,R,
the result would not be sensitive to the exact form of the
scaling function fα , and we retrieve results similar to those
presented in the perturbative argument in Sec. V A, albeit with
a modified exponent,

χ ′′
x (ω) = sgn(ω)Aαγ

|ω|γ−1

hγc,R
, (37)

with Aα ≡ ∫∞
ω/hc,R

fα (x)
xγ+1 dx. Since the scaling function fα (x →

0) ∝ x2 (corresponding to the universal 1/t2 decay of the real-
time correlation function at late times [37,39,53]), we may
continue the lower limit of the integral to 0 (provided γ < 2),
such that Aα = ∫∞

0
fα (x)
xγ+1 dx + O(( |ω|

hc,R
)γ ) [57].

Remarkably, observe that at low energies, the leading fre-
quency dependence of the response of the whole collection of
TLSs (which is the effective degree of freedom coupled to the
electrons) is independent of broadening effects of the individ-
ual TLSs. Rather, it is governed solely by the renormalized
distribution Pr , while the functional form of the susceptibility
of each individual TLS fα (x) is absorbed into the prefactor Aα

[58]. Hence, for ω � hc,R, we find that

�′′(ω) = −Aα
M

N
ρF g2

∣∣∣∣ ωhc,R

∣∣∣∣
γ

(38)

= −λAαhc,R

∣∣∣∣ ωhc,R

∣∣∣∣
γ

. (39)

We see that the self-energy depends on the parameters α and β
only via γ . In particular, for any initial β � 0, the self-energy
realizes a MFL form upon tuning the coupling to α = β

1+β ,
and realizes any NFL exponent γ < 1 by increasing α towards
1. Note, however, that as we increase the coupling α, the
effective TLS bandwidth hc,R decreases such that smaller NFL
exponents are restricted to narrower low-energy intervals; see
Fig. 1.

The temperature dependence of �′′ at low T and zero fre-
quency follows from similar considerations. The contribution
of an individual TLS to the self-energy can be written as a
scaling function,

�1(ω = 0,T, h) = −ρF g2 M

N
f� (T/hR). (40)

We can thus perform the averaging over hR at this stage, and
analogously to Eq. (35) we find that

�′′(ω = 0,T ) = A′
α

M

N
ρF g2

(
T

hc,R

)γ
, (41)

with A′
α = γ

∫∞
0

f� (x)
x1+γ dx. Since f� (x � 1) ∝ x2 and f� (x →

∞) → 1, this is well defined for 0 < γ < 2. This suggests an
ω/T scaling of the form �′′ ∝ max (|ω|,T )γ .

2. α > 1 + hc/EF

For α > 1 + hc/EF all the TLSs have undergone the BKT
transition and are in the localized phase, where the domi-
nant TLS contribution at T = 0 is an elastic scattering term.
However, residual quantum fluctuations of the TLSs at finite
frequencies provide a weak inelastic scattering mechanism,
which becomes the leading contribution to the temperature
dependence of the dc resistivity. The finite frequency behavior
follows from scaling considerations (Appendix D 4, [53]) and
is given by

χ ′′
x (ω) = (1 − ηα )δ(ω) + 2ηα (α − 1)

E2−2α
F

|ω|3−2α
(42)

ηα = 2α(1 + β )

(α − 1)(3 + β )

(
hc

EF

)2

� 1 (43)

with ηα ∝ (hc/EF )2 � 1. We thus find in this regime that the
leading inelastic contribution to the self-energy is of the form

�′′(ω) = −ρF g2 M

N

(
1 − ηα + ηα

( |ω|
EF

)2α−2
)
. (44)

The low-energy excitations of the system are thus those of a
NFL for 1 < α < 3/2, a MFL at α = 3/2 and FL for α >
3/2. However, note that unlike in the regime α < 1, here the
elastic contribution is much larger than the inelastic. Note
that while this behavior persists up to a large energy scale (a
fraction of EF ), it is expected to be the dominant contribu-
tion to the self-energy only below an energy scale of order



1/α4−2α (hc/EF )
α−1
2−α , defined as the scale at which conven-

tional FL-like corrections to resistivity become comparable
(i.e., assuming ρ contains an additional T 2/EF contribution).

3. α ≈ 1

In the “critical” region |1 − α| < hc/EF the above de-
scriptions are not valid, since the flow of h slows down and
becomes comparable to the flow of α. This slowdown leads to
a logarithmic behavior of the self-energy, which interpolates
between the regimes described by Eqs. (39) and (42). As an
example of the behavior in region II of Fig. 3, we consider
specifically the case α = 1. The renormalized scale is given
by hR = c1ωc exp(−πωc

2h ), and as a result the renormalized
distribution becomes logarithmic,

Pr (hR) =
(1 + β ) log1+β ( ωc

hc,R

)
hR log2+β (ωc

hR

) , (45)

where we ignore subleading corrections [in log(ωc/hc,R)], re-
lated to the prefactor c1; see Appendix D 2. Inserting Eq. (45)
into Eq. (35), we obtain that

χ ′′
x (ω) = 1

ω
(1 + β ) log1+β

(
ωc

hc,R

)∫ ∞

|ω|
hc,R

f1(x)

x log2+β ( ωc
|ω| x
)dx.

(46)

Since the function f1(x) must decay faster than 1/x for x � 1
[due to the sum rule Eq. (C4)], and also since |ω|/ωc �
|ω|/hc,R, we may ignore the x inside the log in the denom-
inator and then, as in the previous case, continue the lower
limit of integration to 0. The resulting self-energy is given by

�′′(ω) = −M

N

ρF g2

2

(
log
(
ωc

hc,R

)
log
(
ωc
|ω|
)
)1+β

. (47)

Note that when α is not exactly 1, the only difference would be
that the factor of π/2 in the exponent of hR will vary slightly.
Repeating the above calculations, this will only alter the value
of hc,R, but not the functional form of the self-energy.

For 1 < α < 1 + hc/EF , we must distinguish the TLSs
into those, which are dynamical (h/EF > α − 1), and those
that are localized/frozen (h/EF � α − 1). The contribution
of the dynamical ones will be similar to that of the α = 1
case [shown explicitly in Appendix D 3, the exact result is
somewhat more involved, but maintains the logarithmic form
of (47)], while the frozen ones will contribute an elastic scat-
tering term to leading order (i.e., a delta function peak around
ω = 0), plus higher-order Fermi-liquid terms, which we ig-
nore. Defining mα ≡ α−1

hc/ωc
as the fraction of frozen TLSs, the

self-energy will include both a constant elastic contribution
along with the NFL contribution attained earlier. For simplic-
ity, setting β = 1 we find that the self-energy will be

�′′(ω) = −M

N
ρF g2

⎛
⎝mα + (1 − mα )Bα

(
log
(
ωc

hc,R

)
log
(
ωc
|ω|
)
)2
⎞
⎠.
(48)

As α approaches 1 + hc/ωc from below, both the relative
weight 1 − mα of the inelastic contribution, as well as the
energy scale hc,R vanishes.

VI. THE xyz MODEL

We consider a generalized variant of the model, where we
allow electron-TLS coupling in arbitrary directions, i.e., g2

a >

0 for a = x, y, z (keeping the field h parallel to the z direction),
which we dub “xyz model”. Remarkably, we will show that
throughout much of the parameter space (of gx − gy − gz),
the behavior is qualitatively similar to that of the x model,
namely, increasing the couplings will generically drive the
model towards a BKT transition, leading to a tunable exponent
in the electronic self-energy, which depends on the distance
from the transition.

To proceed we recall that the electronic self-energy in the
multichannel model is given by

�′′(ω) = −M

N

∑
a=x,y,z

ρF g2
a

∫ ω
0
χ ′′

a (ν)
dν

2π
. (49)

As before, the TLSs are decoupled such that the dynamics of
each TLS are determined by solving an independent SB model
coupled to three ohmic baths. The corresponding multibath
SB model (mbSB) for a single TLS is

HmbSB = −hσz +
∑

a=x,y,z

gaσ
a
x φa +

∑
a=x,y,z

Hφa , (50)

where the bosonic field of Eq. (23) is generalized to three
fields, φx, φy, φz, corresponding to three independent baths,
which couple to the three spin directions. In our case, all three
baths are ohmic and have the same cutoff (because ωc = EF ),
such that the interaction strengths are measured via the three
dimensionless couplings, αa ≡ ρ2

F g2
a/π

2, a = x, y, z. Let us
point out that the model (50) has two high-symmetry points:
the U (1) symmetric point, corresponding to αx = αy; and the
SU (2) symmetric point corresponding to h = 0, αx = αy =
αz (for relevant studies see, e.g., Refs. [59–61]). These points
will not be of particular interest to us, as they are both unstable
fixed points (see below) and require fine tuning.

Similar to the 1bSB model, the low-energy properties of
the model can be obtained from an analysis of the RG flow.
Here, the RG equations can be derived perturbatively in two
out the of three couplings; while one of the couplings αa is
allowed to be arbitrarily large, the RG equations are valid
to linear order in αb�=a [59–61]. Loosely speaking, the RG
analysis is valid near the axes in the (αx, αy, αz )-coordinate
system. The beta functions for the mbSB model are given by

dh̃

d�
= (1 − αx − αy)h̃, (51)

dαa

d�
= −
⎛
⎝2
∑
b�=a

αb + (1 − δaz )h̃2

⎞
⎠αa. (52)

In order to simplify the analysis, we first discuss the cases
where only two of the baths are active (by setting αz = 0 or
αy = 0), treating one bath as dominant and the other as a per-
turbation. We then generalize the discussion to the case where
all three baths are active, where, as we will show, the physical



FIG. 4. Initial flow of the couplings in the xy model. θ =
( αx−αy

αx+αy
)2 is the bath-anisotropy parameter.

pictures can be essentially reduced to the simplified cases (of
the two active baths). Further, as the model does not contain
any other stable fixed points, we expect that the RG analysis
will qualitatively capture the physics for all couplings.

It is useful to think about the RG of the multibath cases
as a two-step process: the first step describes the “fast” flow
of the couplings, where the dominant bath assumes a weakly
renormalized coupling while the other irrelevant baths flow to
weak coupling; in the second step, the baths renormalize the
TLS fields according to the renormalized couplings. We now
proceed to analyze the different cases, where the usefulness of
the two-step perspective becomes apparent.

A. The xy model

We start by setting αz = 0, i.e., the case where there are
two active baths acting in the direction perpendicular to the
field. The beta functions are given by

dh̃

d�
= (1 − αx − αy)h̃, (53)

dαx

d�
= −2αyαx − h̃2αx, (54)

dαy

d�
= −2αxαy − h̃2αy. (55)

It is insightful to define the bath anisotropy parameter,

θ ≡
(
αx − αy

αx + αy

)2

, (56)

whose beta function is

dθ

d�
= (αx + αy)θ (1 − θ ). (57)

The anisotropy is thus relevant whenever the couplings are
not finely tuned to the U (1) symmetric point θ = 0, and flows
towards the maximally anisotropic case θ = 1, i.e., where
the larger of the two couplings dominates and the other one
becomes irrelevant, as depicted in Fig. 4. As we will now see,
since the subdominant bath is irrelevant it can be integrated
out easily, leading to a low-energy description similar to that
of the x model with renormalized coupling.

Consider the case αx � αy. We focus on the regime 1 −
αx � h̃2 (i.e., far enough from the BKT transition), where
simple analytical estimations can be made as the effect of
h̃ on the flow of the couplings is negligible. Indeed, the
equations can be solved by utilizing the fact that δα =
αx − αy is an approximate constant along the flow. The re-
sulting low-energy theory is described by the renormalized
splitting hR, and couplings, αx,R = δα � αy,R = (hR/ωc)δααy.
The BKT transition is determined by the renormalized value
of the dominant coupling, αx,R, such that the system be-
comes localized when αx,R > 1 + O(h/ωc), and below this
value the effective energy scale assumes the familiar form

hR = ωc(h/ωc)1/(1−αx,R ) (note that the exponent depends on
αx,R and not on the bare value). More details on the RG flow
are shown in Appendix E.

To proceed, we note that the low-energy theory we have
arrived at is nearly identical to that in the 1bSB, the one
difference being a remaining weak coupling to the y bath
(αy,R � 1), which we may now treat perturbatively. The op-
erator σx is only weakly dressed (it is renormalized only in
the short first section of the flow when αy is of order 1), and
thus we can once again conclude that its correlation functions
will assume a one parameter scaling form, as in Eq. (27),

χ ′′
x (ω) = 1

ω
fαx,R

(
ω

hR

)
+ δχ ′′

x (ω), (58)

where fαx,R is a scaling function and the perturbative correc-
tion due to the coupling to the losing bath is of the form
δχ ′′

x (ω) = αy,R
1
ω

f̃αx,R ( ωhR
), with a different scaling function

f̃αx,R . When averaging over the second term, the strong renor-
malization of the losing bath, αy,R = (hR/ωc)δααy, effectively
enhances the exponent in the renormalized distribution, which
results in a subleading frequency dependence of the averaged
δχ ′′

x ; see Appendix F.
In contrast, the y susceptibility does not assume a one

parameter scaling form. Rather, it is suppressed by additional
factors of hR/ωc, such that in the IR limit all spectral weight
is shifted to frequencies of order ωc; see Appendix F.

The electronic self-energy can be evaluated following the
analysis of Sec. V C. Remarkably, the leading term in (58)
assumes the same form as in the x model,

�′′(ω) = −Aαx,RρF g2
x

∣∣∣∣ ωhc,R

∣∣∣∣
γ

, (59)

where γ = (1 + β )(1 − αx,R), and Aδαx,R = ∫∞
0

fαx,R (x)

x1+γ dx. The
subleading correction owing to δχ ′′

x is of the form δ�′′(ω) =
−Bαy

γ

γ+δα ρF g2
x| ωhc,R

|γ | ω
ωc

|δα with B = ∫∞
0

f̃δα (x)
x1+γ+δα dx. An addi-

tional subleading contribution to �′′ is related to the coupling
to the y susceptibility, which we denote by δ�′′

y . While an ex-
plicit evaluation of δ�′′

y is more challenging, the fact that δ�′′
y

is also subleading follows from the additional “nonuniversal”
factors of hR/ωc, which it contains, similar to the case of δχ ′′

x .
As mentioned before, this RG-based analysis is perturba-

tive in the strength of the weaker coupling αy. However, at
strong coupling (when αx � αy) the value of αx,R is no longer
equal to δα, and the BKT line αx,R = 1 changes accordingly.
The problem has been solved numerically for varying cou-
pling strengths by [62], who found that at strong coupling the
BKT line approaches the line αx = αy asymptotically. This
behavior is depicted schematically in Fig. 2.

Note that for U (1)-symmetric points, αx = αy = α, the
coupling to the two baths is frustrated and the system flows
to weak coupling [60,61,63]. This case will be discussed in an
upcoming paper [64].

B. The xz model

Consider now the case where αx, αz > 0 and αy = 0,
dubbed xz model. The major difference in this case compared
to the xy model is the fact that the z bath is aligned with
the “field” hz, making the two baths inequivalent. The flow



equations in this case are

dh̃

d�
= (1 − αx )h̃, (60)

dαx

d�
= −2αzαx − h̃2αx, (61)

dαz

d�
= −2αxαz. (62)

As before, we neglect the effect of h̃ on the initial flow of the
couplings, assuming that it is sufficiently small.

Let us start with the case αx � αz. Then, as the x bath
dominates, the flow is essentially identical to the xy model
with z replacing y. The main difference is that σz, albeit being
strongly dressed in the low-energy theory, has a nonzero equi-
librium expectation value, i.e., 〈σz〉 �= 0. The z susceptibility
therefore contains a term proportional to 〈σz〉2δ(ω). Fortu-
nately, 〈σz〉 may be evaluated using the sum rule Eq. (C5),
yielding

〈σz〉∞ =
(

hR

ωc

)δα⎛⎝a + b
1 − ( hR

ωc

)1−2δα

1 − 2δα

⎞
⎠, (63)

with a and b being numerical constants, which depend on
αx, αz. Interestingly, this static piece contributes an elastic
scattering term to the electronic self-energy,

�′′
el(ω) ∝ −ρF g2

z

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( hc,R

ωc

)2δα
δα < 1/2,

hc,R

ωc
log2
(
ωc

hc,R

)
δα = 1/2,( hc,R

ωc

)2−2δα
1/2 < δα < 1,

(64)

where O(1) numerical coefficients have been suppressed for
clarity. The leading “inelastic” part of �′′ due to the x bath
is identical to Eq. (59), with appropriate renormalized value
αx,R. It is worth recalling that the interaction-induced elastic
term of Eq. (64) adds to the elastic scattering term due to on-
site potential in the general model. We comment on this matter
further in the discussion on the dc resistivity in Sec. VIII.

We move on to the second scenario, where αz � αx. In this
case, the z bath dominates such that the coupling flows to a
finite value, αz,R = δα = αz − αx. Unlike the previous case,
hz is only marginally renormalized, such that the low-energy
parameters are given by

hR = δα

αz
hz, (65)

αx,R = αx

(
hR

ωc

)δα
. (66)

Note that when δα → 0, hR assumes the form shown in the
xy isotropic case, although the system is not U (1) symmetric
because of hz. For αx = 0 the TLS is static, and the scattering
is solely elastic. The effect of αx is an addition of a weak
inelastic term to χ ′′

z , as well as a coupling of the electrons
to χ ′′

x . This will result in an inelastic contribution in the self-
energy such that �′′ = �′′

el +�′′
inel with

�′′
el ≈ −ρF g2

z

2π
, (67)

�′′
inel(ω) ∝ −|ω|γ+2δα

hγc,Rω
2δα
c

, (68)

where γ = (1 + β ). While this is the leading inelastic contri-
bution, it does not give rise to any MFL/NFL behavior for
the considered splitting distributions with β � 0. For more
details, see Appendix F.

C. The xyz model

Understanding the physical picture in the more general
case where the electrons are coupled to all operators of the
TLSs (i.e., αa > 0 for a = x, y, z and hx ≡ 0), dubbed xyz
model, rests upon the fact that the anisotropy remains relevant
such that one bath dominates over the others at low energies.
The qualitative behavior is thus reduced to one of the two
previous cases. In the case where the coupling to the x or
y baths is the largest, the behavior is qualitatively similar to
the x model, albeit with a renormalized coupling, αR(α) (of
the dominating bath), which depends on the initial values of
the couplings. Specifically, the leading inelastic contribution
to the self-energy satisfies

�′′(ω) −�′′(0) ∼ −|ω|γ , γ = (1 + βz )(1 − αR), (69)

as we have demonstrated above. In addition, above a critical
value, αR(α) � 1, the TLSs undergo a BKT transition to the
localized phase, where most of the scattering is elastic. If, on
the other hand, the z bath dominates, the TLSs act essentially
as static impurities, with an additional weak, FL-like inelastic
contribution to the self-energy (as in the xz model with domi-
nant z bath).

VII. “BIASED” MODEL

All of our above analyses relied on the assumption that
the field h is parallel to the ẑ direction. Note that this cannot
always be made the case by rotating a generic field h =
(hx, 0, hz ) to point in this direction, since this would induce
correlations between the couplings gx, gz, and in turn will lead
to a mbSB model with correlated baths. We thus keep the
couplings uncorrelated and treat the case were hx, hz �= 0.

A. Biased x model

We start by considering the x model with finite parallel
fields hx > 0. We thus allow h to be randomly distributed in
the x–z plane with a joint distribution Pβx,βz (hx, hz ) ∝ hβx

x hβz
z

for hx, hz < hc. This variant maps into the “biased” 1bSB,
where a field parallel to the bath coupling hxσx is added to the
Hamiltonian [37,39]. The main difference in this case is that
hx is unaffected by the bath (it commutes with the interaction),
while hz is renormalized as before. In addition, the presence
of a nonzero hx implies that 〈σx(t → ∞)〉 �= 0, which leads
to an “elastic” delta function term in χ ′′

x (ω), namely, the x
susceptibility can be written as χ ′′

x ≡ χ ′′
el + χ ′′

inel, with

χ ′′
x,el(ω) =

(
2

π
tan−1

(
hx

hR

))2

δ(ω), (70)

χ ′′
x,inel(ω) = 1

ω
f

(
ω

hR
,
ω

hx

)
. (71)



To leading order in hc,R/hc, we find that the low-energy self-
energy is given by �′′ ≡ �′′

el +�′′
inel, with

�′′
el(ω) = −M

N
ρF g2, (72)

�′′
inel(ω) ∝ −M

N
ρF g2

∣∣∣∣ ωhc

∣∣∣∣
1+βx
∣∣∣∣ ωhc,R

∣∣∣∣
(1+βz )(1−α)

. (73)

Note that since hc/hc,R ∝ (ωc/hc)α/(1−α) � 1, the elastic term
contributes most of the spectral weight to χx, and correspond-
ingly, �′′

el � �′′
inel at low energies. We provide an explicit

calculation using the two parameter scaling form along with
exact evaluation at the TP in Appendix D 5. Notice that for the
reasonable case of βx � 0 this results in a FL for α < 1 and
approaches a MFL behavior near α = 1.

B. Biased xyz model

We now treat the most general variant of our model, where
the couplings and fields are all allowed to point in generic
directions. The behavior of the biased xyz model can be sim-
ilarly understood from the RG analysis, where Eqs. (52) are
modified as [65]

dh̃z

d�
= (1 − αx − αy)h̃z, (74)

dh̃x

d�
= (1 − αz − αy)h̃x, (75)

dαa

d�
= −
⎛
⎝∑

b�=a

αb + (1 − δaz )h̃2
z + (1 − δax )h̃2

x

⎞
⎠αa, (76)

where h̃x ≡ hx/ωc. Importantly, there are no cross terms be-
tween the fields hx, hz such that the qualitative behavior can
be understood in terms of the approximately independent flow
of the individual fields. Furthermore, since a bias along ŷ
is forbidden in order to respect time-reversal symmetry, the
physical picture in the biased xyz model is determined by
whether or not the y bath dominates. In the case where the
y bath dominates, both the “field” hz and the “bias” hx will
be renormalized according to Eq. (26) with α → αy,R. Con-
sequently, the leading inelastic contribution to the self-energy
will take the form

�′′(ω) −�′′(0) ∼ −|ω|γ , (77)

γ = (2 + βx + βz )(1 − αy,R), (78)

along with elastic scattering terms as in Eq. (64). In contrast, if
the x or z baths dominate, the behavior will be analogous the
biased x model with the appropriate renormalized couplings
of the dominant bath; see Eq. (73).

VIII. TRANSPORT

Let us begin by considering the electronic contribution to
the electrical conductivity, and later incorporate the effect of
the TLSs on the optical conductivity. Using the Kubo formula,
the real part of the conductivity (associated with the electrons)

is given by

σel(�) = Im�R
Jx

(�)

�
, (79)

where�R
Jx

is the retarded current correlator (along the x direc-
tion). The current operator is given by J =∑a

∫
k vkc†

akcak and
vk = ∇kεk. The evaluation of �R

Jx
is greatly simplified since

all vertex corrections vanish due to the spatial randomness of
the couplings to the local TLSs (similarly to Refs. [66,67]).
The electronic optical conductivity is thus given by

σel(�) = 1

�

∫
ω

∫
k
v2

kAk(ω)Ak(�+ ω)[ f (ω) − f (�+ ω)].

(80)

Here Ak(ω) ≡ − 1
π

ImGR
k (ω) is the electronic spectral function

and f (ω) denotes the Fermi distribution function.
In the dc limit, the conductivity is given by

σel(� → 0) = v2
FρF

16T

∫
dω

2π

1

|�′′(ω)| sech2
( ω

2T

)
. (81)

Hence, the T scaling of the dc resistivity follows the single-
particle lifetime. It is instructive to first consider ρ(T ) in the
x model. For α < 1, the low-T behavior, T � hc,R, is of the
form

ρ(T ) = ρ0 + AT γ , (82)

where here we have restored the on-site disorder by set-
ting V 2 > 0, corresponding to the residual resistivity term
ρ0, and γ = (1 + β )(1 − α). Similarly, for α = 1, we have
that ρ(T ) − ρ0 ∝ 1/| log(T )|1+β ; and for α > 1 + hc/ωc, the
TLSs are frozen at T = 0, and thus contribute to the resid-
ual resistivity, with FL-like finite-T corrections [ρ(T ) − ρ0 ∝
T 2]. In the intermediate regime, 1 < α < 1 + hc/ωc, the re-
sistivity interpolates smoothly between these two behaviors.
In the more general xyz model, the resistivity follows the
behavior of the x model whenever the transverse couplings
αx or αy dominate (as discussed extensively in the Sec. VI).
Whereas, if the parallel coupling αz dominates, the scattering
is mainly elastic with weak FL-like temperature scaling. Sim-
ilarly, the biased xyz model follows analogous behavior to that
of the x model provided that the y bath dominates, and to the
biased x model if the x or z bath dominates.

We proceed to consider the optical conductivity. In addition
to the contribution due to the itinerant electrons, we also
assume that each TLS carries a randomly distributed dipole
moment (recall the TLS are phenomenologically related to
charged collective degrees of freedom), which depends on the
state of the TLS,

Hdipole =
∑

r,l

Er · (dz
r,lσ

z
r,l + dx

r,lσ
x
r,l

)
. (83)

Here Er is the local electric field and dx,z
r,l denote uncorrelated

Gaussian random dipole moments of the TLS flavors, with
variances d2

x,z. In total, the (longitudinal) optical conductivity
takes the two-component form

σ (�) = σel(�) + σTLS(�). (84)

The electronic contribution is standard and follows straight-
forwardly from the form of the self-energy. In particular, at



low energies, where −�′′(ω) = �
2 + c|ω|γ (i.e., we restore

the elastic scattering term that does not affect any of the previ-
ous results), if the scattering is mainly inelastic (� � c|�|γ ),

σel(�) ∼

⎧⎪⎪⎨
⎪⎪⎩

1
�γ

γ < 1,
1

� log2(1/�)
γ = 1,

1
�2−γ γ > 1.

(85)

while if the scattering is mainly elastic (� � c|�|γ ),

σel(�) ∼ 1

�
− 2γ+1c

(γ + 1)�2
|�|γ . (86)

At higher energies, � � hc,R, the TLS contribution to �′′
saturates to a constant such that σel(� � hc,R) ∼ 1/�.

The TLS contribution is given by

σTLS(�) = �
(
d2

xχ
′′
x (�) + d2

z χ
′′
z (�)
)
. (87)

Interestingly, the TLS contribution follows the frequency de-
pendence of the inelastic part of �′′ (provided that the y bath
is not dominant). In particular, if the dipole moments are not
negligibly small, σTLS might constitute the leading frequency
dependence, leading to a positive slope and nonmonotonic
behavior of the optical conductivity. Defining the energy scale
�∗ = √

ρF vF/da, we find that if the scattering is dominantly
elastic and � � �∗ then there will be an increasing opti-
cal conductivity around zero frequency. If inelastic scattering
dominates, � � �∗, the optical conductivity will always be
decreasing around zero frequency, but will begin increasing
for frequencies of order �mIR ∼ Z�∗ if the system is a FL
(with Z the quasiparticle weight), or �mIR ∼ (�∗/c)1/γ if
the system is a NFL (i.e., if γ � 1), leading to a so-called
mid-IR peak around energies of order hc,R (assuming that
�mIR < hc,R) [26].

The assumption that led to Eq. (87) was that there are
sufficiently many TLSs that carry a dipole moment and can
therefore be optically excited. At the same time one expects
that there are TLSs that locally come with a quadrupole
moment. For example, they could locally distort a state of
fourfold rotation symmetry to a lower symmetry. In this case
one can excite the TLS via inelastic light scattering and the
Raman response function [68,69] will measure directly the
TLS susceptibilities

Rα,β (�) = (qx
α,β

)2
χ ′′

x (�) + (qx
α,β

)2
χ ′′

z (�). (88)

Here qκα,β is the quadrupole moment due to the κ component
of the TLS pseudospin. The individual tensor elements can be
detected by an appropriate combination of the polarization of
the incoming and scattered light. Hence, the presence of TLS
can, at least partially account for the broad Raman continuum
that has been observed in many correlated electron materials
[68].

It is intriguing to examine the MFL/NFL transport prop-
erties of our model through the viewpoint of Planckian
dissipation and the putative bound on transport times [7].
Since there is no unique definition for the transport time,
we consider two different approaches. Following Ref. [7], we
can associate the transport time to the single-particle lifetime
as the two are proportional in our model. In that case, the
inverse transport time is Planckian in the sense that 1/τtr ∼ T

with an O(1) coefficient for the NFL phase while at the
MFL point the coefficient is O(1/ ln(1/T )). In particular, our
model trivially satisfies a “Planckian bound” because of the
Kramers-Kroning relations between the real and imaginary
parts of� [70]. Alternatively the inverse transport time can be
defined in terms of the energy scale for which the dc and ac
conductivities become comparable [66]: σ (τ−1

tr (T ),T = 0) ∼
σ (� = 0,T ). This procedure agrees with the single-particle
lifetime result for NFLs while for the MFL case the transport
time contains an additional log correction: τ−1

tr ∼ T/ log2(T ).
Lastly, relying on the analysis of the weakly disor-

dered MFL (or NFL) model in Ref. [71], we note that the
Wiedemann-Franz law is obeyed as T → 0, regardless of
the existence of well-defined Landau quasiparticles (in the
absence of vertex correction, as we have here, the analysis is
essentially identical).

IX. THERMODYNAMICS

In this section, we study thermodynamic properties of the
model. We mainly consider the x model and further discuss
the expected behavior in the xyz model. It is worth noting
that a direct evaluation of the free energy from the saddle
point of the large-N effective action is challenging due to
its non-Gaussian nature. Instead, we obtain the specific heat
from the internal energy, and corroborate our results with an
alternative derivation of the specific heat from the entropy,
where in particular we confirm the absence of T = 0 residual
entropy in our model.

Consider the internal energy density

U ≡ 1

NV 〈Hel + HTLS + Hint〉, (89)

where Hel and HTLS correspond to the first two terms in (1),
respectively, and V is the volume of the system. Let us hence-
forth suppress the factor 1/(NV ) and assume r = N/M =
1 for simplicity. By employing the equation of motion for
the retarded and advanced electronic Green’s functions (see
Appendix G), we may write

〈Hel + Hint〉 =
∫

k

∫
ω

ωnF (ω)Ak(ω) ≡ Uel,0, (90)

where nF (ω) is the Fermi function. Note that because of the
locality of the self-energy, Uel,0 corresponds to the internal
energy of noninteracting electrons. To see this, we use the
fact that

∫
k A(ω, k) = ρF , hence Uel,0 = ρF

∫
ω
ωnF (ω). The

specific heat related to Uel,0 is given by

cel,0 = ρF

∫
ω

ω
∂nF (ω)

∂T
= π2

3
ρF T, (91)

i.e., the specific heat of noninteracting electrons. Interestingly,
all interaction effects are encoded in the renormalized TLS
part of the internal energy, UTLS = 〈HTLS〉, which we will now
evaluate. Using the sum rule Eq. (C5), we may express the



FIG. 5. Specific heat, as extracted from the internal energy at the
Toulouse point, for values of γ for FL, MFL, and NFL behavior
(corresponding to β = 2, 1, 0). As expected from the above scaling
arguments (99), at low temperatures the ratio c/T approaches a
constant for the FL, has logarithmic divergence for the MFL, and
polynomial divergence with exponent 1 − γ for the NFL.

TLS specific heat as

cTLS = 1

2

∫
ω

ω
∂χ ′′

x (ω,T )

∂T
. (92)

As hc,R is the only energy scale, for ω,T � hc,R one can
write the TLS susceptibility as a two-component scaling form,
i.e., χ ′′(ω,T ) = 1

ω
F ( ω

hc,R
, ωT ). For concreteness, we assume

the following scaling form:

χ ′′
x (ω,T ) = χ ′′

x (ω,T = 0) ×
(

|ω|√
ω2 + (aT )2

)ϕ
(93)

with a ∼ O(1) some numerical coefficient and scaling ex-
ponent ϕ > 0 [72], which both affect the result only by a
numerical prefactor and not the T dependence.

Using Eq. (92), we obtain that

cTLS ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T
hc,R

γ > 1,

T
hc,R

log hc,R

T γ = 1,(
T

hc,R

)γ
γ < 1.

(94)

In addition, Eq. (92) can be evaluated numerically at the
Toulouse point where the exact temperature dependence of
χ ′′(ω,T ) is known analytically. The results, confirming the
T dependence found in Eq. (94), are shown in Fig. 5 for
h distributions corresponding at the Toulouse point to a FL,
MFL and NFL.

We corroborate the above discussion with an alternative
derivation of the specific heat from the entropy. To do so,
we consider the addition of a single TLS per site to the
theory with M = 0. In the language of the SB model, the
excess entropy added to the system, defined by δS ≡ S(M =
1) − S(M = 0), is known as the “impurity contribution” [38].
Importantly, δS is determined by the spectral function of the
bath, the renormalized splitting and the temperature. Hence,

since the TLSs are decoupled for any M provided that N � 1
(as gi jl gi jl ′ = 0 for l ′ �= l), and the particle-hole bath is ohmic,
we may write the entropy of M TLSs by adding the impurity
contributions of the individual TLSs.

Considering the x model, the impurity contribution of a
single TLS for α < 1 is given by [38,53,73,74]

δS(x) =
{
απ
3 x + O(x3) x � 1,

log 2 x � 1,
(95)

where x = T/hR. The entropy of the full system (i.e., in the
large-M,N limit) can therefore be written as

S(T ) = S0(T ) +�S(T ), (96)

where S0 = S(M = 0) denotes the contribution of the nonin-
teracting electrons and

�S(T ) = MV
∫ hc,R

0
Pr (hR)δS

(
T

hR

)
dhR. (97)

To evaluate �S, we divide the integral over hR to hR < T and
hR > T , denoted by S< and S>, respectively, and, substituting
(36) in (97), we obtain

S<(T ) ≈ παγ

3hγc,R

T

hc,R

hγ−1
c,R − T γ−1

γ − 1
, (98)

S>(T ) ≈ πα

3
aγ

(
T

hc,R

)γ
, (99)

where aγ ≡ ∫ 1
0 δS( 1

x )xγ−1dx ≈ 1/γ . Hence, for T � hc,R,

�S(T ) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T
hc,R

γ > 1,

T
hc,R

log hc,R

T γ = 1,(
T

hc,R

)γ
γ < 1.

(100)

Since S0 ∼ T , the total entropy S obeys the same scaling as
�S, which also holds for the specific heat, in agreement with
Eq. (94).

It is also worth noting that there is no residual extensive
entropy at T = 0, in contrast to theories of MFLs constructed
from variants of the Sachdev-Ye-Kitaev model [6].

Physically, the T scaling of the impurity contribution in
Eq. (96) stems from scattering of the low-energy modes of the
bath by the TLS. Hence in the cases where αx or αy dominate,
the impurity contribution is expected to follow Eq. (96) since
the low-energy theory is identical to that of the x model (up
to weak perturbations). It therefore follows that S(T ) satisfies
Eq. (100). Moreover, when αz dominates, the system realizes
a FL (with additional static impurities) and weak renormaliza-
tion of the splittings, such that S(T ) ∝ T .

X. SUPERCONDUCTIVITY

In order to study the superconducting instability, we intro-
duce spinful electrons to the Hamiltonian, Eqs. (1) and (2),
namely, we let c†

i,r → c†
i,s,r with s = {↑,↓}. Note that since

the TLSs have no spin structure (assuming that the underlying
glass is nonmagnetic), the couplings g do not depend on spin



index s, and the interaction term is diagonal in spin space.
The mapping of the spinful variant of the Hamiltonian onto
a spin-boson problem is similar to the spinless case, but one
must also consider the anomalous bilocal field, analogously to
Eqs. (10) and (11), defined as

Fr,r′ (τ, τ ′) = 1

N

∑
i

ci,↓,r(τ )ci,↑,r′ (τ ′), (101)

and enforced via the anomalous self-energy �r,r′ (τ, τ ′)
[42,75]; see Appendix H.

We study the critical temperature Tc as a function of the
couplings α. Approaching the SC state from the normal state,
where � = 0, we obtain Tc as the solution for the linearized
Eliashberg equation (in imaginary frequency) for the local
anomalous self-energy �(iω),

�(iω) = T
∑
ω′

D�(iω − iω′)
|ω′ + i�(iω′)|�(iω′), (102)

where the bosonic propagator is

D�(iω) =
∑

a=x,y,z

λahc,Rχa(iω) × (−1)δa,y . (103)

Notice that while the interactions via gx and gz mediate pair-
ing, gy is pair breaking, as it couples to a current in fermion-
flavor space (i.e., to an antisymmetric fermionic bilinear). By
rewriting Eq. (102) as�(iω) =∑ω′ K (iω, iω′)�(iω′), we see
that Tc is determined as the minimal temperature for which the
largest eigenvalue of the kernel K is equal to 1.

In the following we first obtain Tc in the spinful variant of
the x model as a representative example and later comment on
the behavior of Tc in other variants. Specifically, we estimate
Tc analytically by focusing on the “weak” (λ ≡ λx � 1) and
“strong” (λ � 1) coupling regimes, where Tc is much smaller
or larger than the characteristic energy scale hc,R, respec-
tively. Note that “weak” and “strong” coupling regimes do
not necessarily correspond to small or large values of α. For
simplicity we further assume that hc/EF � |1 − α| (to avoid
the complications resulting from the slowdown of the RG
flow of h around α = 1) and mainly focus on the parametric
dependence of Tc, ignoring various O(1) coefficients.

1. Weak coupling (λ � 1)

In the weak-coupling regime, we rely on the α < 1 and
T = 0 form of the susceptibility given in Eq. (37), and assume
an ω/T scaling with exponent ϕ > 0 [similar to Eq. (93)],

χ ′′
x (ω,T ) = sgn(ω)γAα

|ω|γ−1

hγc,R
× min

(
1,

|ω|
T

)ϕ
. (104)

We perform analytical continuation to imaginary frequencies
(see Appendix H) and obtain

D�(iωn) ∝ γ λ

γ − 1

(
1 −
∣∣∣∣ ωn

hc,R

∣∣∣∣
γ−1
)
. (105)

In the FL phase γ > 1, the leading piece of D� at low
T is constant, resulting in the conventional BCS-like form
of Tc. However, in the MFL point or NFL phase, where

γ � 1,D�(iω) diverges logarithmically or with exponent
γ − 1, respectively. Consequently, Tc crosses over from a
BCS-like form to an algebraic, quantum critical form. Ex-
plicitly, by solving the Eliashberg equation in this regime,
we obtain

Tc ∝ hc,R

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(− γ−1

γ λ

)
, γ > 1 + O(

√
λ)

exp
(− 1√

λ

)
, γ = 1(

γ λ

1−γ
) 1

1−γ , γ < 1 − O(
√
λ).

(106)

The results for γ � 1 are similar to those found by [76–78]
for other cases of quantum critical pairing. For consistency,
we must require that Tc � hc,R, which translates into λ � 1.
Because of the vanishing of hc,R as α → 1, the problem will
eventually cross over to the strong coupling regime, where
Tc � hc,R, beyond some intermediate value α < 1.

2. Strong coupling (λ � 1)

We now consider the transition to superconductivity at
temperatures T � hc,R. In this regime, we obtain the finite-T
TLS susceptibility via a combination of scaling arguments
with known results. For details, see Appendix H. We find that

χ ′′
x (ω,T ) ∝ h2

c

E2α
F

(max (|ω|, aαT ))2−2α

ω
(107)

where aα = O(1). Similarly to the weak coupling limit, we
obtain the parametric form of Tc by performing the analytical
continuation and solving the linearized Eliashberg equation;
see Appendix H. Remarkably, in an analogous fashion to the
“weak coupling” regime, we find that Tc exhibits a series of
crossovers from a quantum critical, to a “marginal BCS” [76],
to a conventional BCS-like form as the coupling is increased
(rather than decreased, as in the “weak coupling” case).
Explicitly, we have that

Tc ∝ EF

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
α2

3−2α ε
) 1

3−2α
, α < 3/2 − O(

√
ε)

exp
(− 1

α
√
ε

)
, α = 3/2

exp
(− 2α−3

α2ε

)
, α > 3/2 + O(

√
ε)

(108)

where we defined the small parameter ε ≡ M
N ( hc

EF
)2 � 1. In-

terestingly, Tc decreases up to α = 3, where it has a local
minimum. For larger values of α, it increases and approaches
the limiting form Tc ∝ EF exp(−1/αε). We expect our re-
sults to hold as long as α � EF/hc (such that αε � 1).
For consistency of the strong coupling analysis we must re-
quire that Tc � hc,R. While this is trivially fulfilled when
α > 1, for α < 1 this results in the requirement λ � 1,
which is, as expected, complimentary to the weak coupling
condition.

Intuitively, the reduction of Tc for larger values of the cou-
pling corresponds to the fact that at finite T , while the TLSs
are nearly frozen (i.e., resemble classical impurities), they
preserve their quantum mechanical nature and can thus me-
diate pairing. The accessible low-energy spectral weight for
pairing diminishes with the coupling strength and therefore
suppresses superconductivity (this trend is reversed beyond
α = 3, where the increase in the coupling strength is more



significant than the shift of the remaining spectral weight to
high frequencies).

3. Superconductivity in other model variants

Following from the discussion of the x model, we comment
on the expected behavior of Tc in generic variants of the
model. Let us first consider cases with gy = 0 (i.e., without
pair-breaking interactions). In the “weak coupling” regime, in
the sense defined above, Tc is determined by the behavior of
the dominant bath, such that it qualitatively follows that of
the x model if αx is dominant, or otherwise assumes a con-
ventional BCS-like form (see Fig. 2). In the “strong coupling”
limit, however, the behavior of Tc is nonuniversal, namely, it is
determined by the susceptibility of the least irrelevant opera-
tor. Mapping out the quantitative form of Tc(α) necessitate the
exact renormalized exponents of the TLS susceptibilities and
is beyond the scope of our paper (given the leading exponents,
the analysis is identical to that of the x model). However, re-
calling that in both cases where αx or αz dominates, the strong
coupling behavior approaches a BCS-like form, we expect
that at intermediate couplings, Tc will smoothly interpolate
from a quantum critical to a BCS-like form as αz is increased
for fixed αx. Lastly, introducing pair-breaking interactions,
i.e., a nonzero αy, suppresses Tc [75].

XI. 1/N CORRECTIONS

In this section, we discuss two perturbative corrections that
arise at leading order in 1/N : the validity of the self-averaging
assumption and the effect of electron-mediated TLS-TLS in-
teractions, i.e., RKKY-like interactions.

A. Validity of self-averaging

An important assumption of our above analysis lies in
the self-averaging of the model, which allows us to replace
the sum over many TLS susceptibilities by its mean value
[with respect to Pr (h)], because of the fact that its variance
is suppressed by a factor of 1/M. While this assumption is
clearly valid in the limit M → ∞, for any finite (but still
large) M the standard deviation may dominate over the mean
at sufficiently low energies because of its different frequency
dependence. Indeed, consider the variance of the average TLS
autocorrelation function in imaginary time,

Var

(
1

M

M∑
i=1

〈
σ i

x (τ )σ i
x (0)
〉) = 1

M

∫
Pr (hR)S(τ )2dhR. (109)

For simplicity let us focus on the regime of interest α < 1
in the x model. By dimensional considerations, at long times
the dimensionless integral must be proportional to (hc,Rτ )−γ
(assuming that there is no obstruction to taking the upper
integration limit to ∞, which is the case for γ < 4). As
a result, by taking the square root and transforming to the
frequency domain, we obtain the root-mean square of the TLS
susceptibility, √

(χ ′′
x )2(ω) ∼ 1√

M

|ω|γ /2−1

hγ /2c,R

. (110)

Comparing Eq. (110) to the mean in Eq. (37), we conclude
that statistical fluctuations can be neglected above a paramet-
rically small energy scale, ω ∼ M−1/γ hc,R. For energies below
this scale, the self-averaging assumption is no longer valid and
a more systematic treatment of the 1/M (and 1/N) fluctuations
is needed to determine the behavior of the model.

B. RKKY interactions

Another effect arising when N is taken to be large but
finite, is the emergence of RKKY-like interactions between
the different TLSs, mediated by the itinerant electrons. We
analyze this perturbative effect in the spirit of Ref. [79]. We
shall consider the x model for simplicity, the generalization to
other variants is straightforward.

Including the RKKY-like term,

HRKKY =
∑

jk

gi jk,rgi′ j′k′,r′

N2g2

×� jk (r − r′, τ − τ ′)σ x
i,r(τ )σ x

i′,r′ (τ ′), (111)

each TLS will now feel the effect of a subohmic bath arising
from the RKKY coupling to other TLSs, in addition to the
ohmic particle-hole bath. Following the analysis of Ref. [79],
this contribution to the bath will be proportional to χx(iω),
and thus the full bath will be of the form

�(iω) = α|ω| + λ2

N
h2−γ

c,R |ω|γ−1 (112)

with subohmic exponent 2 − γ .
In the limit of large yet finite M,N , the subohmic contribu-

tion to the bath may be neglected above the small energy scale
ω ∼ ( λ

2

αN )1/(2−γ )hc,R. However, even for very large N this
energy scale will eventually approach hc,R near α → 1 since
λ diverges as hc,R → 0. Below this scale, the self-consistent
approximation of a TLS-induced subohmic bath acting on it-
self breaks down, and a more systematic analysis is needed to
determine the behavior at very low energies. The low-energy
behavior in similar cases [80] suggests that this state remains
nontrivial in the sense that γ is expected to remain less
than 2.

Lastly, note that the subohmic nature of the TLS-induced
bath considered above is a result of perturbing around the
N,M → ∞ saddle point. In a more realistic finite-but-large-
M setting, we expect the subohmic behavior to crossover to
ohmic below a small energy scale, corresponding to the lowest
renormalized splitting of the nearby TLSs. In this case, a
qualitative change in the behavior of the TLSs is less obvious,
and the system might remain stable to the weak RKKY-like
interactions even at low energies.

XII. DISCUSSION AND OUTLOOK

In this paper, we have studied a class of large-N models
of itinerant electrons interacting with local two-level systems
via spatially random couplings. These models, inspired by
the possibility of metallic glassiness in strongly correlated
materials, exhibit a remarkably rich phenomenology at low
energies. Most strikingly our theory hosts a robust extended
NFL phase in a considerable part of parameter space. At the
crossover from FL to NFL our theory realizes a MFL that



shows strange metallic behavior with T -linear resistivity and
T log(1/T ) specific heat. Note that the MFL/NFL behavior
does not necessitate the existence of a quantum critical point.
Physically, the departure from FL behavior is rooted in the fact
that the characteristic energy of each TLS is algebraically sup-
pressed by the interaction, thus providing significant spectral
weight of low-energy excitations, which constitute an efficient
scattering mechanism for the electronic degrees of freedom.
These abundant low-energy excitations further manifest in a
rich phenomenology of the critical transition temperature to
the superconducting ground state of the system.

The physical picture of the simplest variant of our theory
(the x model), studied in Ref. [26], qualitatively persists upon
relaxing several simplifying assumptions, such as allowing for
interactions with different operators of the TLSs and intro-
ducing arbitrary TLS fields. Aiming at more realistic models,
we further considered the effects of relaxing additional sim-
plifications, such as 1/N corrections, spatial correlations in
gi jl,r and the self-averaging assumption. While these tend to
suppress the NFL behavior found in this paper below some
energy scale suppressed by powers of N , there are physical
reasons to think that this scale remains small in a realistic
setting. Specifically, recalling that TLSs in physical systems
are extended objects, the interaction would retain a high de-
gree of connectivity (i.e., each TLS would interact with many
electrons and vice versa), which in turn could preserve the
self-averaging property, and frustrate effects of RKKY-like
interactions.

It is interesting to ask what is the relation between the
interaction strengths (αx,y,z) and the actual physical knobs in
realistic systems. This is a complicated question as the micro-
scopic origin of such TLSs is not well understood. However,
there have been many studies attempting to provide a micro-
scopic theoretical framework for understanding these objects
[27,76,81–85]. It is possible that as the system approaches a
glassy charge or spin ordering transition, the shape, size, and
other properties of these TLSs change, affecting the magni-
tude of their coupling to electrons, or the relative sizes of the
couplings to the x, y, z operators. Thus, tuning a physical knob
of the system could be parameterized as a nontrivial path in
the space of couplings, leading to a nontrivial variation of the
exponent in the electronic self-energy.

To this end, another issue concerns the density of states
of TLSs, which is parametrically larger than that of the elec-
trons (i.e., h−1

c,R � ρF ). A direct consequence is the seemingly
enhanced coupling λ ≡ M

N
ρF

hc,R
α that appears in the electronic

self-energy. It appears, however, natural to expect that α ∼ λ

at least up to some intermediate coupling strength. This is
the case if M/N ∼ h−1

c,R/ρF � 1, i.e., if the TLSs are sparse
compared to the electrons. Physically, this seems plausible
based on the mesoscopic considerations mentioned above.

Non-Fermi-liquid behavior is ultimately tied to an anoma-
lous spectrum of gapless excitations. Such a spectrum is
usually believed to emerge from collective modes with soft
long wavelength fluctuations. As we showed in this pa-
per, it can also be the result of quantum fluctuations of
modes that are localized in a region of size l , where each
mode has an excitation gap Emin ∼ hR but is governed by
a singular distribution function P (hR) ∝ hγ−1

R with γ > 0.

Even if the correlation function for a given hR decays
rapidly in time, χhR (τ ) ∼ exp(−hRτ ), the average χav(τ ) =∫

dhRP (hR)χhR (τ ) then decays like a power law ∝ τ−γ and
the system becomes critical. For the static susceptibility,
χav(T ) = ∫ 1/T dτχav(τ ), it follows that χav(T ) ∝ T γ−1 and
C ∝ T γ for the heat capacity. Non-Fermi-liquid behavior oc-
curs for γ < 1.

Such a singular distribution function was also obtained
from quantum Griffiths behavior [86]. Let us therefore
compare and contrast our results with the ones that follow
from quantum Griffiths physics, where rare, large droplets
of size l occur with probability pl ∝ e−cld

and possess an
exponentially small gap hl ∝ e−bld

[86]. This yields a power
law form

P (hR) =
∫

dld plδ(hR − hl ) ∝ hγ−1
R , (113)

with nonuniversal exponent γ = b/c. Exponentially small
gaps occur for the random transverse-field Ising model [86].
However, as soon as one includes the coupling to conduction
electrons, large droplets will freeze by the Caldeira-Leggett
mechanism, and one rather finds superparamagnetic behavior
of classical droplets [87,88]. On the other hand, for systems
with a continuous order parameter symmetry power-law
quantum Griffiths behavior becomes possible even in the
presence of particle-hole excitations [89]. This behavior
was also seen in recent numerical simulations [31]. In
contrast to this quantum Griffiths behavior, in our approach
we consider the coupling of TLSs of characteristic size
of several lattice spacings to conduction electrons. While
isolated TLSs are governed by P (h) ∝ hβ , that is, on its
own, not sufficiently singular (β > 0), strong local quantum
fluctuations due to the coupling to conduction-electrons
renormalize the excitation gap h → hR ∼ h1/(1−α), which
reduces the exponent β + 1 → βR + 1 = (β + 1)(1 − α).

While our theory does not aim to realistically describe
any specific material, the existence of a tunable non-Fermi-
liquid phase in a controlled microscopic theory could shed
light on some aspects of strange metallicity. It provides a
viewpoint on the widely observed extended strange metal
regime [14–16,90,91] that does not rely on a putative quantum
critical point. Further, while our theory does not describe any
specific material, the results that we obtained could be more
general than the model used to derive them and might give a
hint that one should interpret a AT + BT 2 T dependence of
the resistivity [4,14,15,90,92–95] in terms of an intermediate
exponent [96]. Interestingly, this interpretation (also known
as power-law liquid) has been shown to be consistent with
experimental data of strange metals [25,97–100].

Several natural questions remain open. Aiming to better
understand more realistic scenarios, a systematic study of
our model for finite-N is called for, either by analytical or
numerical methods. In addition, the behavior deep inside the
superconducting state might exhibit interesting new physics,
as the electrons constituting the ohmic bath in the normal
state are becoming gapped, which has nontrivial effects on the
TLSs and vice versa. More broadly, one may consider various
other physical systems containing a coexistence of electrons



and two-level systems, where the framework developed in this
paper can be applied.
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APPENDIX A: DIAGRAMMATIC APPROACH
TO MAPPING

We now present an alternative approach for the mapping to
the spin-boson model, where we demonstrate, by a perturba-
tive expansion of the interaction, that the electrons constitute
an ohmic bath to the TLSs. Importantly, because of the spatial
randomness of the couplings, the bath is that of noninteracting
particle-hole pairs, i.e., it is independent of the electronic
self-energy. Consider the correlation function for a single TLS
of flavor s, Sx

s (τ ) ≡ 〈Tτ {σ x
s (τ )σ x

s (0)}〉. The expansion in inter-
action vertices reads (we suppress the spatial index r since all
operators act on the same site)

Sx
s (τ ) =

〈
Tτ

{
σ x

s (τ )σ x
s (0)

∞∑
n=0

(−1)n

n!

[ ∏
i=1...n

(∫
dτi

∑
abc

gabc

N
σ x

a (τi )c
†
b(τi )cc(τi )

)]}〉
, (A1)

which decouples into a sum of terms of the form

In =
∫
τ1,τ2...τn

∑
a1b1c1a2b2c2...

(ga1b1c1

N

ga2b2c2

N
. . .
)〈

Tτ
{
σ x

s (τ )σ x
s (0)
(
σ x

a1
(τi ) . . . σ

x
an

(τn)
)}〉〈

Tτ
{
c†

b1

(
τi1

)
cc1

(
τi1

)
c†

b2

(
τi2

)
cc2

(
τi2

) · · · }〉.
(A2)

By integrating over the realizations of gabc, we note that (i) terms where all interaction TLS indices a1, . . . , an �= s are
“disconnected” and cancel with the vacuum diagrams; and (ii) if only some (but not all) ai = s, the contribution is either
subleading in 1/N or corresponds to a self-energy insertion for the electrons (see Fig. 6). Thus if we treat the electrons
self-consistently as being fully dressed, the only relevant insertions of the interaction are those in which ai = s.

Hence In can be written as (all TLS indices = s)

In =
∫
τ1,τ2...

∑
b1c1b2c2...

(gsb1c1

N

gsb2c2

N
. . .
)〈

Tτ
{
σ x

s (τ )σ x
s (0)
(
σ x

s (τi ) . . . σ
x
s (τn)
)}〉〈

Tτ
{
c†

b1

(
τi1

)
cc1

(
τi1

)
c†

b2

(
τi2

)
cc2

(
τi2

) · · · }〉 (A3)

FIG. 6. Examples of diagrams considered in the mapping. (a) If all insertions are of other TLSs, the bubble disconnects from the “external 
vertices” and cancels with the vacuum diagrams. (b) Other insertions of different TLSs become subleading in N . (c) The contribution of 
insertions of a different TLS a �= s can be absorbed into the full electron green function. (d) Example of a contributing diagram, with the 
wavy lines representing particle hole pairs [as defined in (e)]. Here electrons are denoted by solid line, contractions over realizations of gabc by 
dashed lines and TLS operators, which do not admit a direct diagrammatic expansion, by full circles.



Considering the electronic part (including the couplings gsbici ), we see that the leading order contribution in 1/N corresponds to
terms with b1 �= c1 �= b2 . . . (all indices are distinct), namely,

Cn ≡
∑

b1c1b2c2...

1

Nn

(
g2

sb1c1
g2

sb2c2
. . .
)〈

Tτ
{
c†

b1

(
τi1

)
cc1

(
τi1

)
c†

c1

(
τi2

)
cb1

(
τi2

)}〉
(A4)

× 〈Tτ{c†
b2

(
τi1

)
cc2

(
τi3

)
c†

c2

(
τi4

)
cb2

(
τi4

)}〉
. . .+ permutations + O

(
1

N

)
. (A5)

The particle-hole pairs obey the bosonic Wick’s theorem since
the couplings gabc obey it. Therefore,

Cn = J̃
(
τi1 − τi2

)
J̃
(
τi3 − τi4

) · · · + permutations (A6)

where we have denoted

J̃
(
τi1 − τi2

) ≡ g2G
(
τi1 − τi2

)
G
(
τi2 − τi1

)
. (A7)

As mentioned earlier, the fact that the bath is ohmic follows
from spatial randomness of the couplings, which translates
to the TLS being coupled to the local particle-hole correla-
tors, with G(τ ) = ∫k G(τ, k). Upon analytical continuation,
the spectral function of the bath is given by

J̃ (ω) = g2ρ2
F

2π
ω ≡ ηω, (A8)

such that the dimensionless coupling strength (using the con-
ventions of Ref. [39]) is given by

α ≡ 2

π
η = g2ρ2

F

π2
. (A9)

Generalizing the derivation to the xyz model is straightfor-
ward.

APPENDIX B: DETAILS OF RG FLOW OF 1bSB

We present here the calculation of the renormalized scale
hR in the different regimes I − III in the 1bSB. As a reminder,
the flow equations are, to order h̃2,

dα

d�
= −h̃2α, (B1)

dh̃

d�
= (1 − α)h̃. (B2)

We allow the couplings to flow until there is only one energy
scale in the problem, i.e., until the cutoff � = ωc ∗ exp(−�)
and TLS energy hR = h̃�′ become equal, which is given by
h̃(�∗) = 1.

We start with the regime where (1 − α) � h̃2 so that the
flow of α is much slower than the flow of h̃. We can thus
solve the flow of h̃ while treating α as a constant, and the
weak change in α at the end of the flow (when h̃ approaches
1) will only change the result by a multiplicative factor, which
is absorbed into the definition of the prefactor cα in Eq. (B4).
Therefore, allowing h̃ to flow until it reaches the value 1 we
find that

(1 − α)�∗ = log
ωc

h
. (B3)

Inserting Eq. (B3) into the definition of hR, we find that

hR = cαωc

(
h

ωc

) 1
1−α
. (B4)

As mentioned in the main text, this prefactor cα cannot be
determined merely from the RG flow. However, it can be ex-
tracted using exact techniques such as bosonization or Bethe
ansatz [47–50], and is given by

cα = (�(1 − α) exp (α logα + (1 − α) log(1 − α)))
1

1−α ,

(B5)

which satisfies the two known limits c0 = 1, c1/2 = π/4. We
now study the regime near the BKT transition, α ≈ 1. In
this regime, we define J = 1 − α such that |J| � 1. The RG
equations then approximately become

dJ

d�
= h̃2, (B6)

dh̃

d�
= h̃J. (B7)

Note that the combination x0 ≡ h̃2 − J2 obeys

1

2

dx0

d�
= h̃

dh̃

d�
− J

dJ

d�
= 0 (B8)

so x0 is constant along flow lines. Using this relation the
equations can thus be solved easily

dh̃

d�
= h̃
√

h̃2 − x0, (B9)

�∗ =
∫ 1

h̃0

dh̃

h̃
√

h̃2 − x0

, (B10)

where h̃0 = h/ωc. We now separate to the cases where x0 > 0
and x0 < 0. If x0 < 0, we have that

�∗ =
asinh
(√−x0

h̃0

)
− asinh(

√−x0)
√−x0

, (B11)

hR = ωc

⎛
⎜⎝

√−x0

h̃0
+
√

1 − x0

h̃2
0√−x0 + √

1 − x0

⎞
⎟⎠

− 1√−x0

. (B12)

If h̃2
0 � J this expression simplifies to the power law given

earlier. On the other hand, for x0 → 0 this expression becomes
the familiar Kondo scale of the isotropic Kondo model hR ∝
ωc exp(−1/h̃0). For x0 > 0, we obtain that

�∗ =
atan
(√

1−x0
x0

)
− sgn(J )atan

(√
h̃2

0−x0

x0

)
√

x0
. (B13)



Taking x0 → 0 also gives the isotropic Kondo result � = 1/h̃0.
Setting J = 0 we find that � = π/2h̃0. Therefore, in this
regime we can approximately think of the renormalized scale
as taking the form hR ∝ ωc exp ( − b(J, h̃0)/h̃0) with b being
a slowly varying function of order 1. However, when the flow
approaches the BKT line J = −h̃ this approximation does not
hold, and instead the renormalized scale is set by the distance
from the transition

hR ∝ ωc exp

(
− π√

x0

)
. (B14)

APPENDIX C: SUM RULES FOR THE 1bSB

This is based on a short analysis first derived in [53]. We
define the correlation function

〈σx(t )σx(0)〉 =
∫
ω

eiωt Ax(ω). (C1)

This is related to the dynamical susceptibility by the fluctua-
tion dissipation theorem [41],

Ax(ω) =
(

1 + coth

(
βω

2

))
χ ′′

x (ω). (C2)

Additionally, the following equation of motion derives from
the Hamiltonian (23):

i
dσx

dt
= −2hσy. (C3)

Thus, by Fourier transforming 〈σx(t )σx(0)〉, 〈 dσx
dt (t )σx(0)〉 and

〈 dσx
dt (t ) dσx

dt (0)〉, setting t = 0 and using the antisymmetry of
χ ′′

x (ω) we obtain the three sum rules

1 =
∫
ω

χ ′′
x (ω)coth

(
βω

2

)
, (C4)

2h〈σz〉 =
∫
ω

ωχ ′′
x (ω), (C5)

4h2 =
∫
ω

ω2χ ′′
x (ω)coth

(
βω

2

)
. (C6)

APPENDIX D: EXPLICIT CALCULATION OF χ′′
x

FOR THE x MODEL

The average (imaginary part of the) susceptibility is given
by

χ ′′
x =
∫ hc

0
χ ′′

x (ω, h)Pβ (h)dh (D1)

=
∫ hc,R

0

1

ω
fα

(
ω

hR

)
Pr (hR)dhR (D2)

= sgn(ω)
∫ ∞

|ω|/hc,R

fα (x)

x2
Pr (|ω|/x)dx. (D3)

The result of this integral thus depends on the renormalized
distribution Pr .

1. α < 1

Starting with hR=cαωc(h/ωc)1/(1−α)⇒h=(hR/cα )1−αω−α
c ,

P (hR) = P (h)

(
dh

dhR

)
(D4)

= Nhβ(1−α)−α
R . (D5)

Since the distribution is cut off at hc,R = hR(hc), the normal-
ization constant must be N = γ /hγc,R, with γ = β(1 − α) −
α + 1 = (1 + β )(1 − α). Inserting this into the averaged sus-
ceptibility gives

χ ′′
x = sgn(ω)

∫ ∞

|ω|/hc,R

fα (x)

x2

γ |ω|γ−1

hγc,Rxγ−1
dx (D6)

= 1

ω

∣∣∣∣ ωhc,R

∣∣∣∣
γ

× γ
∫ ∞

|ω|/hc,R

fα (x)

xγ−1
dx. (D7)

Using that fact that at long times χ (t ) ∝ 1/t2, we see that
χ ′′

x (ω/hR) ∝ ω ⇒ fα (x � 1) ∝ x2. Near the lower integra-
tion limit the integrand is ∝ 1/xγ−3. If γ < 2 then the integral
converges when taking ω/hc,R → 0, and can thus be con-
sidered as a constant. (If γ > 2 then the integral diverges
and the resulting frequency dependence is χ ′′

x ∝ ω. This is
because the averaged susceptibility cannot decay faster than
the susceptibility of the TLSs with highest h.)

2. α ≈ 1

In this case we use hR = cαωc exp(−bωc/h) ⇒ h =
bωc

2 log( cαωc
hR

) , which gives the renormalized distribution

P (hR) = N
hR log2+β ( cαωc

hR

) , (D8)

and the normalization can be found to be N = (1 +
β ) log1+β (ωc/hc,R). We neglect for simplicity the factor of
cα ∼ O(1) inside the logarithm. The averaged susceptibility
is then given by

χ ′′
x = sgn(ω)(1 + β ) log1+β (ωc/hc,R)

×
∫ ∞

|ω|/hc,R

fα (x)

x log2+β (xωc/|ω|)dx. (D9)

In order to simplify the integral, we rely on the fact that
fα (x � 1) ∝ 1/x4−2α [53] and f (x � 1) ∝ x2, such that most
of the weight of the integral is around x ∼ O(1), for which
| log(x)| � log(ωc/|ω|). Thus we may neglect the x depen-
dence inside the log, giving the form of the susceptibility
presented in the main text [using the sum rule Eq. (C4) for∫∞

0 f (x)/xdx = 1/2].

3. Through the BKT transition (1 < α < 1 + hc/EF )

The behavior around the BKT transition is slightly more
convoluted, since when x0 → 0− the dependence of hR on
h̃ is slightly different. However, if we work close enough to
the transition, we can just change variables to y0(h̃) = √−x0,
and use the form (B14), which explicitly depends only on y0.
Changing variables we thus find that

P (y0) = 1 + β
h1+β

c

y0
(
y2

0 + J2
) −1+β

2 (D10)



FIG. 7. Averaged susceptibility of TLSs around the BKT transition, for β = 0, 1, 2 and varying values of 1 < α < 1 + hc/ωc. As
expected, for α = 1 (J = 0) the susceptibility is ∝ 1/ω logβ+2(ωc/ω), while as α → 1 + hc/ωc (J → hc/ωc ) this changes smoothly into
∝ 1/ω log3(ωc/ω). Note that the change in the cutoff of the values in the x axis with increasing J is due to the lowering of hc,R.

with the cutoff yc =
√

(hc/wc)2 − J2, and note that the range
y ∈ (0, yc) covers only the range h ∈ (|J|, hc), since the TLSs
with h < |J| are in the localized phase. Thus, if yc � J we
can approximate P (y0) ∝ y0 for any β, and we will therefore
find that the distribution of P (hR) will be identical to (D8)
with β = 1. Thus, while for α = 1 the exponent of the log
will be 1 + β, it will change smoothly to 2 near the end of
the transition. We evaluate this numerically for any value of
1 < α < 1 + hc/ωc using the form given in (B13), and for
the sake of the computation using the simplification χ ′′(ω) =
δ(|ω| − 2hR) (since the results should not depend on the actual
function f (x) but rather on the form of the distribution Pr).
The results, confirming the analysis presented in this subsec-
tion and the previous one, are shown in Fig. 7.

4. Localized phase (α > 1 + hc/EF )

In the localized phase, where hR = 0, most of the weight
of χ ′′

x (ω) lies in a delta function at zero frequency. However,
there are still weak residual quantum fluctuations. The form
of these fluctuations can be found using a simple scaling anal-
ysis: We write the susceptibility at finite frequency as some
function χ ′′

x (ω) = 1
ω

F (h/EF , |ω|/EF ). Reducing the cutoff to
EF → EF/b, the field rescales to h/EF → h/EF/b(1 − a).
Since the result must be independent of b, we can set b =
|ω|/EF and find that

χ ′′
x = 1

ω
F

(
h

EF

(
EF

|ω|
)1−α

, 1

)
= 1

ω
F

(
h(ω)

|ω| , 1
)

(D11)

with h(ω) = h(|ω|/EF )α the frequency-dependent energy
scale. Since h(ω) � ω, we may expand to second order using

Fermi’s golden rule, and find

χ ′′
x (ω) ∝ 1

ω

(
h(ω)

ω

)2

∝ sign(ω)
h2

E2α
F |ω|3−2α

. (D12)

The constant of proportionality may be set using the sum rule
Eq. (C6), and then averaging over h we obtain Eq. (42) of the
main text.

5. Biased case

For the biased case, the 〈σx〉 has an equilibrium value, so
that 〈σx(t → ∞)σx(0)〉 → 〈σx〉2. We therefore decompose

χ ′′
x (ω) = 〈σx〉2δ(ω) + χ ′′

inel(ω). (D13)

The equilibrium value, which contributes to the elastic
scattering rate, is given by [56]

〈σx〉 = 2

π
atan

(
hx

hR

)
. (D14)

Since hc/hc,R ∝ (ωc/hc)α/(1−α) � 1, when averaging over
hx, hR will not have much effect, and thus

〈σx〉2 = 1 − O
(

hc,R

hc

)
. (D15)

The inelastic contribution χ ′′
inel will now have a two-parameter

scaling form

χ ′′
inel(ω) = 1

ω
fα

(
ω

hR
,

hx

hR

)
. (D16)

For α < 1, the distributions are P (hR) = γ

hγc,R
hγ−1

R ,P (ε) =
1+βx

h1+βx
c

hβx
x . Thus

χ ′′
inel(ω) =

∫
P (hR, hx )

1

ω
fα

(
ω

hR
,

hx

hR

)
dhRdhx



= (1 + βx )γ
1

hγc,Rhβx+1
c

×
∫

hγ+βx
R yβx fα

(
ω

hR
, y

)
dhR

ω
dy

= (1 + βx )γ
ωγ+βx

hγc,Rhβx+1
c

∫ ∞

ω/hc,R

dx

xγ+βx+2

×
∫ hcx/ω

0
dy f (x, y).

Since hc/hc,R � 1, the upper limit of the y integral is
large for any value of x > ω/hc,R. Therefore defining f̃α (x) =∫∞

0 fα (x, y)dy, we can rewrite the susceptibility in a form
similar to earlier,

χ ′′
inel(ω) ≈ (1 + βx )γ

ωγ+βx

hγc,Rh1+βx
c

Aα,

Aα =
∫ ∞

0

f̃α (x)

xγ+βx+2
dx.

Here we have assumed that the upper limit of the y integral
and the lower limit of the x integral can be continued to ∞
safely. In this case, the validity of this assumption is not as
clear as it was in the unbiased case. We verify this by an
explicit calculation at the TP. There, the scaling function is
given exactly by [56]

f (x, y) = 4

π

1

x2 + 4

(
xatan(x + y) + xatan(x − y)

+ ln

(
(1 + (x + y)2)(1 + (x − y)2)

(1 + y2)2

))
. (D17)

For large y, f (x, y) ∝ 1
y2 , so the integral over y indeed

converges (this should generically be the case since the single-
TLS susceptibility is an analytic symmetric function of y,
which vanishes for y → ∞). In this case the integral can be
evaluated exactly, and we find that

f̃ (x) = 4x2

x2 + 4
. (D18)

We confirm that f̃ (x � 1) ∝ x2, just as in the 1bSB, and
our approximation is justified as long as γ + βx � 1.

Near the critical point α → 1, the splitting distribution
takes the form P (hR) ∝ 1

hR (logωc/hR )2+βz . When integrating
over y, the effective distribution will change to P (hR) ∝

hβx
R

(logωc/hR )2+βz . Therefore the self-energy will be of the form

�′′
inel(ω) ∝ ω1+βx

(logωc/hR)2+βz
. (D19)

Note that for the physical case βx = βz = 0 this will result
in MFL-like behavior around α ≈ 1.

APPENDIX E: RG FLOW OF 2bSB

We now discuss the details of the RG flow of the two-bath
SB model. We will mainly consider the region of interest,
which is analogous to the α < 1 region in the 1bSB, where
the effect of h on the flow of the couplings is negligible and
the renormalization of hR is a power law. Therefore, we begin
by examining the effect of the two couplings on each other.
For example, for the xy model the RG equations will be [as in
Eq. (55)]

dαx

d�
= dαy

d�
= −2αxαy + O(h̃2). (E1)

We can simplify these equations by using the constant of flow
δα = αx − αy, which is approximately conserved along flow.
We assume δα > 0 without loss of generality. We can then
simply integrate the equations,

2� =
∫ α0

x

αx (�)

dαx

αx(αx − δα)
=

log
(

r
1−δα/αx

)
δα

(E2)

where r = α0
y/α

0
x , and α0

a are the bare couplings. We thus find
that

αx(�) = δα

1 − re−2δα�
, (E3)

αy(�) = rδα

e2δα� − r
. (E4)

Assuming that the initial h/ωc � 1 is small enough, the flow
will reach δα� � 1, at which point the dominant coupling,
which in this case is αx, saturates at the value αx,R = δα,
while the subleading coupling continues to decrease, αy,R =
rδα(�′/ωc)δα . Since the flow stops when hR = �′ then in the
low-energy theory αy,R = rδα(hR/ωc)δα . Once this point has
been reached, we can examine the beta function of h̃,

dh̃

d�
= (1 − αx − αy)h̃. (E5)

As mentioned above, after some “time” � ∼ δα−1 (which
importantly does not depend on the initial value of h/ωc), αx

will saturate, while αy becomes negligible. Thus at this point
the flow is identical to the flow of the 1bSB, with α = δα. We
therefore find that if δα > 1 the tunneling flows to zero and the
TLS becomes localized, while for δα < 1 the renormalized
tunneling assumes the familiar form hR ∝ ωc(h/ωc)1/(1−δα).
Note that in this case the proportionality constant will depend
on the time it took αx to saturate, which is a quantity which
depends on α0

x , α
0
y and not on h, ωc. This can be found exactly

by inserting αx,y(�) into (E5) and integrating,

log
ωc

h
=
∫ �∗

0

(
1 + δα 1 + re−2δα�

1 − re−2δα�

)
d�

= (1 − δα)�∗ − log

(
1 − re−2δα�∗

1 − r

)
(E6)

⇒ hR ∝ (1 − r)
2

1−δα ωc

(
h

ωc

) 1
1−δα
. (E7)



The flow of the couplings in the xz model is identical. How-
ever, if the dominant coupling is αz then after � � δα−1 the
flow of h will slow down, and thus h will only by renormalized
by a multiplicative factor. We find in this case [analogous to
only inserting αy(�) into (E5)]

log
ωc

h
=
∫ �∗

0

(
1 + δα re−2δα�

1 − re−2δα�

)
d�

= �∗ − log

(
1 − re−2δα�∗

1 − r

)
(E8)

⇒ hR = δα

αz
h. (E9)

APPENDIX F: SUBLEADING CORRECTIONS
IN xyz MODEL

Following the methods of Ref. [53], we characterize the
magnitude of the different subleading corrections in the multi-
bath case. There are two types of subleading corrections: the
susceptibilities of the subdominant baths, which appear in the
self-energy, and perturbative corrections to the susceptibility
of the dominant bath because of the weak coupling to the
losing baths. We will study these in the xy model and in
the xz model, and the generalization to the xyz model is
straightforward since the couplings to the subleading baths are
perturbative in the low-energy theory.

1. xy model

As usual we will assume without loss of generality that
αx > αy. As mentioned above, there are two types of correc-
tions to the self-energy. We start with that due to perturbative
corrections to χx. As presented in [53], if only the x bath
was present after integrating out the high-energy modes, we
could expand the ground and excited states as (performing
perturbation theory in the low-energy modes)

|g〉0 = |↓̃〉 + φx

hR
|↑̃〉 + 1

2

(
φx

hR

)2

|↓̃〉 + · · · (F1)

|ωi, x〉0 = b†
x,i|g〉 + · · · (F2)

where φα =∑i

√
�a(ωi )

hR
(b†

a,i + ba,i ),�a(ω) ∝ αr
a, and

b†
a,i, ba,i are respectively the bath operator, bath spectral

function, and boson creation and annihilation operators of the
a bath. Importantly, the states |↑̃, ↓̃〉 = 1/

√
2(|+̃〉 ± |−̃〉) are

superpositions of the high-frequency-model dressed x states
|±̃〉. This gives the expected χx(ω � hR) ∝ αx,Rω/h2

R at low
frequencies, but for general frequencies should be treated in a
nonperturbative manner in αx,R. However, since αy,R is small,
we can add it perturbatively only to first order,

|g〉 ≈ |g〉0 − i
φy

hR

(
1 +
(
φx

hR

)2

+ · · ·
)

|↑̃〉 (F3)

and the relevant excited states will involve insertions of one y
boson with multiple x bosons. Using the spectral decomposi-
tion for χx,

χx(ω) =
∑

n

|〈n|σx|g〉|2δ(En − ω), (F4)

we find that the leading correction will come from matrix
elements of the form 〈ω1, · · ·ω2k, x;ω j, y|σx|g〉. While the
summation over the many orders of φx is nontrivial, we know
that it must produce a scaling function that only depends on
ω/hR, and we may thus write

χ ′′
x (ω, αy,R) = χ ′′

x (ω, 0) + αy,R
1

ω
f̃αx,R

(
ω

hR

)
(F5)

= 1

ω
fαx,R

(
ω

hR

)
+ αy

(
hR

ωc

)αx,R 1

ω
f̃αx,R

(
ω

hR

)
(F6)

where in the second line we inserted the expression for αy.
While averaging over the first term will give the usual con-
tribution, in the second term we can treat the distribution
as effectively having an increased exponent P̃r ∼ hγ−1+αx,R

R ,
which will in turn produce a term with a subleading frequency
dependence in the averaged susceptibility ∝ ωγ−1+αx,R .

We now consider the susceptibility χy, whose spectral de-
composition is

χy(ω) =
∑

n

|〈n|σy|g〉|2δ(En − ω). (F7)

Using the fact that the bare σy flips the TLS without properly
adjusting the high-energy bosons, we have that

〈↑̃|σy|↓̃〉 ∝ hR

h
∝
(

hR

ωc

)αx,R

. (F8)

For small frequencies we may use the perturbative form (F2)
and find that χ ′′

y ∝ ( hR
ωc

)2αx,Rχ ′′
x , which will naively translate

into a frequency dependence ωγ−1+2αx,R in the averaged sus-
ceptibility. However, the averaged susceptibility depends on
the full χ ′′

y , and since for intermediate and high frequencies
this perturbation theory is not applicable, we cannot fully
determine the nonuniversal prefactor, and can only argue that
χ ′′

y ∝ ωγ−1+ε with ε > 0.

2. xz model

We begin by studying the similar case where αx > αz. The
susceptibility χ ′′

x will now acquire similar corrections due to
αz. However, the matrix elements with single insertions of
σzφz vanish, and we must instead go to second order in σzφz.
This means that the corresponding correction to the averaged
susceptibility will be ∝ ωγ−1+2αx,R . The susceptibility χ ′′

z will
be nonuniversal due to considerations identical to (F8), and
will thus be suppressed by a prefactor ( hR

ωc
)2αx,R at low fre-

quencies, although we do not know the generalization of it
to higher frequencies. However, in addition this susceptibility
includes a static delta function peak due to the equilibrium
value of 〈σz〉∞. For small αz � 1 this can be calculated using
the sum rule Eq. (C5),

〈σz〉 = 1

h

∫ ωc

0
f (ω/hR)dω =

(
hR

ωc

)αx

×
(∫ ωc/hR

0
f (x)dx

)
.

(F9)

We must therefore find if this integral converges or diverges
when the upper limit is taken to ωc/hR → ∞. Reference [53]



shows that f (x � 1) ∝ 1/x2−2α , so that for α < 1/2 this in-
tegral converges to some constant = Aα while for α > 1/2
this integral diverges as a power law = Aα (ωc/hR)2α−1 [for
α = 1/2 it diverges logarithmically ∝ log(ωc/hR)]. Thus we
can write

χ ′′
z ≈ δ(ω) × Aαx

(
hc,R

ωc

)min(αx,1−αx )

+ · · · (F10)

with the dots referring to the subleading frequency-dependent
terms.

We now turn to the case where αz > αx. Here, with no αx

the ground state is exactly a coherent state of all the bosons
centered around the location corresponding to |↓〉. Acting
with the high-frequency mode dressed σ̃x will only agitate the
low-energy modes, and thus we can write 〈↑̃|σ̃x|↓̃〉 = sx ∼
O(1). Therefore incorporating the effects of αx,R perturba-
tively will modify the ground state as

|g〉 =
(

1 + 1

2
s2

x

(
φx

hR

)2
)

|↑̃〉 + sx
φx

hR
|↓̃〉 + · · · . (F11)

In terms of the resulting modification to χ ′′
z , we can easily see

that the elastic peak will decrease by a small amount propor-
tional to αx,R, and the inelastic part will be modified by a term
proportional to (αx,R)2ω/h2

R (assuming that ω/hR � 1/αx,R),
which in turn will give a correction to χ ′′

z proportional to
ωγ−1+2αz,R . The susceptibility χ ′′

x is simply a delta function
time the factor corresponding to (F8),

χ ′′
x (ω) =

(
hR

ωc

)2αz,R

δ(ω ± 2hR), (F12)

χ ′′
x (ω) ∝ ωγ−1+2αz

x . (F13)

And we can thus conclude that the frequency dependence of
the self-energy in this case will be

�′′(ω) −�′′(0) ∝ |ω|γ+2αz,R

hγc,Rω
2αz,R
c

. (F14)

Note that when averaging over hR we neglect the contribu-
tion from TLS whose splitting obeys ω/hR � (ωc/hR)αz,R →
hR � ω(ω/ωc)αz,R/(1−αz,R ), for which the perturbation theory
breaks down.

APPENDIX G: DERIVATION OF SPECIFIC HEAT
FROM INTERNAL ENERGY

Here we derive Eq. (90) that enables us to obtain the
specific heat of the model following Ref. [101]. Considering
the Hamiltonian (1)

H =
∑
α

εαc†
αcα +

∑
αβγ ,l

gl
αβγ c†

αcβσ
l
γ +
∑
γ

hγ σ
z
γ . (G1)

The single-particle quantum numbers stand for combinations
of momenta and flavor indices and we also suppress factors
of M and N for brevity. It is useful to introduce an arbitrary
retarded fermionic Green’s function

〈〈A,B〉〉r
t ≡ −iθ (t )〈[A(t ),B]+〉 (G2)

and its Fourier transform 〈〈A,B〉〉r
ω. Here [A,B]+ is the an-

ticommutator. The advanced Green’s function is given by

〈〈A,B〉〉a
ω = (〈〈A,B〉〉r

ω )∗where (·)∗ denotes complex conjuga-
tion. We use the fact that the retarded and advanced Green’s
functions both obey the equation of motion,

ω〈〈A,B〉〉ω = 〈[A,B]+〉ω + 〈〈[A,H]−,B〉〉ω. (G3)

We use Eq. (G3) to obtain the equation for motion of the
retarded/advanced fermionic Green’s function,

(ω − εα )〈〈cα, c†
α〉〉ω = 1 +

∑
αβγ ,l

gl
αβγ

〈〈
cβσ

l
γ , c

†
α

〉〉
ω
. (G4)

We proceed to consider the internal energy U ≡ 〈H〉,

U =
∑
α

εα〈c†
αcα〉 +

∑
αβγ ,l

gl
αβγ

〈
c†
αcβσ

l
γ

〉+∑
γ

hγ
〈
σ z
γ

〉
.

(G5)

Using the identity (that follows from the spectral representa-
tion)

〈AB〉 = i
∫ ∞

−∞

dω

2π

〈〈A,B〉〉r
ω − 〈〈A,B〉〉a

ω

eβω + 1
, (G6)

and Eq. (G4) we may express the first two terms in U as∑
α

εα〈c†
αcα〉 +

∑
αβγ ,l

gl
αβγ

〈
c†
αcβσ

l
γ

〉

= −
∫

dω

π

∑
α

Im〈〈cα, c†
α〉〉r

ω. (G7)

The right-hand side can be written in terms of the electronic
spectral function:

∫
k Ak(ω) = − 1

π

∑
α Im〈〈cα, c†

α〉〉r
ω. Insert-

ing this form to the expression for the internal energy, we
obtain the form given in Eq. (90).

APPENDIX H: SUPERCONDUCTIVITY

1. Effective action

We generalize our model to spin-1/2 fermions by altering
the interaction term in Eq. (1) to

Hint = 1

N

∑
r,s,i jl

gi jl,r · σ l,rc
†
irsc jrs. (H1)

Here, c†
ikα is the fermionic creation operator for momentum

k, spin s =↑,↓, and flavor index i = 1, · · · ,N/2 (so that the
total number of electron flavors remains N), and the rest of the
definitions are identical to the case in the main text.

After averaging over the coupling constants via replica
trick, introducing the bilocal fields (including the new pairing
field F )

Gr,r′s(τ, τ
′) = 1

N

∑
i

c̄irα (τ )cir′s(τ
′),

Fr,r′ (τ, τ ′) = 1

N

∑
i

cir↓(τ )cir′↑(τ ′), (H2)

χa,r(τ, τ
′) = 1

M

∑
l

σ a
l,r(τ )σ a

l,r(τ
′),



and integrating over the fermions, we obtain the effective action

S = − N tr log
(
Ĝ−1

0 − �̂)− N
∫ ∑

r,s

Gr,r′s(τ, τ
′)�r′,rs(τ

′, τ ) − N
∫ ∑

r,σ

(F †
r,r′ (τ, τ ′)�r′,r(τ

′, τ ) + Fr,r′ (τ, τ ′)�†
r′,r(τ

′, τ ))

− M
∑

a

∑
r

g2
a

∫
χa,r(τ, τ

′)

[∑
s

Gr,rs(τ, τ
′)Gr,rs(τ

′, τ ) − (−1)δa,y 2F †
r,r(τ, τ

′)Fr,r(τ
′, τ )

]

+ M
∫ ∑

rs

χa,r(τ, τ
′)�a,r(τ

′, τ ) +
∑

r

M∑
l=1

STLS[σ l,r], (H3)

where

STLS[σ] = SBerry[σ] −
∫

dτhl,r · σ(τ )

−
∫

dτdτ ′∑
a

�a,r(τ
′ − τ )σ a(τ )σ a(τ ′) (H4)

is the action of a spin-boson problem with multiple baths.
In the first term we use a 2 × 2 Nambu-Gor’kov formula-

tion, sufficient for singlet pairing

�̂rr′ (τ, τ ′) =
(
�rr′↑(τ, τ ′) �rr′ (τ, τ ′)

�
†
rr′ (τ, τ ′) −�r′r↓(τ ′, τ )

)
. (H5)

Generalizations to triplet pairing are straightforward but can
only play a role for odd-frequency pairing. We use a similar
expression for the propagator

Ĝrr′ (τ, τ ′) =
(

Grr′↑(τ, τ ′) Frr′ (τ, τ ′)

F †
rr′ (τ, τ ′) −Gr′r↓(τ ′, τ )

)
. (H6)

The bare propagator in frequency and momentum space is

Ĝ0k(iω)−1 =
(

iω − εk 0

0 iω + εk

)
. (H7)

In the limit of large M and N , with fixed ratio M/N , we can
analyze the saddle point limit. We consider a saddle point
that does not break time-reversal symmetry Grr′↑(τ, τ ′) =
Grr′↓(τ, τ ′) and drop the spin index. Performing the variation
with respect to �̂ gives

Ĝr,r′ (iω) = (Ĝ−1
0 (iω) − �̂(iω)

)−1∣∣
r,r′ . (H8)

The variation with respect to G and F yield

�r,r′ (τ ) = δr,r′
M

N

∑
a

g2
aGr,r(τ )χa,r(τ ), (H9)

�r,r′ (τ ) = −δr,r′
M

N

∑
a

(−1)δa,y g2
aFr,r(τ )χa,r(τ ). (H10)

These two equations resemble the ones that occur for electrons
that couple to bosonic modes with propagator χa,r(τ ) via a
Yukawa coupling. The stationary point that follows from the
variation with respect to χ is

�a,r(τ ) = −2g2
a

[
Gr,r(τ )Gr,r(−τ ) − (−1)δa,y F †

r,r(τ )Fr,r(−τ )
]
,

(H11)

an expression that is also analogous to the self-energy of a
bosonic problem.

The TLS-correlation function 〈σ a
l,r(τ )σ a

l,r(τ
′)〉 is deter-

mined from the solution of the spin boson problem.

2. Linearized Eliashberg equations

As long as we are only interested in the onset of pairing
and the superconducting phase transition is of second order
we can focus on the linearized gap equation. In this case we
can neglect the feedback of superconductivity on the ohmic
bath. The solution of the spin-boson problem then yields the
local propagator χa(ω). The equation for the momentum-
independent normal self-energy is

�(iω) = M

N
T
∑
ω′,a

g2
aG(iω′)χa(iω − iω′)

= M

N
T
∑
ω′,a

g2
aρF

×
∫

dεk
1

iω′ − εk −�(ω′)
χa(iω − iω′). (H12)

The linearized equation for the s-wave anomalous self-energy
is [assuming particle-hole symmetry for simplicity, we use the
fact that i�(iω′) is real]

�(iω) = −M

N
T
∑
ω′,a

g2
a(−1)δa,y F (iω′)χa(iω − iω′)

= M

N
T
∑
ω′,a

∫
dεk

× ρF g2
a(−1)δa,y�(iω′)χa(iω − iω′)

(iω′ − εk −�(iω′))(−iω′ − εk +�(iω′))

= M

N
T
∑
ω′,a

∫
dεk

ρF g2
a(−1)δa,y�(iω′)χa(iω − iω′)

(iω′ + i�(iω′))2 + ε2
k

.

(H13)

If we perform the integration over εk, we get for both self-
energies the Eliashberg equations,

�(iω) = −iT
∑
ω′

sign(iω′)D� (iω − iω′),

�(iω) = T
∑
ω′

�(iω′)
|ω′ + i�(iω′)|D�(iω − iω′), (H14)



with

D� (iω) = M

N

∑
a

ρF g2
aχa(iω),

D�(iω) = M

N

∑
a

(−1)δa,yρF g2
aχa(iω). (H15)

The contribution due to the coupling gy is pair breaking and
sufficiently large gy can partially or fully destroy supercon-
ductivity.

For the solution of the linearized gap equation we introduce

�(iωn) = ωn�(iωn)

ωn + i�(iωn)
, (H16)

which yields a closed equation

�(iωn) = T
∑

n′
sign(iωn′ )

(
�(iωn′ )

ωn′
D� (iωn − iωn′ )

−�(iωn)

ωn
D�(iωn − iωn′ )

)
. (H17)

One nicely finds that if D� (iω) = D�(iω) ≡ D(iω) ( i.e.,
gy = 0) the zeroth bosonic Matsubara frequency does not
contribute to the solution of the coupled equation. Static fluc-
tuations are irrelevant for the pairing problem, in agreement
with Anderson’s theorem. From now on we will assume that
gy = 0.

Hence, in what follows, we can just skip n′ = n in the sum.
Then we do not have any problem with a potentially divergent
D(0) for γ � 1,

�(iωn) = T
∑
n′ �=n

(
�(iωn′ ) − ωn′

ωn
�(iωn)

)
D(iωn − iωn′ )

|ωn′ | . (H18)

For even-frequency pairing we have �(iωn) = �(−iωn). Hence we can write (we only consider ωn > 0)

�(iωn) = T
∑
n′�0

�(iωn′ )
(1 − δn,n′ )D(iωn − ωn′ ) + D(iωn + iωn′ )

ωn′
−�(iωn)T

∑
n′�0

(1 − δn,n′ )D(iωn − iωn′ ) − D(iωn + iωn′ )

ωn
.

(H19)

Next, we introduce

 n = �(iωn)

|ωn|1/2
(H20)

and obtain

 n = T
∑
n′�0

 n′
(1 − δn,n′ )D(iωn − iωn′ ) + D(iωn + iωn′ )√

ωnωn′
− nT

∑
n′�0

(1 − δn,n′ )D(iωn − iωn′ ) − D(iωn + iωn′ )

ωn
. (H21)

We can write this as a matrix equation, where Nmax is the maximum number of Matsubara frequencies included,

 n =
∞∑

n′=0

Kn,n′ ′
n, (H22)

Kn,n′ = δn,n′Kdiag
n + (1 − δn,n′ )

D(iωn − ωn′ ) + D(iωn + ωn′ )

π
√

(2n + 1)(2n′ + 1)
, (H23)

Kdiag
n =

∞∑
m=0

(1 − δn,m)D(iωn − ωm) + (1 + δn,m)D(iωn + ωm)

π (2n + 1)
. (H24)

Given this matrix equation, we first consider the behavior of
Tc for a power-law form of the pairing propagator (with some
high-energy cutoff �, so that the Matsubara sum runs up to
Nmax = �/T )

D(iωn) = A

∣∣∣∣ �ωn

∣∣∣∣
a

≡ A

(
�

T

)a

dn (H25)

where we introduced the rescaled propagator dn = 1
(2πn)a .

Since Kn,n′ is linear in D, we may also define its rescaled
version Kn,n′ = A(�T )akn,n′ where kn,n′ is defined by replacing
D(iωn) with dn in the definition of Kn,n′ . Defining κ (a,Nmax)
as the largest eigenvalue of kn,n′ , the Eliashberg equation

simplifies to

1 = A

(
�

Tc

)a

κ (a,Nmax). (H26)

The qualitative behavior of the eigenvalue can be estimated
by inspecting the diagonal elements of k, namely, a simple
power counting indicates whether the sum converges or not,
which determines the dependence on the cutoff Nmax. In par-
ticular, for a = 0, κ ≈ κ0 log(Nmax) and we find the BCS-like
solution Tc ∝ � exp(−1/Aκ0). For a > 0 the series converges
for n, n′ → ∞ and κ = κa depends only on the exponent
a, giving the critical temperature Tc = �(Aκa)1/a. A numer-
ical calculation of κa is shown in Fig. 8. Finally, consider



FIG. 8. Numerical calculation of the largest eigenvalue κ (a,Nmax) as a function of a (top) and for the special cases a = 0 (bottom left) and
a = 0′ (i.e., logarithmic D�) (bottom right). For any finite value of a this approaches a constant as Nmax → ∞, while for a = 0, 0′ it scales as
log(Nmax), log2(Nmax) respectively at large Nmax.

the case where D(iωn) = A log(�/|ωn|) (corresponding to a
MFL behavior of the electrons). Using dn = log(Nmax/|n|)
one can show numerically that κ ≈ κ ′

0 log2(Nmax) such that
Tc ∝ � exp(−1/

√
Aκ0). An analytic derivation of this result

using the Eliashberg equation is given in [102].

3. Analytic continuation of the bosonic propagator

We start with the imaginary part of the bosonic propagator,
assuming a power-law form

D′′(ω) = sign(ω)A

∣∣∣∣�ω
∣∣∣∣
a

. (H27)

Analytically continuing to Matsubara frequencies (for a < 2),
we obtain

D(i�) = − 1

π

∫ ∞

−∞

dω

i�− ωD′′(ω) (H28)

= 2

π

∫ ∞

0

ωdω

�2 + ω2
D′′(ω) (H29)

= 2A�a

π

∫ �
0

ω1−adω

�2 + ω2
(H30)

= 2A

(2 − a)π

�2

|�|2 2F
1

(
1,−a

2
, 1 − a

2
,−�

2

�2

)
(H31)

where 2F1 is the Gaussian hypergeometric function. In order
to obtain analytical results, we approximate

D(i�) ≈ 2A�a

π

(∫ �
0

ω1−a

�2
dω +
∫ �
�

ω−1−adω

)
(H32)

= 2A

π

(
1

2 − a

∣∣∣∣��
∣∣∣∣
a

− 1

a

(
1 −
∣∣∣∣��
∣∣∣∣
a))

, (H33)

which coincides with the appropriate limits of the function
2F1. Note that the leading behavior for |�| � � is of the form

D(i�) ≈ 2A

π
×

⎧⎪⎪⎨
⎪⎪⎩

1
|a| a < 0

log
(
�
|�|
)

a = 0
2

a(2−a)

∣∣�
�

∣∣a 0 < a < 2

. (H34)

We now use the above to obtain Tc in the x model.

4. Detailed analysis of the x model

We analyze the scaling of Tc for two parameter regimes:
“weak coupling”, for which Tc � hc,R, and “strong coupling”
for which Tc � hc,R. We will find approximate solutions
by analytically continuing the TLS susceptibility χx and



identifying the most singular contribution to D�(i�), from
which we obtain Tc using Eq. (H26).

a. Weak coupling

Here we study the susceptibility for T, ω � hc,R. From
dimensional considerations, we write the averaged suscepti-
bility as a scaling function

χ ′′
x (ω,T ) = Aαγ

ω

∣∣∣∣ ωhc,R

∣∣∣∣
γ

min

(
1,
( ω

bT

)δ)
(H35)

with some δ > 0 and b ∼ O(1). Analyzing the susceptibility
at weak coupling and at the Toulouse point suggests that
δ = 1, although as we will see the exact value of δ does
not qualitatively change Tc. The corresponding Matsubara
frequency correlator is given by

χx(i�n) ≈ 2γAα
πhc,R

(
1
γ−1 − 2

γ 2−1

∣∣∣ �hc,R

∣∣∣γ−1
− δ

(γ+1)(γ+1+δ)
T γ

�2hγ−1
c,R

)
.

(H36)

The most singular contribution to D� is therefore (the
temperature-dependent term is not significant and can be ig-
nored, since � � T )

D�(i�) ≈ 2πAαλ×

⎧⎪⎪⎨
⎪⎪⎩

γ

γ−1 γ > 1

log
( hc,R

|�|
)

γ = 1
2γ

1−γ 2

∣∣∣ hc,R

�

∣∣∣1−γ
γ < 1

. (H37)

Using Eq. (H26) we find that

Tc/hc,R ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp
(− γ−1

2πAαγ κ0λ

)
γ > 1 + O(

√
λ)

exp
(− 1√

2πAακ ′
0λ

)
γ = 1( 4πAαγ κγ−1

1−γ 2 λ
) 1

1−γ γ < 1 − O(
√
λ)

, (H38)

where the requirement |γ − 1| > O(
√
λ) in the BCS-like and

quantum critical regimes is necessary for self-consistency.
Additionally, demanding that Tc � hc,R, which is assumed
in taking the low-T form of the TLS susceptibility, requires
λ � 1, i.e.,

1 � α
M

N

EF

hc,R
∝ αM

N

(
EF

hc

) 1
1−α
. (H39)

This condition will always break down at some α < 1. For
M/N ∼ O(1) this will happen at very small values of α, α ∝
hc/EF , while in the limit where TLSs are extremely sparse,
M
N � hc

EF
, this occurs at α ≈ 1 − log( EF

hc
)

log( N
M )

.

b. Strong coupling

We now turn to the regime T � hc,R. Note that for α > 1
this is always the case since hc,R = 0. For frequencies ω � T
the TLS correlation function decays exponentially with rate
[37,103] [Eq (5.29)],

� = c
h2

T

(
T

EF

)2α

(H40)

with c some α-dependent prefactor. Note that T � � for T �
hR. In this regime, the TLS susceptibility can be approximated

as

χ ′′
x (ω) = 1

2π

�

T

ω

�2 + ω2
. (H41)

(The prefactor �/T is due to the sum rule Eq. (C4)). For ω �
T, hR the analysis of Appendix D 4 can be extended for α �=
1 (or more precisely |α − 1| > hc/EF ). Overall for ω � hc,R

one finds that

χ ′′
x (ω,T ) = 4α

h2

E2α
F

(max (ω, bT ))2−2α

ω
(H42)

with b ∼ O(1). Analytically continuing and separating the
different frequency regimes, we define

χx(i�) = 2

π

(∫ �
0

+
∫ bT

�

+
∫ �

bT
+
∫ EF

�

)
dω
ωχ ′′

x (ω)

ω2 +�2

≡ χ1 + χ2 + χ3 + χ4. (H43)

Thus, for � > aT � �

χ1 ≈ 1

3π2

�2

T�2
, (H44)

χ2 ≈ 1

π2

�

�2

(
1 − �

bT

)
, (H45)

χ3 ≈ 2α

π

h2

E2α
F

|�|2α−3

2α − 1

(
1 −
(

bT

|�|
)2α−1
)
, (H46)

χ4 ≈ 2α

π

h2

E3
F

1

2α − 3

(
1 −
( |�|

EF

)2α−3
)
. (H47)

The most singular contribution to D� is given by

D�(i�) = 2πεα2bβ

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2α
1−2α

E3−2α
F

T 1−2α�2 α < 1/2
E2

F
�2 log

( |�|
T

)
α = 1/2

2
(2α−1)(3−2α)

∣∣EF
�

∣∣3−2α
1/2 < α < 3/2

log
(

EF
|�|
)

α = 3/2
1

2α−3 α > 3/2

,

(H48)

where bβ = ( 1+β
3+β ) comes from averaging over h2. Inserting

these into Eq. (H26), we obtain

Tc/EF ∝

⎧⎪⎪⎨
⎪⎪⎩
( 4πα2κ3−2αbβ

(2α−1)(3−2α)ε
) 1

3−2α α < 3/2 − O(
√
ε)

exp
(− 1

α
√

2πbβκ ′
0ε

)
α = 3/2

exp
(− 2α−3

2πα2βκ0ε

)
α > 3/2 + O(

√
ε)

. (H49)

Note that for α � 1/2 the prefactor in the parenthe-
ses changes, according to the corresponding expression in
Eq. (H48). However, the dependence on the small parameter
ε remains ε1/(3−2α) for all α < 3/2.

Once again, for α < 1 consistency requires that Tc � hc,R,
which translates into

1 � α
M

N

(
EF

hc

) 1
1−α

⇐⇒ λ � 1, (H50)

which is complementary to the requirement for weak
coupling.



APPENDIX I: COMMENT ON CHEMICAL POTENTIAL

Here, we briefly comment that the temperature dependence
of the chemical potential because of self-energy corrections
is subleading throughout the phase diagram and therefore
does not alter the physical picture. Here, we consider the spin-
less case for simplicity, the generalization to spinful electrons
is straightforward. To see this, note that fixing the density is
enforced via the constraint

∑
k G(τ = 0, k) = n that can be

recast to the form

∫
ε,ω

ν(ε)A(ω, ε)n(ω) = n (I1)

with the spectral function A defined earlier and n(ω) being the
Fermi-Dirac function. Define ν̃(ω) ≡ ∫

ε
ν(ε)A(ω, ε), then

n = ∫
ω
ν̃(ω)n(ω). Assuming weak particle-hole asymmetry,

ν(ε) ≡ ν0 + ν1
ε

EF
, we obtain

ν̃(ω) = ν0 − ν1

4E2
F

(ω − Re�R(ω)). (I2)

Here, we assumed, for simplicity, that the bandwidth W ≈ EF .
Inserting ν̃(ω) and applying the Sommerfeld expansion we
see that

n − μ(T )ν0 = − T 2

4E2
F

ν1(1 − [∂ω�
′(ω,T )]ω=0) + · · · (I3)

and writing μ(T ) = μ(T = 0) + δμ(T ) we see that

δμ(T ) ∝

⎧⎪⎪⎨
⎪⎪⎩

T 2

EF
γ > 1

T 2 log(hc/T )
EF

γ = 1
T 1+γ h1−γ

c
EF

γ < 1

(I4)

such that in all cases the correction is subleading in T/EF .
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